
ar
X

iv
:2

11
2.

08
88

4v
4

 [
cs

.L
O

]
 1

4
O

ct
 2

02
2

Fundamenta Informaticae 187(2-4) : 245–272 (2022) 245

Available at IOS Press through:

https://doi.org/10.3233/FI-222138

Skeleton Abstraction for Universal Temporal Properties

Sophie Wallner*, Karsten Wolf

University of Rostock, Germany

sophie.wallner@uni-rostock.de

Abstract. Uniform coloured Petri nets can be abstracted to their skeleton, the place/transition net

that simply turns the coloured tokens into black tokens. A coloured net and its skeleton are related

by a net morphism [1, 2]. For the application of the skeleton as an abstraction method in the model

checking process, we need to establish a simulation relation [3] between the state spaces of the

two nets. Then, universal temporal properties (properties of the ACTL∗ logic) are preserved.

The abstraction relation induced by a net morphism is not necessarily a simulation relation, due

to a subtle issue related to deadlocks [4]. We discuss several situations where the abstraction

relation induced by a net morphism is as well a simulation relation, thus preserving ACTL∗

properties. We further propose a partition refinement algorithm for folding a place/transition

net into a coloured net. This way, skeleton abstraction becomes available for models given as

place/transition nets. Experiments demonstrate the capabilities of the proposed technology. Using

skeleton abstraction, we are capable of solving problems that have not been solved before in the

Model Checking Contest [5].

1. Introduction

In the model checking process for coloured Petri nets, one of the biggest issues is the state explosion

problem, which makes the verification of a property impossible, as the state space is getting too big

to handle. A way to deal with these big systems, is the well known technique of abstraction. Given a

coloured Petri net C , we can form its skeleton S, which has the structure of C and simply decolours

its components and tokens. This skeleton is an abstraction of the coloured net. To use this abstraction

technique in the model checking process, we need to guarantee, that properties are preserved through

this abstraction, i.e. that the validity of a property in S indicates the validity of the property in C .

*Address for correspondence: University of Rostock, 18051 Rostock, Germany

http://arxiv.org/abs/2112.08884v4

246 S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties

Unfortunately, this is not the case for every coloured net. The issue is that some deadlocks of C are

not preserved in S, as the additional behaviour of S changes the validity of the property. Deadlocks

in a coloured net can have two different causes. First, they can be caused by an insufficient number of

tokens in the preset of a transition. These deadlocks are preserved in the skeleton, as the number of

tokens will neither be sufficient in the skeleton. Second, they can be caused by a wrong colour set of

tokens, as the number of tokens in the preset of a transition is sufficient, but the colour distribution of

the tokens violates the guard of the transition. This type of deadlocks is usually not preserved in the

skeleton, as the skeleton does not distinguish colors at all. Consider the following example:

Example 1.1. Let C be a coloured Petri net, for which we build its skeleton S by removing the colour

sets of the places, the guard of the transition and making the tokens all indistinguishable. The two

nets are pictured in Figure 1. We consider the ACTL∗ formula ϕ : AF p ≤ 1. The guard of the only

transition t expresses that t requires three tokens of the same colour to be activated and then produces

one token of this colour. In the given marking ofC , t is not enabled, so this marking is a deadlock. The

corresponding marking of S is not a deadlock, as the number of tokens is sufficient and t is activated.

Firing t in S leads to a marking, where all tokens are removed from p, so ϕ is true for S. However, ϕ
is not true for C . Transferring the validity of ϕ from S to C will draw a wrong conclusion.

p

r

g g

q
tx1 x2 x3 y

χ(p)={r,g} χ(q)={r,g}
γ(t)=

∨
c∈{r,g}

x1=x2=x3=c

∧ y=c

(a) A coloured net C.

p q
t

3 1

∨
i∈{g,r} x1=x2=x3=i∧y=i

(b) The skeleton S of C.

Figure 1: A coloured net C with a deadlock not preserved in its skeleton S.

This paper is an improved version of the conference paper [6] and gives a detailed analysis of

situations, where the skeleton as an abstraction technique is soundly applicable in the model checking

process for coloured Petri nets. With respect to [6], we improved the folding algorithm in Section 7.1 in

a way, that it is now more liberal, i.e. the resulting coloured nets are smaller. The efficiency of this new

folding algorithm is examined through new experiments. Overall, the more liberal folding algorithm

helps to generate more results. We as well formalized the folding algorithm in Section 7.1 and added

some explanation for this algorithm to make the construction more understandable. Furthermore, we

extended the description of the automaton approach to check whether a transition class is full or not.

We therefore introduced more formal definitions of the arc inscriptions and guards. This topic is now

covered in an extra section (Section 6) in which we describe how to generate an automaton for terms

resp. guard expressions and finally a transition class. This will make the process of checking fullness

more understandable. Based on our new folding algorithm, Section 8 describes updated experimental

results. The paper is structured as follows: The next Section 2 will give an overview of the application

of skeleton nets in other contexts, Section 3 provides necessary basic definitions. After that, Section 4

will introduce the different concepts of relations, which can hold between reachability graphs of Petri

S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties 247

nets. Section 5 will set the focus on the simulation relation between reachability graphs as the core

concept for keeping validity through abstraction. We present a survey, in which cases the skeleton is a

valid abstraction method for a coloured Petri net, distinguishing different classes of nets and types of

formulas. Section 6 provides an approach to check whether a coloured net has a deadlock-preserving

skeleton; a property a net might fulfill to make the skeleton abstraction a valid verification extension.

With the folding algorithm in Section 7, we extend the scope of application of the skeleton abstraction

to place/transition nets. The experimental results in Section 8 underline the powerfullness of this

abstraction method.

2. Related work

The idea of a skeleton-based analysis of a Petri net is subject of [7]. Based on this, [4] examines

the role of deadlocks within this topic more precisely. The results are also applied in other contexts.

In [8] extended Pr/T-Nets are used as a modeling formalism for embedded real-time systems due

to the multitude of analysis methods for Petri nets. With the skeleton of a Pr/T-Net, properties like

reachability of states or deadlock freeness can be examined. [9] transfers Findlow’s results [4] to

algebraic nets. They are used as an application for a folding construction, which is described there.

Findlow’s observations on deadlock-preserving skeletons are further used in [10] for a skeleton-based

analysis of G-Nets, an object-based Petri net formalism. The preservation of predicates in temporal

logic under morphisms has also already been discussed. [2] describes a rule-based modification of

algebraic high-level nets extended with morphisms such that safety properties described in temporal

logic are preserved.This provides a technique which allows to transfer safety properties between the

source and the target net.

3. Basic definitions

First, we present definitions for place/transition nets.

Definition 3.1. (Place/Transition Net)

A place/transition net (P/T net) is a tuple N = [P, T, F,W,m0], where P is a finite set of places and

T is a finite set of transitions with P ∩ T = ∅. The arcs F ⊆ (P × T) ∪ (T × P) of the net are

labeled by a weight function W : F → N, with W (x, y) = 0 iff (x, y) /∈ F . A marking is a mapping

m : P → N and m0 is the initial marking.

The behavior of a P/T net is defined by the transition rule.

Definition 3.2. (Transition rule of a P/T net)

Let N = [P, T, F,W,m0] be a P/T net. Transition t ∈ T is enabled in marking m if ∀p ∈ P :

W (p, t) ≤ m(p). Firing Transition t leads from marking m to marking m′ (denoted as m
t
−→ m′) in

N , if t is enabled in m and ∀p : m′(p) = m(p)−W (p, t) +W (t, p).

A marking m′ is reachable from a marking m (denoted as m
∗
−→ m′), if there is a firing sequence

t1t2 . . . tn ∈ T ∗, such that m
t1−→ m1

t2−→ . . .
tn−→ m′. We extend the notation of reachability to

248 S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties

firing sequences ω ∈ T ∗ and we call RS(N) = {m | ∃ω ∈ T ∗ : m0
ω
−→ m} the reachability set,

which contains all of N ’s reachable markings. Using the transition rule, a Petri net induces a labeled

transition system, called the reachability graph.

Definition 3.3. (Labeled Transition System, Reachability Graph)

A transition system TS = [Q, qo, R,A] is a labeled, directed graph, where Q is the set of states,

q0 ∈ Q is the initial state and a transition relation R ⊆ Q × A ×Q with some set of actions A. The

reachability graph RN (m0) of a Petri net N is a transition system, where the set of states is RS(N),

m0 serves as the initial state and (m, t,m′) ∈ R iff m
t
−→ m′.

Furthermore, we introduce a simple notion for coloured Petri nets with finite colour domains.

Definition 3.4. (Coloured Petri net)

A coloured Petri net C = [PC , TC , FC ,WC , χ, γ,m0C] consists of a finite set PC of places, a finite set TC

of transitions where PC∩TC = ∅ and a set of arcs FC ⊆ (PC×TC)∪(TC×PC). The weight function WC

assigns a finite set of variables to each element of FC . If (x, y) /∈ FC, we assume WC(x, y) = ∅. The

colouring function χ assigns a finite set χ(p) of colours to each place p ∈ PC , called colour domain of

p. The guard function γ assigns a boolean predicate γ(t) to each transition t ∈ TC , which ranges over

the variables of WC(p, t) ∪WC(t, p) for all p ∈ PC . The initial marking m0 is a multiset over χ(p) for

every p ∈ PC . The number of tokens of colour c on place p in marking m is described as m(p)(c).

For a transition t ∈ TC, we define a firing mode of t as a mapping g :
⋃

p∈PC
(WC(p, t) ∪

WC(t, p)) →
⋃

p∈PC
χ(p), which assigns a colour from χ(p) for every place p ∈ PC and for each

variable x ∈WC(p, t) ∪WC(t, p). A firing mode g of a transition t satisfies the guard γ(t), denoted as

g |= γ(t), if the assignment of colours to variables is a model of the guard.

Usually, definitions of coloured nets permit a richer syntax for arc weights and provide a more

detailed description of the guard. In Chapter 6 we give more specific definitions for arc weights and

guards; furthermore we present a solution how to simplify arc weights to variables without undermin-

ing expressivity. Until then, consider arc weights and guards as defined in the definition above.

For a coloured net, we define its unfolding.

Definition 3.5. (Unfolding)

Let C = [PC , TC , FC ,WC , χ, γ,m0C] be a coloured Petri net. A P/T net U = [PU , TU , FU ,WU ,m0U] is

the unfolding of C if

• PU = {[p, c] | p ∈ PC , c ∈ χ(p)}

• TU = {[t, g] | t ∈ TC, g |= γ(t)}

• ([p, c], [t, g]) ∈ FU , iff (p, t) ∈ FC and c ∈ g(WC(p, t))

• ([t, g], [p, c]) ∈ FU , iff (t, p) ∈ FC and c ∈ g(WC(t, p))

• WU([p, c], [t, g]) = card({x | x ∈WC(p, t), g(x) = c})

• WU([t, g], [p, c]) = card({x | x ∈WC(t, p), g(x) = c})

• m0U([p, c]) = m0C(p)(c).

S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties 249

In the sequel, refer to the transition system defined by a coloured net C as the transition system of

its unfolding U , as they are isomorphic [11]. Coloured nets as defined above are uniform. This means

that the number of tokens consumed or produced by a transition is independent of the particular firing

mode, i.e. always card(W (x, y)) tokens. There exist non-uniform variants of coloured nets. They use

variables that take multisets over χ(p) as values. They are, however, out of the scope of this article

since the core artifact studied in this paper, the skeleton, is not applicable to non-uniform nets. For a

uniform net, we can assign a second P/T net, its skeleton.

Definition 3.6. (Skeleton)

Let C = [PC , TC , FC ,WC , χ, γ,m0C] be a coloured net. Its skeleton S = [PS , TS, FS,WS,m0S] is a P/T

net where

• PS = PC , TS = TC , FS = FC

• for all x, y ∈ P ∪ T : WS(x, y) = card(WC(x, y))

• for all p ∈ P : m0S(p) =
∑

c∈χ(p)m0(p)(c).

The following example will help to understand the concepts of the unfolding and the skeleton of a

coloured net.

Example 3.7. Let C be the given coloured Petri net, as depicted in Figure 2. Place p and q have

the colour domain χ(p) = χ(q) = {r, g, b}. Unfolding C leads to the corresponding places

[p, g], [p, r], [p, b] resp. [q, g], [q, r], [q, b]. For every firing mode, which satisfies the guard of tran-

sition t, we introduce one transition in the unfolding, so the unfolding has three transitions tg, tr, tb.
Building the skeleton makes all tokens on p indistinguishable and removes the colour sets of p and q.

The transition t in the skeleton has no guard and is simply activated, if there is a sufficient number of

tokens on p.

[p, g] [p, r] [p, b]

[q, g] [q, r] [q, b]

tg tr tb

(a) The Unfolding U .

p

r

bg χ(p)={r,g,b}

q

χ(q)={r,g,b}

t γ(t)=
∨

c∈{r,g,b} x1=c∧x2=c

x1

x2

(b) The Coloured Net C.

p

q

t

(c) The Skeleton S.

Figure 2: A coloured Petri net C , its unfolding U and its skeleton net S.

250 S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties

In the sequel, unless stated otherwise, let C be an arbitrary but fixed coloured net, U its unfolding,

and S its skeleton. U and S are related by a net morphism.

Definition 3.8. (Net Morphism [1])

LetN1 = [P1, T1, F1,W1,m01] andN2 = [P2, T2, F2,W2,m02] be arbitary P/T nets. A net morphism

from N1 to N2 is a mapping µ : (P1 ∪ T1) → (P2 ∪ T2) such that µ(P1) ⊆ P2, µ(T1) ⊆ T2 and

∀x, y ∈ P1 ∪ T1 : W (µ(x), µ(y)) = W (x, y). For the initial markings, it holds that ∀p2 ∈ P2 :
m02(p2) =

∑

p1∈P1:(p1,p2)∈µ
m01(p1).

A net morphism can be extended to a mapping from markings of N1 to markings of N2 by setting

m2(p2) =
∑

p1∈P1:(p1,p2)∈µ
m1(p1) for all p2 ∈ P2, where m1 ∈ RS(N1) and m2 ∈ RS(N2). A net

morphism preserves the reachability between the related nets.

Lemma 3.9. (Net Morphism preserves reachability [12])

Let N1, N2 be two P/T nets, related by a net morphism µ. The transition m
t
−→ m′ in N1 implies the

transition µ(m)
µ(t)
−−→ µ(m′) in N2.

It is easy to see that U and S are related by a net morphism.

Lemma 3.10. (Net morphism from unfolding to skeleton [1, 2])

Let C be a coloured Petri net, U its unfolding and S its skeleton. The mapping µ : (PU ∪ TU) →
(PS ∪ TS) is a net morphism from U to S, where

• ∀[p, c] ∈ PU : µ([p, c]) = p ∈ PS

• ∀[t, g] ∈ TU : µ([t, g]) = t ∈ TS

The net morphism µ between U and S can as well be extended to the markings of U and S, such as

mS(p) =
∑

[p,c]∈PU :([p,c],p)∈µ
: mU([p, c]) for all p ∈ PS , where mU ∈ RS(U) and mS ∈ RS(S).

We continue with the introduction of the syntax and semantics of the temporal logic CTL∗ [13].

The foundation for this logic are atomic propositions, properties which are either true or false in a

given state. CTL∗ distinguishes state formulas and path formulas.

Definition 3.11. (Syntax of CTL∗)

The temporal logic CTL∗ is inductively defined as follows:

• every atomic proposition is a state formula

• if ϕ and ψ are state formulas, so are (ϕ ∧ ψ), (ϕ ∨ ψ), and ¬ϕ

• every state formula is a path formula

• if ϕ and ψ are path formulas, so are (ϕ ∧ ψ), (ϕ ∨ ψ), ¬ϕ, Xϕ, Fϕ, Gϕ, (ϕUψ), (ϕW ψ),
and (ϕRψ)

• if ϕ is a path formula then Eϕ and Aϕ are state formulas.

The semantics of CTL∗ relies on the concept of paths in the considered system, given as a transi-

tion system.

S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties 251

Definition 3.12. (Path,Suffix)

Let TS = [Q, q0, R,A] be a transition system. A finite path starting in state q0 is a sequence π =
q0 . . . qn of states where ∀i ∈ {0, . . . , n − 1} : (qi, a, qi+1) ∈ R. An infinite path starting in q0 is an

infinite sequence π = q0q1 . . . where ∀i ∈ N : (qi, a, qi+1) ∈ R. A path is a finite or infinite path. A

path is maximal, if it is infinite, or is a finite path q1 . . . qn where qn is a deadlock, i.e. a state where,

for all q ∈ Q, (qn, a, q) /∈ R. As a Suffix of a path π we define πi as the part of π, starting in qi.

The semantics of CTL∗ is defined on infinite paths, as we find them in Kripke structures. A

Kripke structure is a transition system K = [Q, q0, R,A,L] where R is total, i.e. every state has

at least one successor state. Thus the maximal paths are always infinite here. Aditionally, Kripke

structures have a labelling function L : Q → 2AP , which assigns the set of atomic propositions to

every state, which are true in this state. Every transition system can canonically be transformed into a

Kripke structure by adding a silent transition action (qd, τ, qd) to R for each deadlock state qd of the

system, which does not have a successor state. The semantics of CTL∗ is defined by two satisfaction

relations, both denoted with |=, that relate markings and state formulas resp. infinite paths and path

formulas according to the following rules.

Definition 3.13. (Semantics of CTL∗)

Let K = [Q, q0, R,A,L] be a Kripke structure. Let q ∈ Q be a state and π = q0q1 . . . an infinite path

of the system. Let futher be Π(q) the set of paths starting from q. The satisfaction of a CTL∗ formula

is defined:

• For an atomic proposition ϕ: let q |= ϕ if ϕ ∈ L(q).

• For a state formula ϕ: π |= ϕ, if q0 |= ϕ.

• Boolean connectors:

– q |= ¬ϕ, if q 6|= ϕ; π |= ¬ϕ if q0 6|= ϕ

– q |= (ϕ ∧ ψ), if q |= ϕ and q |= ψ; π |= (ϕ ∨ ψ) if π |= ϕ or π |= ψ.

• Temporal operators:

– π |= Xϕ, if π1 |= ϕ

– π |= (ϕUψ), if ∃i ≥ 0 : πi |= ψ and ∀0 ≤ j < i : πj |= ϕ.

• Path quantifier: q0 |= Eϕ, if ∃π ∈ Π(q0) : π |= ϕ.

Let further ϕ∨ψ be equivalent to ¬(¬ϕ∧¬ψ), Fϕ to true Uϕ, Gϕ to ¬F¬ϕ, ϕRψ to ¬(¬ϕU¬ψ),
ϕW ψ to Gϕ ∨ (ϕUψ) and Aϕ to ¬E¬ϕ.

A Kripke structure satisfies a state formula if its initial states does. It satisfies a path formula if all

paths starting in the initial state do. For CTL∗, several fragments are frequently studied.

Definition 3.14. (Fragments of CTL∗)

CTL∗ formula ϕ is in

• LTL if ϕ does neither contain E nor A

252 S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties

• ACTL∗ if ϕ does neither contain E nor ¬

• CTL if every occurrence of X,U,F,G,R is immediately preceded by an occurrence of A

or E

• ACTL if ϕ is in ACTL∗ and CTL

• for any fragment F , ϕ is in the fragment FX if ϕ is in F and does not contain X.

Since CTL and LTL contain, for all their operators, the dual operator w.r.t negation, we can push

negations to the bottom of formulas. Consequently, LTL is indeed a subset of ACTL∗.

4. Relations between reachability graphs

For describing relations between reachability graphs, we use the concepts of abstraction relation and

simulation relation, defined for Kripke structures.

Definition 4.1. (Abstraction Relation [3])

Let K = [Q, q0, R,A,L] and K̂ = [Q̂, q̂0, R̂, Â, L̂] be Kripke structures. An abstraction relation

exists between K and K̂ , if there is a surjective abstraction function σ : Q → Q̂, for which it holds

that for every q̂ ∈ Q̂ and ∀a ∈ AP : q̂ |= a⇔ ∀q ∈ Q with (q, q̂) ∈ σ : q |= a.

If such an abstraction relation exists between K and K̂ , we say that K̂ (abstract system) abstracts

K (concrete system). A particular type of abstraction relation is the simulation relation.

Definition 4.2. (Simulation Relation [14])

An abstraction relation between K = [Q, q0, R,A,L] and K̂ = [Q̂, q̂0, R̂, Â, L̂] with the abstraction

function σ : Q→ Q̂ is a simulation relation, if ∀q, q1 ∈ Q : q
∗
−→ q1 and (q, q̂) ∈ σ → ∃q̂1 ∈ Q̂ : q̂

∗
−→

q̂1 for q̂ ∈ Q̂ and (q1, q̂1) ∈ σ.

If a simulation relation exists between K and K̂ , we say that K̂ simulates K . ACTL∗ properties

are preserved through a simulation relation.

Lemma 4.3. (Simulation Relation preserves ACTL∗ [13])

Let K = [Q, q0, R,A,L] and K̂ = [Q̂, q̂0, R̂, Â, L̂] be Kripke structures. If there is a simulation

relation between K and K̂, for every ACTL∗ formula ϕ, it holds that K̂ |= ϕ⇒ K |= ϕ.

As deadlocks may occur in Petri nets, a reachability graph is not necessarily a Kripke structure. To

make the concepts of abstraction and simulation formally applicable to Petri nets, we need to transform

the reachability graphs into Kripke structures, as described above. Thus, for every deadlock marking

md in a reachability graph, we add a self-loop (md, τ,md) with a silent transition τ to R. From now

on, consider the reachability graphs of Petri nets as Kripke structures, arose out of this transformation.

For an abstraction relation, atomic propositions are essential, so we first specify atomic propositions

in the context of Petri nets.

S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties 253

Definition 4.4. (Atomic proposition)

Let N be a Petri net. An atomic proposition is an expression k1p1 + . . . knpn ≤ k, for some n ∈ N

with k1, . . . , kn, k ∈ Z, and p1, . . . , pn ∈ P , where P is the set of places of N . A marking m of a P/T

net satisfies the proposition k1p1+ · · ·+knpn ≤ k, iff the term
∑n

i=1 ki ·m(pi) evaluates to a number

less than or equal to k. A marking m of coloured net satisfies proposition k1p1 + · · · + knpn ≤ k, iff

the term
∑n

i=1 ki ·
∑

c∈χ(pi)
m(pi)(c) evaluates to a number less than or equal to k. For both, m |= a

denotes the fact that m satisfies atomic proposition a.

The net morphism µ : (PU ∪ TU) → (PS ∪ TS) between the unfolding U of a coloured net C
and its skeleton S induces an abstraction relation between their reachability graphs. To show this, we

need to specify the unfolding of atomic propositions of coloured nets. As S resp. C normally have

another set of places as U , the equisatisfiability between the concrete and the abstract states, required

in Definition 4.1, is not trivial.

Definition 4.5. (Unfolding of Atomic Propositions)

Let µ : (PU ∪ TU) → (PS ∪ TS) be the net morphism between U and S. Let aC ∈ APC an atomic

proposition of a coloured net C . Proposition aC can be unfolded to an atomic proposition aU ∈ APU

by substituting every occurrence of any place p ∈ PC by
∑

[p,c]∈PU:µ([p,c])=p[p, c].

An atomic proposition aC and its unfolding aU are equisatisfiable. To make the unfolding of atomic

propositions more clear, consider example 1.1 and the atomic proposition p ≤ 3. As the colour domain

of p is χ(p) = {g, r, b} and p would be unfolded to the places [p, g], [p, r], and [p, b], we unfold the

atomic proposition to [p, g] + [p, r] + [p, b] ≤ 3.

With the definition of atomic propositions and their unfolding we can build an abstraction relation

between the unfolding of a coloured net and its skeleton.

Theorem 4.6. (Abstraction Relation between U and S)

Let U and S be related by the net morphism µ : (PU ∪ TU) → (PS ∪ TS) from proposition 3.10.

The extension of µ on the markings of U and S yields to a surjective abstraction function σ with

(mU ,mS) ∈ σ for (mU ,mS) ∈ µ. Therefore, an abstraction relation between the markings of U and S
exists.

It is worth mentioning that markings here include reachable and non-reachable markings.

Proof:

Let aU ∈ APU , aC ∈ APC and aS ∈ APS be atomic propositions. The relation σ is an abstraction

relation indeed, if for a marking mS of S,mS |= aS ⇔ ∀mU |= aU with (mU ,mS) ∈ σ. IfmS |= aS , then
∑n

i=1 ki ·mS(pi) ≤ k. For every corresponding marking mC of C , it holds that mC |= aC , as mS(pi) =
∑

c∈χ(pi)
mC(pi)(c) for every i ∈ {1, . . . , n} and so,

∑n
i=1 ki ·

∑

c∈χ(pi)
mC(pi)(c) ≤ k. Notice that

mC may be unreachable. As the corresponding markings of the unfoldings are equisatisfiable, for

every mU of U , it holds that mU |= aU . Reversed, it must hold that if for a marking mS with mS 6|= aS ,

there is a marking mU with (mU ,mS) ∈ σ, for which it holds that mU 6|= aU . Let
∑n

i ki ·mS(pi) > k.

For the marking mC also holds that mC 6|= aC. This mC might be unreachable again. We can see, that

for mU , mU 6|= aU as well. ⊓⊔

254 S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties

The existence of an abstraction relation is not sufficient for transferring the validity results on the

markings of S to U . We need in fact a simulation relation. A simulation σ requires the preservation of

the transitions between the simulating systems, so it should hold that ∀mU,mU1 ∈ RS(U) : mU

∗
−→ mU1

and (mU ,mS) ∈ σ ⇒ ∃mS1 ∈ RS(S) : mS

∗
−→ mS1 and (mU1,mS1) ∈ σ for mS ∈ RS(S). As the

coloured net may have deadlocks, which are not preserved in the skeleton as shown in the opening

example, there may be silent transitions at the deadlock states of U , which are not preserved in the

skeleton S. Let mU ∈ RS(U) be a deadlock of U not preserved in S, so mU

τ
−→ mU . Let mS ∈ RS(S)

be the corresponding marking of S with (mU ,mS) ∈ σ. Since mS is not a deadlock, there is no silent

transition added for mS and consequentially, there is no marking mS1 ∈ RS(S) with mS

∗
−→ mS1 and

(mU ,mS1) ∈ σ, as mU ,mS1 do not fulfill atomic propositions equally.

5. Simulation relation between reachability graphs

In this section, we discuss the existence of a simulation relation between the unfolding and the skeleton

under various conditions. As mentioned above, deadlocks that are not preserved in the skeleton, may

cause problems. We therefore distinguish coloured nets, where

a) no deadlocks occur at all (Section 5.1),

b) all deadlocks are preserved in the skeleton (Section 5.2),

c) deadlocks are not always preserved. (Section 5.3)

The kind of the ACTL∗ formula is significant as well. ACTL∗ safety properties permit the use of the

skeleton approach even if deadlocks are not preserved, as shown in Section 5.4.

5.1. Deadlock-free nets

When the net C resp. U has no deadlocks, the net morphism directly leads to a simulation relation

between the markings of U and S. There is no need to add silent transitions in U that are not preserved

in S.

Theorem 5.1. Let C be a coloured net without deadlocks, U its unfolding and S its skeleton. The net

morphism µ : (PU ∪ TU) → (PS ∪ TS) from Lemma 3.10 induces a simulation relation between the

markings of U and S.

Proof:

The reachability graph RU(m0) is a Kripke structure, without adding silent transitions. Let mU ,mU1 ∈
RS(U) and mS ∈ RS(S) be the corresponding marking of mU with (mU ,mS) ∈ µ. The markings mU

and mS are then related by the abstraction relation σ from Theorem4.6: (mU ,mS) ∈ σ. Because net

morphisms preserve reachability, for tU ∈ TU , if it holds that if mU

tU−→ mU1 in RU(m0), then there is

a marking mS1 ∈ RS(S) with mS

µ(t)
−−→ mS1 in RS(m0), for which (mU1,mS1) ∈ µ. Consequently, for

all markings mU ,mU1 ∈ RS(U) with mU

∗
−→ mU1 and (mU ,mS) ∈ σ, there is a marking mS1 ∈ RS(S)

with mS

∗
−→ mS1 in RS(m0) and (mU1,mS1) ∈ σ. ⊓⊔

S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties 255

Thus, according to proposition 4.3,ACTL∗ properties are preserved. If we can guarantee, that the

considered net is deadlock-free, the skeleton abstraction can be used for transferring positive results

of an ACTL∗ verification in S to U .

5.2. Deadlock preservation

We now consider the case where a Petri net has deadlocks. The reachability graph of this net is

not readily a Kripke structure, hence all deadlock states were extended with a self loop with a silent

action. In [4], two necessary and sufficient criteria are formulated, defining a class of coloured Petri

nets which have a deadlock-preserving skeleton.

This means that every dead marking of the coloured net has a dead skeletal image, thus no deadlock

of the coloured net is invisible in the skeleton. By that it is possible to detect all deadlocks just by the

skeletal analysis. The two criteria have both characteristic advantages for our skeleton-based analysis

and verification. The first criterion relates to an equivalence relation of the transitions of the coloured

net. The second one concerns the liveness of markings. To determine, whether a given coloured Petri

net has a deadlock-preserving skeleton, it is appropriate to use the first criterion, as it refers exclusively

to the net structure and does not consider the behaviour of the net.

As we assume that the coloured net C = [PC , TC , FC ,WC, χ, γ,m0C] is uniform, the number of

input tokens a transition t ∈ TC requires from each place pi for i ∈ {1, . . . , n} with n = |PC | is

unambiguous. From now on, this number of input tokens for a transition t is denoted as fi(t), where

fi(t) = |WC(pi, t)| for i ∈ {1, . . . , n}. These numbers form an input vector f : T → N
n for every

transition t ∈ TC : f(t) = (f1(t), f2(t), . . . , fn(t)). Building on that, we can determine a preorder

(TC ,.) of the transitions of C , such that ∀t, t′ ∈ TC : t . t′, iff f(t) ≤ f(t′). This leads to an

equivalence relation ∼ on TC , such that ∀t, t′ ∈ TC : t ∼ t′, iff f(t) = f(t′). Transitions with an

identical input are aggregated in one equivalence class of this equivalence relation. Let TC/∼ be the set

of equivalence classes of TC . The preorder (TC ,.) induces a partial order (TC/∼,≤) on the equivalence

classes, such that ∀[t], [t′] ∈ TC/∼ : [t] ≤ [t′], iff t . t′.

Definition 5.2. (Full Transition Class)

An equivalence class [t] ∈ TC/∼ is full, if for every marking mC of C with |mC(pi)| = fi(t) for all

i ∈ {1, . . . , n}, there is a transition t ∈ [t] that is enabled in mC .

In other words, [t] is full, if any collection of bags matching the input size requirements of [t] also

matches the input colour distribution requirements of one transition t ∈ [t] of this equivalence class.

This leads to the following lemma:

Lemma 5.3. (Deadlock-Preserving Skeleton [4])

Let C be a uniform, coloured Petri net. C has a deadlock-preserving skeleton, iff every minimal

transition class of C regarding (TC/∼,≤) is full.

This is a necessary and sufficient condition. With this criterion, we can show that the simulation

relation between a coloured net and its skeleton is preserved for a subclass of coloured nets, which

have a deadlock-preserving skeleton. If the criterion holds, the net morphism µ : (PU∪TU) → (PS∪TS)
induces a simulation relation. If a coloured net has a deadlock-preserving skeleton, for every added

256 S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties

silent transition for a dead marking mU ∈ RS(U) of U , there is an added silent transition for the dead

skeletal image mS ∈ RS(S) with (mU ,mS) ∈ µ as well. With regard to Lemma 4.3, we can verify the

ACTL∗ properties only in S without risking wrong conclusions about the behavior of C .

5.3. Inject deadlocks to skeleton

The main focus of this section are nets with deadlocks, but without deadlock-preserving skeleton.

Here, the net morphism does not induce a simulation relation, so the ACTL∗ results cannot be trans-

ferred directly from the skeleton to the coloured net. We present an approach to modify the skeleton

net such that every deadlock of the unfolding occurs in the new skeleton, but potentially with some

delay. In this case we cannot guarantee that every dead marking has a dead skeletal image, but we can

at least guarantee that for a dead marking, the corresponding skeletal deadlock occurs after a finite

number of actions.

Definition 5.4. (Modified Skeleton Net)

Let C = [PC , TC , FC ,WC , χ, γ,m0C] be a uniform coloured net. The modified skeleton S′ can be

constructed from the skeleton S as, for every preset place p ∈ PC of a non-full minimal transition

class [t], a complement place p and a recipient transition tr with •tr = {p} and tr• = {p} are

introduced with W (p, tr) =W (tr, p) = 1. Apart from that, S′ and S are identical.

The modified skeleton has another behaviour than the original skeleton. Every recipient transition

tr can successively empty its preset place p and stores the tokens on the complement place p. These

actions can be considered as silent actions of S′. Once a token is stored on p, it cannot leave this place

anymore. So, after a finite number of actions of the recipient transitions, the preset of [t] is empty

and the transitions in [t] cannot fire anymore. The deadlock of U occurs in S′ after a finite number of

silent actions of the recipient transitions. Between U and S′ a stuttering simulation holds, which is a

weakened version of a simulation relation. The next definition talks about partitions of infinite paths.

A partition of a path π consists of finite or infinite subpaths Bi, such that their concatenation yields

the whole π.

Definition 5.5. (Stuttering Simulation [15])

Let K = [Q, q0, R,A,L] and K̂ = [Q̂, q̂0, R̂, Â, L̂] be Kripke structures and a be an atomic proposi-

tion. A mapping σs : Q→ Q̂ is a stuttering simulation relation if the following conditions hold:

• (q0, q̂0) ∈ σs

• (q, q̂) ∈ σs ⇒ q |= a ⇔ q̂ |= a and for every path π = q0q1q2 . . . of K , there is a path π̂ =
q̂0q̂1q̂2 . . . of K̂ , such that we can find partitions B0, B1, B2, . . . for π resp. B̂0, B̂1, B̂2, . . . for

π̂ for which holds that:

– ∀i ≥ 0 : Bi, B̂i are not empty and finite

– every state of B̂i is related with every state of Bi by σs.

If two systems are related by a stuttering simulation, the behaviour of the concrete system K is

simulated by the abstract system K̂ , but K̂ can run internal silent actions while simulating. Between

S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties 257

the unfolding and the modified skeleton, we can observe this stuttering simulation. To prove this, we

first need to establish a relation between the markings of U and S′. Therefore, we create a relation

between the markings of S and the markings of S′. A Marking mS of S and a marking mS
′ of S′ are

related, if

• mS(p) = mS
′(p) +mS

′(p) for p ∈ •[t], where [t] is a non-full minimal transition class

• mS(p) = mS
′(p) otherwise.

The relation between a marking mU and a marking mS
′ can then be established by composing the

abstraction relation from mU to mS and with the one just defined. Thus, the relation between the

markings of U and S′ is an abstraction relation. The silent actions of the recipient transitions move

the tokens of the preset places to their complementary places. No matter if they have moved one or all

tokens, the sum over the places p and p is always invariant.

Theorem 5.6. (Stuttering Simulation between U and S′)

Let C be a uniform coloured net, U its unfolding and S′ its modified skeleton. Between the markings

of U and S′, a stuttering simulation σs holds.

Proof:

The definition of the marking guarantees, that an abstraction relation exists between the markings of

U and S′. States, which are related by the σs, fullfil atomic propositions equally. Between the initial

markings m0U and m0S
′ the stuttering simulation holds. Now consider the path πU = m1Um2U . . .

of U and the correspondig path πS
′ = m1S

′m2S
′ . . . of S′, where (miU ,miS′) ∈ µ for all i. The the

partitioning of πU and the corresponding path πS
′ in S′ is obtained as follows: For a marking miU of

path πU , which is not a deadlock, the corresponding part of πS
′ is simply miS′ with (miU ,miS′) ∈ σs.

The partitioning of the paths for this parts is trivial: BiU = {miU} resp. BiS′ = {miS′}. Let now be

miU a deadlock, which is only followed by the self-loop-τ -actions. The corresponding marking miS′ is

not necessarily a deadlock. Firing the recipient transitions in miS′ yields to a sequence τ∗ which ends

in a deadlock marking mdS
′ , where only the self-loop-τ -action is possible as well. For partitioning,

BiU contains only the deadlock state miU of U . BiS′ contains the states miS′ ,mi+1S
′ ,mi+2S

′ , . . . ,mdS
′ ,

where mi+1S
′ ,mi+2S

′ , . . . are the markings, reached by actions of the recipient transitions and mdS
′ is

the delayed deadlock marking. All states in BiS′ have the same validity of atomic propositions and so

they can be related with miU by σs. So, between U and S′ a stuttering simulation holds. ⊓⊔

A stuttering simulation preserves ACTL∗
X properties.

Lemma 5.7. (Stuttering simulation preserves ACTL∗
X [15])

Let K = [Q, q0, R,A,L] and K̂ = [Q̂, q̂0, R̂, Â, L̂] be Kripke structures, which are related by a

stuttering simulation. Then K̂ |= ϕ⇒ K |= ϕ for any ACTL∗
X formula ϕ.

ACTL∗
X formulas permit claims about the overall behaviour of the system, except for referring

to next states. The silent actions in the abstract system can generate new next states, which replace

the actual simulating next state. Because of this, assumptions on next states can be falsified, which

explains the restriction to ACTL∗
X . Nevertheless, the validity of at least a subset of ACTL∗ formulas

can be transferred from the modified skeleton to the unfolding.

258 S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties

5.4. Safety properties

In the context of net morphisms, safety properties make an exception with regard of their validation.

Definition 5.8. (Safety Property [16])

An ACTL∗ property is a safety property, if only the temporal operators W,X and the path quantifier

A occur.

We claim that a safety property ϕ is preserved by a net morphism even if that morphism does

not induce a simulation relation. In the context of the skeleton abstraction, the abstraction relation

between the markings of U and S is sufficient for the preservation of ACTL∗ safety formulas. This

fact was already informally mentioned in [2]. However, that paper did not precisely define the class of

properties and did not prove the claim.

Theorem 5.9. (Net Morphisms preserve ACTL∗ Safety Properties)

Let C be a coloured net, U its unfolding and S its skeleton. Let µ : (PU ∪ TU) → (PS ∪ TS) a

net morphism, ϕS an ACTL∗ safety property and ϕU its unfolding after Definition 4.5. Let m be a

marking of U . Then it holds that: µ(m) |= ϕS ⇒ m |= ϕU .

Proof:

We prove the contraposition m 6|= ϕU ⇒ µ(m) 6|= ϕS by induction on the structure of ϕC.

Base: If m 6|= ϕU , then µ(m) 6|= ϕS, corresponding to Definition 4.1.

Step: We therefore distinguish between the possible structures of ϕU and ϕS:

1. ϕU = ψU ∧ ξU resp. ϕU = ψU ∨ ξU : the induction hypothesis can directly be applied to ψU and ξU .

2. ϕU = AψU : If m 6|= ϕU , there is a path π = mm1m2 . . . with π 6|= ψU . Because reachability is

preserved, there is a path µ(π) = µ(m)µ(m1)µ(m2) . . . with µ(π) 6|= ψS. So, µ(m) 6|= AψS

resp. µ(m) 6|= ϕS .

3. ϕU = AXψU : If m 6|= ϕU , there is a path π = mm1m2 . . . where m1 6|= ψU . For the skeleton,

there is a path µ(π) = µ(m)µ(m1)µ(m2) . . . where µ(m1) 6|= ψS. So, µ(m) 6|= AXψS resp.

µ(m) 6|= ϕS .

4. ϕU = AψUWξU , which is the disjunction between

a) ϕU = AGψU : If m 6|= AGψU , there is a path π = mm1m2 . . . with a marking mi 6|=
ψU . Hence, π 6|= GψU . Again, the preservation of reachability leads to a path µ(π) =
µ(m)µ(m1)µ(m2) . . . with a marking µ(mi) 6|= ψS. So, µ(π) 6|= GψS and thus µ(m) 6|=
AGψS;

b) ϕU = AψUUξU : If m 6|= AψUUξU there is a path π = mm1m2 . . . with π 6|= (ψUUξU).
This is possible in two different ways: On the one hand, for all i ≥ 0 : mi 6|= ξU can hold,

hence π 6|= GξU . This can be treated analogously to case 4.a). On the other hand, there

might be a mi |= ξU , but there is also a mj with j < i and mj 6|= ψU . Then, there is a path

µ(π) = µ(m)µ(m1)µ(m2) . . . with µ(mi) and µ(mj) with µ(mi) |= ξS and µ(mj) 6|= ψS

as well. Hence, it holds µ(m) 6|= AψSUξS .

In both cases, µ(m) 6|= ϕS .

S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties 259

The invalidity of ϕU can always be proven with a finite counterexample path. Deadlocks may

just occur in the last marking of this path. Let mi, the last marking of the counterexample were

we can see the invalidity of ϕU , be a deadlock. Because we consider Kripke structures, every path

of the system is infinite. The counterexample path π is therefore continued to an infinite path π =
mm1m2 . . . mimimi . . . by repeating the deadlock state mi. This repetition does not change the

finiteness of the counterexample. If the deadlock mi is preserved in the skeleton, this leads to an cor-

responding path µ(π) with repetitions as well: µ(π) = µ(m)µ(m1)µ(m2) . . . µ(mi)µ(mi)µ(mi) . . .
. The invalidity of ϕS remains unchanged. If the deadlock is not preserved, the path µ(π) has another

sequel: µ(π) = µ(m)µ(m1)µ(m2) . . . µ(mi)µ(mi+1)µ(mi+2) . . . with µ(mi+1) 6= µ(mi). The

counterexample is transferred exactly up to and including mi, the markings µ(mi+1)µ(mi+2) . . . do

not change the invalidity of ϕS . ⊓⊔

6. Checking full transition classes in symmetric nets

We proceed with an algorithmic approach to check whether a transition class is full. A brute-force

solution would be to enumerate all firing modes of the transitions in the class and to check whether

these firing modes cover all distributions of colors on their pre-places as stated in Definition 5.2.

This approach may be very inefficient, as already observed in [17]. It would in particular prevent the

application of the skeleton approach to colored nets that have an unfolding too large to be constructed.

Following the approach of [17], we rather create an automaton that accepts precisely those assignments

to the variables on the arcs to resp. from transition t, which are firing modes of t, i.e. that satisfy the

guard γ(t). We therefore assume the set of all variables to be ordered. Then an assignment to the

variables xi1 , . . . , xinwith xij < xik , for j < k, is a sequence of length n and the j-th element of the

sequence is in the domain of variable xij . A set of assignments to some set of variables is a set of

sequences, all having same length. The domians of the variables serve as alphabet for these sequences.

We adapt the concept of classical finite automata to this setting.

Definition 6.1. (Automaton)

Given a coloured netC , a finite automaton [X,Q, q0, δ, F] consists of a setX of all variables occurring

in C , a finite set Q of states, an initial state q0 ∈ Q, a set F of final states (F ⊆ Q), and a deterministic

transition function δ : Q×D → Q, where D is the union of all domains for the variables in X.

With this definition, we permit an assignment of the variables ofX with elements from the domain

D as an input for our automaton. The domain for a variable x on arc FC(p, t) resp. FC(t, p) is the colour

domain χ(p) of place p. As usual, a sequence is accepted if a run starting in q0 with this sequence

ends in a final state.

In the sequel, we show how to construct an automaton that accepts the enabled firing modes of a

transition. The resulting automaton can then be used to represent all distributions of tokens that can be

consumed by this transition. This information can finally be combined for all transitions of a transition

class for checking whether it is full. For constructing the automaton, we first need to consider the arc

inscriptions and the guards more precisely. We therefore choose the syntax of symmetric high level

nets, also known as stochastic well formed nets [18] although our approach may be easily adapted to

other dialects of high-level nets. The syntax of symmetric nets is simple and reasonably formalized in

260 S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties

the PNML standard [19]. All high-level nets in the yearly model checking contests [20] are modeled

as symmetric nets. Until now, we only suppose the arc inscriptions as a finite set of variables and the

guard as a boolean predicate, which can be evaluated to true or false.

In detail, for symmetric nets, arc inscriptions are formal sums of terms or tuples of terms. They

have a rather restricted syntax for terms.

Definition 6.2. (Term)

Let X be a set of variables and Z the set of integers. A term can be

• a variable x ∈ X,

• a constant k ∈ Z,or

• an increment term T ++ or decrement term T − −, for a term T .

Given an assignment α to the variables in X, the semantics val of a term is defined by the con-

ditions val(x, α) = α(x), val(k, α) = k, val(T + +, α) = val(T , α) + 1, and val(T − −, α) =
val(T , α) − 1. Addition and subtraction is supposed to be modulo the boundaries of the domain.

Terms may occur positive or negative in the formal sum of an arc incription.

In symmetric nets, a guard consists of expressions, which are basically a comparison of terms of

their boolean connections.

Definition 6.3. (Expression)

An expression can be a comparison T1 ⊕ T2 (⊕ ∈ {<,>,≤,≥,=, 6=} between two terms T1 and T2,

or a Boolean combination of expressions. We use the standard semantics for all operators.

We only consider conjunction and disjunction as Boolean operators since negation can be removed

using de Morgan’s rules and the set of comparisons is closed under negation.

6.1. Simplification of arc inscriptions

Before constructing the automata, we present a simplification for the arc inscriptions, that turns the

formal sum of terms resp. tuples of terms into a formal sum of simple variables resp. tuples of simple

variables such that every variable occurs only once in any arc connected to a transition.

In general, assume an arc inscription T1 + · · ·+ Tp − T ′
1 − ...− T ′

n with p positve and n negative

terms. This formal sum has size m = p−n with m > 0 (otherwise, the arc inscription does not make

sense). We introduce m variables x1, . . . , xm. The number of variables is the same as the number of

token which pass this arc.

The arc inscription is replaced with the (positive) formal sum x1 + · · ·+ xm of the fresh variables

and the guard γ(t) of the transition t is extended to

γ(t) ∧
∨

π∈permutations(p)

(

m
∧

i=1

xi = Tπ(i) ∧
n
∧

j=1

T ′
j = Tπ(m+j)

)

.

Each permutation π ∈ permutations(p) is a bijection mapping variables and negative terms to

occuring the positive terms here.

S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties 261

The combinatorics in this construction reflects the fact that tokens on places are not ordered. This

fact can be ignored in subsequent constructions. The combinatorics furthermore reflects the fact that

negative terms in a formal sum must match some positive term since the resulting multiset cannot

contain negative multiplicities. It is obvious that the modification does not change the semantics of

the net.

Example 6.4. If an arc inscription has the shape T1 + T2 + T3 −T4, we introduce two fresh variables

x1 and x2 (as the size of the formal sum is 2). We then replace the arc inscription with x1 + x2 and

extend the guard γ(t) of transition t to

γ(t)∧((x1 = T1∧x2 = T2∧T4 = T3)∨(x1 = T2∧x2 = T1∧T4 = T3)∨(x1 = T1∧x2 = T3∧T4 = T2)

∨(x1 = T3∧x2 = T1∧T4 = T2)∨(x1 = T2∧x2 = T3∧T4 = T1)∨(x1 = T3∧x2 = T1∧T4 = T1)).

If tuples appear in arc inscriptions, we replace them by a tuple of variables instead of a single

variable. For instance, arc inscription < T1,T2,T3 > is replaced with < x1, x2, x3 > and the guard

γ(t) is extended to γ(t) ∧ x1 = T1 ∧ x2 = T2 ∧ x3 = T3. This way, we may reduce all future

considerations to variables that represent basic domains (color sets that are not cross products of other

color sets). Tuple variables in the guard itself are replaced accordingly. Again, the semantics of the

net is preserved by the modification. From now on, consider the arc inscriptions as simplified.

In a typical symmetric net, formal sums are small, so the introduced combinatorics is moderate.

There is one exception, though. Beyond the formal sums considered so far, symmetric nets permit

some all(χ(p)) construct that represents the formal sum of all elements of color domain χ(p) of a

place p ∈ PC. Since the combinatorics introduced by that construct is intractable, we disregard it.

In our implementation, all transition classes where an all construct is used in an arc inscription, are

treated as if they were not full. This way, correctness of our approach is not at stake.

The following subsections show how to represent terms and expressions as automata. This way,

we obtain an automaton that accepts all firing modes of a transition. We map that automaton to token

distributions on the pre-places and finally aggregate the resulting automata for checking whether a

transition class is full.

6.2. Term and expression automata

A term basically represents a value that may depend on an assignment to its occurring variables. In the

field of symmetric coloured level nets this value is an element of the color domain of the connected

place. Color domains in symmetric nets are enumerations or intervals of integer numbers. Since

enumerations can be coded as integers, we shall treat all domains as integer intervals. Thanks to the

simplifications in the previous section, we may disregard cross-product domains.

We represent a term T as a term automaton AT . A term automaton extends automata as in Def-

inition6.1 with a mapping V : F → D which maps an element from the domains to every final

state. The idea is that, for a sequence representing assignment α, the reached final state qf satisfies

V (qf) = val(T , α). The construction itself is rather obvious, so we reduce our presentation to a few

examples, shown in Figure 3. Regarding Figure 3c, remind that incrementation is interpreted modulo

the domain size, so the bottom right state is indeed qc1 .

262 S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties

q0

qc1

qc2

qcn

...

c1

c2

cn

(a) AT for T = x

qk

(b) AT for T = k

q0

qc1+1

qc2+1

qc1

...

c1

c2

cn

(c) AT for T = x++

Figure 3: Examples of term automata. The domain for variable x is {c1, . . . , cn} and k is a constant.

q0

qc1

qc2

qcn

r

...

[d1, dn]

c1

c2

cn

(a) Insert variable less than x to AT in Figure 3a.

q0

qc1

qc2

qcn

...

rc1

rc2

rcn

...

c1

c2

cn

[d1, dn]

[d1, dn]

[d1, dn]

(b) Insert variable greater than x to AT in Figure 3a.

Figure 4: Insertion of an unused variable with domain {d1, . . . , dn} into a term automaton

An automaton for an expression is generated using the well-known product automaton construc-

tion. However, before applying the product construction, we need to harmonize the operand automata.

Harmonizing means that we need to make sure that they talk about the same set of variables. An

unused variable is inserted into a term automaton or an automaton as shown in Figure 4.

Once two automata represent assignments to the same set of variables, we can use the well-known

product construction for combining them. The different operations basically concern the set of final

states, so we leave that open for a moment.

Definition 6.5. (Product automaton)

Let A1 = [X,Q1, q01, δ1, F1] and A2 = [X,Q2, q02, δ2, F2] be automata. Automaton A =
[X,Q, q0, δ, F] is a product of A1 and A2 if Q = Q1 × Q2, q0 = [q01, q02], and, for all q1 ∈ Q1

and q2 ∈ Q2 and values a, δ([q1, q2], a) = [δ1(q1, a), δ2(q2, a)].

S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties 263

For a comparison ⊕ ∈ {=,≤,≥}, we build the product of two term automata. The set of final

states of the resulting automaton is defined based on the mappings V1 and V2 introduced for term

automata: [q1, q2] ∈ F if and only if q1 ∈ F1 and q2 ∈ F2 and V (q1) ⊕ V (q2). For conjunction

(resp. disjunction), the set of final states is defined as follows: [q1, q2] ∈ F if and only if q1 ∈ F1 and

(resp. or) q2 ∈ F2. State explosion in the constructions can be alleviated by automata minimization.

Example 6.6. As an example, consider the expression x + + = 2 and assume that the domain of x
is {1, 2, 3}. The term automata for x + + and 2 are depicted in Figure 3, where the automaton for

2 needs to be extended to the unused variable x. The result is shown in Figure 5a. Figure 5b shows

the product automaton. Finally, minimization will merge states [q1, r2] and [q3, r2]. From [17], we

borrow the idea of merging edges with consecutive annotations into one edge that is annotated with

an interval. The final result is shown in Figure 5c.

r0 r2
[1, 3]

(a) ExtendedAT for T = 2.

[q0, r0]

[q2, r2]

[q3, r2]

[q1, r2]

1

2

3

(b) Before minimization.

[q0, r0]

[q2, r2]

[q3, r2]

1

[2, 3]

(c) After minimization.

Figure 5: Product automaton for expression x++ = 2

6.3. Checking full transition classes

For checking whether a transition class is full, we need to transform assignments that satisfy the guard

into token distributions that are consumed from pre-places. Thanks to our initial simplifications, all

we need to do is to project the assignments to the variables that occur on incoming arcs. This can be

easily done with the following considerations.

First, we make sure that the variables at incoming arcs occur first in the order of variables. Second,

we make sure that variables of different transitions but concerning the same place occur in the same

position in the respective order.

Next, assume that there are n variables at incoming arcs to a transition and make sure that there

is no state in the corresponding automaton that is reached by a sequence of length n and another

sequence of different length. If such state exists it can be split into two equivalent states to satisfy

the condition. Then, every state q reached by a sequence of length n is made final if a final state is

reachable from q. This way, all other variables are existentially quantified. The result is the set of all

tokens distributions on pre-places that can be consumed by any enabled firing mode of a transition.

264 S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties

Finally, the resulting automata are combined using the or-product construction. This way, we

obtain an automaton that represents all tokens distributions that can be consumed by any transition in

the class. The full transition class criterion is satisfied if and only if the resulting automaton accepts

every sequence of length n. This can be easily seen in the structure of the automaton if the resulting

automaton has been minimized.

Example 6.7. As an example, consider the transition class [t] shown in Figure 6a. Assume that the

domain of x is {1, 2, 3, 4} while the domain of y is {1, 2, 3}. Let x < y. Figures 6b and 6c show

the automata representing the token distributions for t1 and t2, respectively. The or-product of these

automata is shown in Figure 7a. Minimization leads to the automaton in Figure 7b from which it is

easy to see that the transition class is full.

p1 p2

t1
γ(t1)=y=1

t2
γ(t2)=y 6=1

y
y

x
x

(a) Transition class [t]

q0

q2

q3

q1

1

[1, 4]

[2, 3]

(b) Firing Modes of t1

r0

r2

r3

r1

1

[1, 4]

[2, 3]

(c) Firing Modes of t2

Figure 6: A Transition class and the automata representing its firing modes

[q0, r0]

[q2, r2]

[q3, r3]

[q1, r1]

1

[2, 3]

[1, 4]

(a) Or-product for [t] before minimization

[q0, r0] [q2, r2][q1, r1]
[1, 4] [1, 3]

(b) Or-product for [t] after minimization

Figure 7: Checking for full transition class

Our experiments revealed that we are able to decide the full transition class criterion for coloured

nets where, so far, no participant in the model checking contest could create its unfolding. We managed

to get some verification results for those nets using the skeleton approach.

7. Extension to place/transition nets

With the results presented so far, the skeleton abstraction is only available for systems modeled as

coloured Petri nets. In this section, we extend the applicability to nets that are originally modeled as

S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties 265

P/T nets. There exist translations from various high level system descriptions directly into P/T nets

that could as well have been translated into coloured nets. We propose an efficient procedure to fold a

P/T net N into a coloured net CN , for which we then can build the skeleton SN .

7.1. Folding P/T nets

The idea of folding a P/T net into a coloured net is as old as coloured nets as such. To our best

knowledge, however, the efficiency of an actual implementation has not been observed so far. Our

approach is based on partition refinement. The goal here is to partition a set M into a partition M of

disjunct subsets M1, . . . ,Mn. First, M contains only one subset, which is M. The partition is then

refined by the application of a split function.

Definition 7.1. Let M = {M1, . . . ,Mn} be a partition of the set M and f : M → Z be a split

function. The application of f on the partition M is defined as: split(M,f) = {{x | x ∈Mi, f(x) =
j}} for 1 ≤ i ≤ n, j ∈ Z.

Informally, we separate elements, where f yields different values. This leads to a new partition of

M. For two subsets Mi,Mj , it should hold that Mi 6= ∅, Mi∩Mj = ∅ and also M1∪· · ·∪Mn = M.

For implementing a split operation, we assume an array where every element of M appears exactly

once. For every class in the partition, there is a pair of indices i and j such that the elements of the

class are the array entries between i and j. For a split operation, we separately sort the elements of

each class and then introduce new classes where adjacent elements have different f -values. Given a

P/T net N = [P, T, F,W,m0], the initial set, which should be partitioned is M= P ∪T . The coarsest

partition fitting all requirements is M = {P, T}. We refine this partition such that, ultimately, every

class of places of the given net serves as a place of the resulting coloured net CN while every class of

transitions of the given net serves as a transition.

While folding, We need to conform the restrictions of uniformity, that building a skeleton is pos-

sible. The uniformity criterion used here is more liberal than the one in [6]. There, we required that,

for every two low level transitions t1 and t2 in some transition class, every place class M and every

weight k, t1 and t2 have the same number of pre-places (resp. post-places) with weight k in M . Here,

we only require that the sum of all weights between t1 and places in M is the same as for M2.

This modification yields coarser classes (thus smaller skeletons) and the algorithms run faster. This

way, in an otherwise equivalent experimental setting, the number of cases where the skeleton approach

responded as the fastest member of our portfolio rose from 3168 to 3702. The number of queries we

could answer but no participant of the model checking contest could answer in 2019 climbed from

226 to 248.

The folding happens with regard to an ACTL∗ formula ϕ. Let APϕ denote the set of atomic

propositions occuring in ϕ. The procedure for folding a P/T net into a coloured net is described in

Figure 8.

In this procedure, the guard expressions γ deserve additional explanation. If M∗ is a transition in

the folded net, its elements {t1, . . . , tm} serve as firing modes of transition M∗ . For each of these

firing modes, we need to specify the effect on the pre-places and post-places. That is why the general

structure of the guard starts with
∨

ti∈M∗ Since every pre- and every post-place needs to be

266 S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties

Input: Petri net N = [P, T, F,W,m0]
Output: Partition M of P ∪ T resp. CN = [PCN , TCN , FCN ,WCN , χ, γ,m0CN]
Let M = {P, T};

M = split(M,f) where f(x) = card(•x);
M = split(M,f) where f(x) = card(x•);
for all atomic propositions p ∈ APϕ with the form k1p1 + · · ·+ knpn <= k do

M = split(M,f) where for all occuring places pi ∈ p : f(pi) = ki for i ∈ {1, . . . , n}, else

f(x) = 0;

end for

for all place classes M∗ ∈M do

M = split(M,f) where f(x) =
∑

p∈M∗ W (p, x);
M = split(M,f) where f(x) =

∑

p∈M∗ W (x, p);
end for

PCN = place classes of M , TCN = transition classes of M ;

(M∗,M∗′) ∈ FCN , WCN(M
∗,M∗′) = {x1, . . . , xk}, iff ∃x ∈M∗,∃y ∈M∗′ :

(x, y) ∈ F,W (x, y) = k for k ∈ N and M∗,M∗′ ∈M ;

m0CN(M
∗) =

∑

p∈M∗ m0(p), χ(M
∗) = {p | p ∈M∗} for every place class M∗ ∈M ;

γ(M∗) =
∨

ti∈M∗

((
∧

M∗′={p1,...,pn}∈•M∗

∧n
j=1

∧W (pj,ti)
k=1 xp∑j−1

ℓ=1
W (pℓ,ti)+k

= pj
)

∧
(
∧

M∗′={p1,...,pn}∈M∗•

∧n
j=1

∧W (ti,pj)
k=1 xp∑j−1

ℓ=1
W (pℓ,ti)+k

= pj
))

for every transition class

M∗ ∈M ;

Figure 8: Algorithm for folding a P/T net into a coloured net.

considered, we have the conjunctions
∧

M∗′={p1,...,pn}∈•M∗ . . . and
∧

M∗′={p1,...,pn}∈M∗• The

remaining content of the guard expressions is the same for pre- and post-places. It specifies for a

given firing mode (i.e. low level transition ti) how many tokens of some colour (i.e. low level place

pj ∈ M∗′) need to be consumed or produced. This number is W (pj, ti) (or W (ti, pj), respectively).

For consuming k tokens of some colour pj (leading to conjunction
∧n

j=1 . . .), we need to bind k of

the arc variables to colour pj (leading to conjunction (
∧W (pj,ti)

k=1 . . .). If these bindings are done in

consecutive order of the low level places p1, . . . , pn, the k variables bound to pj are those that start

with index
∑j−1

ℓ=1W (pℓ, ti) (or
∑j−1

ℓ=1W (ti, pℓ)).

To make this algorithm more understandable, we demonstrate it with an example.

Example 7.2. We consider a P/T net N , which shows the dilemma of five dining philosophers. The

P/T net is structured as follows: For every i ∈ {0, . . . , 4} there is a place thi (philosopher i is think-

ing), a place hli (has left fork), hri (has right fork), eai (philosopher i is eating) and foi (fork i is

on the table). There are the transitions tli (take left fork) that consume tokens from thi and foi, and

produce on hli, transitions tri (take right fork) that consume from hli and foi+1mod 5 and produce on

eai, transitions rli (release left fork) that consume from eai and produce on hri and foi, and, finally,

transitions rri (release right fork) that consume from hri and produce on foi+1mod 5 and thi. Places

thi and foi are initially marked, and all arc weights are 1. For better readability, xi describes the

S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties 267

set x0, . . . , x4 for every node x ∈ P ∪ T of the net. The folding is regarding the ACTL∗ formula

ϕ : AG ¬(
∑

i hri = 4) ∧ (
∑

i hli = 1) for i ∈ {0, . . . , 4}. Initially the coarsest partition distin-

guishes between places and transitions: M = {{thi, eai, foi, hli, hri}, {tri, tli, rli, rri}}. Then, the

sets are split according to the number of incoming and outgoing arcs. All places foi have two incoming

and two outgoing transitions, all remaining places only have one incoming and one outgoing transi-

tion. The tri and tli transitions have two incoming places and one outgoing place, rli and rri the other

way round. This leads to partition M = {{thi, eai, hli, hri}, {foi}, {tri, tli}, {rli, rri}}. The atomic

propositions of ϕ give additional restrictions, as the elements of the subsets finally should satisfy those

propositions equally. So, for the atomic propositions
∑4

i=0 hri = 4 and
∑4

i=0 hli = 1, every place is

mapped to its coefficient in the corresponding proposition. Transitions are not affected here, so M =
{{thi, eai}, {hli}, {hri}, {foi}, {tri, tli}, {rli, rri}}. For obtaining uniformity, we split {tri, tli}
into {tri} and {tli} since every transition tli has a pre-places in {thi, eai} while no transition tri has,

and we split {rli, rri} into {rli} and {rri} since every transition rli has a pre-place in {thi, eai} while

no transition rri has. The resulting partition is M = {{thi, eai}, {hli}, {hri}, {foi}, {tri}, {tli},
{rli}, {rri}} and is uniform.

Finally, every place class Mi is turned into a place pMi
with

∑

p∈Mi
m(p) tokens and the colour

domain χ(pMi
) = Mi, and every transition class Mj into a transition tMj

. We obtain the places

thea, fo, hl, hr and the transitions tr, tl, rl, rr. Let there be an arc from pMi
to tMj

, if there exists

some p ∈ Mi and t ∈ Mj with (p, t) ∈ F . Arcs from transitions to places are formed analogously.

An Arc (pMi
, tMj

) ist assigned with the variables x1, . . . , xw where w = W (p, t) for p ∈ Mi and

t ∈ Mj . In the end, we need to formulate the guard of the transitions, which needs to ensure, that the

coloured transition only fires if the right coloured tokens lay on the pre-places. We thefore build the

disjunction of the input requirements of the transitions according the arcs and weights of N . As an

example, the guard of transition tl is

γ(tl) = x11 = th0 ∧ x12 = fo0 ∧ x1 = hl0 (firing mode tl0)

∨ x11 = th1 ∧ x12 = fo1 ∧ x1 = hl1 (firing mode tl1)

∨ x11 = th2 ∧ x12 = fo2 ∧ x1 = hl2 (firing mode tl2)

∨ x11 = th3 ∧ x12 = fo3 ∧ x1 = hl3 (firing mode tl3)

∨ x11 = th4 ∧ x12 = fo4 ∧ x1 = hl4 (firing mode tl4)

Figure 9 presents the coloured net, which results from the described folding. The coloured net can

subsequently be decoloured to a skeleton.

7.2. Checking fullness for a P/T net

The resulting coloured net does not necessarily have full minimal transition classes (cf. Sec. 5.2), thus

it does not have a deadlock-preserving skeleton. Due to the process for deriving the folded coloured

net, the guards do not permit the approach outlined there for checking whether or not a transition class

is full. We may, however, approach that criterion differently. The idea is to check the criterion right

after the folding procedure, just as we have the final partitioning of the P/T nodes. If we cannot prove

the deadlock preservation at this point, we can abort the skeletal analysis of this net, as we don’t expect

useful results.

268 S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties

fo

fo0

fo1

fo2

fo3 fo4

thea
th0

th1

th2

th3 th4

hl hr

tl
x1

tr
x2

rl
x5

rr
x7

x11

x3

x8

x4

x6

x9

x10

x12

Figure 9: A coloured net version of the five dining philosophers.

Theorem 7.3. (Deadlock Preservation for P/T Nets) Let N be a P/T net and CN its folding. Let

[t] = {t1, t2, . . . , tk} be a minimal transition class of CN , where each transition tj has sj firing modes

for j ∈ {1, . . . , k}. Let p1, p2, . . . , pℓ be the pre-places of [t], with the colour domains χ(pi) for i ∈
{1, . . . , ℓ}. Every pre-place pi is connected to every transition tj of [t] by an arc with the weight wij .

The folding CN resp. the underlying P/T net N has a deadlock-preserving skeleton, if
∏ℓ

i=1

(

|χ(pi)|
wij

)

=
∑k

j=1 sj for every minimal transition class of CN .

Proof:

The folding CN has a deadlock-preserving skeleton, if all of its minimal transition classes are full. A

minimal transition class [t] = {t1, t2, . . . , tk} is full, if for every markingmCN
with |mCN

(pi)| = fi(t)
for i ∈ {1, . . . , ℓ}, there is one transition in [t], for which the marking is a firing mode. This is

expressed by the equation
∏ℓ

i=1

(|χ(pi)|
wij

)

=
∑k

j=1 sj . The binomial coefficient
(|χ(pi)|

wij

)

gives the

number of sufficient tokensubsets of χ(pi) for one pre-place pi of [t], where i ∈ {1, . . . , ℓ} and

j ∈ {1, . . . , k}. Multiplying these numbers for every pre-place pi for i ∈ {1, . . . , ℓ}, leads to the

total number of sufficient combinations of tokens, i.e the number of possible markings mCN
with

sufficient input requirements |m(pi)| = fi(t) with i ∈ {1, . . . , ℓ} for [t]. Each of the transitions tj
in [t] for j ∈ {1, . . . , k} has sj firing modes, thus in [t], we have

∑k
j=1 sj firing modes overall. If

∏ℓ
i=1

(|χ(pi)|
wij

)

=
∑k

j=1 sj , for every sufficient combination of the coloured tokens, there is a firing

mode of one transition in [t]. If
∏ℓ

i=1

(|χ(pi)|
wij

)

=
∑k

j=1 sj , the minimal transition class [t] is full,

thus if the equation holds for every minimal transition class, CN has a deadlock-preseving skeleton.

Transferring this to N , for every combination of tokens of the P/T pre-places (represented by χ(pi)),
there is one P/T transition related to [t] enabled (representend by sj). So, if a marking of N fits with

regard to the cardinality, there must be one activated P/T transition if the equation holds. Then, N
is has a deadlock-preserving skeleton. It it important to mention, that the firing modes sj need to be

all different from each other, resp. all of the P/T transitions need to have different presets. Otherwise

the equality of combinations and firing modes will not hold, although every combination activates a

transition. ⊓⊔

S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties 269

This equation is sufficient for the fullness of [t], but it is not necessary.

If
∏l

i=1

(|χ(pi)|
wij

)

>
∑k

j=1 sj , which means there is a combination of tokens which does not activate

a transition, these too many combinations might be unreachable, thus are not in need of an activated

transition. If the equation holds for every minimal transition class we know that CN will have a

deadlock-preserving skeleton and the method of skeletal abstraction can be applied to N and all its

ACTL∗ formulas.

8. Experimental results

We conducted our experiments on the benchmark provided by the Model Checking Contest (MCC)

2019 [5]. On that page, the reader may find a detailed specification of the machine “tajo” that was

used to execute the experiments. The benchmark comprises 1018 nets (193 coloured nets and 825

P/T nets). For the majority of colored nets, their unfolding is among the P/T nets of the benchmark,

too. We covered the three categories Reachability, CTL, and LTL where the skeleton approach makes

sense. For every net and category, there are 16 formulas with place-based atomic propositions and 16

formulas with transition-based propositions. That makes a total of 97,728 formulas. If a P/T net is the

unfolding of a coloured net, some but not all formulas of the P/T net accord with formulas used for

the coloured net.

In every single run, we allowed 4 cores, 30 minutes, and 16 MB of RAM for the verification of

a group of 16 formulas. The runs used the full portfolio [21] of verification methods available in our

tool LoLA [22], now including the skeleton approach. For the skeleton, we applied the same search

based model checking routines as for the unfolded net, and the state equation approach [23]. In our

approach, the skeleton is directly derived from the PNML description of a coloured net, so the skeleton

related verification tasks start before the unfolding of the net is generated in parallel (and only then the

remaining verification routines are launched). If the input is a P/T net, we first launch the verification

tasks for the given net, before trying to fold the net (in parallel to the already running routines). We

launch skeleton related tasks only if the size of the skeleton is less than one third of the size of the

given P/T net. This way, we avoid situations where the skeleton is too close to the given net. Since

folding depends on the formula, we have to execute up to 16 individual folding procedures per run. We

do not fold a net if the formula is trivial (i.e. does not contain temporal operators). Trivial formulas are

mostly the result of sophisticated application of logical tautologies and preprocessing based on linear

programming [24]. We also stop the folding procedure as soon as some other portfolio member has

determined the value of the formula.

For the 79,200 formulas for P/T nets, 66,546 skeletons were created. Of the remaining 12,654

formulas, 11,086 contain no temporal operators, so no folding was launched. For the remaining 1,568

formulas, some other portfolio member may have delivered a result before folding completed. Folding

took at most 287 seconds, with an average of half a second. Generation of the skeleton for a coloured

net takes no time at all as it appears as an intermediate step of the unfolding process. Generating the

skeleton naturally succeeded for all coloured nets. It also succeeded whenever both net and formula

were derived from a coloured net. There are a few other cases where the skeleton could be generated.

Although more nets have a regular, foldable structure, formulas, if not derived from coloured nets,

are generated randomly, so they tend to break symmetry more frequently than in practical situations.

270 S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties

On the other hand, the formula syntax for coloured nets in the MCC does not permit references to

individual colours or firing modes, so the skeleton approach is applicable more frequently than in

practice. Since there are more P/T nets than coloured nets in the contest, results obtained for the MCC

benchmark should be a lower bound for the performance to be observed in practice.

The 66,546 skeletons include those that are considered to be too large to make a difference com-

pared to the given net. After ruling them out, 34,906 formulas have useful skeletons, including

coloured and P/T nets. In 15,315 cases, we launched the skeleton related tasks. In the remaining

19,591 cases, the formula (nor its negation) are not in ACTL∗, or none of the criteria discussed in the

paper would certify preservation of the formula. We need to mention here that deadlock injection has

not been implemented so far.

Of the 15,315 formulas where we launched the skeleton related tasks, they were the first (among

the whole portfolio) to deliver results in 3702 cases. The remaining 12,147 formulas include those

where some other portfolio member responded earlier, or where the skeleton approach evaluated its

ACTL∗ query to false (so the value is not inherited by the unfolded net).

Among the 97,728 formulas considered, there have been 7,768 formulas none of the participants in

the MCC 2019 could solve. With the skeleton approach, we have now been able to solve 248 of these

particularly involved problems. These include but are not restricted to nets that have a prohibitively

large unfolding.

Given that we run the skeleton approach as part of a powerful portfolio, with LoLA being a com-

petitive participant in the MCC, we may conclude that the skeleton approach nicely complements the

existing portfolio.

9. Conclusion

With our contribution, we turned the skeleton approach into an executable and useful member of a

verification portfolio. We investigated the gap between the concepts of net morphisms and simulation

relations and proposed algorithms for checking the required criteria. Through folding, we extended

the approach to P/T nets. Experiments underpin the usefulness of the approach.

Future work may include the implementation of deadlock injection. Furthermore, we may enhance

the approach to the full transition classes. First, we may try to use place invariants to rule out certain

token distributions in the pre-set of transition classes thus being able to certify more transition classes

as full. Second, we may try to split places and transitions in the skeleton turning non-full transition

classes into full ones. Furthermore, we may determine a larger number of LTL safety properties by

the analysis of the respective Büchi automaton. So far, we assume all LTL properties which do not

use X,F and U as safety properties. Libraries like [25] are able to identify more LTL properties as

safety properties. This might extend the use of the skeleton approach.

References

[1] Desel J. On abstractions of nets. In: Advances in Petri Nets 1991. Springer-Verlag, Berlin/ Heidelberg,

1991 pp. 78–92. doi:10.1007/BFb0019970.

S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties 271

[2] Padbergx J, Gajewsky M, Ermel C. Rule-based refinement of high-level nets preserving safety properties.

In: Proc. FASE, volume 1382, Springer, Berlin, Heidelberg, 1998 pp. 221–238. doi:10.1007/BFb0053593.

[3] Milner R. Communication and Concurrency. Prentice Hall international series in computer science.

Prentice Hall, New York, 1989. ISBN:978-0-13-114984-7.

[4] Findlow G. Obtaining deadlock-preserving skeletons for coloured nets. In: Application and Theory of

Petri Nets. Springer, Berlin, Heidelberg, 1992 pp. 173–192. doi:10.1007/3-540-55676-1 10.

Download citation.

[5] Kordon F, Garavel H, Hillah LM, Hulin-Hubard F, Amparore E, Beccuti M, Berthomieu B, Ciardo G,

Dal Zilio S, Liebke T, Li S, Meijer J, Miner A, Srba J, Thierry-Mieg Y, van de Pol J, van Dirk T, Wolf K.

Complete Results for the 2019 Edition of the Model Checking Contest. http://mcc.lip6.fr/2019/results.php,

2019.

[6] Wallner S, Wolf K. Skeleton Abstraction for Universal Temporal Properties. In: Buchs D, Carmona J

(eds.), Application and Theory of Petri Nets and Concurrency - 42nd International Conference, PETRI

NETS 2021, Virtual Event, June 23-25, 2021, Proceedings, volume 12734 of Lecture Notes in Computer

Science. Springer, 2021 pp. 186–207. doi:10.48550/arXiv.2112.08884.

[7] Vautherin J. Parallel systems specifications with coloured Petri nets and algebraic specifications. In:

Advances in Petri Nets. Springer, Berlin, Heidelberg, 1987 pp. 293–308. doi:10.1007/3-540-18086-9 31.

[8] Rust C, Böke JTC. Pr/T-Net Based Seamless Design of Embedded Real-Time Systems. In: Appli-

cations and Theory of Petri Nets, Springer Berlin Heidelberg, Berlin, Heidelberg, 2001 pp. 343–362.

doi:10.1007/3-540-45740-2 20.

[9] Lilius J. On the folding of algebraic nets. Helsinki University of Technology, 1995.

[10] Sliva V, Murataxx T, Shatz S. Protocol Specification Design Using an Object-Based Petri Net Formal-

ism. Int. Journal of Software Engineering and Knowledge Engineering, 1999. 09(01):97–125. doi:

10.1142/S0218194099000073.

[11] Jensen K, Kristensen L. Coloured Petri Nets. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[12] Pinna G. How Much Is Worth to Remember? A Taxonomy Based on Petri Nets Unfoldings. In: Appli-

cations and Theory of Petri Nets, volume 6709, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011 pp.

109–128. doi:10.1007/978-3-642-21834-7 7.

[13] Clarke E, Emerson E, Sistla A. Automatic verification of finite-state concurrent systems using temporal

logic specifications. ACM Transactions on Programming Languages and Systems, 1986. 8(2):244–263.

[14] Grumberg O, Long D. Model checking and modular verification. ACM Transactions on Programming

Languages and Systems, 1994. 16(3):843–871. doi:10.1145/177492.177725.

[15] Penczek W, Szreter M, Gerth R, Kuiper R. Improving Partial Order Reductions for Universal Branching

Time Properties. Fund. Inf., 2000. 43(1-4):245–267. doi:10.3233/FI-2000-43123413.

[16] Katz S, Grumberg O, Geist D. ”Have I written enough Properties?” - A Method of Comparison between

Specification and Implementation. In: Proc. CHARME. 1999 pp. 280–297. doi:10.1007/3-540-48153-

2 21.

[17] Schwarick M, Rohr C, Liu F, Assaf G, xChodak J, Heiner M. Efficient Unfolding of Coloured Petri Nets

Using Interval Decision Diagrams. In: Proc. PETRI NETS, volume 12152 of LNCS. 2020 pp. 324–344.

doi:10.1007/978-3-030-51831-8\ 16.

272 S. Wallner and K. Wolf / Skeleton Abstraction for Universal Temporal Properties

[18] Chiola G, Dutheillet C, Franceschinis G, Haddad S. Stochastic well-formed colored nets and symmet-

ric modeling applications. IEEE Transactions on Computers, 1993. 42(11):1343–1360. doi:10.1109/

12.247838.

[19] PNML Standard. https://www.pnml.org/index.php. Accessed: 2021-12-15.

[20] Kordon F, Bouvier P, Garavel H, Hillah LM, Hulin-Hubard F, Amat N, Amparore E, Berthomieu B,

Biswal S, Donatelli D, Galla F, , Dal Zilio S, Jensen P, He C, Le Botlan D, Li S, , Srba J, Thierry-

Mieg, Walner A, Wolf K. Complete Results for the 2020 Edition of the Model Checking Contest.

http://mcc.lip6.fr/2021/results.php, 2021.

[21] Wolf K. Portfolio Management in Explicit Model Checking. In: Proc. PNSE, volume 2651 of CEUR

Workshop Proceedings. 2020 pp. 10–28. URL http://ceur-ws.org/Vol-2651/paper2.pdf.

[22] Wolf K. Petri Net Model Checking with LoLA 2. In: Proc. PETRI NETS. 2018 pp. 351–362. doi:

10.1007/978-3-319-91268-4 18.

[23] Wimmel H, Wolf K. Applying CEGAR to the Petri Net State Equation. Log. Methods Comput. Sci., 2012.

8(3). doi:10.2168/LMCS-8(3:27)2012.

[24] Bønneland F, Dyhr J, Jensen PG, Johannsen M, Srba J. Simplification of CTL Formulae for Efficient

Model Checking of Petri Nets. In: Proc. PETRI NETS, volume 10877 of LNCS. 2018 pp. 143–163.

doi:10.1007/978-3-319-91268-4\ 8.

[25] Duret-Lutz A. LTL Translation Improvements in Spot 1.0. International Journal on Critical Computer-

Based Systems, 2014. 5(1-2):31–54. doi:10.1504/IJCCBS.2014.059594.

https://www.pnml.org/index.php
http://ceur-ws.org/Vol-2651/paper2.pdf

	1 Introduction
	2 Related work
	3 Basic definitions
	4 Relations between reachability graphs
	5 Simulation relation between reachability graphs
	5.1 Deadlock-free nets
	5.2 Deadlock preservation
	5.3 Inject deadlocks to skeleton
	5.4 Safety properties

	6 Checking full transition classes in symmetric nets
	6.1 Simplification of arc inscriptions
	6.2 Term and expression automata
	6.3 Checking full transition classes

	7 Extension to place/transition nets
	7.1 Folding P/T nets
	7.2 Checking fullness for a P/T net

	8 Experimental results
	9 Conclusion

