
ar
X

iv
:2

10
3.

10
28

0v
7

 [
cs

.D
C

]
 2

2
O

ct
 2

02
2

Fundamenta Informaticae 187(2-4) : 197–243 (2022) 197

Available at IOS Press through:

https://doi.org/10.3233/FI-222137

Computing Parameterized Invariants of Parameterized Petri Nets

Javier Esparza, Mikhail Raskin, Christoph Welzel*

Department of Informatics

Technical University of Munich

Munich, Germany

{esparza, raskin, welzel}@in.tum.de

Abstract. A fundamental advantage of Petri net models is the possibility to automatically com-

pute useful system invariants from the syntax of the net. Classical techniques used for this are

place invariants, P-components, siphons or traps. Recently, Bozga et al. have presented a novel

technique for the parameterized verification of safety properties of systems with a ring or array

architecture. They show that the statement “for every instance of the parameterized Petri net, all

markings satisfying the linear invariants associated to all the P-components, siphons and traps of

the instance are safe” can be encoded in WS1S and checked using tools like MONA. However,

while the technique certifies that this infinite set of linear invariants extracted from P-components,

siphons or traps are strong enough to prove safety, it does not return an explanation of this fact

understandable by humans. We present a CEGAR loop that constructs a finite set of parameter-

ized P-components, siphons or traps, whose infinitely many instances are strong enough to prove

safety. For this we design parameterization procedures for different architectures.

Keywords: parameterized systems, logic, theorem proving, first-order, WS1S

1. Introduction

A fundamental advantage of Petri net system models is the possibility to automatically extract useful

system invariants from the syntax of the net at low computational cost. Classical techniques used for

this purpose are place invariants, P-components, siphons or traps [1, 2, 3]. All of them are syntactic

objects that can be computed using linear algebra or boolean logic, and from which semantic linear

*Address for correspondence: Department of Informatics, Technical University of Munich, Munich, Germany

http://arxiv.org/abs/2103.10280v7

198 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

invariants can be extracted. For example, from the fact that a set of places Q is an initially marked trap

of the net one extracts the linear invariant
∑

p∈QM(Q) ≥ 1, which is satisfied for every reachable

marking M . This information can be used to prove safety properties: Given a set S of safe markings,

if every marking satisfying the invariants extracted from a set of objects is safe, then all reachable

markings are safe.

Classical net invariants have been very successfully used in the verification of single systems

[4, 5, 6], or as complement to state-space exploration [7]. Recently, an extension of this idea to the

parameterized verification of safety properties of systems with a ring or array architecture has been

presented in [8, 9]. The parameterized verification problem asks whether a system composed of n
processes is safe for every n ≥ 2 [10, 11, 12]. Bozga et al. show in [8, 9] that the statement

“For every instance of the parameterized system, all markings satisfying the linear invari-

ants associated to all the P-components, siphons and traps of the corresponding Petri net

are safe”

can be encoded in Weak Second-order Logic With One Successor WS1S, or its analogous WS2S for

two successors. This means that the statement holds iff its formula encoding is valid. This problem

is decidable, and highly optimized tools exist for it, like MONA [13, 14]. The method of [9] is not

complete (i.e., there are safe systems for which the invariants derived from P-components, siphons

and traps are not strong enough to prove safety), but it succeeds for a remarkable set of examples.

Further, incompleteness is inherent to every algorithmic method, since safety of parameterized nets is

undecidable even if processes only manipulate data from a bounded domain [15, 10].

While the technique of [8, 9] is able to prove interesting properties of numerous systems, it does

not yet provide an explanation of why the property holds. Indeed, when the technique succeeds for a

given parameterized Petri net, the user only knows that the set of all invariants deduced from siphons,

traps, and P-components together are strong enough to prove safety. However, the technique does not

return a minimal set of these invariants. Moreover, since the parameterized Petri net has infinitely

many instances, such a set contains infinitely many invariants. In this paper we show how to overcome

this obstacle. We present a technique that automatically computes a finite set of parameterized invari-

ants, readable by humans. This is achieved by lifting a CEGAR (counterexample-guided abstraction

refinement) loop, introduced in [16] and further developed in [5, 17, 18], to the parameterized case.

Each iteration of the loop of [16, 5] first computes a counterexample, i.e., a marking that violates the

desired safety property but satisfies all invariants computed so far, and then computes a P-component,

siphon, or trap showing that the marking is not reachable. If no counterexample exists the property

is established, and if no P-component, siphon or trap can be found the method fails. The technique

is implemented on top of an SMT-solver, which receives as input a linear constraint describing the

set of safe markings, and iteratively computes the set of linear invariants derived from P-components,

siphons, and traps.

If we naively lift the CEGAR loop to the parameterized case, the loop never terminates. Indeed,

since the loop computes one new invariant per iteration, and infinitely many invariants are needed to

prove correctness of all instances, termination is not possible. So we need a procedure to extract from

one single invariant for one instance a parameterized invariant, i.e., an infinite set of invariants for

all instances, finitely represented as a WS1S-formula. We present a semi-automatic and an automatic

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 199

approach. In the semi-automatic approach the user guesses the parameterized invariant, and automat-

ically checks it, using the WS1S-checker. The automatic approach does not need user interaction, but

only works for systems with symmetric structure. We provide automatic procedures for systems with

a ring topology, and for barrier crowds, a class of systems closely related to broadcast protocols. We

also show how to extend our results to inspection programs, a class of distributed programs in which

an agent can loop through all other agents, inspecting their local states. In this extension infinite sets

of invariants can no longer be represented by a WS1S-formula and we must move to a more general

logical framework. While the satisfiability problem is undecidable for this extended framework, we

can still prove correctness of some systems with the help of an automatic theorem prover for first-order

logic. Finally, we present experimental results on a number of systems.

Related work. The parameterized verification problem has been extensively studied for systems

whose associated transition systems are well-structured [19, 20, 21] (see e.g. [12] for a survey). In

this case the verification problem reduces to a coverability problem, for which different algorithms

exist [22, 23, 24, 25]; the marking equation (which is roughly equivalent to place invariants) have also

been applied [26]. However, the transition systems of parametric rings and arrays are typically not

well-structured.

Parameterized verification of ring and array systems has also been studied in a number of papers.

Three popular techniques are regular model checking (see e.g. [27, 28, 29]), abstraction [30, 31],

and automata learning [32]. All of them apply symbolic state-space exploration to try to compute a

finite automaton recognizing the set of reachable markings of all instances, or an abstraction thereof.

Our technique avoids any state-space exploration. Also, symbolic state-space exploration techniques

are not geared towards providing explanations. Indeed, while the set of reachable markings of all

instances is the strongest invariant of the system, it is also one single monolithic invariant, typically

difficult to interpret by human users. Our CEGAR loop aims at finding a collection of invariants, each

of them simple and interpretable.

Many works in the parameterized setting follow the cut-off approach, where one manually proves

a cut-off bound c ≥ 2 such that correctness for at most c processes implies correctness for any number

of processes (see e.g. [33, 34, 35, 36, 37], and [10] for a survey). It then suffices to prove the property

for systems of up to c processes, which can be done using finite-state model checking techniques.

Compared to this technique, ours is fully automatic.

2. Preliminaries

WS1S. Formulas of WS1S over first-order variables x,y, . . . and second-order variables X,Y , . . .
have the following syntax:

t := x | 0 | succ(t) (terms)

φ := t1 ≤ t2 | x ∈X | φ1 ∧ φ2 | ¬φ1 | ∃x : φ | ∃X : φ (formulas)

An interpretation assigns elements of N0 = {0, 1, 2, 3, . . .} to first order variables and finite subsets

of N0 to second-order variables. Given an interpretation, the semantics that assigns numbers to terms

and truth values to formulas is defined in the usual way.

200 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

We extend the syntax with constants 0, 1, 2, 3, . . ., and terms of the form x + c with c ∈ N0.

Further, a term x⊕n 1 in a formula ϕ stands for

(x+ 1 < n ∧ ϕ[x⊕n 1← x+ 1]) ∨ (n = x+ 1 ∧ ϕ[x⊕n 1← 0])

where ϕ[t ← t′] denotes the result of substituting t′ for t in ϕ. The terms x ⊕n c for every 1 ≤ c
are defined similarly. We let ϕ(x1, . . . ,xℓ,X1, . . . ,Xk) denote that ϕ uses at most x1, . . . ,xℓ and

X1, . . . ,Xk as free first-order resp. second-order variables. Finally, we also make liberal use of the

following macros:

X = ∅

stands for

∀x : ¬(x ∈X)

X = {x} x ∈X ∧ ∀y : y ∈X → y = x

X = [n] ∀x : x ∈X ↔ x < n

X ∩ Y = ∅ ∀x : ¬(x ∈X ∧ x ∈ Y)

|X| = 1 ∃x : X = {x}

|X| ≤ 1 X = ∅ ∨ |X| = 1

X = Y ∀x : x ∈X ↔ (x < n ∧ ¬(x ∈ Y))

Y = X ⊕n 1 ∀x : x⊕n 1 ∈ Y ↔ x ∈X

Petri nets. We use a presentation of Petri nets equivalent to but slightly different from the standard

one. A net is a pair 〈P, T 〉 where P is a nonempty, finite set of places and T ⊆ 2P × 2P is a set of

transitions. Given a transition t = 〈P1, P2〉, we call P1 the preset and postset of t, respectively. We

also denote P1 by •t and P2 by t•. Given a place p, we denote by •p and p• the sets of transitions

〈P1, P2〉 such that p ∈ P2 and p ∈ P1, respectively. Given a set X of places or transitions, we let
•X :=

⋃
x∈X

•x and X• :=
⋃

x∈X x
•.

A marking of N = 〈P, T 〉 is a function M : P → N. A Petri net is a pair 〈N,M〉, where N
is a net and M is the initial marking of N . A transition t = 〈P1, P2〉 is enabled at a marking M if

M(p) ≥ 1 for every p ∈ P1. If t is enabled at M then it can fire, leading to the marking M ′ given

by M ′(p) = M(p) + 1 for every p ∈ P2 \ P1, M ′(p) = M(p) − 1 for every p ∈ P1 \ P2, and

M ′(p) =M(p) otherwise. We write M
t
−→M ′, and M

σ
−→M ′ for a finite sequence σ = t1t2 . . . tn if

there are markings M1, . . . ,Mn such that M
t1−→M1

t2−→ · · ·Mn−1
tn−→M ′. M ′ is reachable from M

if M
σ
−→M ′ for some sequence σ.

A marking M is 1-bounded if M(p) ≤ 1 for every place p. A Petri net is 1-bounded if every

marking reachable from the initial marking is 1-bounded. A 1-bounded marking M of a Petri net is

also defined by the set of marked places; i.e., HMI = {p ∈ P : M(p) = 1}.

3. Parameterized Petri nets

Intuitively, a parameterized net is a collection {Nn}n≥1 of nets. The places of Nn are the result of

replicating a set P of place names n times. For example, if P = {p, q}, then the set of places of Nn

is {p(0), . . . , p(n − 1), q(0), . . . , q(n − 1)}. Crucially, the transitions of all the nets in the collection

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 201

are described by a single logical formula of WS1S. Intuitively, the models of the formula are triples

〈n, P1, P2〉, where P1 and P2 are sets of places of Nn, indicating that Nn has a transition with P1 and

P2 as input and output places, respectively.

Definition 3.1. (Parameterized nets)

A parameterized net is a pair N = 〈P,Tr 〉, where P is a finite set of place names and Tr (n,X ,Y)
is a WS1S-formula over one first-order variable n which represents the size of the instance, and two

tuples X and Y of second-order variables containing one variable for each place name of P; i.e., for a

fixed enumeration p1, . . . , pk of the elements of P we have X = 〈Xpi〉
k
i=1 and Y = 〈Ypi〉

k
i=1. We call

such tuples of variables placeset variables.

Let [n] = {0, . . . , n − 1}. A parameterized net N induces a net N (n) = 〈Pn, Tn〉 for every n ≥ 1,

where Pn = P × [n] (i.e., Pn consists of n copies of P), and Tn contains a transition 〈P1, P2〉 for

every pair P1, P2 ⊆ Pn of sets of places such that “Tr (n, P1, P2) holds”. More formally, this means

that µ |= Tr for the interpretation µ given by µ(n) = n, µ(Xp) = {i ∈ [n] : 〈p, i〉 ∈ P1}, and

µ(Yp) = {i ∈ [n] : 〈p, i〉 ∈ P2} for all p ∈ P . Therefore, the intended meaning of Tr (n,X ,Y) is

“the pair 〈X ,Y〉 of placesets is (the preset and postset of) a transition of the net N (n)”. We say that

N (n) is an instance of N .

In the following we use 〈p, i〉 and p(i) as equivalent notations for the elements of Pn = P × [n].

Equation 1: Transitions of the dining philosophers.

GrabFirst :=



∃x . 1 ≤ x < n ∧ (Xthink = Xfree = Ywait = Ytaken = {x})

∧ (Xwait = Xeat = Xtaken = ∅)

∧ (Ythink = Yeat = Yfree = ∅)




∨


(Xthink = Ywait = {0}) ∧ (Xfree = Ytaken = {1})

∧ (Xwait = Xeat = Xtaken = ∅)

∧ (Ythink = Yeat = Yfree = ∅)




GrabSecond :=




∃x . 1 ≤ x < n ∧ (Xwait = Yeat = {x})

∧ (Xfree = Ytaken = {x⊕n 1})

∧ (Xthink = Xeat = Xtaken = ∅)

∧ (Ythink = Ywait = Yfree = ∅)




∨


(Xthink = Xfree = Ytaken = Ywait = {0})

∧ (Xwait = Xeat = Xtaken = ∅)

∧ (Ythink = Yeat = Yfree = ∅)




Release := ∃x . x < n ∧ (Xeat = Ythink = {x} ∧ Xtaken = Yfree = {x, x⊕ 1})

∧ (Xthink = Xwait = Xfree = ∅)

∧ (Ywait = Yeat = Ytaken = ∅)

202 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

Example 3.2. We consider a version of the dining philosophers. Philosophers and forks are numbered

0, 1, . . . , n− 1. For every i > 0 the i-th philosopher first grabs the i-th fork, and then the (i⊕n 1)-th
fork, where ⊕n denotes addition modulo n. Philosopher 0 proceeds the other way round: she first

grabs fork 1, and then fork 0. After eating, a philosopher returns both forks in one single atomic step.

We formalize this in the following parameterized net N = 〈P,Tr 〉:

• P = {think,wait, eat, free, taken}. Intuitively, {think(i),wait(i), eat(i)} are the states of the

i-th philosopher, and {free(i), taken(i)} the states of the i-th fork.

• Tr (n,X ,Y) = GrabFirst ∨ GrabSecond ∨ Release. The formulas for GrabFirst, GrabSecond,

and Release are shown in Equation 1.

fr(0)

ta(0)

th(0)

wa(0)
ea(0)

fr(1)

ta(1)

th(1)

wa(1)

ea(1)

fr(2)
ta(2) th(2)

wa(2)

ea(2)

g10

g20
g11

g21

g12

g12

r0

r1

r2

Figure 1: N (3) for Example 3.2. Places which are colored green are initially marked w.r.t. Initial(X)
from Example 3.4. Note the repeating structure for philosophers 1 and 2 while philosopher 0 grabs

her forks in the opposite order. We abbreviate think(i) to th(i), and similarly with the other states.

Intuitively, the preset of GrabFirst is a philosopher in state think and her left (resp. right fork for

philosopher 0) in state free; the postset puts the philosopher in state wait and the fork in state taken.

The instance N (3) is shown in Figure 1.

Parameterized Petri nets are parameterized nets with a WS1S-formula defining its initial markings:

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 203

Definition 3.3. (Parameterized Petri nets)

A parameterized Petri net is a pair 〈N , Initial〉, where N is a parameterized net, and Initial(n,M)
is a WS1S-formula over a first-order variable n and a placeset variableM.

A parameterized Petri net defines an infinite family of Petri nets. Loosely speaking, a Petri net

〈N,M〉 belongs to the family if N is an instance of N , i.e., N = N (n) for some n ≥ 1, and

M is a 1-bounded marking of N satisfying Initial(n,M). For example, if P = {p1, p2}, n = 3
and Initial({0, 1} , {0, 2}) holds, then the family contains a Petri net 〈N (3),M3〉 such that M3 is a

1-bounded marking with HM3I = {p1(0), p1(1), p2(0), p2(2)}.

Example 3.4. The family of initial markings in which all philosophers think and all forks are free is

modeled by:

Initial(n,M) := (Mthink =Mfree = [n]) ∧ (Mwait =Meat =Mtaken = ∅).

Example 3.5. Let us now model a simple version of the readers/writers system. A process can be

idle, reading, or writing. An idle process can start to read if no other process is writing, and it can start

to write if every other process is idle. We obtain the parameterized net N = 〈P,Tr 〉, where

• P = {idle, rd,wr, not wr}.

• Tr (n,X ,Y) = StartR ∨ StopR ∨ StartW ∨ StopW. We give the formulas StartR and StartW,

the other two being simpler.

StartR := ∃x .

(
(Xidle = {x} ∧ Xnot wr = Xidle ∧ (Xrd = Xwr = ∅)

∧ Yrd = {x} ∧ Ynot wr = Xidle ∧ (Yidle = Ywr = ∅)

)

StartW := ∃x .

(
Xidle = [n] ∧ Xnot wr = {x} ∧ (Xrd = Xwr = ∅)

∧ Yidle = [n] \ {x} ∧ Ywr = {x} ∧ (Yrd = Ynot wr = ∅)

)

So the preset of a StartR transition is {idle(i), not wr(0), . . . , not wr(n− 1)} for some i, and the post-

set is {rd(i), not wr(0), . . . , not wr(n− 1)}. The initial markings in which every process is initially

idle are modeled by:

Initial(n,X) := Xidle = [n] ∧ Xnot wr = [n] ∧ (Xrd = Xwr = ∅)

Observe that in the dining philosophers transitions have presets and postsets of size 3, independently

of the number of philosophers. On the contrary, in the readers and writers problems the transitions of

N (n) have presets and postsets of size n.

Intuitively, our formalism allows to model transitions involving all processes or, for example, all

even processes. Observe also that in both cases the formula Initial has exactly one model for every

n ≥ 1, but this is not required.

204 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

Proving deadlock-freedom for the dining philosophers. Let us now give a taste of what our paper

achieves for Example 3.2. It is well known that this version of the dining philosophers is deadlock-free.

However, finding a proof based on parameterized invariants of the systems is not so easy. Using the

semi-automatic version of the approach we present, we can find the five invariants shown below, and

automatically prove that they imply deadlock-freedom. The fully automatic analysis of this example

gives ten properties of the system which collectively induce deadlock-freedom.

The first two invariants express that at every reachable marking M , and for every 0 ≤ i ≤ n− 1 ,

the i-th philosopher is either thinking, waiting, or eating, and the i-th fork is either free or taken:

M(think(i)) +M(wait(i)) +M(eat(i)) = 1 (1)

M(free(i)) +M(taken(i)) = 1. (2)

The last three invariants provide the key insights; the last one holds for every 1 ≤ i ≤ n− 2:

M(wait(0)) +M(eat(0)) +M(free(1)) +M(wait(1)) +M(eat(1)) = 1 (3)

M(eat(0)) +M(free(0)) +M(eat(n− 1)) = 1 (4)

M(eat(i)) +M(eat(i+ 1)) +M(free(i+ 1)) +M(wait(i+ 1)) = 1 (5)

Let us sketch why (1)-(5) imply deadlock freedom. Let Pi denote the i-th philosopher and Fi the i-th
fork. If P0 is eating, then F0 and F1 are taken by (1)-(4), and there is no deadlock because P0 can

return them. The same holds if P1 is eating by (1)-(3) and (5), or if any of P2, . . . , Pn−1 is eating by

(1)-(2) and (5). If no philosopher eats, then by (1)-(3) and (5) either Pi+1 is thinking and Fi+1 is free

for some i ∈ {1, . . . , n−2}, or Pi+1 is waiting for every i ∈ {1, . . . , n−2}. In the first case Pi+1 can

grab Fi+1. In the second case Pn−1 is waiting, and since F0 is free by (1)-(2) and (4), it can grab F0.

4. Checking 1-boundedness

Our techniques work for parameterized Petri nets whose instances are 1-bounded. We present a tech-

nique that automatically checks 1-boundedness of all our examples. We say that a set of places Q of a

Petri net 〈N,M〉, where N = 〈P, T 〉, is

• 1-balanced if for every transition 〈P1, P2〉 ∈ T either |P1 ∩Q| = 1 = |P2 ∩Q|, or |P1 ∩Q| =
0 = |P2 ∩Q|, or |P1 ∩Q| ≥ 2.

• 1-bounded at M if M(Q) ≤ 1.

The following proposition is an immediate consequence of the definition:

Proposition 4.1. If Q is a 1-balanced and 1-bounded set of places of 〈N,M〉, then M ′(Q) = M(Q)
holds for every reachable marking M ′.

We abbreviate “1-bounded and 1-balanced set” to 1BB-set, and say that N is covered by 1BB-

sets if every place belongs to some 1BB-set at initial marking M . By the proposition above, if N is

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 205

covered by 1BB-sets at M , then M ′(p) ≤ 1 holds for every reachable marking M ′ and every place p,

and so N is 1-bounded.

Given a parameterized Petri net (N , Initial), we can check if all instances are covered by 1BB-sets

with the following formula:

1Bal (n,X) := ∀Y,Z : Tr (n,Y,Z)→ (|X ∩ Y| = 0 = |X ∩ Z|)∨

(|X ∩ Y| = 1 = |X ∩ Z|)∨

(|X ∩ Y| > 1)

1Bnd(n,X ,M) := |X ∩M| ≤ 1

Cover := ∀n,∀M : Initial(n,M)→ (
∧

p∈P ∀x : ∃X : x ∈ Xp∧

1Bal (n,X)∧

1Bnd(n,X ,M))

Observe that if Q is a 1BB-set then at every reachable marking exactly one of the places of Q is

marked, with exactly one token. The sets of places corresponding to a philosopher, a fork, a reader, or

a writer are 1BB-sets. Unsurprisingly, all our parameterized Petri net models are covered by 1BB-sets.

Checking the formula Cover above gives us an automatic proof that all the Petri nets we consider are

1-bounded.

5. Checking safety properties

Let 〈N , Initial 〉 be a parameterized Petri net, and let Safe(n,M) be a WS1S-formula describing a

set of “safe” markings of the instances of N (for example, “safe” could mean deadlock-free). It is

easy to prove (using simulations of Turing machines by Petri nets like those of [38]) that the existence

of some unsafe reachable marking in some instance of a given parameterized Petri net 〈N , Initial 〉
is undecidable. In [9, 8] there is a semi-algorithm for the problem that derives from 〈N , Initial 〉 a

formula PReach(n,M) describing a superset of the set of reachable markings of all instances, and

checks that the formula

SafetyCheck := ∀n∀M : PReach(n,M)→ Safe(n,M)

holds. We recall the main construction of [9, 8], adapted and expanded.

1BB-sets again. Recall that if a marking M ′ of some instance 〈N,M〉 of a net 〈N , Initial〉 is

reachable from M , then M ′(Q) ≤ 1 holds for every 1BB-set of places Q of 〈N,M〉. So this latter

property can be interpreted as a test for potential reachability: Only markings that pass the test can

be reachable. We introduce a formula 1BBTest(n,M′,M) expressing thatM′ passes the test with

respect toM (i.e.,M′ might be reachable fromM).

1BBTest(n,M′,M) := ∀X :

(
1Bal (n,X)

∧1Bnd(n,X ,M)

)
→ 1Bnd(n,X ,M′)

206 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

Siphons and traps. Let 〈N,M〉 be a Petri net with N = 〈P, T 〉 and let Q ⊆ P be a set of places.

Q is a trap of N if •Q ⊆ Q•, and a siphon of N if Q• ⊆ •Q.

• If Q is a siphon and M(Q) = 0, then M ′(Q) = 0 for all markings M ′ reachable from M .

• If Q is a trap and M(Q) ≥ 1, then M ′(Q) ≥ 1 for all markings M ′ reachable from M .

If M ′ is reachable from M then it satisfies the following property: M ′(Q) ≥ 1 for every trap

Q such that M(Q) ≥ 1. A marking satisfying this property passes the trap test for 〈N,M〉. We

construct a formula TrapTest (n,M) expressing that M passes the trap test for some instance of a

parameterized Petri net. We first introduce a formula expressing that a set X of places is a trap.

Trap(n,X) := ∀Y,Z : (Tr (n,Y,Z) ∧ X ∩ Y 6= ∅)→ X ∩Z 6= ∅

Now we have:

Marked(n,X ,M) := X ∩M 6= ∅

TrapTest(n,M′,M) := ∀X :

(
Trap(n,X)

∧Marked(n,X ,M)

)
→ Marked(n,X ,M′)

Similarly we obtain a formula for a siphon test:

Empty(n,X ,M) := X ∩M = ∅

SiphTest(n,M′,M) := ∀X :

(
Siphon(n,X)

∧Empty(n,X ,M)

)
→ Empty(n,X ,M′)

We can now give the formula PReach:

PReach(n,M′,M) :=




1BBTest(n,M′,M)

∧TrapTest (n,M′,M)

∧SiphTest(n,M′,M)




PReach(n,M′) := ∃M : Initial(n,M) ∧ PReach(n,M′,M)

5.1. Automatic computation of parameterized invariants

In [9] it was shown that many safety properties of parameterized Petri nets can be proved to hold

for all instances by checking validity of the corresponding PReach formula. However, the technique

does not return a set of invariants strong enough to prove the property. In this section we show how

to overcome this problem. We design a CEGAR loop which, when successful, yields a finite set of

parameterized invariants that imply the safety property being considered.

We proceed as follows. In the first part of the section, we describe a CEGAR loop for the non-

parameterized case. The input to the procedure is a parameterized Petri net 〈N , Initial 〉 and a number

n such that all reachable markings of all instances N (1), . . . ,N (n) are safe. The output is a set

of invariants of N (1), . . . ,N (n), derived from balanced sets, siphons, and traps, which are strong

enough to prove safety. Since the set of all 1BB-sets, siphons, and traps of these instances is finite, the

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 207

procedure is guaranteed to terminate even if it computes one invariant at a time. Then we modify the

loop by inserting an additional parameterization procedure that exploits the regularity of 〈N , Initial〉.
The procedure transforms a 1BB-set (siphon, trap) of a particular instance, say N (4), into a possibly

infinite set of 1BB-sets (siphons, traps) of all instances, encoded as the set of models of a WS1S-

formula. This formula is a finite representation of the infinite set.

For the sake of brevity, in the rest of the section we describe a CEGAR loop that only constructs

traps. This allows us to avoid numerous repetitions of the phrase “1BB-sets, siphons, and traps”.

Since the structure of the loop is completely generic, this is purely a presentation issue without loss of

generality1 .

5.1.1. A CEGAR loop for the non-parameterized case.

We need some preliminaries. Let N = 〈P,Tr 〉 be a parameterized net, and let X be a placeset

variable. An interpretation of X is a pair X = 〈n,Q〉, where n ≥ 1 and Q is a set of places of N (n).
We identify X and the tuple 〈Xp〉p∈P , where Xp ⊆ [n], defined by j ∈ Xp iff p(j) ∈ Q. For example,

if P = {p, q, r}, n = 2, and Q = {p(0), p(1), q(1)}, then 〈Xp,Xq,Xr〉 = 〈{0, 1}, {1}, ∅〉. Given a

formula φ(. . . ,X , . . .) and an interpretation X = 〈n,Q〉 of X , we define the formula φ(. . . ,X, . . .)
as follows:

x ∈ Xp :=
∨

j∈Xp

x = j

X = X := n = n ∧
∧

p∈P

∀x : x < n→ (x ∈ Xp ↔ x ∈ Xp)

φ(. . . ,X, . . .) := ∀X : X = X→ φ(. . . ,X , . . .)

The CEGAR procedure maintains an (initially empty) set T of indexed traps of N (1), N (2), . . . ,

N (n), where an indexed trap is a pair T = 〈i,Q〉 such that 1 ≤ i ≤ n and Q is a trap of N (i). After

every update of T the procedure constructs the formula SafetyCheckT , defined as follows:

TrapSetT (n,X) :=
∨

X∈T

X = X

PReachT (n,M
′,M) := ∀X :

(
TrapSetT (n,X)

∧Marked(n,X ,M)

)
→ Marked(n,X ,M′)

PReachT (n,M
′) := ∃M : Initial(n,M) ∧ PReachT (n,M

′,M)

SafetyCheckT := ∀n∀M : (n < n ∧ PReachT (n,M))→ Safe(n,M)

(6)

Intuitively, PReachT (n,M
′,M) states that according to the set T of (indexed) traps computed so

far, M′ could still be reachable from M, because every trap of T marked at M is also marked at

M′. Therefore, if SafetyCheckT holds then T is already strong enough to show that every reachable

marking is safe.

1The CEGAR loop for the non-parametric case could be formulated in SAT and solved using a SAT-solver. However, we

formulate it in WS1S, since this allows us to give a uniform description of the non-parametric and the parametric cases.

208 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

If T is not strong enough, then the negation of SafetyCheckT is satisfiable. The WS1S-checker re-

turns a counter-example, i.e., a model M = 〈n,M〉 of the formula PReachT (n,M)∧¬Safe(n,M).
Observe that n is a number, and M is a marking of the instance N (n), which is potentially reachable

from an initial marking but not safe. In this case we search for a trap of N (n) that is marked at every

initial marking of N (n), but empty at M. Such traps are the models of the formula

WTrapM(n,X) :=




Trap(n,X)

∧(∀M : Initial (n,M)→ Marked(n,X ,M))

∧Empty(n,X ,M)


 (7)

and so they can also be found with the help of the WS1S-checker; notice, however, that after fix-

ing n 7→ n the universal quantifier of WTrap
M
(n,X) can be replaced by a conjunction, and so

WTrap
M
(n,X) is equivalent to a Boolean formula.

If the formula has a model T = 〈n,Q〉, then Q is a trap of N (n). We can now take T :=
T ∪ {T}, and iterate. Observe that after updating T the interpretation M = 〈n,M〉 is no longer a

model of PReachT (n,M) ∧ ¬Safe(n,M). Since N (1), . . . ,N (n) only have finitely many traps,

the procedure eventually terminates.

5.1.2. A CEGAR loop for the parameterized case.

In all nontrivial examples, proving safety of the infinitely many instances requires to compute infinitely

many traps. Since the previous procedure only computes one trap per iteration, it does not terminate.

The way to solve this problem is to insert a parametrization step that transforms the witness trap

T = 〈n,Q〉 into a formula ParTrapT(n,X) satisfying two properties: (1) all models of the formula

are traps, and (2) T is a model. Since ParTrapT(n,X) can have infinitely many models, it constitutes

a finite representation of an infinite set of traps. These models are also similar to each other and can

be understood as capturing a single property of the system.

Example 5.1. Consider a parameterized net N = 〈P,Tr 〉 exhibiting rotational symmetry: For every

instance N (n), a pair (P1, P2) of sets is a transition of N (n) iff the pair (P1 ⊕n 1, P2 ⊕n 1) is also

a transition, where P ⊕n 1 denotes the result of increasing all indices by 1 modulo n. Assume that

P = {p, q, r} and T = 〈3, {p(1), q(2)}〉, i.e., {p(1), q(2)} is a trap ofN (3). It is intuitively plausible

(and we will later prove) that, due to the rotational symmetry, {p(i), q(i ⊕m 1)} is a trap of N (j) for

every m ≥ 3 and every 0 ≤ i ≤ m− 1. We can then define the formula ParTrapX(n,X) as:

ParTrapT(n,X) := n ≥ 3 ∧ ∃i : i < n

∧ ∀x : x < n→




(x ∈ Xp ↔ x = i)

∧ (x ∈ Xq ↔ x = i⊕n 1)

∧ x /∈ Xr


 .

Now, in order to describe the CEGAR procedure for the parameterized case we only need to rede-

fine the formula TrapSetT (n,X). Instead of the formula TrapSetT (n,X) :=
∨

T∈T X = T, which

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 209

holds only when X is one of the finitely many traps in T , we insert the parametrization procedure and

define

TrapSetT (n,X) :=
∨

T∈T

ParTrapT(n,X)

PReachT (n,M
′,M) := ∀X :

(
TrapSetT (n,X)

∧Marked(n,X ,M)

)
→ Marked(n,X ,M′)

PReachT (n,M
′) := ∃M : Initial(n,M) ∧ PReachT (n,M

′,M)

SafetyCheckT := ∀n∀M : PReachT (n,M)→ Safe(n,M)

(8)

Notice the two differences with (6): the definition of TrapSetT (n,X), and the absence of the condi-

tion n < n in the definition of SafetyCheckT . The question is how to obtain the formula ParTrapT(n,X)
from T. We discuss this point in the rest of the section.

A semi-automatic approach If we guess the formula ParTrapT(n,X) we can use the WS1S-

checker to automatically prove that the guess is correct. Indeed, it suffices to check that all models of

ParTrapT(n,X) are traps, which reduces to proving that the formula

∀n∀X : ParTrapT(n,X)→ Trap(n,X)

holds. Let us see how this works in Example 3.2. Assume that the CEGAR procedure produces a trap

T = 〈3, {p(1), q(2)}〉. The user finds it plausible that, due to the identical behavior of philosophers

1, 2, . . . , n − 1, the set {p(i), q(i ⊕ 1)} will be a trap of N (n) for every n ≥ 3 and for every 1 ≤ i ≤
n − 2 (i.e., the user excludes the case in which i or i ⊕n 1 are equal to 0). So the user guesses a new

formula

ParTrapT(n,X) :=n ≥ 3 ∧ ∃i : (1 ≤ i ≤ n− 2) ∧ ∀x :

(x ∈ Xp ↔ x = i) ∧ (x ∈ Xq ↔ x = i⊕n 1) ∧ x /∈ Xr.

The user now automatically checks that all models of ParTrapT(n,X) are traps. The formula can

then be safely added to TrapSetT (n,X) as a new disjunct.

An automatic approach for specific architectures. Parameterized Petri nets usually have a regular

structure. For example, in the readers-writers problem all processes are indistinguishable, and in the

philosophers problem, all right-handed processes behave in the same way.

In the next sections we show how the structural properties of ring topologies and crowds (two

common structures for parameterized systems) can be exploited to automatically compute the formula

ParTrapT(n,X) for each witness trap T.

210 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

6. Trap parametrization in rings

Intuitively, a parameterized net N is a ring if for every transition of every instance N (n) there is an

index i ∈ [n] and sets PL,PR,QL,QR ⊆ P such that the preset of the transition is (PL × {i}) ∪
(PR×{i⊕n 1}) and the postset is (QL×i)∪(QR×i⊕n 1). In other words, every transition involves

only two neighbor-processes of the ring. In a fully symmetric ring all processes behave identically,

while in a headed ring there is one distinguished process, as in Example 3.2. To ease presentation

in this section we only consider fully symmetric rings. The extension to headed rings can be found

in [39].

The informal statement “all processes behave identically” is captured by requiring the existence

of a finite set of transition patterns 〈PL,PR,QL,QR〉 such that the transitions of N (n) are the result

of “instantiating” each pattern with all pairs i and i⊕n 1 of consecutive indices.

Definition 6.1. A parameterized net N = 〈P,Tr 〉 is a fully symmetric ring if there is a finite set of

transition patterns of the form 〈PL,PR,QL,QR〉, where PL,PR,QL,Qr ⊆ P, such that for every

instance N (n) the following condition holds: 〈P,Q〉 is a transition of N (n) iff there is i ∈ [n] and a

pattern such that P = PL × {i} ∪ PR × {i⊕n 1} and Q = QL × {i} ∪ QR × {i⊕n 1}.

It is possible to decide if a given parameterized Petri net is a fully symmetric ring:

Proposition 6.2. There is a formula of WS1S such that a parameterized net is a fully symmetric ring

iff the formula holds.

Proof:

We introduce a WS1S formula describing symmetric rings in several steps. To avoid dealing with edge

cases we assume that any transition formula Tr(n,X ,Y) enforces a minimal size of its models; i.e.,

Tr(n,X ,Y) |= n > 3. This streamlines the argument and formulas. However, it is straightforward

to adapt the formulas to the full generality.

The following formula expresses that for every transition of every instance there is an index i such

that all places in the preset and postset of the transition have index i or i ⊕n 1. We call i the index of

the transition.

ϕ := ∀n,X ,Y : Tr(n,X ,Y) −→

∃i : i < n ∧ ∀x : x < n→




∨

p∈P

x ∈ Xp ∨ x ∈ Yp

↔ [x = i ∨ x = i⊕n 1]




(9)

Now we express that if some instance, say N (n), contains a transition with index i, then

for every other instance, say N (m), and for every index 0 ≤ j ≤ m, substituting j for i yields

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 211

a transition of N (m):

ψ := ∀n, i,X ,Y,m, j : (i < n ∧ Tr(n,X ,Y) ∧ j <m) −→

∃X ′,Y ′ : Tr (m,X ′,Y ′) ∧

∧

p∈P




i ∈ Xp ↔ j ∈ X ′
p

∧ i ∈ Yp ↔ j ∈ Y ′
p

∧ i⊕n 1 ∈ Xp ↔ j ⊕m 1 ∈ X ′
p

∧ i⊕n 1 ∈ Yp ↔ j ⊕m 1 ∈ Y ′
p



.

(10)

We prove that N = 〈P,Tr 〉 is a fully symmetric ring iff its associated formula ϕ ∧ ψ is valid.

First, we show that ϕ is valid if and only if for all n and every transition 〈P1, P2〉 of Tn there is an

index 0 ≤ i ≤ n− 1 such that P1 ∪ P2 ⊆ P × {i, i⊕n 1}.

Assume for all n and every transition 〈P1, P2〉 of Tn there is an index 0 ≤ i ≤ n − 1 such that

P1 ∪ P2 ⊆ P × {i, i ⊕n 1}. Then for any interpretation µ of n, X , Y with µ |= Tr(n,X ,Y) we

have 〈P,Q〉 and an index j < µ(n) such that µ(Xp) = P ∩ {p} ×
{
j, j ⊕µ(n) 1

}
and µ(Yp) =

Q ∩ {p} ×
{
j, j ⊕µ(n) 1

}
for all p ∈ P.

Consequently,

µ[i 7→ i] |= ∀x : x < n→




∨

p∈P

x ∈ Xp ∨ x ∈ Yp

↔ [x = i ∨ x = i⊕n 1]


 .

Which renders ϕ valid in general.

On the other hand, if ϕ is valid careful examining ϕ gives the desired result: let µ |= Tr(n,X ,Y).
Then fix any i ∈ [µ(n)] such that

µ[i 7→ i] |= ∀x : x < n→




∨

p∈P

x ∈ Xp ∨ x ∈ Yp

↔ [x = i ∨ x = i⊕n 1]


 .

For the transition〈P,Q〉 of µ; i.e.,

P = {〈p, i〉 ∈ P × [µ(n)] | i ∈ µ(Xp)} ,

Q = {〈p, i〉 ∈ P × [µ(n)] | i ∈ µ(Yp)}

we see that P ⊆ P ×
{
i, i⊕µ(n) 1

}
and Q ⊆ P ×

{
i, i⊕µ(n) 1

}
.

Using this observation we restrict the remaining argument to the case that every transition ofN (n)
has an index i ∈ [n]. It remains to show that – under this condition – ψ is valid if and only if N is a

fully symmetric ring: assume N to be a fully symmetric ring. Let µ be an arbitrary interpretation of

n, m, X , Y , i, j. If µ 6|= i < n ∧ Tr(n,X ,Y) ∧ j < m then there is nothing to show. Let now

212 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

µ |= i < n ∧ Tr(n,X ,Y) ∧ j < m. Let n = µ(n), m = µ(m), i = µ(i), j = µ(j) and 〈P,Q〉
such that P = {〈p, i〉 ∈ P × [µ(n)] | i ∈ µ(Xp)} and Q = {〈p, i〉 ∈ P × [µ(n)] | i ∈ µ(Yp)}.
Since N is assumed to be a fully symmetric ring we know that 〈P,Q〉 is an instance of the pat-

tern 〈PL,PR,QL,QR〉 at an index i. More formally, P = PL × {i} ∪ PR × {i⊕n 1} and Q =
QL × {i} ∪ QR × {i⊕n 1}. If µ(i) /∈ {i, i⊕n 1}, then expanding the interpretation µ to an inter-

pretation µ′ which chooses values µ′(X ′) and µ′(Y ′) which yield a transition 〈P ′, Q′〉 as an instance

of 〈PL,PR,QL,QR〉 for an index j′ such that {j′, j′ ⊕m 1} ∩ {j, j ⊕m 1} = ∅. (Note that we use

implicitly here that the formula Tr enforces models of sufficient size. Adapting ψ such that i has to

be the index of 〈P,Q〉 is straightforward.)

On the other hand, if µ(i) = i then expanding µ to µ′ with values for µ′(X ′) and µ′(Y ′) such

that the associated 〈P ′, Q′〉 is an instance of 〈PL,PR,QL,QR〉 at index µ(j) yields the desired result.

Analogously, for µ(i) = i⊕n 1. It follows that ψ is valid.

Now, assume ψ to be valid. The result follows from carefully examining ψ. For any transition

〈P,Q〉 in an instance N (n) we can extract its structure; i.e., a pattern 〈PL,PR,QL,QR〉 such that

P = PL ×{i} ∪PR ×{i⊕n 1} and Q = QL×{i} ∪QR×{i⊕n 1} for an appropriate i (remember

that we assume ϕ to be valid). By the validity of ψ we see that the same pattern can be instantiated

(represented by the choice of X ′ and Y ′) at all other indices (corresponding to the choice for µ(j)) for

all other instances (corresponding to the choice for µ(m)). ⊓⊔

We need to distinguish between global and local traps of an instance. Loosely speaking, a

global trap contains places of all processes, while a local trap does not. To understand why this

is relevant, consider a fully symmetric ring N = 〈P,Tr 〉 where P = {p, q} and the transitions

of each instance N (n) are the pairs 〈{p(i), q(i ⊕n 1)} , {p(i⊕n 1), q(i)}〉 for every i ∈ [n]. The

sets {p(0), q(0)} and {p(0), p(1), p(2), p(3)} are both traps of N (4) (they are even 1-balanced sets).

However, they are of different nature. Intuitively, in order to decide that {p(0), q(0)} is a trap it

is not necessary to inspect all of N (4), but only process 0 and its neighborhood. On the contrary,

{p(0), p(1), p(2), p(3)} involves all processes. This has consequences when parametrizing. Due to

the symmetry of the ring, {p(i), q(i)} is a trap of every instance N (n) for every i ∈ [n]. How-

ever, {p(i), p(i⊕n 1), . . . , p(i⊕n 3)} is not a trap of every instance for every i ∈ [n], for example

{p(0), p(1), p(2), p(3)} is not a trap of N (5). The correct parametrization is a different one, namely

{p(0), p(1), . . . , p(n − 1)}. The difference between the two traps is captured by the following defini-

tion.

Definition 6.3. LetN = 〈P,Tr 〉 be a parameterized net. An indexed trap T = 〈n,Q〉 ofN is global

if Q ∩ (P × {i}) 6= ∅ for every i ∈ [n], otherwise T is local.

6.1. Parametrizing local traps

We first observe that local indexed traps can be “shifted” locally while maintaining their trap property.

Lemma 6.4. LetN = 〈P,Tr 〉 be a fully symmetric ring and let 〈n,Q〉 be a local indexed trap of N .

Then 〈n,Q′〉 with Q′ = {〈p, i⊕n 1〉 : 〈p, i〉 ∈ Q} is a local indexed trap of N .

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 213

Proof:

Assume Q′ is not an indexed local trap. Then there is t ∈ Tn such that •t ∩ Q′ 6= ∅ = t• ∩ Q′.

Since N is a fully symmetric ring, there is a pattern 〈〈PL, PR〉 , 〈QL, QR〉〉 and an index i ∈ [n]
such that t is the instance of 〈〈PL, PR〉 , 〈QL, QR〉〉 with index i. Let t′ be the transition obtained

from the same pattern with index i ⊕n (n − 1); i.e., moved one index to the left. It follows •t′ =
{〈p, j ⊕n (n− 1)〉 : 〈p, j〉 ∈ •t} and t′• = {〈p, j ⊕n (n− 1)〉 : 〈p, j〉 ∈ t•}. By definition of Q′

we have Q = {〈p, j ⊕n (n− 1)〉 : 〈p, j〉 ∈ Q′}. That, however, gives •t′ ∩ Q 6= ∅ = t′• ∩ Q in

contradiction to Q being a local indexed trap. ⊓⊔

Our second lemma states that for any indexed local traps 〈n,Q〉 with Q ∩ (P × {n− 1}), the set

Q remains a trap in any instance N (n′) with n ≤ n′.

Lemma 6.5. Let N be a fully symmetric ring and 〈n,Q〉 a local indexed trap such that Q ∩ (P ×
{n− 1}) = ∅. Then 〈n′, Q〉 is a local indexed trap for all n′ ≥ n.

Proof:

Assume the statement is false. That is, 〈n′, Q〉 is not a local indexed trap. If n′ = n there is an

immediate contradiction with the assumption that 〈n,Q〉 is a local indexed trap. Hence, let n′ > n
minimal such that 〈n′, Q〉 is not a local indexed trap. So there is a transition t in N (n′) such that
•t ∩ Q 6= ∅ = t• ∩ Q. Since Q ∩ (P × {n− 1}) = ∅ by assumption of the lemma and n′ > n
by case distinction we have Q ∩ (P × {n′ − 2, n′ − 1}) = ∅. With this and the facts that fully

symmetric rings only allow for transitions using places of two adjacent indices and •t∩Q 6= ∅ we get
•t ∩P × {n′ − 1} = ∅ and t• ∩P × {n′ − 1} = ∅. That means, however, that t is also a transition in

N (n′ − 1) because N is a fully symmetric ring and, consequently, 〈n′ − 1, Q〉 already is not a local

indexed trap. This contradicts that n′ was chosen minimal and concludes the proof. ⊓⊔

We can now show how to obtain a sound parameterization of a given indexed trap. The formula

ParTrapT(X) states that X is the result of “shifting” T = 〈n,Q〉 in N (n′) for some n′ ≥ n.

Theorem 6.6. Let N = 〈P,Tr 〉 be a fully symmetric ring and let 〈n,Q〉 be a local indexed trap

of N (n) such that Q ⊆ (P × I) for a minimal set I ⊂ [n]. Assume I = {i0, . . . , ik−1} with

0 ≤ i0 < i1 < . . . < ik−1 < n− 1. Then every model of the formula

ParTrapT(n,X) := n ≤ n ∧ ∃y : y < n ∧
∧

p∈P

∀x : x < n→


x ∈ Xp ↔




∨

〈i0,p〉∈Q

x = y

∨
∨

j>0,〈ij ,p〉∈Q

x = y ⊕n (ij − ij−1)







is an indexed trap of N .

214 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

Proof:

Assume µ |= ParTrapT(n,X). Then there exists a tuple 〈k, P 〉 such that µ(n) = k and µ(Xp) =
{i ∈ [k] | 〈p, i〉 ∈ P} for every p ∈ P. We have n ≤ k by the first conjunct of ParTrapT. Let j ∈ [k]
be any value such that assigning j to y satisfies the existentially quantified subformula of ParTrapT.

Since ik−1 < n− 1 we have Q∩ (P × {n− 1}) = ∅. So we can apply Lemma 6.5 to 〈n,Q〉, and

in fact we can apply it (n − k) times, yielding a local trap 〈k,Q〉. Now, fix indices i′0, . . . , i
′
k−1 such

that i′0 = j and i′ℓ+1 = i′ℓ ⊕k (iℓ+1 − iℓ) for 0 ≤ ℓ < k − 1. Carefully examining ParTrapT one can

now observe that

{
p ∈ P |

〈
p, i′ℓ

〉
∈ P

}
= {p ∈ P | 〈p, iℓ〉 ∈ P} for all 0 ≤ ℓ < k

and ∅ = P × ([k] \
{
i′0, . . . , i

′
k−1

}
). We can now apply (k − i0) + i′0 times Lemma 6.4 to the local

trap 〈k,Q〉, which shows that 〈k, P 〉 is a local trap. ⊓⊔

Remark 6.7. Since Theorem 6.6 requires ik−1 < n − 1, it can only be applied to local traps 〈n,Q〉
such that Q ∩ (P × {n− 1}) = ∅. However, for every local trap 〈n,Q〉 Lemma 6.4 allows us to

find a local trap 〈n,Q′〉 satisfying Q′ ∩ (P × {n− 1}) = ∅, which we can then parameterize via

Theorem 6.6.

6.2. Parametrizing global traps

In contrast to local traps, global traps involve all indices [n] of the instance N (n). Let 〈n,Q〉 be an

indexed global trap. We denote with Q[i] the set P ⊆ P such that P × {i} = Q ∩ (P × {i}); i.e., the

set of places in Q at index i. Moreover, we say Q has period p if p is the smallest divisor of n such that

for all 0 ≤ j < pwe have Q[j] = Q[k ·p+j] for all 0 ≤ k < n
p . That is,Q is a repetition of the same p

sets in a row. Since n is a period of Q we know that every Q has a period, which we denote pQ. Recall

the global trap Q = {p(0), p(1), p(2), p(3)} from before. Then, Q[0] = Q[1] = Q[2] = Q[3] = {p}
and, consequently, pQ = 1. Intuitively, we can repeat a period over and over again and still obtain a

trap. So we can parameterize global traps by capturing the repetition of periodic behavior:

Theorem 6.8. Let 〈n,Q〉 be an indexed global trap with n ≥ 2. Then every model of the formula

ParTrapT(n,X) := ∃P : 0 ∈ P ∧ n ∈ P

∧ ∀x : x ≤ n→ x ∈ P ↔




∧

0≤k<pQ

x+ k /∈ P

∧ x+ pQ ∈ P




∧ ∀x0, . . . ,xpQ−1 :




∧

0<k≤pQ−1

xk−1 + 1 = xk

∧ xpQ−1 < n ∧ x0 ∈ P




→
∧

0≤k<pQ

∧

p∈Q[k]

xk ∈ Xp ∧
∧

p∈P\Q[k]

xk /∈ Xp

is an indexed global trap.

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 215

Proof:

Let µ be a model of ParTrapT(n,X). Observe that we have µ(P) = {0, pQ, 2 · pQ, . . . , ℓ · pQ} for

some ℓ > 0. Let k := ℓ · pQ = µ(n) and let P be the set of places of N (k) such that µ(Xp) =
{i ∈ [k] : 〈p, i〉 ∈ P}. Examining ParTrapT(n,X) further we observe that P [j · pQ + o] = Q[o]
holds for all 0 ≤ o < pQ and 0 ≤ j < ℓ.

It remains to show that P is indeed a trap. Assume the contrary. Then there is a transition t
in N (k) such that P ∩ •t 6= ∅ = P ∩ t•. Since N is a fully symmetric ring there is an index

i ∈ [k] such that •t ∪ t• ⊆ P × {i, i⊕k 1}. Pick j such that i = j · pQ + o for 0 ≤ o < pQ.

Observe that P [i] = Q[o] and P [i ⊕k 1] = Q[o ⊕n 1]. Again, by N being a symmetric ring, we

can find a transition t′ such that •t′ = {〈p, o〉 : 〈p, i〉 ∈ •t} ∪ {〈p, o⊕n 1〉 : 〈p, i⊕k 1〉 ∈
•t} and

t′• = {〈p, o〉 : 〈p, i〉 ∈ t•} ∪ {〈p, o⊕n 1〉 : 〈p, i⊕k 1〉 ∈ t
•}. This, however, yields a contradiction

since t′ is a witness for Q not being a trap in contradiction to the assumptions. ⊓⊔

7. Trap parametrization in barrier crowds

Barrier crowds are parameterized systems in which communication happens by means of global steps

in which each process makes a move. An initiator process decides to start a step, and all the other

processes get a chance to veto it; if the step is not blocked (if all the processes accept it), all the

processes, including the initiator, update their local state. Barrier crowds are slightly more general

than broadcast protocols [40], which, loosely speaking, correspond to the special case in which no

process makes use of the veto capability. Like broadcast protocols, barrier crowds can be used to

model cache coherence protocols [41].

As for fully symmetric rings, transitions of the instances of a barrier crowd are generated from a

finite set of “transition patterns”. A transition pattern of a barrier crowd N is a pair 〈I,A〉, where

I ∈ 2P × 2P and A ⊆ 2P × 2P . Assume for example that each process can be in states p, q, r, and

maintains a boolean variable with values {false, true}. The corresponding parameterized net has P =
{p, q, r, false , true} as set of places. Consider the transition pattern with I = 〈{p, false} , {q, true}〉,
and A = {〈{p} , {p}〉 , 〈{q, false} , {r, false}〉 , 〈{q, true} , {r, false}〉}. This pattern models that the

initiator process, say process i, proposes a step that takes it from p to q, setting its variable to true .

Each other process reacts as follows, depending on its current state: if in p, it stays in p, leaving

the variable unchanged; if in q, it moves to r, setting the variable to false; if in r, it vetoes the step

(because A does not offer a way to accept from state r). We depict an instance with three agents for

this example in Figure 2.

Definition 7.1. A parameterized Petri net N = 〈P,Tr 〉 is a barrier crowd if there is a finite set of

transition patterns of the form 〈I,A〉 such that for every instance N (n) the following condition holds:

a pair 〈P,Q〉 is a transition of N (n) iff there exists a pattern 〈I,A〉 and i ∈ [n] such that:

• P ∩ (P × {i}) = PI × {i} and Q ∩ (P × {i}) = QI × {i}, where I = 〈PI , QI〉.

• for every j 6= i there is 〈PA, QA〉 ∈ A such that P ∩(P×{j}) = PA×{j} andQ∩(P×{j}) =
QA × {j}.

216 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

p(0) q(0) r(0) false(0) true(0)

p(1)

q(1)

r(1)

false(1)

true(1) p(2)

q(2)

r(2)

false(2)

true(2)

Figure 2: An example N (3) of an instance of a crowd N . The places of N are P =
{p, q, r, false , true} and we consider only the transition pattern with I = 〈{p, false} , {q, true}〉 and

A = {〈{p} , {p}〉 , 〈{q, false} , {r, false}〉 , 〈{q, true} , {r, false}〉}. We give the transitions only for

the case that the agent with index 0 executes the pattern of I . This means we give 9 transitions where

agents 1 and 2 execute one of the patterns 〈{p} , {p}〉, 〈{q, false} , {r, false}〉, 〈{q, true} , {r, false}〉.
Specifically, we only drew the sixth transition from the left continuously and red. This transi-

tion corresponds to agent 1 using the pattern 〈{q, false} , {r, false}〉 and agent 2 using the pattern

〈{q, true} , {r, false}〉.

Note that the number of transitions of N (n) grows quickly in n, even though the structure of the

system remains simple, making parameterized verification particularly attractive.

In the rest of the section we present an automatic parametrization procedure for traps of barrier

crowds. First we show that barrier crowds satisfy two important structural properties.

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 217

Given a set of places P ⊆ P × [n] and a permutation π : [n] → [n], let π(P) denote the set of

places {p(π(i)) : p(i) ∈ P}. Given an index 0 ≤ k < n, let dropk,n(P) denote the set of places

defined as follows: p(i) ∈ dropk,n(P) iff either 0 ≤ i < k and p(i) ∈ P , or k < i ≤ n − 1 and

p(i+ 1) ∈ P .

Definition 7.2. Let N be a parameterized Petri net. A transition 〈P1, P2〉 of N (n) is:

• order invariant if 〈π(P1), π(P2)〉 is also a transition of N (n) for every permutation π : [n] →
[n].

• homogeneous if there is an index 0 ≤ i < n such that for every k ∈ [n] \ {i} the pair〈
dropk,n(P1),dropk,n(P2)

〉
is a transition of N (n− 1).

N is homogeneous (order invariant) if all transitions of all instances N (n) is homogeneous (order

invariant).

Intuitively, order invariance indicates that processes are indistinguishable. Homogeneity indicates

that transitions in the large instances are not substantially different from the transitions in the smaller

ones.

Proposition 7.3. Barrier crowds are order invariant and homogeneous.

Proof:

Let N be a barrier crowd. For order invariance, let 〈P,Q〉 be a transition of an instance N (n), and

let π : [n] → [n] be a permutation. We show that 〈π(P), π(Q)〉 is also a transition of N (n). By the

definition of barrier crowds there is a pattern 〈I,A〉, where I = 〈PI , QI〉, and an index i such that

• P ∩ (P × {i}) = PI × {i} and Q ∩ (P × {i}) = QI × {i}; and

• for every j 6= i there is
〈
P j
A, Q

j
A

〉
∈ A such that P∩(P×{j}) = P j

A×{j} andQ∩(P×{j}) =

Qj
A × {j}.

Intuitively, by the definition of barrier crowds, the result of instantiating 〈I,A〉 with the index π(i)
instead of i is also a transition of N (n). Formally, the pair 〈P ′, Q′〉 given by

• P ′ ∩ (P × {π(i)}) = PI × {π(i)} and Q′ ∩ (P × {π(i)}) = QI × {π(i)}, and

• P ′ ∩ (P × {π(j)}) = P j
A × {π(j)} and Q′ ∩ (P × {π(j)}) = Qj

A × {π(j)} for every j 6= i

is a transition of N (n). By construction we have π(P) = P ′ and π(Q) = Q′. So 〈π(P), π(Q)〉 is a

transition of N (n), and we are done.

For homogeneity, let 〈P,Q〉 be a transition of N (n). Let 〈I,A〉 with I = 〈PI , QI〉 be the pattern

of which 〈P,Q〉 is an instance, i.e., P ∩(P×{i}) = PI×{i} and Q∩(P×{i}) = QI×{i} for every

i ∈ [n]. By the definition of barrier crowds, for every j ∈ [n] \ {i} there is
〈
P j
I , Q

j
I

〉
∈ A such that

P ∩ (P×{j}) = P j
I and Q∩ (P×{j}) = Qj

I . For every k ∈ [n]\{i}, we carefully instantiate 〈I,A〉
to obtain a transition 〈P ′, Q′〉 satisfying 〈P ′, Q′〉 =

〈
dropk,n(P),dropk,n(Q)

〉
, which concludes the

proof. We need to consider two cases:

218 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

• If i < k, then:

– P ′ ∩ (P × {i}) = PI and Q′ ∩ (P × {j}) = P j
I for all i 6= j < k;

– P ′ ∩ (P × {j}) = P j
I and P ′ ∩ (P × {j}) = P j−1

I for all k < j;

– Q′ ∩ (P × {i}) = QI and Q′ ∩ (P × {j}) = Qj
I for all i 6= j < k; and

– Q′ ∩ (P × {j}) = Qj
I and Q′ ∩ (P × {j}) = Qj−1

I for all k < j.

• If k < i, then 〈P ′, Q′〉 is defined as for the case i < k, with the exception that now P ′ ∩ (P ×
{i− 1}) = PI and Q′ ∩ P × {i− 1} = QI .

In both cases 〈P ′, Q′〉 is a transition in N (n − 1) by definition of barrier crowds. P ′ = dropk,n(P)
and Q′ = dropk,n(Q) which concludes the argument. ⊓⊔

7.1. Parametrizing traps for barrier crowds

By order invariance, ifQ is a trap of an instance, sayN (n), then π(Q) is also a trap for every permuta-

tion π. The set of all traps that can be obtained from Q by permutations can be described as a multiset

Q : 2P → [n]. For example, assume P = {p, q}, n = 5, and Q = {p(0), p(1), q(1), p(2), q(2), q(4)}.

Then Q({p, q}) = 2 (because of indices 1 and 2), Q({p}) = Q({q}) = 1 (index 0 and 4, respec-

tively), and Q(∅) = 1 (index 3). Any assignment of indices to the elements of Q results in a trap. We

call Q the trap family of Q.

Proposition 7.4. Let N be an order invariant and homogeneous parameterized Petri net, let Q be a

trap of an instance N (n), and let Q : 2P → [n] be the trap family of Q. We have:

• IfQ(∅) ≥ 1 andQ′ is obtained from Q by increasing the multiplicity of ∅, then Q′ is also a trap

family of another instance of N .

• For every S ∈ 2P , if Q(S) ≥ 2 and Q′ is obtained from Q by increasing the multiplicity of S,

then Q′ is also a trap family of another instance of N .

Proof:

First consider increasing the multiplicity of ∅. It suffices to consider the case of the family Q′ ob-

tained from Q by setting Q′(∅) = Q(∅) + 1, since the general statement follows by induction in a

straightforward manner. Assume that 〈n+ 1, Q′〉 is not a trap in N (n + 1), but has the multiplicities

of Q′. Let t′ be a transition of N (n + 1) such that Q′ ∩ •t′ 6= ∅ = Q′ ∩ t′•. Since Q′(∅) ≥ 2, there

are at least two distinct indices i, k such that Q′ ∩ (P × {i, k}) = ∅. By homogeneity of N we can

choose i, k so that a transition t in N (n) satisfies •t = dropk,n(
•t′) and t• = dropk,n(t

′•). Further,

let Q = dropk,n(Q
′). Note that Q is an instance of the trap family Q. However, •t∩Q 6= ∅ = t• ∩Q

by the definition of t and dropk,n in contradiction to Q being a trap family.

In the case of increasing the multiplicity of a non-empty set S we know that Q(S) ≥ 2 and

Q′(S) = Q(S)+1 ≥ 3. The argument is analogous to the previous case. First we assume 〈n+ 1, Q′〉
is an instance ofQ′ that is not a trap. For Q′, let k1, k2, k3 be three distinct indices in [n+1] such that

Q′ ∩ P × {k1, k2, k3} = S × {k1, k2, k3}. Then, we find a transition t′ in N (n + 1) witnessing that

Q′ is not a trap. We consider two cases:

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 219

• •t′ ∩ S × {k1, k2, k3} = ∅.
By homogeneity, there is k ∈ {k1, k2, k3} such that the result of applying the dropk,n operation

to t′ is a transition t of N (n). The set Q = dropk,n(Q
′) is a set of places of N (n) with trap

family Q. We have •t∩Q 6= ∅ since •t′ ∩Q′ 6= ∅ and Q′ ∩ (P × {k}) = ∅; further, t• ∩Q = ∅
since t′• ∩Q′ = ∅. So Q is not a trap, contradicting the assumption.

• •t′ ∩ S × {k1, k2, k3} 6= ∅.
By homogeneity there are k′1, k

′
2 ∈ {k1, k2, k3} such that the result of applying dropk′

1
,n and

dropk′
2
,n to t′ are two transitions t1 and t2 ofN (n). Since t′•∩Q′ = ∅we also have t1

•∩Q = ∅
and t1

• ∩Q = ∅. Let ko denote the only element in {k1, k2, k3} \ {k
′
1, k

′
2}. If S ×{ko} ∩

•t′ 6=
∅ then •t1 ∩ Q 6= ∅ and •t1 ∩ Q 6= ∅ because ko is not dropped. If, on the other hand,

S × {ko} ∩
•t′ = ∅, then either S × {k1} ∩

•t′ 6= ∅ or S × {k2} ∩
•t′ 6= ∅. By symmetry we

can assume w.l.o.g. S × {k1} ∩
•t′ 6= ∅. Then •t2 ∩Q 6= ∅. So Q is not a trap although its trap

family is Q, which contradicts the assumption. ⊓⊔

Proposition 7.4 leads to a parameterization procedure for barrier crowds. Given a trap Q of some

instanceN (n) and its trap familyQ, consider all multisets obtained fromQ by applying the operations

of Proposition 7.4. We call this set of multisets the extended trap family of Q. Observe that Q
represents a set of traps ofN (n), while the extended family represents a set of traps across all instances

N (n′) with n′ ≥ n.

Give an indexed trap T = 〈n,Q〉, we choose the formula ParTrapT(X) so that its models corre-

spond to the traps of the extended family ofQ. For this, we capture the minimal required multiplicities

of 〈n,Q〉 by quantifying for every S ⊆ P withQ(S) > 0 indices iS,1, . . . , iS,Q(S) for which precisely

the places in S are marked. Making all indices introduced this way pairwise distinct ensures that any

model of the formula at least covers the multiset Q. Additionally, we can capture that the subset S
of P which are marked in every other index are chosen such that Proposition 7.4 ensures that we still

obtain a trap.

ParTrapT(n,X) := ∃S⊆PiS,1, . . . , iS,Q(S) :

{
 ∧

(S,k)6=(S′,k′)

(iS,k 6= iS′,k′)


∧

∀j : j < n→

[



∨

S⊆P,k=1,...,Q(S)


j = iS,k ∧




∧

p∈S

j ∈ Xp

∧
∧

p∈P\S

j /∈ Xp








∨





 ∧

S⊆P,k=1,...,Q(S)

j 6= iS,k


 ∧

∨

∅6=S⊆P : Q(S)≥2
S=∅ : Q(S)≥1




∧

p∈S

j ∈ Xp

∧
∧

p∈P\S

j /∈ Xp







]}
.

We immediately get:

Theorem 7.5. Let N = 〈P,Tr 〉 be a barrier crowd and let 〈n,Q〉 be a local indexed trap of N (n).
Then every model of the formula ParTrapT(n,X) defined above is an indexed trap of N .

220 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

Remark 7.6. This theorem applies to all order invariant and homogeneous systems. It is easy to see

that order invariance and homogeneity of a given parameterized net can be expressed in WS1S and

verified automatically.

8. Generalized parameterized Petri nets

Recall that the set of places of a parameterized net has the form P × [n], i.e., n copies of the set P
of place names. Intuitively, the net Nn consists of n communicating processes, each of them with (a

copy of) P as states.

Unfortunately, this setting is not powerful enough to model many classical distributed algorithms.

In particular, it cannot model any parameterized mutual exclusion algorithm, like Dekker’s, Dijkstra’s,

Knuth’s and others [42]. The reason is that in all these algorithms agents need to execute loops in

which they inspect the current value of a flag in all other agents. We explain this point in detail taking

Dijkstra’s mutual exclusion algorithm as an example.

Example 8.1. In Dijkstra’s algorithm, each agent maintains a boolean variable flag that indicates

whether the agent wants to access the critical section or not. The flag is initially set to false . At any

moment the agent i may set it to true , after which agent i iteratively inspects the flag variable of the

other agents. Crucially, the inspection takes n atomic steps, one for each agent. If some flag has value

true , then the agent sets its flag to false and starts over; if all flags have value false (at the respective

times at which the agent inspects them), then the agent moves to the critical section. If we assume that

agents have identities 0, 1, . . . , n − 1, then agent i can be modeled by the code shown in Figure 3.

init: flag[i] = true;

for(j = 0; j < n; j++) {

if(i != j and flag[j] == true) {flag[i] = false; goto init;}

}

/* critical section */

restart: flag[i] = false; goto init;

Figure 3: Pseudocode for Dijkstra’s mutual exclusion algorithm for agent i.

When agent i inspects the flag of agent j, we say that agent i points to agent j. Assume that

when an agent is not executing the loop the variable j has a special value ⊥ (points to null). At every

moment in time the local state of each agent is determined by its current position in the code, the value

of its flag, and the agent it is pointing to (or null). We distinguish six positions: initial (corresponds

to the label init above); loop (before the for loop); looping (before the if statement); break (before

the body of the if statement); crit (critical section); and done (label restart). The flag has two

values, and j can have n+ 1 different values.

In the Petri net model for an instance of Dijkstra’s algorithm with n agents, each agent is assigned

six places for the positions, two places for the values of flag , and n+1 places for the values of j. The

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 221

net has a total of n · (8 + n) places. The crucial difference with respect to the net for the philosophers

is that the number of places per agent depends on n.

Since some places now involve two agents (the places indicating that agent i points to agent j),
sets of places must be modeled as relations, which leads to the definition of generalized parameterized

nets:

Definition 8.2. (Generalized Parameterized nets)

A generalized parameterized net is a triple N = 〈P,R,Tr 〉, where P is a finite set of place names,R
is a finite set of relation names, and Tr(n,X ,U ,Y,S) is a second-order formula over one first-order

variable n which represents the considered size of the instance, a tuple X and Y of monadic second-

order variables for each place name of P, a tuple U and S of dyadic second-order variables for each

relation name of R. Moreover, we require Tr to only quantify first-order and monadic second-order

variables.

For every n ≥ 1, the n-instance of N is the net N (n) = 〈Pn, Tn〉 given by:

• Pn = (P × [n]) ∪ (R× [n]× ([n] ∪ {⊥})),

• 〈P1 ∪R1, P2 ∪R2〉 ∈ Tn if and only if “Tr (n, P1, R1, P2, R2)” holds; i.e., if the interpretation

µ given by

µ(Xp) = {i ∈ [n] | 〈p, i〉 ∈ P1} ,

µ(Ur) = {〈i, j〉 ∈ [n]× ([n] ∪ {⊥}) | 〈r, i, j〉 ∈ P1} ,

µ(Yp) = {i ∈ [n] | 〈p, i〉 ∈ P2} , and

µ(Sr) = {〈i, j〉 ∈ [n]× ([n] ∪ {⊥}) | 〈r, i, j〉 ∈ P2} .

is a model of Tr .

We now define generalized parameterized Petri nets

Definition 8.3. (Generalized parameterized Petri nets)

A generalized Petri net is a pair 〈N , Initial 〉 where

• N = 〈P,R,Tr 〉 is a generalized net, and

• Initial (n,X ,U) is a second-order formula over the first-order variable n, monadic second-

order variables X , and dyadic second-order variables U .

As for Tr before, we restrict Initial to only quantify first-order variables and monadic second-order

variables.

As before, we consider 〈N (n),M〉 to be the marked n-instance if “Initial(n,M) is true”; that is M
is a 1-safe marking of N (n) for which µ with µ(n) = n and µ(Xp) = {i ∈ [n] |M(p(i)) = 1} and

µ(Ur) = {〈i, j〉 ∈ [n] ∪ ([n] ∪ {⊥}) |M(r(i, j)) = 1} satisfies µ |= Initial .

Example 8.4. We model Dijkstra’s mutual exclusion algorithm as a generalized parameterized Petri

net 〈N , Initial 〉 where N = 〈P,R,Tr 〉. We define

P = {initial , loop , looping , break , crit , done} ∪ {idle, trying} R = {ptr}

222 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

Equation 2: Part of the formula Tr for Dijkstra’s mutual exclusion algorithm.

∃i . ∃j . i < n ∧ j 6= ⊥ ∧ 1 ≤ j < n

∧ Xlooping = {i} ∧ Uptr = {〈i, j〉}

∧




i = j < n− 1 ∧

[
Sptr = {〈i, j + 1〉}

∧ Ylooping = {i}

]
∧ Allfrom {looping}

∨ i 6= j < n− 1 ∧




Sptr = {〈i, j + 1〉}

∧ Xidle = {j}

∧ Yidle = {j}

∧ Ylooping = {i}


 ∧ Allfrom {looping , idle}

∨ i = j = n− 1 ∧




Ycrit = {i}

∧ Ylooping = ∅

∧ Sptr = {〈i,⊥〉}


 ∧ Allfrom {crit , looping}

∨ i 6= j = n− 1 ∧




Ycrit = {i}

∧ Ylooping = ∅

∧ Xidle = {j}

∧ Yidle = {j}

∧ Sptr = {〈i,⊥〉}




∧ Allfrom

{
crit , idle ,

looping

}




The set P contains the positions in the code plus the elements idle and trying , which are abbrevia-

tions for “the value of flag is true”, and “the value of flag is false”, respectively. The relation symbol

ptr (for pointing) indicates which agent is pointing to which one. The set of places of the instance Nn

is (P × [n]) ∪ ({ptr} × [n]× ([n] ∪ {⊥}).

We only describe one part of the formula Tr modeling the transitions that correspond to some

agent successfully advancing in its loop, either because the agent inspects itself, or because another

agent that has not set its flag variable to true . For every P ′ ⊆ P , we first introduce an auxiliary

formula indicating that a set of places only contains places of type P ′ ⊆ P.

Allfrom P ′ =
∧

p/∈P ′

Xp = Yp = ∅

The transitions are given by the formula shown in Equation 2. The formula states that there is a

transition 〈P1 ∪R1, P2 ∪R2〉 if

• P1 = {looping(i)}, R1 = {ptr (i, j)}, P2 = {looping(i)}, and R2 = {ptr (i, j + 1)} for some

i = j < n− 1; or

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 223

• P1 = {looping(i), idle(j)}, R1 = {ptr (i, j)}, P2 = {looping(i), idle(j)}, and, for some

i 6= j < n− 1, R2 = {ptr(i, j + 1)}; or

• P1 = {looping(i)}, R1 = {ptr (i, j)}, P2 = {crit(i)}, and R2 = {ptr(i,⊥)} for i = j =
n− 1; or,

• for some i 6= j = n−1, P1 = {looping(i), idle(j)},R1 = {ptr (i, j)}, P2 = {crit(i), idle(j)},
and R2 = {ptr(i,⊥)}.

Finally, the initial markings are given by:

Initial(n,X ,U) =




Xinitial = [n] ∧ Xidle = [n]

∧
∧

p∈P\{initial ,idle}

Xp = ∅

∧∀i . i < n→ [∀j . 〈i, j〉 ∈ Uptr ↔ j = ⊥]




8.1. A CEGAR approach

In Section 5.1.2 we have described a CEGAR loop for the analysis of parameterized Petri nets. We

extend the approach to generalized parameterized Petri nets.

Recall that the CEGAR loop takes a parameterized Petri net 〈N , Initial 〉, and a safety prop-

erty described by a formula Safe(n,M), as inputs. The loop maintains a set T of traps of the in-

stances of N , initially empty. In every iteration in the loop, the procedure first constructs the formula

ParTrapT(n,X), then the formula SafetyCheckT of (8), and then sends SafetyCheckT to a WS1S-

checker. If the checker returns that SafetyCheckT holds, then every instance of N satisfies the safety

property, and the loop terminates. Otherwise, the checker returns a model M = 〈n,M〉 of the formula

PReachT (n,M) ∧ ¬Safe(n,M), and searches for a witness trap X that is marked at every initial

marking, but empty at M, with the help of the SAT-formula WTrap
M
(n,X) defined in (7).

Let us see how to extend the CEGAR loop to generalized parameterized Petri nets. We assume

again that the generalized parameterized Petri net belongs to a class with a special topology that

allows one to compute the formula ParTrapT for a given trap T . The obstacle is that the formula

SafetyCheckT no longer belongs to WS1S. Indeed, since the places of a generalized Petri net are

of the form p(i) or r(i, j), in (8) we have to add to the placeset parameters X and M relationset

parameters U and L, i.e., sequences of dyadic predicate symbols, one for each relation in R. For

example, ParTrapT(n,X) becomes ParTrapT(n,X ,U).
While the extension of WS1S with dyadic predicates is no longer decidable, we show that the

problem of checking if SafetyCheckT is true can be reduced to the validity problem of first-order

logic when SafetyCheckT is a universal formula, i.e., a formula in prenex normal form in which

a block of universal second-order quantifiers is followed by a first-order formula. In this case it

is easy to construct a first-order formula FO(SafetyCheckT) such that SafetyCheckT is true iff

FO(SafetyCheckT) is valid. This allows us to use an automatic first-order theorem prover to check

validity of FO(SafetyCheckT), and, therefore, the truth of SafetyCheckT . The price to pay is that,

if SafetyCheckT does not hold, then the checker no longer returns a model of PReachT (n,M) ∧

224 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

¬Safe(n,M); instead, the checker just does not terminate (in practice, it reaches a timeout). For

this reason, we replace the CEGAR loop by the following one, consisting of two communicating

processes:

• Process 1 iteratively constructs the Petri nets N (1), N (2), N (3), . . . , and uses the CEGAR

loop for ordinary Petri nets (see Section 5.1.1) to compute sets T1, T2, T3, . . . of traps proving

that N (1), N (2),N (3), . . . , satisfy the safety property. Whenever this process computes a new

trap, it passes it to Process 2.

• Process 2 maintains a set T of traps, initially empty. First, for every T ∈ T it constructs the

formula ParTrapT(n,X ,U). It then constructs the formula FO(SafetyCheckT), and passes

to a first-order theorem prover. If the prover returns that FO(SafetyCheckT) is valid, then

SafetyCheckT is true, and the safety property holds for all instances. If the prover reaches a

timeout, then Process 2 waits for Process 1 to send a new trap T , adds T to T , and iterates.

In order to complete the description of this procedure we must explain

• How to construct FO(SafetyCheckT). For universal formulas SafetyCheckT this is a standard

syntax-guided procedure, that we sketch below.

• How to construct ParTrapT(n,X ,U). In the next section we do this for inspection programs,

a topology in which we can model Dijkstra’s algorithm and other mutual exclusion algorithms.

The formula FO(SafetyCheckT). A formula of WS1S with dyadic predicates is universal if it is in

prenex normal form and has the form ϕ := ∀X1 . . .Xn ∀U1 . . .Um ϕ̂, where the Xi and Uj are

monadic and dyadic predicates, respectively, and ϕ̂ does not contain any second-order quantifiers, i.e.,

ϕ̂ is a formula over the syntax

t := x | 0 | succ(t)

ϕ := t1 ≤ t2 | x ∈X | 〈x,y〉 ∈ U | ϕ1 ∧ ϕ2 | ¬ϕ1 | ∃x : ϕ

We describe the folklore result that for any universal sentence ϕ there is a formula FO(ϕ) of

first-order logic that is valid iff ϕ holds. Applying the result to SafetyCheckT we obtain the desired

formula FO(SafetyCheckT). The signature of FO(ϕ) replicates the syntax above: it contains two

constant symbols 0 and N , a unary function symbol succ, a binary predicate ≤, a monadic predicate

InXi(x) for every monadic second-order variable Xi, and a dyadic predicate InUj(x,y) for every

dyadic second-order variable Uj . FO(ϕ) is of the form ψ0 → ψ[ϕ̂]. The sentence ψ0 ensures that

≤ is a discrete linear order with minimal element 0 and maximal element N , that succ is irreflexive,

injective, and respects ≤, i.e., ∀x∀y : x ≤ y → succ(x) ≤ succ(y). The formula ψ[ϕ̂] is defined

inductively on the structure of ϕ̂ as follows:

• if ϕ̂ = x, 0, succ(t), t1 ≤ t2, then ψ[ϕ̂] = ϕ̂.

• if ϕ̂ = x ∈X, 〈x,y〉 ∈ U then ψ[ϕ̂] = InX(x), InU(x,y), respectively.

• if ϕ̂ = ¬ϕ̂1, ϕ̂1 ∧ ϕ̂2, then ψ[ϕ̂] = ¬ψ[ϕ̂1], ψ[ϕ̂1] ∧ ψ[ϕ̂2], respectively.

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 225

Intuitively, ψ[ϕ̂] is the result of dropping all universal second-order quantifiers from ϕ, and interpreting

the set membership symbol ∈ as a unary or binary predicate. For example, we have

ϕ = ∀U ∀X ∀x∃y : (x ∈X ∧ 〈x,y〉 ∈ U)→ y ∈X

FO(ϕ) = ψ0 → ∀x∃y : (InX(x) ∧ InU(x,y))→ InX(y) .

It is easy to see that if FO(ϕ) is valid, then ϕ holds. For the other direction one observes that if ϕ holds

then ψ[ϕ̂] holds in every model satisfying ψ0.

In our implementation of this procedure we construct the formula FO(SafetyCheckT) directly

using the specific topology of looping programs without taking the detour through this translation.

This also allows us to represent FO(SafetyCheckT) in a form more suitable for a first-order theorem

prover. This direct construction is presented in Appendix A.

8.2. Inspection programs

The loop of Dijkstra’s algorithm in which an agent inspects the local state of all other agents is a

quite general construction at the core of many other distributed algorithms [43, 44]. We introduce

inspection programs, a topology tailored for describing these algorithms. In inspection programs,

agents maintain a local copy of a set of variables with finite domain. For this, we assume that P is

partitioned into a number of sets P0,P1, . . . ,Pk, each set representing the range of one variable. This

means means that Pj × {i} is a 1BB-set in every N (n) for all 1 ≤ j ≤ k and i ∈ [n], since the

copy of every variable for each agent holds exactly one value at every moment in time. Further, we

assume that there exists one distinct set of states, which we call Q in the following. As in the previous

topologies, transitions are generated by transition patterns, in this case two different ones: local and

loop patterns.

Local patterns. A local pattern is of the form

〈origin, 〈P1, P2〉 , target 〉

where origin , target ∈ Q and P1, P2 ⊆ P . Roughly speaking, the pattern specifies that an agent can

change its state from origin to target , simultaneously, changing its copies of the places of P1 to P2.

More formally, in the instance N (n) the pattern generates for every i ∈ [n] a transition 〈Q1, Q2〉 with

Q1 = ({origin} ∪ P1)× {i} and Q2 = ({target} ∪ P2)× {i} .

The pattern is called local because it involves only the places of one particular index.

Loop patterns. Loop patterns contain four loop states, called origin , q◦, target succ , and target fail .

Intuitively, an agent initiates the loop by moving from origin to q◦, and exits it by moving from q◦ to

target succ or target fail . The agent moves to target fail whenever the agent being currently inspected

fails the inspection, and to target succ if all agents pass the inspection. Further, a relation r◦ ∈ R
maintains the agent that is being currently inspected. Finally, the condition being inspected is modeled

by two sets P,P ⊆ P: if the inspected agent is currently occupying a state of P resp. P , then the

226 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

agent passes resp. fails the inspection. Additionally, we enforce that q◦ and r◦ occur nowhere else in

any pattern. Formally, a loop pattern is of the form

〈
origin , q◦, r◦, P, P , target succ , target fail

〉

where origin , q◦, target succ , target fail ∈ Q while P,P ⊆ P and r◦ ∈ R. For every agent i ∈ [n], the

pattern generates several transitions within the instance N (n):

• A transition 〈Q1, Q2〉, modeling the start of the loop, given by:

Q1 = {〈origin, i〉 , 〈r◦, i,⊥〉} and Q2 = {〈q◦, i〉 , 〈r◦, i, 0〉} .

• A transition 〈Q1, Q2〉, modeling that the agent does not inspect itself, given by

Q1 = {〈q◦, i〉 , 〈r◦, i, i〉} and Q2 = {〈q◦, i〉 , 〈r◦, i, i+ 1〉}

for every i ∈ [n− 1], and

Q1 = {〈q◦, i〉 , 〈r◦, i, i, 〉} and Q2 = {〈target succ , i〉 , 〈r◦, i,⊥〉}

if i = n− 1.

• A transition 〈Q1j, Q2j〉 for every agent j, modeling a successful inspection of agent j, given by:

Q1j = {〈q◦, i〉 , 〈r◦, i, j〉} ∪ P × {j} and Q2j = {〈q◦, i〉 , 〈r◦, i, j + 1〉} ∪ P × {j}

if j ∈ [n − 1], and

Q1j = {〈q◦, i〉 , 〈r◦, i, j〉} ∪ P × {j} and Q2j = {〈target succ , i〉 , 〈r◦, i,⊥〉} ∪ P × {j}

if j = n− 1.

• A transition 〈Q1j, Q2j〉 for every agent j, modeling an unsuccessful inspection of agent j, given

by: P :

Q1j = {〈q◦, i〉 , 〈r◦, i, j〉} ∪ P × {j} and Q2j =
{〈

target fail , i
〉
, 〈r◦, i,⊥〉

}
∪ P × {j}

for every j ∈ [n].

Example 8.5. The transitions of Dijkstra’s mutual exclusion algorithm (Example 8.4) are generated

by the four local transition patterns

〈initial , {idle} , {trying} , loop〉

〈break , {trying} , {idle} , initial〉

〈done , {trying} , {idle} , initial〉

〈crit , ∅, ∅, done〉

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 227

and the single loop transition pattern

〈loop, looping , ptr , {idle} , {trying} , crit , break 〉 .

We depict parts of the instance N (3) in Figure 4.

It is straightforward to see that every inspection program can be modeled by a generalized Petri

net. Notice that we already gave a part of Tr in Example 8.4 such that, when instantiated in some

instance N (n), these transitions coincide with the transitions induced by the loop pattern above when

the loop is advanced.

idle(1) trying(1)

initial(1) loop(1) looping(1)

ptr (1,⊥) ptr (1, 0) ptr (1, 1) ptr (1, 2)

break (1) crit(1)

done(1)

idle(0)trying(0) idle(2)trying(2)

Figure 4: We illustrate here parts ofN (3) for the generalized Petri netN of Example 8.5. Specifically,

we include all places that model the state of the first agent and the transitions that change the state of

the first agent. Some of these transitions “observe” places of the state of the zeroth and second agent.

These places are added with dashed lines.

228 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

8.3. Parametrizing traps of inspection programs

We introduce parametrization results for inspection programs that, given a trap for an instance, produce

a set of traps for all instances. The essential observation is that every transition involves a finite amount

of indices: for local transitions there is exactly one index involved, while for loop transitions there are

at most 3 involved indices; the index i of the agent that is executing the loop transition, the index j
of the agent being currently inspected by agent i and (potentially) the index j + 1 to which agent i
advances its pointer.

Indexed traps of inspection programs. We denote an indexed trap as a triple 〈n,Q,R〉, where

Q ⊆ P × [n] and R ⊆ R × [n] × ([n] ∪ {⊥}) are sets of places such that Q ∪ R is a trap of N (n).
Given an indexed trap 〈n,Q,R〉, we introduce the following notations, where i, j ∈ [n]:

Q[i] = {p ∈ P | p(i) ∈ Q}

R[i, j] = {r ∈ R | r(i, j) ∈ R}

R[−, j] = {r(i) ∈ R× [n] | r(i, j) ∈ R}

L = {i ∈ [n] | there exists j ∈ ([n] ∪ {⊥}) with R[i, j] 6= ∅}

Q[i] is used in the same way as before, while R[i, j] and R[−, j] are generalizations of this concept

to the relation symbols of the generalized net. L is the set of agents such that the trap Q ∪R contains

at least one place for which there is some r ∈ R such that r(i, j) is in the trap for some j. We call L
the set of looping indices of the indexed trap. This naming convention is inspired by the considered

topology: any place r(i, j) corresponds to the fact that agent i executes some loop and currently points

to j. Let us illustrate these various notions with an example.

Example 8.6. Consider the parameterized net N from Example 8.4. In the Petri net N (7), the fol-

lowing set of places constitutes a trap:




break(3), loop(3), false(3),

break(5), loop(5), false(5),

ptr(3, 0), ptr (3, 1), ptr (3, 2),

ptr(3, 3), ptr (3, 4), ptr (3, 5)

ptr(5, 0), ptr (5, 1), ptr (5, 2), ptr (5, 3),





.

The corresponding indexed trap is

〈n,Q,R〉 :=

〈
7,

{
break(3), loop(3), false(3),

break(5), loop(5), false(5),

}
,





ptr(3, 0), ptr (3, 1), ptr (3, 2),

ptr(3, 3), ptr (3, 4), ptr (3, 5),

ptr(5, 0), ptr (5, 1), ptr (5, 2), ptr (5, 3)





〉
.

and we have

i 0 1 2 3 4 5 6

Q[i] ∅ ∅ ∅ {break , loop, false} ∅ {break , loop, false} ∅

R[−, i] {r(3), r(5)} {r(3), r(5)} {r(3), r(5)} {r(3), r(5)} {r(3)} {r(3)} ∅

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 229

Parametrizing indexed traps. Let Ci denote the column of the table of Example 8.6 for index i.
The table itself is then determined by the sequence C0 C1 · · · C6: the column representation of the

indexed trap.

Definition 8.7. Let 〈n,Q,R〉 be an indexed trap. We call the sequence C0 C1 · · · Cn−1, where

Ci := (Q[i], R[−, i]), the column representation of 〈n,Q,R〉.

Since 〈n,Q,R〉 and C0 C1 · · · Cn−1 are different representations of the same object, we abuse

language and speak of the indexed trap C0 C1 · · ·Cn−1.

Observe that the indexed trap of Example 8.6 satisfies C1 = C2 = C3. We are going to prove that,

if an indexed trap C0 C1 · · · Cn−1 of N (n) satisfies Ci−1 = Ci = Ci+1 for some 0 < i < n − 1,

then one can “insert another Ci” to get an indexed trap for n + 1. We introduce for this shift im(Cj)
which is the result of shifting indices in R[−, j] that are larger than i by m steps; i.e., applying the

simultaneous substitution [i +m ← i, i +m+ 1 ← i + 1, . . . , n +m ← n] to R[−, j]. Then every

sequence of the form

shift im(C0) · · · shift
i
m(Ci−1) shift

i
m(Ci) (shift

i
m(Ci))

m shift im(Ci+1) · · · shift
i
m(Cn−1)

for every m ≥ 0 is an indexed trap of N (n +m).

Example 8.8. For Example 8.6, this observation allows us to find a trap in N (8):

i 0 1 2 3 4 5 6 7

Q[i] ∅ ∅ ∅ ∅ {break , loop, false} ∅ {break , loop, false} ∅

R[−, i] {r(4), r(6)} {r(4), r(6)} {r(4), r(6)} {r(4), r(6)} {r(4), r(6)} {r(4), r(6)} {r(4)} ∅

Note that the looping indices 3 and 5 increased consistently in all R[−, j] sets. This is a consequence

of the shift11 operation, since 2 < 3 < 5.

Lemma 8.9. Let T = C0 C1 . . . Cn−1 be an indexed trap (in column representation) for some

inspection program N with looping indices L. If there exists 0 < i < n − 1 such that Ci−1 = Ci =
Ci+1 and i− 1, i, i + 1 /∈ L, then for every m ≥ 0 the sequence

Ti,m := shift im(C0) . . . shift
i
m(Ci−1)

(
shift im(Ci)

)m+1
shift im(Ci+1) . . . Cn−1

is an indexed trap of N (n +m).

Proof:

We only consider the special case m = 1, since the general case follows by applying the special case

m times. We have

Ti,1 := shift i1(C0) . . . shift
i
1(Ci−1) shift

i
1(Ci) shift

i
1(Ci) shift

i
1(Ci+1) . . . Cn−1 (11)

230 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

Let rev i
1 be the inverse operation of shift i1; that is, rev i1 applies simultaneously the substitution

[i ← i + 1, i + 1 ← i + 2, . . . , n ← n + 1] to all R[−, j] sets. One can easily verify that for every

j = i− 1, i, i + 1, i + 2 the following holds:

rev i1(shift
i
1(C0)) . . . rev

i
1(shift

i
1(Cj−1))rev

i
1(shift

i
1(Cj+1)) . . . rev

i
1(shift

i
1(Cn−1)

= C0 . . . Cj−1 Cj+1 . . . Cn−1

= T.

This is a consequence of shift i1(Ci−1) = shift i1(Ci) = shift i1(Ci+1) = shift i1(Ci+2), Ci−1 = Ci =
Ci+1, and rev i1(shift

i
1(Ci)) = Ci.

For the sake of contradiction, assume that Ti,1 is not an indexed trap of N (n + 1). Hence, there

exists a transition 〈Q1, Q2〉 in N (n+ 1) such that Ti,1 ∩Q1 6= ∅ but Ti,2 ∩Q2 = ∅.
As mentioned before, at most 3 indices are involved in any instance of any transition pattern of

an inspection program. So there are indices j1, j2, j3 such that Q1, Q2 ⊆ P × {j1, j2, j3} ∪ R ×
{j1, j2, j3} × {j1, j2, j3,⊥}. Let A0 . . . An and B0 . . . Bn be the column representations of Q1

and Q2 respectively. Pick now some k ∈ {i− 1, i, i + 1, i + 2} \ {j1, j2, j3}. We have Ak = 〈∅, ∅〉
and Bk = 〈∅, ∅〉. Informally speaking, we are going to remove agent k from the system and obtain a

transition that contradicts T being a trap. The rest of the proof is the implementation of this idea.

Define 〈Q′
1, Q

′
2〉 as the transition of N (n) given by (in column representation)

Q′
1 := revk1(A0) . . . rev

k
1(Ak−1) rev

k
1(Ak+1) . . . rev

k
1(An+1) (12)

Q′
2 := revk1(B0) . . . rev

k
1(Bk−1) rev

k
1(Bk+1) . . . rev

k
1(Bn+1) (13)

respectively. (〈Q′
1, Q

′
2〉 is indeed a transition of N (n), obtained from the same transition pattern as

〈Q1, Q2〉 with appropriate indices.)

We prove now that Q′
1∩T 6= ∅ but Q′

2∩T = ∅, contradicting the assumption that T is an indexed

trap of N (n). Since k ∈ {i, i+ 1, i+ 2, i + 3}, and none of these indices is a looping index of Ti,1,

we have

T = rev i1(shift
i
1(C0)) . . . rev

i
1(shift

i
1(Cj−1))rev

i
1(shift

i
1(Cj+1)) . . . rev

i
1(shift

i
1(Cn−1)

= revk1(shift
i
1(C0)) . . . rev

k
1(shift

i
1(Cj−1))rev

k
1(shift

i
1(Cj+1)) . . . rev

k
1(shift

i
1(Cn−1) (14)

Let us prove Q′
1 ∩ T 6= ∅. Recall that Q1 = A0 . . . An. Since Q1 ∩ Ti,1 6= ∅ holds by assumption,

from (11) we obtain an index a ∈ {j1, j2, j3} such that shift i1(Ca) ∩ Aa 6= ∅; that is, shift i1(Ca) =〈
QCa , RCa

〉
and Aa =

〈
QAa , RAa

〉
such that either QCa ∩ QAa 6= ∅ or RCa ∩ RAa 6= ∅. Then,

however, revk1(shift1(Ca)) ∩ revk1(Aa) 6= ∅.

Similarly, we observe that shift i1(Ca)∩Ba = ∅ for all a. It follows, now, that rev k
1(shift

i
1(Ca))∩

revk1(Ba) = ∅ for all a. Consequently, by (12), (13) and (14) we obtain the contradiction that T is not

a trap. The result follows. ⊓⊔

Lemma 8.9 paves the way for a generalization result for inspection programs which, given a trap T of

an instance, constructs a parametrization ParTrapT(n,X ,U).

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 231

Note that Lemma 8.9 essentially allows to insert C∗
i ; that is, an arbitrary repetition of the letter Ci

at the appropriate location, to obtain a family of traps. One has to still account for the correct m in the

shiftm operation but this observation might help to understand the following generalization theorem.

Let us introduce a bit of simplifying notation first. We write

Q=P (t) for
∧

p∈P

t ∈ Xp ∧
∧

p∈P\P

t /∈ Xp.

That means that “Q[t]” is P ; i.e., this formula is satisfied by some interpretation µ if {µ(t)} × P ⊆⋃
p∈P µ(Xp) × {p} (the set of places µ encodes in the placeset variables X). We introduce a similar

notion to represent that R[−, t] is of a certain shape for some term t. Since R[−, t] contains elements

of the form r(ℓ) for some r ∈ R and some looping index ℓ ∈ L, assume that the looping indices are

ℓ1 < ℓ2 < . . . < ℓk < u1 < u2 < . . . < um and there exists a corresponding first-order variable ℓi
for every 1 ≤ i ≤ k and ui for 1 ≤ i ≤ m. Now we write

R=R(t) for




∧

1≤v≤k
r(ℓv)∈R

〈ℓv, t〉 ∈ Ur∧
∧

1≤v≤k
r(ℓv)/∈R

〈ℓv, t〉 /∈ Ur

∧
∧

1≤v≤m
r(uv)∈R

〈uv, t〉 ∈ Ur∧
∧

1≤v≤m
r(uv)/∈R

〈uv, t〉 /∈ Ur



.

This allows us to formulate our generalization result in a compact way:

Theorem 8.10. Let T = C0 C1 . . . Cn−1 be an indexed trap (in column representation) in some

looping program N with looping indices L = {ℓ1, . . . , ℓk, u1, . . . , um}. If there exists i ∈ [n] such

that Ci−1 = Ci = Ci+1 and ℓ1 < ℓ2 < . . . < ℓk < i − 1 < i < i+ 1 < u1 < u2 < . . . < um, then

every model of

ParTrapT(n,X ,U) := n ≤ n ∧ ∃y . y + (n− (i+ 2)) = n ∧ i+ 1 ≤ y

∧
∧

j<i−1

Q=Qj ∧
∧

i+1<j<n

Q=Q[j](y + (j − (i+ 2)))

∧∀j . i− 1 ≤ j ≤ y → Q=Q[i](j)

∧∀ℓ1, . . . , ℓk,u1, . . . ,um .
∧

1≤v≤k

ℓv = ℓv ∧
∧

1≤v≤m

uv = y + (uv − (i+ 2))

→




∧

j<i−1

R=R[∗,j](j) ∧
∧

i<j

R=R[∗,j](y + (j − (i+ 2)))

∧∀i− 1 ≤ j ≤ y → R=R[∗,i](j)




corresponds to an indexed trap.

Proof:

Let µ be a model of ParTrapT(n,X ,U). Consider the triple 〈n′, Q′, R′〉 such that n′ = µ(n),
Q′ =

⋃
p∈P {p} × µ(Xp), and R′ =

⋃
r∈R {r} × µ(Ur). Examining ParTrapT(n,X ,U) closely

232 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

reveals that its column representation is

shift im(C0) shift
i
m(C1) . . . shift

i
m(Ci−1) shift

i
m(Ci)

m+1 shift im(Ci+1) . . . Cn−1

for some m ≥ 0. The result follows now immediately from Lemma 8.9. ⊓⊔

9. Experiments

9.1. ostrich

We implemented the CEGAR loop and the parameterization techniques of Sections 6 and 7 in our

tool ostrich. ostrich heavily relies on MONA as a WS1S-solver. The results of our experiments

are presented in Figure 5. In the first two columns the table reports the topology and the name of the

system to be verified. The array topology is a linear topology where agents can refer existentially or

universally to agents with smaller or larger indices. Analogously to the other topologies we derive a

sound parameterization technique for traps, 1-BB sets, and siphons. The rings are Dijsktra’s token ring

for mutual exclusion [46] and a model of the dining philosophers in which philosophers pick both forks

simultaneously. For headed rings we consider Example 3.2 and a model of a message passing leader

.

Topology Example
Init.

(ms)
Property

Check

(ms)
1BB-sets Traps Siphons

Semi-automatic

invariants

deadlock 40 1 (1) 0 (0) 0 (0)
Dijkstra ring 558

mutual exclusion 125 1 (1) 1 (1) 0 (0)
2

ring

atomic phil. 409 deadlock 79 1 (1) 0 (0) 0 (0) 4

lefty phil. 495 deadlock 294 7 (4) 0 (0) 0 (0) 3

not 0 and n− 1 leader 965 1 (0) 0 (0) 2 (1)headed ring
leader election 670

not two leaders – – – –
1

deadlock 16 0 (0) 0 (0) 0 (0)
array Burns 501

mutual exclusion 379 0 (0) 8 (7) 0 (0)
1

deadlock 88 2 (1) 0 (0) 0 (0)
Dijkstra 1830

mutual exclusion 1866 0 (0) 3 (1) 0 (0)
3

deadlock 12 0 (0) 0 (0) 0 (0)
Berkeley 414

consistency (3/3) 361 0 (0) 9 (1) 0 (0)
1

deadlock 19 0 (0) 0 (0) 0 (0)
Dragon 538

consistency (7/7) 2334 52 (7) 0 (0) 0 (0)
7

deadlock 14 0 (0) 0 (0) 0 (0)
Firefly 511

consistency (0/4) 232 0 (0) 2 (0) 0 (0)
2

deadlock 13 0 (0) 0 (0) 0 (0)
Illinois 468

consistency (0/2) 180 0 (0) 3 (0) 0 (0)
1

deadlock 12 0 (0) 0 (0) 0 (0)
MESI 422

consistency (2/2) 500 0 (0) 13 (2) 0 (0)
1

deadlock 13 0 (0) 0 (0) 0 (0)
MOESI 446

consistency (7/7) 1226 0 (0) 24 (4) 0 (0)
1

deadlock 12 0 (0) 0 (0) 0 (0)

crowd

Synapse 420
consistency (2/2) 22 0 (0) 0 (0) 0 (0)

0

Figure 5: Experimental results of ostrich. The complete data is available at [45].

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 233

election algorithm. The array is Burns’ mutual exclusion algorithm [47]. The crowds are Dijkstra’s

algorithm for mutual exclusion [42] and models of cache-coherence protocols taken from [41]. Note

that we check inductiveness of the property; i.e., if it holds initially and there is no marking satisfying

the property and the current abstraction and reaching in a single step a marking which violates the

property. Additionally, we include in the specification of the parameterized Petri net a partition of

the places P such that the places of every index in every instance form a 1BB-set. Collectively, this

ensures that all examples are 1-bounded and yields invariants similar to (1), (2) for Example 3.2.

Since ostrich does not compute but only checks these invariants we do not count them in Figure 5

(leading to 3 semi-automatic invariants for Example 3.2 since we omit (1), and (2)). Moreover, these

invariants already imply inductiveness of some safety properties; prominently deadlock-freedom for

all considered cache-coherence protocols.

The third column gives the time ostrich needs to initialize the analysis; this includes verifying

that the given parameterized Petri net is covered by 1BB-sets, and that it indeed has the given topol-

ogy. The fourth column gives the property being checked. The specification of the cache coherence

protocols consists of a number of consistency properties, specific for each protocol. The legend “con-

sistency (x/y)” indicates that the specification consists of y properties, of which ostrich was able to

automatically prove the inductiveness of x. Column 5 gives the time need to check the inductiveness

the property (or, in the case of the cache-coherence protocols, either find a marking which satisfies

all constraints imposed by 1BB-sets, traps or siphons, or prove the inductiveness of the properties to-

gether). Columns 6, 7, and 8 give the number of WS1S-formulas, each corresponding to a parameter-

ized 1BB-sets, trap, or siphon that are computed by the CEGAR loop. Some of these WS1S-formulas

have only one model, i.e., they correspond to a single trap, siphon, or 1BB-set of one instance. Such

“artifacts” are needed when small instances (e.g., arrays of size 2) require ad-hoc proofs that cannot

be parameterized. In these cases the “real” number of parametric invariants is the result of subtracting

the number of artifacts from the total number. The last column reports the number of parameterized

inductive invariants obtained by the semi-automatic CEGAR loop. There the user is presented a series

of counter examples to the inductiveness of the property. The user can check for traps, siphons or 1BB-

sets to disprove the counter example. If the user then provides an invariant which proves inductive it

is used to refine the abstraction until no further counter example can be found. The response time of

ostrich in this setting is immediate which provides a nice user experience. MOESI is an example

which shows that the semi-automatic procedure can lead to proofs with fewer invariants. For Dragon

four of the seven invariants are artifacts; thus, it also shows that a semi-automatic approach allows for

proofs with fewer invariants. The last step of the automatic procedure is to remove invariants until no

invariant can be removed without obtaining a counter example again.

For Example 3.2 ostrich automatically computes the following family of 1BB-sets (additionally

to the invariants (1) and (2)): (For readability we omit some artifacts.)

2 ≤ n ∧ taken = think = ∅ ∧wait = eat = {0, 1} ∧ free = {1}

3 ≤ n ∧ taken = wait = think = ∅ ∧ eat = {n− 1, 0} ∧ free = {0}

4 ≤ n ∧ taken = think = ∅ ∧ free = wait = {n− 1} ∧ eat = {n− 2,n − 1}

2 ≤ n ∧ ∃i : 1 < i < n− 2 ∧

(
taken = think = ∅ ∧ free = wait = {i⊕n 1}

∧eat = {i, i ⊕n 1}

)

234 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

9.2. heron

We implemented the approach described in Section 8 in our tool heron [48, 49]. An illustration of the

general concept can be found in Figure 6.

〈N , Safe〉

SafetyCheckT

T = ∅

return “Safe holds”
satisfiableIs the unsafe marking

M in N (n) reachable?

counter-example: 〈n,M〉

WTrap
M
(n,X)

return “unsure”

Abduct: ParTrap
T
(n,X)

model: T

add to T

invalid

〈N , Safe〉

SafetyCheckT

T = ∅

return “Safe holds”
validIs an unsafe marking in

N (n) reachable?

timeout: increase n

WTrap
M
(n,X ,U)

return “unsure”

Abduct: ParTrap
T
(n,X ,U)

model: T

add to T

invalid

Figure 6: An illustration of the designs of ostrich (upper diagram) and heron (lower diagram).

For both the input is a (generalized) parameterized Petri net N and a property Safe that we want to

check. For ostrichwe can express WTrap in WS1S, while heron specifically relies on an appropriate

embedding into SAT. Also, ostrich uses MONA to check SafetyCheck or get a counter-example,

while heron uses first-order provers. Further, heron uses timeouts for its provers; e.g., VAMPIRE or

CVC4. The experimental data suggests that these timeouts can be chosen small; in particular, 2 − 3
seconds is appropriate for our mutual exclusion benchmarks.

heron is written in Python. It uses clingo [50] as SAT solver. To solve the first-order queries

heron uses VAMPIRE [51] and CVC4 [52]. As benchmarks we consider classical algorithms for mutual

exclusion. These include a reduced version of Dijkstra’s algorithm for mutual exclusion [42], which

we presented as Example 8.4 above, a more precise formalization of Dijkstra’s algorithm, an algo-

rithm by Knuth [53], one by de Bruijn [54], and one by Eisenberg & McGuire [55]. Additionally, we

have modeled Szymanski’s algorithm for mutual exclusion [56] as well. For all these algorithms we

consider the property that they indeed provide mutual exclusion of processes in the critical section.

For most of these algorithms we need to expand the topology of inspection programs in various ways.

However, all these expansions maintain that every transition involves at most a finite amount of indices

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 235

and that every re-ordering of these indices also yield a transition in an instance. Inspecting the proof

of Lemma 8.9 one observes that these are the crucial observations for the stated result. Consequently,

Theorem 8.10 generalizes well to all these expansions. We present positive results for all these exam-

ples but for the algorithm of Szymanski. The table in Figure 7 reports data on the positive results. The

first column shows which algorithm we prove. The second column states how many seconds heron

needs to compute the positive result. The third column reports the maximal n for which N (n) is

instantiated during this computation. In the fourth column we give the amount of traps we computed

during this computation, and in the fifth column how many abducted trap families we used. The sixth

column gives the maximal amount of looping indices that occur in traps for this example and, finally,

we give the longest time it took for a successful query to the prover.

Algorithm time (s) max. N # traps # abducted traps
max.

indices

max. proving

time (s)

Example 8.4 11 8 36 2 2 1

Dijkstra’s 22 8 75 5 2 1

Knuth’s 194 8 160 7 2 1

de Bruijn’s 76 8 164 6 2 1

Eisenberg & McGuire’s 1055 9 126 6 2 1

Figure 7: Experimental results for heron.

For Szymanski’s algorithm for mutual exclusion our algorithm fails. This is because already

instances with n = 2 do not allow to prove the mutual exclusion property via traps, 1BB-sets, and

siphons. In fact, Szymanski’s algorithm posed already a negative result for the approach of [5]. This

means that instances of Szymanski’s algorithm are out of reach – even when one additionally uses the

marking equation for Petri nets to over-approximate reachable markings.

The data suggests that heron, as ostrich, synthesizes only a small amount of necessary invari-

ants. Moreover, these invariants are “local”; that is, they involve at most 2 looping indices. Conse-

quently, the proofs that heron constructs are readable and concise. The drawback, however, is the

significant amount of time we need to construct and verify these proofs. Surprisingly, the queries to

the theorem prover, once all the necessary invariants are synthesized, are actually very fast; most time

is spent on instantiating and proving finite instances of N .

10. Conclusion.

We have refined the approach to parameterized verification of systems with regular architectures pre-

sented in [9]. Instead of encoding the complete verification question into large, monolithic WS1S-

formula, our approach introduces a CEGAR loop which also outputs an explanation of why the prop-

erty holds in the form of a typically small set of parameterized invariants (see Example 3.2). The

explanation helps to uncover false positives, where the verification succeeds only because the system

or the specification are incorrectly encoded in WS1S. It has also helped to find a subtle bug in the

236 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

implementation of [9] which hid unnoticed in the complexity of the monolithic formula. Addition-

ally, our incremental approach requires to check smaller WS1S-formulas, which often decreases the

verification time (cp. the verification of Dijkstra’s mutual exclusion algorithm [9] in 10s to currently

2s).

On the other hand, seeing the abstraction helps one understand the analyzed system. For example,

we include in [45] a leader election algorithm for which the parameterization techniques of ostrich

are too coarse to establish the general safety property of having always at most one leader. However,

ostrich succeeds to prove the special case that not agents 0 and n− 1 can become leader at the same

time. For this proof ostrich finds a family of siphons which hint to a general inductive invariant of

the system. Using the semi-automatic mode of ostrich we can then verify this inductive invariant

and, as a result of this, the general safety property.

We wanted to expand our methodology to models that represent actual implementations of dis-

tributed algorithms more accurately. Therefore, we discussed an expansion of the original approach

that allows to model non-atomic global checks. Although one forfeits the decidability of the logical

embedding – a corner stone of the CEGAR loop in the original model – we can adapt our approach to

capture these expanded models as well. The resulting algorithm solves a set of non-trivial examples.

Moreover, it maintains the desirable property of synthesizing concise and readable invariants for the

considered examples.

Future work. Parameterized Petri nets rely on WS1S to specify their transitions and their initial

configurations, and it is well known that the languages expressible in WS1S are exactly the regular

languages. This suggests that our techniques might be extended to the regular systems analyzed in

regular model-checking [57]. In this approach a finite automaton describes the language of initial

configurations, and a length-preserving transducer describes the possible transitions. We think our

techniques can be used to algorithmically compute a regular over-approximation of the set of reachable

configurations.

The heron tool checks reachability in 1-safe nets by means of an incomplete method that tests

if a marking satisfies all constraints induced by the traps, siphons, and 1-BB sets of the net. This

is closely related to the approach of [5], which relies on traps, siphons, and the marking equation.

Replacing the marking equation by 1-BB sets leads to a less precise test, but one that can be completely

implemented on top of a SAT-solver and can be generalized to the parameterized case. We plan to

study if the benchmarks of [5] can already be successfully verified using traps, siphons, and 1-BB

sets, or a suitable generalization thereof.

Our method is currently restricted to looping programs. We think that it can be extended to pro-

grams with nested loops. We also plan to study stronger invariants allowing us to verify Szymanski’s

algorithm for mutual exclusion, for which our technique is not yet strong enough.

Data Availability Statement and Acknowledgements. This work has received funding from the

European Research Council(ERC) under the European Union’s Horizon 2020 research and innovation

programme under grant agreement No 787367 (PaVeS).

The tool ostrich and associated files are available at [45]. The current version is maintained at [58].

The tool heron and associated files are available at [49]. The current version is maintained at [48].

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 237

This is an expanded version of [59]; that is, Section 8 was added. It also relies on results of [60].

We thank the anonymous reviewers of the original versions and this submission for their helpful com-

ments.

References

[1] Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 1989. 77(4):541–580.

[2] Reisig W. Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case Studies. Springer,

2013. ISBN:978-3-642-33277-7.

[3] Desel J, Esparza J. Free choice Petri nets. Cambridge university press, 2005. ISBN-10:0521019451,

13:978-0521019453.

[4] Bensalem S, Bozga M, Nguyen T, Sifakis J. D-Finder: A Tool for Compositional Deadlock Detection and

Verification. In: CAV, volume 5643 of LNCS. 2009 pp. 614–619. doi:10.1007/978-3-642-02658-4 45.

[5] Esparza J, Ledesma-Garza R, Majumdar R, Meyer PJ, Niksic F. An SMT-Based Approach to Coverability

Analysis. In: CAV, volume 8559 of LNCS. Springer, 2014 pp. 603–619. doi:10.1007/978-3-319-08867-

9 40.

[6] Blondin M, Finkel A, Haase C, Haddad S. Approaching the Coverability Problem Continuously. In:

TACAS, volume 9636 of LNCS. Springer, 2016 pp. 480–496. doi:10.1007/978-3-662-49674-9 28.

[7] Wimmel H, Wolf K. Applying CEGAR to the Petri Net State Equation. Logical Methods in Computer

Science, 2012. 8(3). doi:10.1007/978-3-642-19835-9 19.

[8] Bozga M, Iosif R, Sifakis J. Checking Deadlock-Freedom of Parametric Component-Based Systems. In:

TACAS (2), volume 11428 of LNCS. Springer, 2019 pp. 3–20. doi:10.48550/arXiv.1805.10073.

[9] Bozga M, Esparza J, Iosif R, Sifakis J, Welzel C. Structural Invariants for the Verification of Systems

with Parameterized Architectures. In: TACAS (1), volume 12078 of LNCS. Springer, 2020 pp. 228–246.

doi:10.1007/978-3-030-45190-5 13.

[10] Bloem R, Jacobs S, Khalimov A, Konnov I, Rubin S, Veith H, Widder J. Decidability of Parameterized

Verification. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2015.

doi:10.1007/978-3-031-02011-7.

[11] Esparza J. Parameterized Verification of Crowds of Anonymous Processes. In: Dependable Software

Systems Engineering, IOS Press, 2016 pp. 59–71. doi:10.3233/978-1-61499-627-9-59.

[12] Abdulla PA, Sistla AP, Talupur M. Model Checking Parameterized Systems. In: Handbook of Model

Checking, pp. 685–725. Springer, 2018. doi:10.1007/978-3-319-10575-8 21.

[13] The MONA Project. MONA. URL https://www.bricks.dk/mona.

[14] Henriksen JG, Jensen JL, Jørgensen ME, Klarlund N, Paige R, Rauhe T, Sandholm A. MONA: Monadic

Second-Order Logic in Practice. In: TACAS, volume 1019 of LNCS. Springer, 1995 pp. 89–110.

[15] Apt KR, Kozen DC. Limits for automatic verification of finite-state concurrent systems. Information

Processing Letters, 1986. 22(6):307 – 309.

[16] Esparza J, Melzer S. Verification of Safety Properties Using Integer Programming: Beyond the State

Equation. Formal Methods in System Design, 2000. 16(2):159–189. doi:10.1023/A:1008743212620.

https://www.bricks.dk/mona

238 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

[17] Esparza J, Meyer PJ. An SMT-based Approach to Fair Termination Analysis. In: FMCAD. IEEE, 2015

pp. 49–56. doi:10.1109/FMCAD.2015.7542252.

[18] Blondin M, Esparza J, Helfrich M, Kucera A, Meyer PJ. Checking Qualitative Liveness Properties of

Replicated Systems with Stochastic Scheduling. In: CAV (2), volume 12225 of LNCS. Springer, 2020 pp.

372–397. doi:10.1007/978-3-030-53291-8 20.

[19] German SM, Sistla AP. Reasoning about Systems with Many Processes. J. ACM, 1992. 39(3):675–735.

[20] Abdulla PA, Cerans K, Jonsson B, Tsay Y. General Decidability Theorems for Infinite-State Systems. In:

LICS. IEEE Computer Society, 1996 pp. 313–321.

[21] Finkel A, Schnoebelen P. Well-structured transition systems everywhere! Theor. Comput. Sci., 2001.

256(1-2):63–92. doi:10.1016/S0304-3975(00)00102-X.

[22] Blondin M, Finkel A, Haase C, Haddad S. Approaching the Coverability Problem Continuously. In:

TACAS, volume 9636 of LNCS. Springer, 2016 pp. 480–496. doi:10.1007/978-3-662-49674-9 28.

[23] Geffroy T, Leroux J, Sutre G. Occam’s Razor applied to the Petri net coverability problem. Theor. Comput.

Sci., 2018. 750:38–52. doi:10.1016/j.tcs.2018.04.014.

[24] Reynier P, Servais F. On the Computation of the Minimal Coverability Set of Petri Nets. In: RP, volume

11674 of LNCS. Springer, 2019 pp. 164–177. doi:10.1007/978-3-030-30806-3 13.

[25] Finkel A, Haddad S, Khmelnitsky I. Minimal Coverability Tree Construction Made Complete and Effi-

cient. In: FoSSaCS, volume 12077 of LNCS. Springer, 2020 pp. 237–256. doi:10.1007/978-3-030-45231-

5 13.

[26] Athanasiou K, Liu P, Wahl T. Unbounded-Thread Program Verification using Thread-State Equations. In:

IJCAR, volume 9706 of LNCS. Springer, 2016 pp. 516–531. doi:10.1007/978-3-319-40229-1 35.

[27] Kesten Y, Maler O, Marcus M, Pnueli A, Shahar E. Symbolic model checking with rich assertional

languages. Theor. Comput. Sci, 2001. 256(1-2):93 – 112. doi:10.1016/S0304-3975(00)00103-1.

[28] Abdulla PA, Jonsson B, Nilsson M, Saksena M. A Survey of Regular Model Checking. In: CONCUR,

volume 3170 of LNCS. Springer, 2004 pp. 35–48. doi:10.1007/978-3-540-28644-8 3.

[29] Abdulla PA, Delzanno G, Henda NB, Rezine A. Regular Model Checking Without Transducers (On

Efficient Verification of Parameterized Systems). In: TACAS, volume 4424 of LNCS. Springer, 2007 pp.

721–736. doi:10.1007/978-3-540-71209-1 56.

[30] Baukus K, Bensalem S, Lakhnech Y, Stahl K. Abstracting WS1S Systems to Verify Parameterized Net-

works. In: TACAS, volume 1785 of LNCS. Springer, 2000 pp. 188–203. doi:10.1007/3-540-46419-0 14.

[31] Baukus K, Lakhnech Y, Stahl K. Parameterized Verification of a Cache Coherence Protocol: Safety and

Liveness. In: VMCAI, volume 2294 of LNCS. Springer, 2002 pp. 317–330. doi:10.1007/3-540-47813-

2 22.

[32] Chen Y, Hong C, Lin AW, Rümmer P. Learning to prove safety over parameterised concurrent systems.

In: FMCAD. 2017 pp. 76–83. doi:10.23919/FMCAD.2017.8102244.

[33] Browne M, Clarke E, Grumberg O. Reasoning about networks with many identical finite state processes.

Information and Computation, 1989. 81(1):13 – 31.

[34] Emerson EA, Namjoshi KS. Reasoning about Rings. In: POPL. 1995 pp. 85–94.

[35] Emerson EA, Kahlon V. Reducing Model Checking of the Many to the Few. In: CADE, volume 1831 of

LNCS. Springer, 2000 pp. 236–254. doi:10.1007/10721959 19.

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 239

[36] Außerlechner S, Jacobs S, Khalimov A. Tight Cutoffs for Guarded Protocols with Fairness. In: VMCAI,

volume 9583 of LNCS. Springer, 2016 pp. 476–494. doi:10.1007/978-3-662-49122-5 23.

[37] Jacobs S, Sakr M. Analyzing Guarded Protocols: Better Cutoffs, More Systems, More Expressivity. In:

VMCAI, volume 10747 of LNCS. Springer, 2018 pp. 247–268. doi:10.1007/978-3-319-73721-8 12.

[38] Esparza J. Decidability and Complexity of Petri Net Problems - An Introduction. In: Petri Nets, volume

1491 of Lecture Notes in Computer Science. Springer, 1996 pp. 374–428. doi:10.1007/3-540-65306-6 20.

[39] Esparza J, Raskin M, Welzel C. Computing Parameterized Invariants of Parameterized Petri Nets, 2021.

2103.10280, URL https://arxiv.org/abs/2103.10280.

[40] Esparza J, Finkel A, Mayr R. On the Verification of Broadcast Protocols. In: LICS. IEEE Computer

Society, 1999 pp. 352–359.

[41] Delzanno G. Automatic Verification of Parameterized Cache Coherence Protocols. In: CAV. 2000 pp.

53–68. doi:10.1007/10722167\ 8.

[42] Dijkstra EW. Cooperating Sequential Processes, pp. 65–138. Springer New York, New York, NY.

ISBN:978-1-4757-3472-0, 2002. doi:10.1007/978-1-4757-3472-02.

[43] Lynch NA. Distributed Algorithms. Morgan Kaufmann, 1996.

[44] Herlihy M, Shavit N. The art of multiprocessor programming. Morgan Kaufmann, 2008.

[45] Welzel C, Esparza J, Raskin M. ostrich, 2020. doi:10.5281/zenodo.6523828.

[46] Fribourg L, Olsén H. Reachability sets of parameterized rings as regular languages. Electr. Notes Theor.

Comput. Sci., 1997. 9:40. doi:10.1016/S1571-0661(05)80427-X.

[47] Jensen HE, Lynch NA. A Proof of Burns N-Process Mutual Exclusion Algorithm Using Abstraction. In:

TACAS, volume 1384 of Lecture Notes in Computer Science. Springer, 1998 pp. 409–423.

[48] Esparza J, Raskin M, Welzel C. heron, git repository. https://gitlab.lrz.de/i7/heron, 2021.

[49] Welzel C, Esparza J, Raskin M. heron, software artifact.

https://doi.org/10.5281/zenodo.5068849, 2020. doi:10.5281/zenodo.5068849.

[50] Gebser M, Kaufmann B, Kaminski R, Ostrowski M, Schaub T, Schneider M. Potassco: The Potsdam

Answer Set Solving Collection. AI Commun., 2011. 24(2):107–124. doi:10.3233/AIC-2011-0491.

[51] Kovács L, Voronkov A. First-Order Theorem Proving and Vampire. In: CAV, volume 8044 of Lecture

Notes in Computer Science. Springer, 2013 pp. 1–35. doi:10.1007/978-3-642-39799-8 1.

[52] Barrett CW, Conway CL, Deters M, Hadarean L, Jovanovic D, King T, Reynolds A, Tinelli C. CVC4. In:

CAV, volume 6806 of Lecture Notes in Computer Science. Springer, 2011 pp. 171–177. doi:10.1007/978-

3-642-22110-1 14.

[53] Knuth DE. Additional comments on a problem in concurrent programming control. Commun. ACM, 1966.

9(5):321–322. doi:10.1145/363162.363167.

[54] de Bruijn NG. Additional comments on a problem in concurrent programming control. Commun. ACM,

1967. 10(3):137–138. doi:10.1145/355592.365595.

[55] Eisenberg MA, McGuire MR. Further Comments on Dijkstra’s Concurrent Programming Control Prob-

lem. Commun. ACM, 1972. 15(11):999. doi:10.1145/355606.361895.

2103.10280
https://arxiv.org/abs/2103.10280
https://gitlab.lrz.de/i7/heron
https://doi.org/10.5281/zenodo.5068849

240 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

[56] Szymanski BK. Mutual exclusion revisited. In: Next Decade in Information Technology: Proceedings

of the 5th Jerusalem Conference on Information Technology 1990, Jerusalem, October 22-25, 1990. 1990

pp. 110–117. doi:10.1109/JCIT.1990.128275.

[57] Bouajjani A, Jonsson B, Nilsson M, Touili T. Regular Model Checking. In: CAV. 2000 pp. 403–418.

doi:10.1007/10722167 31.

[58] Esparza J, Raskin M, Welzel C. ostrich. https://gitlab.lrz.de/i7/ostrich, 2021.

[59] Esparza J, Raskin MA, Welzel C. Computing Parameterized Invariants of Parameterized Petri Nets.

In: Petri Nets, volume 12734 of Lecture Notes in Computer Science. Springer, 2021 pp. 141–163.

doi:10.1007/978-3-030-76983-3 8.

[60] Esparza J, Raskin MA, Welzel C. Abduction of trap invariants in parameterized systems. In: GandALF,

volume 346 of EPTCS. 2021 pp. 1–17. doi:10.4204/EPTCS.346.1.

https://gitlab.lrz.de/i7/ostrich

J. Esparza et al. / Parameterized Invariants of Parameterized Nets 241

A. Constructing FO(SafetyCheckT) for looping programs.

An embedding of a linear order into FO. First, we want to capture the linear topology of our

agents in an FO theory. To this end, we gradually introduce an appropriate FO theory in the following.

Initially, consider a relation symbol ≤. It is straightforward to give a sentence ϕ≤ that ensures that

≤ is a discrete linear order with a minimal element. Then, we introduce two constant symbols, 0 and

N . We make sure that 0 is the minimal element w.r.t. ≤; that is, we add ¬∃x . x 6= 0 ∧ x ≤ 0 to

our theory. Furthermore, it is standard to obtain the immediate successor of some element x w.r.t. ≤.

To ease presentation, we use a function symbol succ instead (which is consistent with the successor

function in WS1S). In the following, we allow for constant symbols 1, 2, 3, . . . in FO formulas. For

this, we use the convention that the constant symbol i corresponds to the value that we obtain when

applying the function succ exactly i times to 0. Moreover, we model addition of a constant value to

some variable similarly by applying succ appropriately often to the variable symbol. This total order

gives us now access to the linear identities of the agents.

Representing configurations in FO. As before, we want to capture the current configuration as

models of a formula. Before we describe how we do this, we inspect the considered topology in more

detail. In this way we can identify invariants which allow us to simplify the embedding into FO:

• Note that every agent maintains a local copy of variables, each of which has a finite domain: as

we described before, the set P partitions into P0, . . . ,Pk such that {i}×Pj for any i ∈ [n] and

0 ≤ j ≤ k is a 1-BB set in every instance N (n).

• Additionally, one can also deduce that {〈r, i, j〉 | j ∈ ([n] ∪ {⊥})} is a 1BB-set for each i ∈ [n]
and r ∈ R in every instance N (n) of a looping program N .

• Moreover, we are assured that every relation symbol r◦ ∈ R is tied to exactly one loop transition

pattern. Similarly, there is a unique q◦ for this transition pattern. By close inspection of the

semantics of loop transition patterns, it is immediate that 〈r◦, i,⊥〉 is marked if and only if

〈q◦, i〉 is not marked for all i ∈ [n] for all N (n).

Hence, we can restrict our analysis to markings that satisfy these constraints. Consequently, we call

markings of N (n) viable if
∑

p∈Pj×{i}M(p) = 1 for all i ∈ [n] and

0 ≤ j ≤ k,
∑

p∈{r◦}×{i}×([n]∪{⊥})M(p) = 1 for all i ∈ [n] and r◦ ∈ R, and M(〈q◦, i〉) +
M(〈r◦, i,⊥〉) = 1 for any q◦ and r◦ that occur in the same loop transition pattern. From now on,

we refer to qr◦◦ for the uniquely identified state value that occurs with r◦ in a loop transition pattern.

Similarly, we use rq◦◦ .

Before we used monadic variables Xp for each p ∈ P which capture which places of P × [n]
are marked in the considered instance. But by restricting our analysis to viable markings we can

express the current value of this variable as a function symbol instead. For this, fix some 0 ≤ j ≤ k
and let val1, . . . , valm be an enumeration of Pj . We introduce now a function symbol var j and

constant symbols val1, . . . , valm. Then, we can express with var j(x) = val ℓ that the agent with

index x currently sets its j-th variable to the value val ℓ. It is straightforward to restrict the domain

of var j only to these constant symbols for all agents: ∀x .
∨

1≤ℓ≤m var j(x) = val ℓ. In this way

242 J. Esparza et al. / Parameterized Invariants of Parameterized Nets

we translate the topological restriction of viable markings implicitly to our representation: we use a

function symbol var j instead of ℓ many monadic variables. In the following, we refer to var val to

var j such that val ∈ Pj .

Similarly, we use that every agent executes at most one loop transition pattern at a time by repre-

senting all relations simultaneously by one single function symbol f : we need f to map from agents

to agents or some value that represents ⊥. Therefore, we add ∀x . f(x) ≤ N to the restricting theory;

here N will be used to represent ⊥.

Consider now any viable marking M in some instance N (n). Then, M induces a model µ.

Namely, we set the universe of µ to {0, 1, 2, 3, . . .}, µ(0) = 0, µ(N) = n, and µ(≤) to be the natural

order. For every j we choose some arbitrary enumeration val1, . . . , valm of Pj and set µ(valk) = k
for 1 ≤ k ≤ m. Moreover, we set µ(var j) to any function such that µ(var j)(i) = valk if and only if

M(〈valk, i〉) = 1. The last definition uses that M is viable since there is exactly one such tuple for

every i ∈ [n]. Since M is viable there is at most one r◦ for every i ∈ [n] such that M(〈r◦, i, j〉) = 1
for any j ∈ [n]. If this is the case, let µ(f)(i) = j. Otherwise, set µ(f)(i) = n. In this way, we obtain

an interpretation µ for every viable marking M .

Traps in FO. The general idea of our approach is to obtain traps via Theorem 8.10. Then, we use
the induced invariants of these traps to refine the FO theory of interpretations which we consider.
More precisely, traps induce an abstraction of all reachable markings. We need to restrict our theory
in such a way that it still contains an interpretation that represents any viable marking that satisfies the
constraints of all found traps. To this end, let us introduce an FO formula which coincides with the
invariant the models of ParTrapT(n,X ,U) from Theorem 8.10 induce:

(n ≤ n ∧ ∃y . y + (n− (i+ 2)) = n) ∧ i + 1 ≤ y

∧
∨

j<i−1
p∈Q[j]

varp(j) = p

∨∃j . i− 1 ≤ j ≤ y ∧
∨

p∈Q[i]

varp(j) = p

∨
∨

i+1<j<n
p∈Q[j]

varp(y + (j − (i+ 2))) = p

∨∃ℓ1, . . . , ℓk,u1, . . . ,um .
∧

1≤v≤k

ℓv = ℓv ∧
∧

1≤v≤m

uv = y + (uv − (i + 2))

∧




∨

r◦∈R

∨

j<i−1




∨

1≤v≤k
r(ℓv)∈R[∗,j]

var qr◦
◦

(ℓv) = qr◦◦ ∧ f(ℓv) = j

∨
∨

1≤v≤m
r(uv)∈R[∗,i]

var qr◦
◦

(uv) = qr◦◦ ∧ f(uv) = j




∨∃j . i− 1 ≤ j ≤ y ∧
∨

r◦∈R




∨

1≤v≤k
r(ℓv)∈R[∗,i]

var qr◦
◦

(ℓv) = qr◦◦ ∧ f(ℓv) = j

∨
∨

r◦∈R

∨

1≤v≤m
r(uv)∈R[∗,i]

var qr◦
◦

(uv) = qr◦◦ ∧ f(uv) = j




∨
∨

r◦∈R

∨

i+0<j




∨

1≤v≤k
r(ℓv)∈R[∗,j]

var qr◦
◦

(ℓv) = qr◦◦ ∧ f(ℓv) = y + (j − (i+ 2))

∨
∨

1≤v≤m
r(uv)∈R[∗,j]

varqr◦
◦

(uv) = qr◦◦ ∧ f(uv) = y + (j − (i+ 2))







J. Esparza et al. / Parameterized Invariants of Parameterized Nets 243

Note the conversion of relationset variables to the logical representation of a single function sym-

bol. This conversion is driven by the observation that viable markings M ensure that M(〈q◦, i〉) +
M(〈r◦, i,⊥〉) = 1 for q◦ and r◦ occurring in the same loop transition pattern. To this end, we use that

M(〈q◦, i〉) = 1 for some q◦ necessarily implies M(〈q′◦, i〉) = 0 for all other states attached to some

loop transition pattern since the state values form a 1BB-set for every agent. This, in turn, ensures that

M(
〈
r
q′
◦

◦ , i,⊥
〉
) = 1 and, by the appropriate 1BB-cover, M(

〈
r
q′
◦

◦ , i, j
〉
) = 0 for all j ∈ [n].

	1 Introduction
	2 Preliminaries
	3 Parameterized Petri nets
	4 Checking 1-boundedness
	5 Checking safety properties
	5.1 Automatic computation of parameterized invariants
	5.1.1 A CEGAR loop for the non-parameterized case.
	5.1.2 A CEGAR loop for the parameterized case.

	6 Trap parametrization in rings
	6.1 Parametrizing local traps
	6.2 Parametrizing global traps

	7 Trap parametrization in barrier crowds
	7.1 Parametrizing traps for barrier crowds

	8 Generalized parameterized Petri nets
	8.1 A CEGAR approach
	8.2 Inspection programs
	8.3 Parametrizing traps of inspection programs

	9 Experiments
	9.1 ostrich
	9.2 heron

	10 Conclusion.
	A Constructing FO(SafetyCheckT) for looping programs.

