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Abstract. The first part of the paper is an introduction to the theory of probabilistic concurrent

systems under a partial order semantics. Key definitions and results are given and illustrated on

examples.

The second part includes contributions. We introduce deterministic concurrent systems as a sub-

class of concurrent systems. Deterministic concurrent system are “locally commutative” con-

current systems. We prove that irreducible and deterministic concurrent systems have a unique

probabilistic dynamics, and we characterize these systems by means of their combinatorial prop-

erties.

ACM CSS: G.2.1; F.1.1

1. Introduction

Trace monoids are well known models of concurrency, typically used when one wishes to work on

the logical order between actions rather than on their chronological order. These models represent

systems with actions, symbolized by letters in a given alphabet, and with the feature that some actions

may occur concurrently. Let a1, . . . , aN be a bunch of pairwise concurrent actions about to be played

during an execution of the system. Then the system does not distinguish between the N ! possible

ways of interleaving them; nor could an observer retrieve any information on their interleaving. When

observing the system history, the only remaining information about these N actions is that they were

performed concurrently; and actually it would be irrelevant to think of a “hidden interleaving”.
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Mathematically, a trace monoid M is a monoid generated by an alphabet Σ, and with relations of

the form ab = ba for some fixed pairs of letters (a, b) ∈ Σ × Σ. The identity ab = ba in M renders

the concurrency of the two actions a and b. This identity is typical of the so-called partial order or

true-concurrent semantics for concurrency. It contrasts with the interleaving semantics, which would

instead keep track of the two possible sequences a-then-b and b-then-a when facing the two concurrent

actions a and b.

Despite their successful use as models of concurrency for databases for instance [1, 2], trace

monoids lack an essential feature present in most real-life systems, namely they lack a notion of state.

Indeed, any action can be performed at any time when considering a trace monoid model; whereas,

in real-life systems, some actions may only be enabled when the system enters some specified state,

and then one expects the system to enter a new state, determined by the former state and by the action

performed.

A natural model combining both the “built-in” concurrency feature of trace monoids and the notion

of state arises when considering a right monoid action of a trace monoid M on a finite set of states X,

i.e., a mapping X × M → X denoted by (α, x) 7→ α · x. A sink state ⊥ is introduced in order

to distinguish the forbidden actions. Hence, if the system is in state α, performing the letter a ∈ Σ
brings the system into the new state α · a, with the convention that a was actually not allowed if

α · a = ⊥. This notion of concurrent system, introduced in [3], encompasses in particular popular

models of concurrency such as bounded Petri nets [4, 5].

Whereas the interleaving semantics of systems provides a direct connection with the classical

theory of probabilistic systems (Markov chains in continuous or in discrete time, mainly), adding a

probabilistic layer on top of concurrency models within the partial order semantics has been a chal-

lenge for some time. Indeed, there is no obvious way to assign a probability to traces with a “natural”

composition property. The random walk approach for instance, consisting in adding one letter (or

action) at a time with each letter being assigned a fixed probability, can be shown to never fulfill

the composition property that we are looking for (see a more detailed discussion in Remark 2.7 in

Sect. 2.1, § Probabilistic dynamics for trace monoids).

The approach of the author and his co-authors on this topic has been to start again from the very

beginning: trace monoids themselves [6]. Equipping the “trajectories” of a trace monoid with a nat-

ural probabilistic dynamics amounts to defining a memoryless probability measure on the space of

“infinite traces”. The memoryless property of measures is a natural composition property which ex-

tends, in the framework of trace monoids, the well known memoryless property typical of, say, coin

tossing. The existence of such measures for trace monoids is not obvious. The construction of mem-

oryless probability measures for trace monoids is based on existing tools found in the literature on

their combinatorics originally due to Cartier and Foata [7] and later revisited by Viennot [8]. The

construction puts into light, in the elementary framework of trace monoids, some essential concepts

for the interplay between probability and concurrency: the Möbius polynomial of the monoid and the

particular role played by its root of smallest modulus, and the process of cliques visited by an infinite

random trace. For the more complex case of concurrent systems, defining a probabilistic dynamics

consists then in a more technical work on the very same concepts. New difficulties arise in this case,

yet a general theory of probabilistic concurrent systems may be built [3, 9].
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The purpose of the present paper is twofold. Firstly, it intends to present an introduction to the the-

ory of probabilistic concurrent systems. We present the key notions and state the main results which

justify and guide the computations to be done. Results are stated in a rigorous way, but we do not

provide proofs (references are given). The hope is to provide an elementary introduction both to trace

theory, from the systems theory point of view, and to the probabilistic aspects of concurrent systems.

This includes basic definitions of trace monoids, the Cartier-Foata normal form for traces, the Möbius

polynomial and the Möbius transform associated with a trace monoid and the notion of irreducibility

for trace monoids. A rigorous notion of infinite trace is developed, and a characterization of memo-

ryless probability measures for trace monoids is given. The particular case of the uniform measure is

investigated. The realization result of memoryless measures as finite Markov chains on cliques is also

introduced. All these notions are then developed in the more general context of concurrent systems,

which yields us to introduce the following notions attached to a concurrent system: its Möbius matrix,

its characteristic root, its digraph of states-and-cliques, its Markov measures, and among them its uni-

form measure in the irreducible case. A key result of the theory is the spectral property for irreducible

concurrent systems, to be used later in the paper. The computation of the probability distribution of

the first clique of a random infinite execution is illustrated on several examples, and the notion of null

node is introduced.

Secondly, and on the contribution part, we introduce and investigate the special case of determin-

istic concurrent systems. Intuitively, a deterministic concurrent system (DCS) is a concurrent system

where no conflict between different actions can ever arise. Deterministic concurrent systems can be

related, for instance, to causal nets and to elementary event structures found in 1980’s papers [5]. We

prove in particular that deterministic concurrent systems correspond to concurrent systems which are

“locally commutative”.

Compared to general concurrent systems, deterministic concurrent systems appear as limit cases.

For instance, we prove that their space of infinite executions is at most countable—whereas it is un-

countable in general. If the system is moreover irreducible, we show that from any initial state, only

one infinite execution exists. In particular the only probabilistic dynamics is trivial in this case—

whereas there is a continuum of possible and non trivial probabilistic dynamics in general. Yet, prov-

ing these properties is not obvious. The definition of DCS is formulated in elementary terms; their

specific properties are formulated in elementary terms; but the proof of these properties relies on some

subtle combinatorics of partially ordered sets.

We state general properties of deterministic concurrent systems, and our main contribution is

to give several equivalent characterizations of concurrent systems which are both deterministic and

irreducible: an algebraic characterization; a probabilistic characterization; a characterization from the

analytic combinatorics viewpoint; and a characterization through set-theoretic properties of the set of

infinite executions.

Another contribution is a generalization of the well known fact that commutative free monoids

have a polynomial growth. The property that we obtain in Corollary 2.22 is general enough to be of

interest per se.

Organization of the paper. Section 2 is devoted to the background on concurrent probabilistic

systems, and is divided into three parts. Sections 2.1 surveys basic notions on trace monoids and their

probabilistic counterpart, while Section 2.2 reviews basic constructions related to concurrent systems,
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including the probabilistic notions and their relationship with combinatorics. Finally, Section 2.3

is devoted to an elementary, yet original result of trace theory, that will be used later in the paper.

Deterministic concurrent systems are introduced in Section 3. Section 4 is devoted to the study of

concurrent systems which are both deterministic and irreducible.

2. Preliminaries

2.1. Trace monoids and their combinatorics

The background material introduced in this section is standard, see for instance [1, 2], excepted for

the probabilistic notions which are borrowed from [6].

Independence and dependence pairs. An alphabet is a finite set, which we usually denote by Σ,

the elements of which are called letters. An independence pair is a pair (Σ, I), where I is a binary

symmetric and irreflexive relation on Σ, called an independence relation. A dependence pair is a

pair (Σ,D), where D is a binary symmetric and reflexive relation on Σ, called a dependence relation.

With Σ fixed, dependence and independence relations correspond bijectively to one another, through

the association D = (Σ × Σ) \ I . The Coxeter graph of either pair (Σ, I) or (Σ,D) is the graph

(Σ,D) with all self-loops omitted [10].

Example 2.1. Figure 1 depicts the Coxeter graph of the independence pair (Σ, I) with Σ ={a0, ... , a4}
and (ai, aj) ∈ I ⇐⇒ |i− j| ≥ 2.

•
a0 •

a1 •
a2 •

a3 •
a4

Figure 1. Coxeter graph of the independence pair (Σ, I) with Σ = {a0, . . . , a4} and (ai, aj) ∈ I ⇐⇒
|i− j| ≥ 2. The arcs of the Coxeter graph correspond to the pairs (ai, aj) with |i− j| = 1

With the alphabet Σ fixed, independence pairs are ordered by inclusion and form a sub-lattice

of P(Σ×Σ). The minimum is I0 = ∅ and the maximum is I1 = (Σ×Σ)\∆, where ∆ is the diagonal

relation ∆ = {(x, x)
∣∣ x ∈ Σ}.

Traces and trace monoids. The trace monoid M = M(Σ, I) is the monoid with generators and

relations with the following presentation:

M = 〈Σ
∣∣ ∀(a, b) ∈ I ab = ba〉.

By definition (see, for instance, [11, Chap. 7] for presentations of monoids), M is the quotient

monoid Σ∗/R, where R is the congruence on Σ∗ generated by all pairs (ab, ba) for (a, b) ranging

over I . Elements of M are called traces. Hence every trace is the congruence class of some word

of Σ∗; and two words of Σ∗ are congruent whenever they can be obtained from one another by applying

arbitrary many times the following rewriting rule:

for (a, b) ∈ I and x, y ∈ Σ∗: xaby −→ xbay
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The trace monoid M is non trivial if Σ 6= ∅, in which case M is countably infinite.

We denote by πI : Σ∗ → M the canonical morphism. The unit element of M, image of the

empty word, is called the empty trace and is denoted by ε. The concatenation of x, y ∈ M is denoted

by x · y. We identify letters of the alphabet Σ with their images in M through the canonical mappings

Σ → Σ∗ πI−→ M. By construction, any two distinct letters a and b commute in M if and only if

(a, b) ∈ I .

Two extreme cases of trace monoids correspond to the extremal independence relations introduced

above : M(Σ, I0) is isomorphic to the free monoid Σ∗, where no two distinct letters commute with

each other; M(Σ, I1) is isomorphic to the free commutative monoid, where all letters commute with

each other. In the general case, only some pairs of distinct letters commute with each other, namely

those not directly connected in the Coxeter graph; hence the alternative name of free partially commu-

tative monoids for trace monoids in the literature.

Representation of traces. Heaps of pieces are combinatorial objects introduced in [8] which pro-

vide an intuitive visual representation of traces (see also [12]). Picture each letter as a piece falling

to the ground, in such a way that distinct letters which commute with each other fall along parallel

and disjoint lines; whereas non commutative letters fall in such a way that they block each other. The

heaps of pieces thus obtained are combinatorial objects corresponding bijectively to the elements of

the trace monoid, by reading the letters labeling the pieces from bottom to top. Several readings are

possible, corresponding to the different words in the congruence class of the trace.

Example 2.2. Figure 2 (left) depicts the heap of pieces corresponding to a trace of the monoid

M(Σ, I) from Example 2.1.

a0 a3

a0 a2

a1 a3

a4

a0

a3

a0

a2

a1

a3

a4

a0

a3

a0

a2

a1

a3

a4

Figure 2. In this example the commutation relations are those of Example 2.1, with Coxeter graph depicted

on Fig. 1. Left: representation as a heap of piece of the trace y = a0 · a3 · a0 · a2 · a1 · a3 · a4. Middle and right:

representations of two words in the congruence class of y: a0-a3-a0-a2-a1-a3-a4 (middle) and a3-a2-a3-a0-a4-

a0-a1 (right)

If x is a trace, we denote by x̂ the corresponding heap. The identification of traces with heaps is

sound in the following sense. If x and y are two traces, then the heap x̂ · y is obtained by piling up the

two heaps x̂ and ŷ, and then letting pieces from ŷ fall down to the ground or until they are blocked by

pieces from x̂, which produces a new arrangement of the resulting heap.
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Length, occurrence of letters and divisibility order. By its very construction as a quotient monoid,

M comes equipped with a number of objects for which we give some details now. Let x ∈ M be

the congruence class of a word u ∈ Σ∗. The length of x, denoted by |x|, is the length of u. The

quantity |u| is independent of the choice of u. The length is additive : |x · y| = |x|+ |y|, and satisfies

|x| = 0 ⇐⇒ x = ε. Heaps point of view: |x| represents the number of pieces in the heap x̂.

Furthermore, for each letter a ∈ Σ, we write a ∈ x whenever a has at least one occurrence in u,

and we write a /∈ x otherwise. Heaps point of view: a ∈ x means that the heap x̂ contains a piece

labeled by a.

Finally, the preorder (M,≤) inherited from the left divisibility in M is defined by: x ≤ y ⇐⇒
(∃z ∈ M y = x · z). This preorder is actually a partial order since M is equipped with the length

function introduced above (the antisymmetry of ≤ derives at once from the existence of the length

function). Heaps point of view: x ≤ y whenever one can complete the heap x̂ by letting additional

letters fall from the top and obtain the heap ŷ. In this case we say that x̂ is a sub-heap of ŷ.

The monoid M is left cancellative: for x, y, z ∈ M, if x · y = x · z then y = z (the proof given

in [7] is based on the existence of a normal form for traces, see below).

As a consequence, if x, y ∈ M are such that x ≤ y, the element z ∈ M such that y = x · z is

unique. We denote this element by z = x\y. Heaps point of view: the heap ẑ is obtained by removing

from below in the heap ŷ the pieces that form the heap x̂, sub-heap of ŷ.

Cliques. A clique of M is a trace of the form x = a1 · . . . · ak, where all ais are letters such that

i 6= j =⇒ (ai, aj) ∈ I . Hence a clique represents a set of mutually concurrent actions.

We denote by C the set of cliques, which is a finite set. Letters and the empty trace are cliques

of length 1 and 0 respectively. There exist cliques of length at least 2 if and only if M is not a

free monoid, or equivalently, if the independence relation is not empty. Heaps point of view: heaps

corresponding to cliques are the horizontal ones, with all pieces directly on the ground.

Since all ais commute with each other, we identify the clique x = a1 · . . . · ak with the subset

{a1, . . . , ak} ∈ P(Σ). Through this identification, (C ,≤) is isomorphic to a downward-closed subset

of (P(Σ),⊆). It corresponds to the full powerset (P(Σ),⊆) if and only if M is the free commutative

monoid on Σ.

A non empty clique is a clique x 6= ε. The set of non empty cliques of M is denoted by C.

Minimal elements of (C,≤) correspond to the letters of Σ.

Example 2.3. For the monoid from Example 2.1, the set of cliques is the following:

C = { ε 1 clique of length 0

a0, a1, a2, a3, a4, 5 cliques of length 1

a0 · a2, a0 · a3, a0 · a4, a1 · a3, a1 · a4, a2 · a4, 6 cliques of length 2

a0 · a2 · a4 } 1 clique of length 3

Lower and upper bounds of traces. Any two traces x, y ∈ M have a greatest lower bound (g.l.b.)

in (M,≤), which we denote by x ∧ y. Heaps point of view: the heap corresponding to x ∧ y is

obtained as the maximal common sub-heap of x̂ and of ŷ. In the case where both x and y are cliques,

then x ∧ y is the clique corresponding to the subset x ∩ y ∈ P(Σ).
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Two traces x and y have a least upper bound (l.u.b.) in (M,≤), denoted by x ∨ y if it exists, if

and only if they have a common upper bound.

Normal sequences. Normal form and generalized normal form of traces. Cartier and Foata have

introduced in [7] a normal form for traces1, which we describe now.

Let M = M(Σ, I) be a trace monoid with associated dependence relation D. A pair (x, y) ∈
C × C is a normal pair, which we denote by x → y, if:

∀b ∈ y ∃a ∈ x (a, b) ∈ D. (2.1)

Heaps point of view: the pair (x, y) ∈ C × C is normal if and only if the horizontal heap x̂ can

support the horizontal heap ŷ, in the sense that ŷ can be piled up upon x̂ without any of its pieces

falling down.

In any trace monoid, two particular cases occur: x → ε for all x ∈ C , and ε → x if and only if

x = ε.

Example 2.4. Consider the clique x = a0 · a2 in the trace monoid from Example 2.1. The non empty

cliques y ∈ C such that x → y are the following: a0, a1, a2, a3, a0 · a2, a0 · a3, a1 · a3.

A sequence (ci)i of cliques, the sequence being either finite or infinite, is a normal sequence if

(ci, ci+1) is a normal pair for all pairs of indices (i, i+ 1).

The interest of this notion lies in the following result [7]: for any non empty trace x, there exists

a unique integer k ≥ 1 and a unique normal sequence (c1, . . . , ck) of non empty cliques such that

x = c1 · . . . · ck. The sequence (c1, . . . , ck) is the Cartier-Foata normal form of x, or the normal form

of x for short. The integer k is the height of x.

Heaps point of view: the cliques that appear in the normal form of a trace x correspond to the

horizontal layers one sees in the heap x̂. The height k is the number of horizontal layers of x̂.

Example 2.5. (and warning)

Let y be the trace depicted on Fig. 2. It has the following normal form: (a0 · a3, a0 · a2, a1 · a3, a4).
Its height is 4.

Observe that if x ≤ y, it does not imply that the normal form of x is a prefix word of y’s. Indeed,

consider for instance x = a0a0. Then x ≤ y since, by the commutation relations in M, one has

y = xz with z = a3a2a1a3a4. Yet, the normal form of x is (a0, a0), which is not a prefix word of the

normal form of y.

Put differently, if x is a trace with normal form (c1, . . . , ck), adding a letter a or more generally a

trace z to x yields a new trace y = xz whose normal form (d1, . . . , dk′) is not easily described from

the normal forms of x and of z. In particular, the initial clique d1 of y may differ from c1, even if

z = a is a single letter since this letter might “fall” all the way down to the ground.

1See [13] for a general notion of normal form in a quotient monoid. See [10] for the description of a normal form for a class

of presented monoids including trace monoids.
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Since the height of traces varies, it is convenient to complete the normal form of traces as follows.

For x a non empty trace of height k and with normal form (c1, . . . , ck), we put ci = ε for all i > k.

The now infinite sequence (ci)i≥1 is still a normal sequence, called the generalized normal form of x.

By convention, the generalized normal form of ε is the normal sequence (ε, ε, . . .).

We observed above that the divisibility relation in a trace monoid M does not correspond to the

prefix order on normal forms. More precisely, if (ci)i≥1 is the generalized normal form of some trace

x ∈ M, and if (di)i≥1 is the generalized normal form of some trace y ∈ M, then:

x ≤ y in M ⇐⇒
(
∀i = 1, 2 . . . ci ≤ di in C

)
(2.2)

Generalized traces and infinite traces. The generalized normal forms of traces are constructed

as infinite normal sequences of cliques. Conversely, let ξ = (ci)i≥1 be an arbitrary infinite normal

sequence of cliques. Then two cases may occur:

1. If ci = ε for some integer i ≥ 1, then cj = ε for all integers j ≥ i. In this case, ξ is the

generalized normal form of some trace, namely of the trace x = c1 · . . . · ci.
2. Otherwise, ci 6= ε for all integers i ≥ 1. Based on the heap of pieces intuition, it is natural to

define such objects as infinite traces, since they correspond to infinite piles of layers.

This motivates the following definitions. A generalized trace is any infinite normal sequence

ξ = (ci)i≥1 of cliques. We denote by M the set of generalized traces. If ci 6= ε for all integers i, then

ξ is called an infinite trace.

The set of infinite traces is called the boundary at infinity of the monoid M, and is denoted by ∂M.

We observe that ∂M 6= ∅ as soon as Σ 6= ∅. Furthermore, ∂M is infinite and uncountable if and only

if M is not a free commutative monoid.

Using the embedding described above of M into M (each trace x corresponding to its generalized

normal form), we identify M with its image in M. Then M decomposes as the following disjoint

union: M = M+ ∂M.

In view of (2.2), it is natural to extend the partial order on M to a partial order on M by putting,

for ξ = (ci)i≥1 and ζ = (di)i≥1 two generalized traces:

ξ ≤ ζ in M ⇐⇒ (∀i = 1, 2 . . . ci ≤ di in C ).

Recall that C denotes the set of non empty cliques of the trace monoid M. For each integer i ≥ 1,

we define a mapping Ci : ∂M → C by putting Ci(ω) = ci whenever ω = (ci)i≥1 . Heaps point of

view: Ci(ω) is the ith layer of the infinite heap ω.

Digraph of cliques. The digraph (C,→) is called the digraph of cliques of the monoid. Infinite

paths in this digraph correspond bijectively to infinite traces in the monoid. If one follows an infinite

path in (C,→), the infinite trace ω it corresponds to satisfies that Ci(ω) is the ith node visited along

the path.

Example 2.6. We depict on Fig. 3 the digraph (C,→) for the trace monoid M = 〈a, b, c, d
∣∣ ac =

ca, bd = db〉.
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•a • b

•d • c
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b · d
��

??⑧⑧⑧⑧⑧⑧⑧

hh❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘❘
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❧

��❄
❄❄
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c d//oo
��

OO

Figure 3. Left: Coxeter graph of M = 〈a, b, c, d
∣∣ ac = ca, bd = db〉. Right: digraph of cliques for M.

Arrows with a double tip stand for pairs of arrows

Probabilistic dynamics for trace monoids. Valuations and visual cylinders. Textbooks on prob-

ability often start from the first non trivial probabilistic experience, namely the “infinite sequence of

tosses of a coin” [14]. Implicitly, an “infinitely repeated probabilistic experience” involves an infinite

sequence of independent and identically distributed random variables. Mathematically, all the infor-

mation is encoded into a probability measure on the space of infinite words2, with the key feature of

being memoryless. This will guide us when looking for a generalization that would apply to trace

monoids instead of word monoids.

Let M be a non trivial trace monoid. The boundary at infinity ∂M is a subset of the product

set CZ≥1 and as such, comes equipped with a topology which in turn induces a Borel σ-algebra, which

is always understood. Assume given a probability measure ν on ∂M. Then basic results from measure

theory show that ν is entirely determined by the countable collection of values ν( ↑ x), for x ranging

over M, where ↑ x is the visual cylinder3 of base x, defined by:

↑ x = {ω ∈ ∂M : x ≤ ω}. (2.3)

Heaps point of view: ω ∈↑ x means that the infinite heap ω̂ can be obtained from x̂ by adding

infinitely many pieces from the top (again, note that the initial layers of x̂ and of ω̂ may differ).

We say that ν is memoryless if it satisfies the following property:

∀x, y ∈ M ν
(
↑ (x · y)

)
= ν( ↑ x)ν( ↑ y). (2.4)

Remark 2.7. (other probabilistic dynamics)

In order to equip a trace monoid with a probabilistic dynamics, one might think first of the random

walk approach. Consider an infinite sequence X1,X2, . . . of random letters, each letter Xi being

picked at random and uniformly in Σ; then form the infinite trace obtained by piling up all this letters

and consider the probability law of the infinite trace thus obtained. By construction, this law is indeed

2Recall that a σ-algebra F on a set Ω is a family of subsets of Ω containing Ω and closed under complement, countable

union and countable intersection. A probability measure on (Ω, F) is then a set function ν : F → [0, 1] such that ν(Ω) = 1
and countably additive on sequences of pairwise disjoint subsets: (i 6= j =⇒ Ai ∩ Aj = ∅) =⇒ ν

(
⋃

i≥1
Ai

)

=
∑

i≥1
ν(Ai).

3The terminology visual cylinder is derived from the “visual measure” introduced in geometric group theory.
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a probability measure on ∂M. Intuitively, the more a trace has internal commuting elements, the

more it will be favored by this law; it is thus not a “uniform” way of choosing traces, and neither

is it memoryless. Actually, the associated probability measure never satisfies the property (2.4), as

soon as M is not a free monoid nor a free commutative monoid—hence, in all cases of interest. This

random walk measure is of course of deep mathematical interest on its own; yet we are looking for

other probabilistic dynamics of interest.

Another way of selecting traces at random is the following. For each integer n, consider the finite

set of traces of length n, and then choose randomly one trace among them. This yields a probability

distribution νn for each integer n. This procedure can be refined by attributing multiplicative weights

to letters instead of the same weight to all letters. In all cases, this procedure has three drawbacks:

1. the probability distributions νn are defined on M and not on ∂M—and it would be rather

unnatural to stop the process at some fixed length n;

2. the sequence (νn)n≥0 is not a “consistent sequence”—hence Kolmogorov’s extension theorem

does not apply to define a completion “at infinity”; and

3. for each fixed n, the probability distribution νn is not memoryless—if one would care to define

any sort of memoryless property for probability distributions on finite traces rather than on

infinite ones.

Despite all these restrictions, the sequence (νn)n≥0 is of much interest since after all, it is the most

natural way to pick a trace at random. It can be shown in a precise way that the sequence of probabil-

ities (νn)n≥0 converges to a probability measure on ∂M which is indeed memoryless. Intuitively, the

memoryless probability measures that we are seeking correspond to this procedure, but obtained with

“n = ∞”.

As observed above, the mere existence of at least a memoryless probability measure for a trace

monoid is not obvious. But assuming for the moment the existence of such a probability measure ν,

consider the function f : M → R≥0 defined by:

∀x ∈ M f(x) = ν( ↑ x). (2.5)

Then, by (2.4), f satisfies:

f(ε) = 1 and ∀x, y ∈ M f(x · y) = f(x)f(y) (2.6)

We define a function f : M → R≥0 to be a valuation whenever it satisfies the two properties in (2.6).

Clearly, a valuation f is entirely determined by the finite collection of its values on the letters of Σ.

And conversely, given any family (λa)a∈Σ of non negative numbers, there is a unique valuation f such

that f(a) = λa for all a ∈ Σ. The central question is now the following.

(Q) Let (λa)a∈Σ be a collection of non negative real numbers, and let f be the corre-

sponding valuation. What computable conditions on (λ)a∈Σ are necessary and sufficient

for the existence of a probability measure ν on ∂M such that ν( ↑ x) = f(x) for all

x ∈ M?

The probability measure ν thus constructed shall necessarily be memoryless. Hence answering the

above question amounts to having an operational description of memoryless probability measures

on ∂M.



S. Abbes / Introduction to Probabilistic Concurrent Systems 81

Möbius transform and probabilistic valuations. Our answer to the above question (Q) is based

on the notion of Möbius transform, a notion attached to a large class of partial orders and popularized

by G.-C. Rota [15]. The partial order we shall focus on is the finite partial order (C ,≤). Let f :
C → A be any function, where A is a commutative group—we shall always take A = R. The Möbius

transform of f is the function h : C → A defined by:

∀c ∈ C h(c) =
∑

c′∈C : c≤c′

(−1)|c
′|−|c|f(c′). (2.7)

The function f can be retrieved from h thanks to the Möbius inversion formula, which is a kind of

generalized inclusion-exclusion formula:

∀c ∈ C f(c) =
∑

c′∈C : c≤c′

h(c′). (2.8)

In particular, one has:

f(ε) =
∑

c∈C

h(c). (2.9)

Let h : C → R be the Möbius transform of a valuation f , restricted to C . Then we define f to be

a probabilistic valuation whenever:
(
h(ε) = 0

)
and

(
∀c ∈ C h(c) ≥ 0

)
. (2.10)

In this case, the vector
(
h(c)

)
c∈C is a probability vector. Indeed, it is non negative and it sums up to 1

thanks to (2.9), since f(ε) = 1 and h(ε) = 0.

The following statement provides an answer to Question (Q): the existence of a memoryless mea-

sure ν associated with the valuation f through f(x) = ν( ↑ x) for x ranging over M, is equivalent to

f being a probabilistic valuation.

A particular case is when f is uniform, in the sense that f(a) = t is constant for a ranging over Σ,

and thus f(x) = t|x| for x ∈ M. A result is: there exists a unique uniform probabilistic valuation. It

implies the existence of at least one memoryless measure for every trace monoid.

Example 2.8. Let M = 〈a, b, c, d
∣∣ ac = ca, bd = db〉 with C = {a, b, c, d, a · c, b · d}, and whose

Coxeter graph is depicted on Fig. 3. Let us simply denote by a, b, etc, the values of f(a), f(b), etc,

for some valuation f . The normalization conditions (2.10) for f to be a probabilistic valuation are:

1− a− b− c− d+ ac+ bd = 0

a− ac ≥ 0, b− bd ≥ 0, c− ac ≥ 0, d− db ≥ 0, ac ≥ 0, bd ≥ 0.

A solution is to put a = b = 1/3 and c = d = 1/4. Another solution is to look for the uniform

valuation, hence to put a = b = c = d = 1 −
√
2/2. The later value is the root of smallest modulus

of the polynomial 1− 4p+2p2, which we encounter below as the Möbius polynomial of the monoid.

Markov chain of cliques. Let ν be a memoryless probability measure on ∂M. Intuitively, the

measure ν encodes a way of choosing at random an infinite trace ω ∈ ∂M. Since ω has the form
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ω = (ci)i≥1, it is natural to investigate the nature of the random sequence ci = Ci(ω). It is random

indeed since it depends on the random outcome ω of the probabilistic experience.

It turns out that: with respect to the memoryless probability measure ν, the random sequence

(Ci)i≥1 is a homogeneous Markov chain on C. Its initial distribution is given by: ∀c ∈ C ν(C1 =
c) = h(c), where h is the Möbius transform of f , probabilistic valuation attached to ν as in (2.5). The

transition matrix of the Markov chain can also be described, but we shall not need it in the sequel. We

simply mention that it also involves the Möbius transform h (see the details in [6]).

Remark 2.9. Observe the different probabilistic interpretations of the two functions f and h. If c is

some non empty clique, then f(c) = ν( ↑ c) is the probability that the initial clique C1 contains c;
whereas h(c) is the probability that C1 equals c. The h(c)s sum up to 1 over C, whereas:

∑
c∈C f(c) >

1 unless M is a free monoid.

Example 2.10. Continuing with the trace monoid M = 〈a, b, c, d
∣∣ ac = ca, bd = db〉 from Ex-

ample 2.8, let us determine the law h of the first clique for the uniform probabilistic valuation, say f ,

given by f(x) = r|x| for any x ∈ M with r = 1−
√
2/2. The law h is simply the Möbius transform

of f , hence:

h(a) = h(b) = h(c) = h(d) = r − r2 h(ac) = h(bd) = r2

Observe two things: first, the law h is not uniform on cliques; and second, the fact that all the above

values sum up to 1 writes as: 4(r − r2) + 2r2 = 1, or equivalently as 1− 4r + 2r2 = 0, which holds

since r has been chosen as a root of the polynomial µ(t) = 1− 4t+ 2t2. This is a general fact, better

explained when introducing the notion of Möbius polynomial below.

Irreducibility of trace monoids. Given two trace monoids Mi = M(Σi, Ii), i = 1, 2, their direct

product M1⊕M2 is isomorphic to another trace monoid. Indeed, take the disjoint union Σ = Σ1+Σ2,

and for dependence relation the disjoint union D = D1 + D2, with D1 and D2 now seen as binary

relations on Σ. Take finally the independence pair I = (Σ× Σ) \D. Then M1 ⊕M2 is isomorphic

to M(Σ, I). In this construction, letters from a common alphabet keep their dependence relations,

and letters from distinct alphabets are set to be independent, i.e., commutative.

For instance, the free commutative monoid on N generators is obtained as the direct product of N
copies of the free monoid on 1 generator.

Conversely, given a trace monoid M = M(Σ, I), it is well known that M is not isomorphic to

the product of two non trivial trace monoids if and only if the Coxeter graph (Σ,D) is connected. In

this case, the trace monoid M is said to be irreducible.

For example, the free monoid M(Σ, I1) is irreducible, and the free commutative monoid M(Σ, I0)
is irreducible if and only if |Σ| ≤ 1. All other examples of trace monoids that we encountered previ-

ously are irreducible.

Combinatorics and probability for trace monoids: growth series and Möbius polynomials. The

growth series G(z) and the Möbius polynomial µ(z) of a trace monoid M are defined as follows:

G(z) =
∑

x∈M
z|x|, µ(z) =

∑

c∈C

(−1)|c|z|c|. (2.11)
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The series G(z) is rational, and it is the formal inverse of the Möbius polynomial: G(z)µ(z) = 1
(see [7] for a combinatorial proof, see [8] for a bijective proof).

If Σ 6= ∅, the Möbius polynomial has a unique root of smallest modulus (see [16, 17]). This root,

say r, is real and lies in (0, 1]. If Σ = ∅, we put r = ∞. In all cases, the radius of convergence of

G(z) is r.

We note that: r ≥ 1 if and only if M is free commutative—an elementary result to be generalized

when dealing with deterministic concurrent systems in Sections 3 and 4. Indeed, the coefficients of

the growth series G(z) =
∑

n≥0 λnz
n are given by λn = #{x ∈ M : |x| = n}. If M is

not free commutative, then M contains the free monoid on two generators as a submonoid. Hence

λn ≥ 2n and thus r ≤ 1/2. Whereas, if M is free commutative and Σ has N ≥ 0 elements, then4

µ(z) = (1 − z)N and therefore r = 1 or r = ∞. In this case, one recovers from the formula

G(z) = 1/(1− z)N the standard elementary result that free commutative monoids have a polynomial

growth.

Returning to the case of a general trace monoid M, let fz be the uniform valuation on M defined

by fz(a) = z for all a ∈ Σ, and let hz be the Möbius transform of fz. Then, comparing (2.11)

with (2.7), one sees that µ(z) = hz(ε). Therefore, for the uniform valuation fz to be probabilistic,

it is necessary that z is a root of the Möbius polynomial µ(z). Actually, the following result holds if

Σ 6= ∅, making more precise the statement introduced before: the only value for the uniform valuation

fz to be probabilistic is z = r, the root of smallest modulus of the Möbius polynomial µ(z). In other

words, among the roots of the Möbius polynomial, only for the root r of smallest modulus does the

required condition (∀c ∈ C hr(c) ≥ 0) from (2.10) hold. The associated probability measure on

∂M is the uniform measure. Intuitively, the uniform measure gives equal weight to all infinite traces.

Null nodes for trace monoids. Consider the uniform measure ν on the boundary at infinity ∂M of

a trace monoid M, the associated valuation f and its Möbius transform h. Say that a node c in the

digraph of cliques (C,→) is a null node if h(c) = 0.

Consider also the Markov chain of cliques (Ci)i≥1 associated with a infinite trace ω, drawn at ran-

dom according to ν. Recall that the initial distribution of the chain, hence the probability distribution

of the clique C1, is given by the probability vector (h(c))c∈C. In particular, if c is a null node, it has

zero probability of being visited by the first clique of ω. Actually, it then has zero probability of being

ever visited by any of the cliques Ci, i ≥ 1 (this follows from the form of the transition matrix of the

chain). It is thus interesting to determine the null nodes, whenever they exist.

Example 2.11. Consider the non irreducible trace monoid M = 〈a, b, c
∣∣ ac = ca, bc = cb〉, with

cliques C = {ε, a, b, c, a · c, b · c}. Let f(x) = r|x| be a uniform valuation. The Möbius transform of

f is given by:

h(ε) = (1− 2r)(1− r) h(a) = r(1− r) h(b) = r(1− r)

h(c) = r(1− 2r) h(a · c) = r2 h(b · c) = r2

Hence the value of r corresponding to the uniform measure is r = 1
2 , inducing the null node c

since then h(c) = 0.

4This is a particular case of the easily observed identity on Möbius polynomials: µM1⊕M2
(z) = µM1

(z)µM2
(z).
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The previous example involved a non irreducible trace monoid. By contrast, the following result

holds: If M is a non trivial and irreducible trace monoid, there is no null node in (C,→). As a

consequence, one can prove that, if M is irreducible and non trivial, an infinite trace drawn at random

has probability 1 to visit infinitely often any clique.

Remark 2.12. Null nodes, which only occur for non irreducible trace monoids, are closely related

to the combinatorics of the trace monoid. A null node is a clique that has exactly zero probability to

appear as the first clique of an infinite trace. When considering large traces rather than infinite traces,

it can be reformulated as follows: if c is a null node, then among traces of size n, very few have their

first clique equals to c, compared to others; and the larger n, the smaller this ratio. At the limit, the

ratio equals zero.

2.2. Concurrent systems and their combinatorics

A natural way to generalize the notion of trace monoid is to add a notion of state. This yields the

notion of concurrent system, introduced below. The background material presented in this section is

borrowed from [3, 9].

Concurrent systems and executions. A concurrent system is a triple X = (M,X,⊥) as follows:

M is a trace monoid; X is a finite set of states; ⊥ is a special symbol not in X; furthermore, we put

X ′ = X ∪ {⊥} and there is mapping X ′ ×M → X ′, denoted by (α, x) 7→ α · x and satisfying the

three following properties:

∀α ∈ X ′ α · ε = α (2.12)

∀α ∈ X ′ ∀(x, y) ∈ M×M α · (x · y) = (α · x) · y (2.13)

∀x ∈ M ⊥ · x = ⊥ (2.14)

The properties (2.12) and (2.13) are the axioms of a right monoid action of M on X ∪ {⊥}. As

witnessed by (2.14), the symbol ⊥ represents a sink state, intended to materialize a forbidden state.

So we are interested, for every α, β ∈ X, in the following subsets of M:

Mα,β = {x ∈ M : α · x = β}, Mα = {x ∈ M : α · x 6= ⊥}.

Traces of Mα are called executions starting from α, or executions for short. Note that Mα is always

downward closed in (M,≤), thanks to (2.14).

The concurrent system X is trivial if α · a = ⊥ for all α ∈ X and for all a ∈ Σ. It is non trivial

otherwise.

Borrowing the terminology from the theory of group actions, we say that the concurrent system

is homogeneous if Mα,β 6= ∅ for all pairs (α, β) ∈ X × X (the state space has only one connected

component). Borrowing the terminology from Petri nets theory, we say that the system is alive if for

every state α ∈ X and for every letter a ∈ Σ, there exists an execution x ∈ Mα such that a ∈ x.

Finally we say that the concurrent system X = (M,X,⊥) is irreducible if it is non trivial,

homogeneous and alive, and if M is an irreducible trace monoid. The interest of this notion of

irreducibility lies in the spectral property that is stated later.
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Representation of concurrent systems and of executions. To represent a concurrent system X =
(M,X,⊥), we first use the Coxeter graph of M already introduced for trace monoids. We also depict

the labeled multigraph of states, or graph of states for short, whose vertices are the elements of X,

and with an edge from α to β labeled by the letter a ∈ Σ if α · a = β.

Remark 2.13. Any multigraph V with edges labeled by elements from a set Σ represents a “next

state function”, and thus extends to an action of the free monoid (V ∪ {⊥}) × Σ∗ → (V ∪ {⊥}),
provided that for any node v ∈ V , there are no two edges starting from v and labeled with the same

letter. It requires an additional verification to check that it also represents an action of a trace monoid

M = M(Σ, I) on V ∪ {⊥}; namely, one has to check that α · (ab) = α · (ba) for any pair (a, b) ∈ I
and for every vertex α ∈ V . In other words, each commuting pair in Σ must correspond to a diamond

shape for every vertex in the graph of states.

Example 2.14. Let four slots numbered 0, 1, 2 and 3 be put in circle. Each slot stores the value 0 or 1,

with 0 as initial value. If two neighboring slots store the same value, then a piece can be played: piece a
for slots 0 and 1, piece b for slots 1 and 2, piece c for slots 2 and 3, piece d for slots 3 and 0. In case the

piece is played, the common value of the two neighboring slots is changed to its opposite. This small

game corresponds to the concurrent system X = (M,X,⊥) with M = 〈a, b, c, d
∣∣ ac = ca, bd = db〉

(see the Coxeter graph depicted on Fig. 3), and with the set of all possible reachable configurations

for the four slots as set of states. Hence, X = {0000, 1100, 0110, 0011, 1001, 1111}. Note that

each action is reversible: α · x · x = α for all α ∈ X and all x ∈ Σ. The graph of states is depicted on

Fig. 4.
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Figure 4. Graph of states for a concurrent system with 6 states and associated with the trace monoid

〈a, b, c, d
∣∣ ac = ca, bd = bd〉 (see the Coxeter graph of this monoid on Fig. 3)

Example 2.15. Consider the 1-safe Petri net depicted in Fig. 5, (a). The set of states is the set of

reachable markings. The underlying trace monoid is generated by the transitions of the net, with

commutative transitions t and t′ whenever •t• ∩ •t′• = ∅, thus M = 〈a, b, c, d | ad = da, db = db〉.
The corresponding Coxeter graph is depicted on Fig. 5, (b), and the graph of states is depicted on

Fig. 5, (c). If not familiar with the model of Petri nets, the reader can ignore the picture of Fig. 5, (a),
and simply focus on the Coxeter graph and the graph of states.
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Figure 5. (a)—A safe Petri net with its initial marking α0 = {A,C} depicted. The two reachable markings

are α0 and α1 = {B,C}. (b)—The Coxeter graph of the associated trace monoid. (c)—Graph of markings

of the net

Notations, generalized and infinite executions. Given a concurrent system X = (M,X,⊥), we

introduce the following notations, for α, β ∈ X:

Σα = Σ ∩Mα Cα = C ∩Mα Cα = C ∩Mα Cα,β = C ∩Mα,β

A generalized execution from α is a generalized trace ξ ∈ M such that:

∀x ∈ M x ≤ ξ =⇒ x ∈ Mα.

Their set is denoted Mα, and we also put ∂Mα = Mα ∩ ∂M. Elements of ∂Mα represent infinite

executions of the system starting from the initial state α. Note that, even for a non trivial concurrent

system, some sets or even all sets ∂Mα might be empty, which contrasts with the situation for trace

monoids.

Every trace monoid M can be seen as a concurrent system with a single state by considering

X = (M,X,⊥) with X = {∗}, and ∗ · x = ∗ and ⊥ · x = ⊥ for every x ∈ M. It is then irreducible

as a concurrent system if and only if M is non trivial and irreducible as a trace monoid.

Digraph of states-and-cliques. Infinite executions of a concurrent system X = (M,X,⊥) are,

in particular, infinite traces of M. As seen in Sect. 2.1, infinite traces correspond to paths in the

digraph of cliques (C,→). Not all infinite paths of (C,→) however correspond, in general, to infinite

executions of X . In order to take into account the constraints induced by the monoid action, we

introduce the digraph of states-and-cliques (D,→), the vertices of which are pairs (α, c) with α
ranging over X and c ranging over Cα. There is an arrow (α, c) → (β, d) in D if β = α · c and if

(c, d) is a normal pair of cliques.

To every infinite execution ω = (ci)i≥1 from α, is associated the infinite path (αi−1, ci)i≥1 in D,

where αi is defined by α0 = α and αi = α · (c1 · . . . · ci) for i ≥ 1. We put Yi(ω) = (αi−1, ci) for



S. Abbes / Introduction to Probabilistic Concurrent Systems 87

every integer i ≥ 1. This is the ith “state-and-clique” of the system, when the infinite execution ω is

scanned according to its normal form. Conversely, every infinite path in D corresponds to a unique

infinite execution.

Example 2.16. For the Petri net of Fig. 5, the digraph of states-and-cliques D is depicted on Fig. 6.

Here is how to obtain it “by hand”. For every state α, compute first the sub-alphabet Σα = {a ∈ Σ :
α · a 6= ⊥}. Here, Σα0

= {a, b, d} and Σα1
= {c, d}. Comparing with the Coxeter graph of the

monoid, keep note of all the cliques that can be formed using only letters from Σα, and retain from

these only the non empty cliques γ such that α·γ 6= ⊥. Their set is Cα. Here, Cα0
= {a, b, d, a·d, b·d}

and Cα1
= {c, d}. Then for every state α and for every γ ∈ Cα, compute β = α · γ on the one hand,

and all δ ∈ Cβ such that γ → δ holds on the other hand. The pairs (β, δ) thus obtained are the

successors of (α, γ) in D.

(α0, d)
��

(α0, ad)

::tttttttttttt
//

��✂✂
✂✂
✂✂
✂✂
✂

��

__
(α0, bd)

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

��✑✑
✑✑
✑✑
✑✑
✑✑
✑✑
✑✑
✑✑
✑

(α0, a) //
__

(α0, b) (α1, c)

>>⑦⑦⑦⑦⑦⑦⑦

oo
//

aa❉❉❉❉❉❉❉❉

OO

__

(α1, d)??

OO

Figure 6. Digraph of states-and-cliques for the concurrent system corresponding to the Petri net depicted on

Fig. 5

Valuations and probabilistic valuations. Markov concurrent measures. In this section we extend

to concurrent systems the notions of valuations and of probabilistic valuations introduced earlier for

trace monoids.

A valuation on a concurrent system X = (M,X,⊥) is a family f = (fα)α∈X of mappings

fα : M → R≥0 satisfying the three following properties:

∀α ∈ X ∀x ∈ M α · x = ⊥ =⇒ fα(x) = 0 (2.15)

∀α ∈ X ∀x ∈ Mα ∀y ∈ Mα·x fα(x · y) = fα(x)fα·x(y) (2.16)

∀α ∈ X fα(ε) = 1 (2.17)

Let f = (fα)α∈X be a valuation and for each α ∈ X, let hα : C → R be the Möbius transform

of the restriction fα
∣∣
C
: C → R≥0. Note that hα(x) = 0 if x /∈ Mα. We say that f is a probabilistic

valuation if, for every state α ∈ X:

hα(ε) = 0 and
(
∀c ∈ Cα hα(c) ≥ 0

)
(2.18)
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In this case, there exists a unique family ν = (να)α∈X , where να is a probability measure on ∂Mα,

such that να( ↑ x) = fα(x) for all α ∈ X and for all x ∈ Mα. Of course the existence of a

probabilistic valuation implies in particular that ∂Mα 6= ∅ for all α ∈ X. Such a family (να)α∈X
is called a Markov concurrent measure, because of the chain rule (2.16) which is reminiscent of

the classical property of Markov chains. For the Markov measure (να)α∈X , the chain rule reads as

follows:

∀α ∈ X ∀x ∈ Mα ∀y ∈ Mα·x να
(
↑ (x · y)

)
= να( ↑ x)να·x( ↑ y) (2.19)

The chain rule (2.19) extends to concurrent systems the memoryless property (2.4) for trace monoids.

Markov chain of states-and-cliques. If ν = (να)α∈X is associated as above with a probabilistic

valuation f = (fα)α∈X , then for each state α ∈ X, and with respect to the probability measure να ,

the family of mappings Yi : ∂Mα → D defined earlier is a homogeneous Markov chain, called the

Markov chain of states-and-cliques. Its initial distribution is given by 1α ⊗ hα, meaning:

∀α ∈ X ∀c ∈ Cα να(C1 = c) = hα(c). (2.20)

In other words, even though the “user” may choose the initial state α ∈ X of the system, this “user”

does not have control on the initial clique of a random infinite execution of the system starting from α.

Indeed, the probability distribution of the first clique is precisely given by (2.20).

Example and null nodes. Let us determine the probabilistic valuations for the Petri net example of

Fig. 5, which is an irreducible concurrent system. Any probabilistic valuation f = (fα)α∈X is entirely

determined by the finite family of values fα(u) for (α, u) ranging over {α0, α1} × Σ, since then the

other values fα(x) are obtained by the chain rule fα(x · y) = fα(x)fα·x(y).

Since fα0
(c) = fα1

(a) = fα1
(b) = 0, the remaining parameters for f are p = fα0

(a), q = fα0
(b),

s = fα0
(d), t = fα1

(c), u = fα1
(d). The parameters are not independent; for coherence with the com-

mutativity relations induced by the trace monoid, one must have fα0
(a)fα0·a(d) = fα0

(d)fα0·d(a),
since a · d = d · a, and fα0

(b)fα0·b(d) = fα0
(d)fα0·d(b) since b · d = d · b; yielding simply qu = qs

here.

Table 1. Möbius transform of a generic valuation for the Petri net example depicted in Fig. 5, with parameters

p = fα0
(a), q = fα0

(b), s = fα0
(d) = fα1

(d) and t = fα1
(c)

state α hα(ε) hα(a) hα(b) hα(c) hα(d) hα(a · d) hα(b · d)
α0 1− p− q − s+ ps+ qs p− ps q − qs 0 s− ps− qs ps qs

α1 1− t− s 0 0 t s 0 0

To simplify the exposition, we eliminate the border cases and restrict our attention to the case

where all parameters stay within the open interval (0, 1). Then we obtain u = s from the previous

equality qu = qs.
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The Möbius transform of fα0
evaluated for instance at b is hα0

(b) = fα0
(b) − fα0

(bd) =
fα0

(b) − fα0
(b)fα1

(d) = q − qs. Other computations are done similarly, and we gather the re-

sults in Table 1. According to (2.18), the normalization constraints on the parameters for the valuation

f to be probabilistic are thus:

hα0
(ε) = 0 : 1− p− q − s+ ps+ qs = 0 (2.21)

hα1
(ε) = 0 : 1− t− s = 0, (2.22)

plus all inequalities hα0
(a) ≥ 0, etc, which in this case do not bring any additional constraints.

Here, the equation in (2.21) rewrites as (1 − p − q)(1 − s) = 0. It follows that 1 − p − q = 0
and, in view of Table 1, it implies hα0

(d) = 0. This illustrates the notion of null node for concurrent

systems.

We define a node (α, c) of D to be a null node, with respect to some probabilistic valuation

f = (fα)α∈X , if hα(c) = 0, where hα is the Möbius transform of fα. As for trace monoids, null

nodes are never reached by the Markov chain of states-and-cliques. But, contrasting with the case of

trace monoids, null nodes may exist even for irreducible concurrent systems, as the previous example

shows.

Characteristic root of a concurrent system. Consider the Möbius matrix

µ(z) = (µα,β(z))(α,β)∈X×X , the polynomial θ(z) with integer coefficients, and the growth matrix

G(z) = (Gα,β(z))(α,β)∈X×X defined by:

µα,β(z) =
∑

c∈Cα,β

(−1)|c|z|c| θ(z) = detµ(z) Gα,β(z) =
∑

x∈Mα,β

z|x|

Then G(z) is a matrix of rational series, and it is the inverse of the Möbius matrix: G(z)µ(z) = Id.

One of the roots of smallest modulus of the polynomial θ(z) is real and lies in (0, 1] ∪ {∞}, with the

convention that it is ∞ if θ(z) is a non zero constant. By definition, this non negative real or ∞ is the

characteristic root of the concurrent system X . The characteristic root r coincides with the minimum

of all convergence radii of the generating series Gα,β(z), for (α, β) ranging over X ×X. Intuitively,

the smaller is r, the “bigger” is X , in the sense of a large set of executions.

Example 2.17. For the Petri net example from Fig. 5, the Möbius matrix is given by:

µ(z) =
α0

α1

(
1− 2z + z2 −z + z2

−z 1− z

)

with determinant θ(z) = (1− z)2(1− 2z). The characteristic root is r = 1/2.

Example 2.18. For the concurrent system from Example 2.14, whose graph of states is depicted in

Fig. 4, the Möbius matrix is the following.
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M(z) =

0000

1100

0011

0110

1001

1111




1 −z −z −z −z 2z2

−z 1 z2 0 0 −z

−z z2 1 0 0 −z

−z 0 0 1 z2 −z

−z 0 0 z2 1 −z

2z2 −z −z −z −z 1




The spectral property for irreducible concurrent systems. Consider a concurrent system X =
(M,X,⊥), with M = M(Σ, I). If Σ′ is any subset of Σ, and if M′ = 〈Σ′〉 is the submonoid of M
generated by Σ′, which is indeed a trace monoid, then the restriction of the action (X∪{⊥})×M′ →
X ∪ {⊥} defines a new concurrent system X ′ = (M′,X,⊥), said to be induced by restriction. In

particular, let X a denote the concurrent system induced by restriction with Σ′ = Σ \ {a}, and let ra

be the characteristic root of X a.

A key property, that we shall use later, is the spectral property [9] which states: if X is irre-

ducible, then ra > r for every a ∈ Σ. The point here is the strict inequality, which derives from the

irreducibility of X ; indeed, the inequality ra ≥ r is always valid without restriction on X .

Uniform measure for concurrent systems. We have seen in Sect. 2.1 the existence of a particular

probability measure on the boundary at infinity of every trace monoid M(Σ, I), namely the uniform

measure, associated with the unique uniform and probabilistic valuation. The uniform valuation was

defined by f(x) = r|x|, where r is the root of smallest modulus of the Möbius polynomial of (Σ, I).
For concurrent systems, an analogous notion exists in most cases, and in particular if the system

is irreducible. Say that a mapping Γ : X × X → R>0 is a cocycle whenever it satisfies Γ(α, γ) =
Γ(α, β)Γ(β, γ) for all triples (α, β, γ) ∈ X3. The following result holds: If X = (M,X,⊥) is

an irreducible concurrent system, there exists a unique probabilistic valuation of the form fα(x) =
t|x|Γ(α,α · x), for x ∈ Mα, where t is a positive real and Γ : X × X → R>0 is a cocycle. The

real t is the characteristic root of X , and the cocycle Γ is called the Parry cocycle. The associated

concurrent Markov measure (να)α∈X is the uniform measure of X .

The Parry cocycle has a combinatorial interpretation on which additional details are given in [3].

It can be determined as follows. Let µ(r) be the Möbius matrix of the system evaluated at r, char-

acteristic root of X . Then, by definition of r, µ(r) has a non trivial kernel. It actually holds that

dimkerµ(r) = 1. Hence, let (vα)α∈X be a non zero element of ker µ(r). Then Γ(·, ·) is given by

Γ(α, β) = vβ/vα, and it holds indeed that (vα)α∈X has all its coordinates non zero.

Example 2.19. Let us determine the uniform measure for the Petri net example of Fig. 5. According

to the computation already done in Example 2.17, the Möbius matrix evaluated at the characteristic

root r = 1
2 is µ(12) =

(
1

4
− 1

4

− 1

2

1

2

)
. A non zero vector of its kernel is ( 11 ), hence the Parry cocycle is

constant equal to 1. The uniform probabilistic valuation is thus fα(x) =
(
1
2

)|x|
. For a double check,

we can verify that the two conditions stated earlier in (2.21) and (2.22) for this example are satisfied

by this valuation (the corresponding values are p = q = s = t = 1
2 ). The probability law of the first
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clique when starting from a state α is given by the Möbius transform hα of fα. So for instance the

probability law of the first clique when starting from α0 is given by:

να0
(C1 = a) =

1

4
να0

(C1 = b) =
1

4

να0
(C1 = a · d) = 1

4
να0

(C1 = b · d) = 1

4
να0

(C1 = d) = 0

As already observed, the node (α0, d) is a null node. The first clique of a random infinite execution

starting from α0 has probability 0 to be d; although it was not impossible a priori, as seen on Fig. 6.

Example 2.20. For the concurrent system from Example 2.14, whose graph of states is depicted in

Fig. 4, the above technique seems heavy to derive the probabilistic parameters of the uniform measure.

Instead, we rely on the special form fα(x) = r|x|Γ(α,α · x) for the uniform measure, with r the

characteristic root of the system, unknown for now, and with Γ the Parry cocycle, also unknown.

Put λ = Γ(0000, 1100). For symmetry reasons, it is clear that λ = Γ(0000,X) for every state X
in the middle column of the graph of states depicted on Fig. 4. Also for symmetry reasons, one also

has λ = Γ(1111,X) for every state in the middle column. All other values of the Parry cocycle can be

determined using the cocycle identity, since in particular Γ(α,α) = 1 for every state α. For instance

Γ(1100, 0000) = Γ(1100, 1111) = λ−1 and Γ(0000, 1111) = 1.

Taking into account the symmetry of the system, the Möbius identities hα(ε) = 0 at states α =
0000 and α = 1100 write as follows:

1− 4f0000(a) + 2f0000(a · c) = 0 1− 2f1100(a) + f1100(a · c) = 0

Using the form of the valuation fα(x) = r|x|Γ(α,α · x) and using the unknown parameter λ, we

obtain:

1− 4rλ+ 2r2 = 0 1− 2
r

λ
+ r2 = 0

Putting u = rλ and v = r
λ

, and after some computations, we obtain the following equations in u

and v: u = v − 1
4 and 4v2 − 9v + 4 = 0, whence v = 9±

√
17

8 and u = 7±
√
17

8 . The value v = 9+
√
17

8
is seen to lead to a value r > 1, which is impossible, hence:





u =
7−

√
17

8

v =
9−

√
17

8

yielding





r =
1

2

√
5−

√
17 ≈ 0.468

λ =

√
23−

√
17

4
√
2

≈ 0.768

(2.23)

Putting α0 = 0000, and to compute say hα0
(a), we write hα0

(a) = fα0
(a)−fα0

(a·c) = rλ−r2 ≈
0.140. Other computations are done in a similar way. We obtain thus the following approximate values

for the probability law of the first clique, when the initial state of the system is 0000:

a b c d a · c b · d
0.140 0.140 .140 .140 .219 .219

Contrasting with the previous example, this system has no null node.
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2.3. A comparison result

In this subsection, we state an elementary lemma and its corollary, both belonging to trace theory, and

given in a form slightly more general than precisely needed in the sequel.

Consider an alphabet Σ and two independence relations I and J on Σ such that I ⊆ J , and

consider the two trace monoids M = M(Σ, I) and N = M(Σ, J). Then the morphism πJ : Σ∗ →
M(Σ, J) satisfies πJ(ab) = πJ(ba) for all letters a and b such that (a, b) ∈ I . The universal property

of M(Σ, I) as a quotient monoid yields the existence of a surjective morphism πI,J : M(Σ, I) →
M(Σ, J) such that πJ = πI,J ◦ πI .

It seems to have been unnoticed so far that, when restricted to the set of sub-traces of a given trace

of M, or even of M, then πI,J becomes injective. This is the topic of the following lemma.

The lemma generalizes the following elementary fact. Let M = Σ∗ be a free monoid and let

u ∈ Σ∗. Then any prefix word x ≤ u is entirely determined by the collection (na)a∈Σ where na is

the number of occurrences of the letter a in x. Hence x is entirely determined by its image in the free

commutative monoid generated by Σ.

Lemma 2.21. Let I ⊆ J be two independence relations on an alphabet Σ, let M = M(Σ, I) and

N = M(Σ, J), and let π : M → N be the natural surjection. Then π extends naturally to a

surjection on generalized traces, as a mapping still denoted by π : M → N . Let ω ∈ M, and define:

M≤ω = {x ∈ M : x ≤ ω}. Then the restriction of π to M≤ω is injective.

Proof:

The extension of π to a mapping M → N follows from the definitions, hence we focus on proving

that the restriction of π to M≤ω is injective. Let x ∈ M≤ω and let y = π(x). Let c1 be the first clique

in the normal form of x, and let d1 be the first clique in the normal form of y. Let also C1 be the first

clique in the normal form of ω. We assume with loss of generality that x 6= ε since π−1({ε}) = {ε}.

We claim that c1 = d1 ∩ C1. The inclusion c1 ⊆ d1 ∩ C1 is clear since both inclusions c1 ⊆ d1
and c1 ⊆ C1 are obvious. For proving the converse inclusion, seeking a contradiction, we assume that

there is a letter a ∈ d1 ∩ C1 such that a /∈ c1. Then, since y = π(x), the letter a belongs to some

higher clique in the normal form of x. But, since x ≤ ω, and since a ∈ C1, that entails that a ∈ c1,

contradicting the assumption a /∈ c1. Hence c1 = d1 ∩ C1, as claimed.

Repeating inductively the same reasoning, with x′ = c1\x and with y′ = π(x′) = c1\y and

ω′ = c1\ω in place of x and of y and of ω respectively5 , we see that all the cliques (ci)i≥1 of the

generalized trace x can be reconstructed from y. This entails that π is injective. ⊓⊔

Corollary 2.22. Let M be a trace monoid, and let ω ∈ ∂M be an infinite trace. For each integer

n ≥ 0, consider:

M≤ω(n) = {x ∈ M : x ≤ ω ∧ |x| = n}, pn = #M≤ω(n).

Then there is a polynomial P ∈ Z[X] such that pn ≤ P (n) for all integers n. Furthermore, the set

∂M≤ω = {ξ ∈ ∂M : ξ ≤ ω} is at most countable. The polynomial P only depends on M, and not

on ω.

5Recall that, if c ≤ u with c, u ∈ M, we denote by c\u the left cancellation of u by c, which is the unique trace v ∈ M
such that c · v = u.
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Proof:

Let M = M(Σ, I) and let N be the free commutative monoid generated by Σ, i.e., N = M(Σ, J)
with J = (Σ× Σ) \∆ and ∆ = {(x, x) : x ∈ Σ}.

For each integer n, let qn = #N (n). Then it is well known that qn = P (n) for some polynomial

P ∈ Z[X] (a short proof based on the Möbius inversion formula was given in Sect. 2.1). Since I ⊆ J ,

it follows from Lemma 2.21 that p(n) ≤ q(n).

Furthermore, N itself is at most countable since N identifies with:

N ∼
{
(xi)i∈Σ

∣∣ xi ∈ Z≥0 ∪ {∞}, ∃i ∈ Σ xi = ∞
}
.

Hence, the fact that ∂M≤ω is at most countable also follows from Lemma 2.21. ⊓⊔

Remark 2.23. Of course, the direct argument:

∂M≤ω ⊆
{
ξ ∈ CZ≥1 : ∀i ≥ 1 Ci(ξ) ⊆ Ci(ω)

}

would not allow to conclude as in Corollary 2.22 that ∂M≤ω is at most countable.

3. Deterministic concurrent systems

Definition 3.1. A deterministic concurrent system (DCS) is a concurrent system X = (M,X,⊥)
such that for every state α ∈ X, the partial order (Mα,≤) is a lattice.

Remark 3.2. According to the background on l.u.b. and g.l.b. on trace monoids recalled in Section 2.1

on the one hand, and since Mα is a downward closed subset of M on the other hand, we have for any

two executions x, y ∈ Mα:

1. x and y have a g.l.b. in Mα, which coincides with their g.l.b. in M; and

2. x and y have a l.u.b. in Mα if and only they have a common upper bound in Mα, in which case

their l.u.b. in Mα coincides with their l.u.b. in M.

Note however that the existence of x ∨ y in M is not enough to insure that x ∨ y ∈ Mα.

Henceforth, a concurrent system (M,X,⊥) is a DCS if and only if, for every state α, any two

executions x, y ∈ Mα have a common upper bound in Mα.

The following result says that DCS correspond to “locally commutative” concurrent systems.

Proposition 3.3. Let X = (M,X,⊥) be a concurrent system. Then the following properties are

equivalent:

(i) X is deterministic.

(ii) For every α ∈ X, the partial order (Cα,≤) is a lattice, isomorphic to (P(Σα),⊆).
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Proof:

The implication (3.3) =⇒ (3.3) is obvious. The interesting point is the implication (3.3) =⇒ (3.3).

Assume that (Cα,≤) is a lattice for every α ∈ X, which is then necessarily isomorphic to

(P(Σα),⊆). Fix α ∈ X and let x, y ∈ Mα. Assume first that x ∧ y = ε. Let (c1, . . . , ck) and

(d1, . . . , dm) be the normal forms of x and of y. Maybe by adding the empty trace at the tail of one or

the other normal form, we assume that k = m, at the cost of tolerating that some of the elements may

be the empty trace.

On the one hand, since c1 · c2 is an execution starting from α, one has c2 ∈ Cα·c1 . On the other

hand, both c1 and d1 belong to Cα, which is a lattice by assumption. Hence c1 ∨ d1 ∈ Cα. And since

c1 ∧ d1 = ε by assumption, one has c1 ∨ d1 = c1 · d1 = d1 · c1. Therefore: d1 ∈ Cα·c1 . Since both

cliques c2 and d1 belong to Cα·c1 , which is a lattice, it follows that c2 ∨ d1 ∈ Cα·c1.

Now we claim that c2 ∧ d1 = ε. Otherwise, there exists a letter a occurring in both c2 and d1.

Since (c1, c2) is a normal pair of cliques, there exists b ∈ c1 such that (a, b) ∈ D, the dependence pair

of the monoid. Because of the assumption c1 ∧ d1 = ε, the identity a = b is impossible. But both a
and b belong to Σα, and since a 6= b, the fact that (a, b) ∈ D contradicts that Cα is a lattice; our claim

is proved.

We have obtained that c2∨d1 exists in Cα·c1 and that c2∧d1 = ε. Hence c2∨d1 = c2 ·d1 = d1 ·c2.

It implies that c2 ∈ Cα·(c1∨d1). Symmetrically, we obtain that d2 ∈ Cα·(c1∨d1). Since Cα·(c1∨d1) is a

lattice, it follows that d2 ∨ c2 ∈ Cα·(c1∨d1). But again, d2 ∧ c2 = ε hence d2 ∨ c2 = d2 · c2 = c2 · d2.

Therefore we obtain that the following trace belongs to Mα:

(c1 ∨ d1) · (c2 ∨ d2) = (c1 · c2) · (d1 · d2) = (d1 · d2) · (c1 · c2).

Repeating inductively the same reasoning, we finally obtain that x · y = y · x ∈ Mα, thus providing

a common upper bound of x and of y in Mα. This proves the existence of x ∨ y in Mα in the case

where x ∧ y = ε.

The general case follows by considering x′ = (x∧y)\x and y′ = (x∧y)\y instead of x and y. ⊓⊔

Remark 3.4. In a DCS, for each state α ∈ X, the partially ordered set of cliques (Cα,≤) identifies

with the powerset (P(Σα),⊆). In particular Cα has a maximum cα = max(Cα) =
∨

Σα, given by:

cα = Σα. We keep this notation in the statement of the following lemma.

Lemma 3.5. Let X = (M,X,⊥) be a deterministic concurrent system, and let α ∈ X. Let Tα =
(ci)i≥1 be the sequence of cliques defined by c1 = cα, and inductively by ci+1 = cαi

where αi =
α · (c1 · . . . · ci). Then Tα is a generalized execution which is the maximum of (Mα,≤).

Proof:

We first observe that, for cα the maximum of Cα, then cα → y holds6 for every clique y ∈ Cα·cα .

Here in particular, ci → ci+1 holds for all i ≥ 1, hence Tα is indeed a generalized execution.

Let x ∈ Mα, with x = (di)i≥1. We prove that x ≤ Tα. Assume first that x is a finite trace, of

height k. Put y = c1 · . . . · ck. Then x and y belong to Mα. Hence z = x ∨ y exists in Mα. Let

6This actually holds for any concurrent system, not necessarily deterministic, if cα is taken to be any maximal element

in Cα.
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(e1, . . . , ek) be the normal form of z (since x and y have the same height k, z also has height k). Then

cj ≤ ej and thus cj = ej for all j by maximality of cj . Hence dj ≤ cj for all j, which was to be

proved.

If x = (ci)i≥1 is now a generalized trace, we obtain the same result by applying the previous case

to all the sub-traces (ci)1≤i≤k, for k ranging over the positive integers. ⊓⊔

Let us introduce a name for a valuation that will play a special role.

Definition 3.6. Let X = (M,X,⊥) be a concurrent system. The valuation f = (fα)α∈X defined by:

∀α ∈ X ∀x ∈ M fα(x) =

{
1, if x ∈ Mα

0, otherwise

is called the dominant valuation of X .

The family f = (fα)α∈X given in Def. 3.6 is indeed a valuation. Indeed, using the axioms of the

monoid action and the additional assumption ⊥ · z = ⊥ for all z ∈ M, one sees that the following

equivalence is true for every α ∈ X and for every traces x, y ∈ M:

α · (x · y) 6= ⊥ ⇐⇒ (α · x 6= ⊥ ∧ (α · x) · y 6= ⊥),

which translates at once as the identity fα(x · y) = fα(x)fα·x(y).

Theorem 3.7. Let X = (M,X,⊥) be a non trivial concurrent system.

1. If Σα 6= ∅ for all α ∈ X, then the two following statements are equivalent:

(i) X is deterministic.

(ii) The dominant valuation of X is probabilistic.

2. If X is deterministic, then all sets ∂Mα, for α ∈ X, are at most countable and the characteristic

root of X is r = 1 or r = ∞.

Proof:

Point 1. To prove the stated equivalence, assume (i), and let f = (fα)α∈X be the dominant valuation.

Let α ∈ X, and let c ∈ Cα. Since Cα identifies with P(Σα), the Möbius transform of fα evaluated at

c is given by:

hα(c) =
∑

c′∈Cα : c′≥c

(−1)|c
′|−|c| =

{
1, if c = cα (the maximum of Cα)

0, otherwise.

Since ε 6= cα for all α ∈ X, this shows that f is a probabilistic valuation.

Conversely, assume as in (ii) that f is probabilistic. Let α ∈ X be a state, and let cα be a

maximal element of (Cα,≤). Then, on the one hand, and since cα is a maximal clique, one has

hα(cα) = fα(cα) = 1. But on the other hand, hα is nonnegative on Cα and sums up to 1 on Cα.
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Hence hα vanishes on all other cliques of Cα. Since this is true for every maximal element of Cα, it

entails that Cα has actually a unique maximal element, which is thus its maximum Σα. Hence (Cα,≤)
is a lattice for every α ∈ X, which proves (i) according to Proposition 3.3.

Point 2. We assume that X is a DCS. According to Lemma 3.5, the partial order (Mα,≤) has

a maximum Tα for every α ∈ X, hence Mα ⊆ M≤Tα . It follows at once from Corollary 2.22 that

∂Mα is at most countable, and that #Mα(n) ≤ P (n) for all integers n and for some polynomial P .

All generating series Gα,β(z) are rational with non zero coefficients at least 1, and they have their

coefficients dominated by some polynomial. They have therefore a radius of convergence either 1
or ∞. Hence r ∈ {1,∞}. ⊓⊔

Remark 3.8. In general, there might exist other probabilistic valuations than the dominant valuation,

even for a DCS. See Example 4.8 at the end of next section.

Since the dominant valuation f is probabilistic, it corresponds to a Markov measure as described

in Sect. 2.2. The behavior of the resulting Markov chain of states-and-cliques is trivial, as shown by

the following result.

Proposition 3.9. Let X = (M,X,⊥) be a non trivial DCS such that Σα 6= ∅ for all α ∈ X, and let

ν = (να)α∈X be the Markov measure associated with the dominant valuation. Then for each initial

state α ∈ X, the probability measure να is the Dirac distribution δ{Tα}, where Tα = maxMα.

Furthermore, with respect to the dominant valuation, every node of the digraph of states-and-

cliques is null except for those of the form (α, cα), with cα =
∨

Cα = Σα.

Proof:

Assuming that X is a DCS, we keep using the notation cα = maxCα = Σα for all α ∈ X.

A direct proof is as follows. Fix α ∈ X, and let (αi, zi)i≥0 be defined inductively by α0 = α,

z0 = ε and zi+1 = zi · cαi
, αi+1 = α · zi. On the one hand, we have

∨
i≥0 zi = Tα by the construction

used in the proof of Lemma 3.5. But on the other hand, the characterization of the probability measure

να yields να( ↑ zi) = f(zi) = 1 for all i ≥ 0. Since ↑ zi+1 ⊆↑ zi for all i ≥ 0, we have thus:

να(ω ≥ Tα) = να

(⋂

i≥0

↑ zi

)
= lim

i→∞
να( ↑ zi) = 1.

Since Tα = maxMα, it implies να(ω = Tα) = 1.

An alternative proof is as follows. Let (Yi)i≥1 be the Markov chain of states-and-cliques associated

to the dominant valuation, and let α ∈ X. One has να(C1 = c) = hα(c) for all c ∈ Cα, by (2.20). The

values of hα computed in the proof of Th. 3.7 show that the initial distribution of the chain is δ{(α,cα)}.

It is shown in [3] that the (α, c)-row of the transition matrix of the chain is proportional to hα·c(·).
Hence all entries of the (α, c)-row are 0, except for the

(
(α, c), (β, cβ)

)
entry with β = α · c, where

the entry is 1. Hence the execution Tα is given να-probability 1.

Finally we prove the statement about null nodes. The formula (2.7) defining the Möbius transform

shows that hα(cα) = 1 (for this we use the fact that Σα 6= ∅). Since
(
hα(c)

)
c∈Cα

is a probability

vector, it entails that all other cliques c ∈ Cα satisfy hα(c) = 0, hence (α, c) is a null node if c 6= cα.

⊓⊔
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4. Irreducible deterministic concurrent systems

Before stating the main result of this section, we prove two lemmas.

Lemma 4.1. Let X = (M,X,⊥) be a DCS. Let α ∈ X and let c ∈ Cα be a clique such that a /∈ c
for some letter a ∈ Σα. Then:

∀x ∈ Mα C1(x) = c =⇒ a /∈ x.

Proof:

Let α, a and c be as in the statement. Clearly, the implication stated in the lemma is true if we prove

it to be true for x ranging over Mα instead of Mα. Hence, let x ∈ Mα be such that C1(x) = c. Let

(ci)i≥1 be the generalized normal form of x, and define by induction x0 = ε, xi+1 = xi · ci+1 for all

i ≥ 0 and αi = α · xi for all i ≥ 0. We prove by induction on i ≥ 1 that:

1. a ∈ Σαi−1
; and

2. a /∈ ci.

For i = 1, both properties derive from the assumptions of the lemma. Assume that both properties

hold for some i ≥ 1. By construction, ci ∈ Cαi−1
, and a ∈ Σαi−1

by the induction hypothesis. Since

the concurrent system is deterministic, it follows that a ∨ ci ∈ Cαi−1
. Since a /∈ ci by the assumption

hypothesis, this l.u.b. is given by ci · a ∈ Cαi−1
. This entails first that a ∈ Cαi−1·ci , but αi−1 · ci = αi

hence a ∈ Σαi
. But it also entails that a /∈ ci+1 , completing the induction step. The result of the

lemma follows. ⊓⊔
Lemma 4.2. Let X = (M,X,⊥) be a concurrent system. Let α ∈ X, and let rα be the radius

of convergence of the generating series Gα(z) =
∑

x∈Mα
z|x|. Then the following properties are

equivalent:

(i) Mα is finite;

(ii) ∂Mα = ∅;

(iii) rα = ∞.

Proof:

The implications (4.2) =⇒ (4.2) and (4.2) =⇒ (4.2) are clear.

Assume that Mα is infinite. Then there exist executions in Mα of length arbitrary large. Therefore

there exist x ∈ Mα and y 6= ε such that α · x = α · (x · y). Then all traces xn = x · yn belong to

Mα for n ≥ 0. This proves two things. First, if k = |y|, the coefficient of z|x|+kn in the series Gα(z)
is ≥ 1 for all integers n, hence rα < ∞. Second, the execution ξ =

∨
n≥0 xn is an element of ∂Mα,

showing that ∂Mα 6= ∅. Hence we have proved both (4.2) =⇒ (4.2) and (4.2) =⇒ (4.2) by

contraposition, completing the proof. ⊓⊔
Theorem 4.3. Let X = (M,X,⊥) be an irreducible concurrent system, of characteristic root r, and

let f be the dominant valuation of X . Then the following statements are equivalent:

(i) X is deterministic.
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(ii) f is a probabilistic valuation.

(iii) f is the only probabilistic valuation of X .

(iv) r = 1.

(v) One set ∂Mα is at most countable.

(vi) Every set ∂Mα is at most countable.

(vii) One set ∂Mα is a singleton.

(viii) Every set ∂Mα is a singleton.

Proof:

Since X is irreducible, it satisfies in particular Σα 6= ∅ for all α ∈ X. Hence the equivalence

(4.3) ⇐⇒ (4.3) and the implications (4.3) =⇒ (4.3) and (4.3) =⇒ (4.3) derive already from

Theorem 3.7. The implications (4.3) =⇒ (4.3), (4.3) =⇒ (4.3) and (4.3) =⇒ (4.3) =⇒ (4.3)

are trivial.

(4.3) =⇒ (4.3). Let f = (fα)α∈X be a probabilistic valuation, and let f̃ = (f̃α)α∈X be the

dominant valuation. Let α ∈ X and let c ∈ Cα with c 6= cα, where cα = Σα is the maximum of Cα.

There is thus a letter a ∈ Σα such that a /∈ c. Let Ma be the submonoid of M generated by Σ \ {a}.

It follows from Lemma 4.1 that {ω ∈ ∂Mα : C1(ω) = c} ⊆ ∂Ma
α.

According to the spectral property recalled in Section 2.2, the characteristic root ra of X a =
(Ma,X,⊥) satisfies ra > r since X is assumed to be irreducible. But r = 1 since X is deterministic,

and therefore ra = ∞, which implies that ∂Ma
α = ∅ according to Lemma 4.2. Let ν = (να)α∈X

be the family of probability measures associated with the probabilistic valuation f , as explained in

Sect. 2.2. Then να(∂Ma
α) = 0 and thus να(C1 = c) = 0. But one also has hα(c) = να(C1 = c)

according to (2.20), where hα is the Möbius transform of fα. Hence hα(c) = 0. We have proved

that hα vanishes on all cliques c ∈ Cα such that c 6= cα. Since (hα(c))c∈Cα
is a probability vector, it

entails that hα(cα) = 1. Thus hα coincides with the Möbius transform of f̃α, and f = f̃ .

(4.3) =⇒ (4.3) and (4.3) =⇒ (4.3). By contraposition, assume that X is not deterministic.

Prop. 3.3 implies the existence of a state α and of two distinct letters a, b ∈ Σα such that a · b 6= b · a.

Since X is assumed to be irreducible, there exist x ∈ Mα·a,α and y ∈ Mα·b,α. Put xa = a · x and

xb = b · y, and we can also assume without loss of generality that |xa| = |xb|. Then Mα contains the

submonoid generated by {xa, xb}, which is free. This implies two things: first, the generating series

Gα(z) =
∑

x∈Mα
z|x| has radius of convergence smaller than 1, and thus r < 1; second, ∂Mα is

uncountable.

(4.3) =⇒ (4.3). Seeking a contradiction, assume that X is irreducible and that for some state

α ∈ X, the set ∂Mα has two distinct elements. Since Tα = max ∂Mα is already an element of ∂Mα,

there is thus ω ∈ ∂Mα with ω 6= Tα. Let ω = (ci)i≥1 and let c1, . . . , ck be the longest initial sequence

of cliques that the two infinite traces ω and Tα have in common. Put x = c1 · . . . · ck and β = α · x,

and ξ = (ci)i>k. Then ξ ∈ ∂Mβ , and by construction there is a letter a ∈ Σβ such that a /∈ ck+1. It

follows from Lemma 4.1 that a /∈ ci for all i > k.



S. Abbes / Introduction to Probabilistic Concurrent Systems 99

Consider the restricted concurrent system X ′ = X a. Then, since X is irreducible, it follows from

the spectral property that ra > 1, hence ra = ∞. According to Lemma 4.2, it implies that ∂Ma
α = ∅

for every α ∈ X. Yet, the infinite trace ξ ∈ ∂Mβ found earlier satisfies ξ ∈ ∂Ma
β , a contradiction.

The proof is complete. ⊓⊔

For an irreducible DCS equipped with its dominant valuation, Prop. 3.9 applies. Hence the

Markov chain of states-and-cliques associated to this unique probabilistic valuation follows the trivial

dynamics described by Prop. 3.9. In particular, the null nodes are easy to detect: all nodes of D of the

form (α, c) with α 6= cα. Consequently:

Corollary 4.4. The Markov chain of states-and-cliques of an irreducible DCS stays within a subgraph

of D of size #X. And there is no cycle in D connecting null nodes.

Proof:

According to Prop. 3.9, to each state α ∈ X is associated a unique non null node, namely (α, cα). The

Markov chain of states-and-cliques visits only non null nodes, whence the result.

To prove the second statement, assume the existence of a cycle in D connecting null nodes only. It

yields the existence of an infinite executing, starting from some state α, which stays within null nodes

in D. According to Th. 4.3, there is a unique infinite execution starting from α, which is Tα. Hence

Tα stays within null nodes of D, a contradiction. ⊓⊔

Remark 4.5. The first statement in the above corollary does not mean that the graph of non null nodes

in D is itself strongly connected. The next example illustrates this fact.

Remark 4.6. In general, if a concurrent system is not deterministic, null nodes of D may be connected

by a cycle. This is the case for the Petri net from Example 2.15, whose digraph of states-and-cliques is

depicted in Fig. 6, with the cycle
(
(α0, d), (α0, d)

)
. It may also happen for a deterministic concurrent

system if it is not irreducible. The reader may check it for the free commutative monoid on two

generators seen as a DCS.

The following example illustrates the dynamics of an irreducible DCS.

Example 4.7. Figure 7 depicts an example of irreducible DCS. The digraph of states-and-cliques of

the system is depicted on Fig. 8. Compare with the situation depicted on next example for a DCS

which is not irreducible.

Without the irreducibility assumption, the equivalence stated in Th. 4.3 may fail. We give below

an example of a deterministic concurrent systems not irreducible, and not satisfying point (4.3).

Example 4.8. Let X = (M,X,⊥) be the DCS depicted in Fig. 9. The system is not irreducible for

several reasons: none of the three conditions for irreducibility is met. The probabilistic valuations of

X are all of the following form, for some real p ∈ [0, 1]:

fα0
(a) = 1 fα0

(c) = p fα1
(b) = 1 fα1

(c) = p fβ0
(a) = 1 fβ1

(b) = 1
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Figure 7. Example of an irreducible and deterministic concurrent system X = (M, X,⊥) with Σ =
{a0, . . . , a3}, X = {0, 1, . . . , 8}. Left: Coxeter graph of the monoid M. Right: multigraph of states of

X . The two framed labels 0 are identified and correspond to the same state

(5, a0)

��

(8, a1) //

��

!!❈
❈❈

❈❈
❈❈

❈❈

❴ ❴ ❴✤

✤

✤

✤
❴ ❴ ❴
(0, a0)

(2, a0 · a3) // (6, a1) // (7, a2)

OO

❴ ❴ ❴✤

✤

✤

✤
❴ ❴ ❴
(0, a2) //

❴ ❴ ❴✤

✤

✤

✤
❴ ❴ ❴
(2, a3)

(4, a3)

;;✈✈✈✈✈✈✈✈✈
(3, a1 · a3)

OO

❴ ❴ ❴✤

✤

✤

✤
❴ ❴ ❴
(2, a0)

��
(1, a2)

??⑧⑧⑧⑧⑧⑧⑧

??

//

(0, a0 · a2)

OO

//

$$❏
❏❏

❏❏
❏❏

❏❏

❴ ❴ ❴✤

✤

✤

✤
❴ ❴ ❴
(3, a1)

❴ ❴ ❴✤

✤

✤

✤
❴ ❴ ❴
(3, a3)

Figure 8. Digraph of states-and-cliques for the DCS depicted on Fig. 7. Nodes with solid frames are nodes

of the form (α, cα) with cα = maxCα. Nodes with a dashed frame are null nodes. The probability for the

Markov chain of states-and-cliques to jump from a solid frame node to a dashed frame node is 0; the probability

of starting in a dashed node is 0.

Hence the dominant valuation is not the unique probabilistic valuation, contrary to irreducible

systems as stated by point (4.3) of Th. 4.3. The parameter p is to be interpreted as the “probability of

playing c” in the course of the execution. But this decision—playing c or not—is made once, hence
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(α0, a)
//
(α1, b)oo

(β0, a)
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(β1, b)oo

(α1, b · c)

OO

(α0, a · c)

OO

❴ ❴ ❴ ❴✤
✤

✤
✤

❴ ❴ ❴ ❴
(α0, c)

❴ ❴ ❴ ❴✤
✤

✤
✤

❴ ❴ ❴ ❴
(α1, c)

Figure 9. A non irreducible DCS not satisfying property (4.3) of Th. 4.3. Left: the Coxeter graph of the

monoid. Middle: the multigraph of states of the DCS. Right: the digraph of states-and-cliques. The parameter

p is only involved in the initial distribution of the Markov chain of states-and-cliques. The dashed nodes are the

null nodes and they are immaterial to the Markov chain of states-and-cliques

allowing all values between 0 or 1 for the probability. Whereas, in a sequential model of concurrency,

that would typically be a decision repeated infinitely often, hence yielding the only two possible values

0 or 1 for this probability. The formula να(C1 = γ) = hα(γ) for γ ∈ Cα yields the following initial

distribution of the Markov chain of states-and-cliques if, for instance, the initial state of the system

is α0: να0
(C1 = a) = 1− p, να0

(C1 = c) = 0, να0
(C1 = ac) = p.
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