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Abstract. In this paper we deal with hamiltonicity in planar cubic graphs G having a facial

2−factor Q via (quasi) spanning trees of faces in G/Q and study the algorithmic complexity

of finding such (quasi) spanning trees of faces. Moreover, we show that if Barnette’s Conjec-

ture is false, then hamiltonicity in 3−connected planar cubic bipartite graphs is an NP-complete

problem.
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1. Introduction

Our joint paper [1] can be considered as the point of departure for the subsequent discussion and

results of this paper. We start with a few historical remarks. In 1884, Tait conjectured that every cubic
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3−connected planar graph is hamiltonian [2]. And Tait knew that the validity of his conjecture would

yield a simple proof of the Four Color Conjecture. On the other hand, the Petersen graph is the smallest

non-planar 3−connected cubic graph which is not hamiltonian, [3]. Tait’s Conjecture was disproved

by Tutte in 1946, [4]. However, none of the known counterexamples of Tait’s Conjecture is bipartite.

Tutte himself conjectured that every cubic 3−connected bipartite graph is hamiltonian [5], but this was

shown to be false by the construction of a counterexample, the Horton graph [6]. Barnette proposed a

combination of Tait’s and Tutte’s Conjectures implying that every counterexample to Tait’s conjecture

is non-bipartite. However, it is a well-known fact that hamiltonicity in planar cubic graphs is an NP-

complete problem. This implies that the existence of an A−trail in plane eulerian graphs is also an

NP-complete problem even if restricted to planar 3−connected eulerian graphs (see Definition 2.1.(i)

below).

Barnette’s Conjecture [7] Every 3−connected cubic planar bipartite graph is hamiltonian.

We denote 3−connected cubic planar bipartite graphs as Barnette graphs. Holton, Manvel and

McKay showed in [8] that Barnette graphs with up to 64 vertices are hamiltonian. The conjecture also

holds for the infinite family of Barnette graphs where all faces are either quadrilaterals or hexagons,

as shown by Goodey [9]. However, it is NP-complete to decide whether a 2−connected cubic planar

bipartite graph is hamiltonian [10].

We note that [11] can essentially be viewed in part as a preliminary version of [1] and the current

paper, with [1] focusing on graph theoretical results in [11], whereas the current paper’s focus are

mainly algorithmic and complexity considerations as developed in [11]. However, additional results

were developed to put [11] in a more general perspective.

We outline the structure of this paper as follows.

Section 2 of this paper starts with listing several known results from [1] and other papers, and

several definitions; they can be viewed as the basis for this paper.

In Section 3 we first prove some structural results leading to a decision in polynomial time whether

a Barnette graph with certain properties has a hamiltonian cycle of a special type (Corollary 3.3).

In Section 4 we first prove NP-completeness of the existence of certain types of spanning trees of

faces (see Definition 2.3), and subsequent corollaries. Finally it is shown that if Barnette’s Conjecture

is false, then hamiltonicity in Barnette graphs is an NP-complete problem.

2. Preliminary discussion

As for the terminology used in this paper we follow [12] unless stated explicitly otherwise. In partic-

ular, the subset E(v) ⊆ E(G) denotes the set of edges incident to v ∈ V (G). For definitions we refer

to [1] but for completeness’ sake we repeat some of them. Moreover, we present several known results

(Theorems A-E) which can be viewed as the frame in which the results of this paper take place.

Definition 2.1.

(i) Let H be a 2−connected eulerian plane graph. An eulerian trail L in H is an A−trail if any two

consecutive edges of L belong to a face boundary.
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(ii) An A−trail L in an eulerian triangulation of the plane is called non-separating if for every

face boundary T at least two edges of E(T ) are consecutive in L.

(iii) An A−partition of H is a vertex partition VL(H) = {V1, V2} induced by an A−trail L =
e1e2 . . . em as follows. Consider a 2−face-coloring of H with colors 1 and 2. For every vertex

v of H , v ∈ Vi if and only if there is j ∈ {1, . . . ,m − 1} such that v ∈ V (ej) ∩ V (ej+1) and

the face containing ej and ej+1 in its boundary is colored 3− i, i = 1, 2, where V (e) is the set

of vertices incident to the edge e.

There is a close conection between hamiltonian cycles in Barnette graphs and A-trails in their dual.

Theorem A. ([13, Theorem VI.71]) A 2−connected plane cubic bipartite graph has a hamiltonian

cycle if and only if its dual graph has a non-separating A−trail.

Definition 2.2.

(i) Suppose H is a 2−connected plane graph. Let F(H) be the set of faces of H . The radial graph

of H denoted by R(H) is a bipartite graph with the vertex bipartition {V (H),F(H)} such that

xf ∈ E(R(H)) if and only if x is a vertex in the boundary of F ∈ F(H) corresponding to

f ∈ V (R(H)).

(ii) Let U ⊆ V (H) and let T ⊂ F(H) be a set of bounded faces of H . The restricted radial

graph R(U,T ) ⊂ R(H) is defined by R(U,T ) = 〈U ∪ T 〉R(H).

For the next definition let H be a 2−connected plane graph, let U ⊆ V (H) and let T ⊂ F(H) be

a set of bounded faces whose boundaries are pairwise edge-disjoint and such that every vertex of H is

contained in some element of T . We define a subgraph HT of H by HT = H[∪F∈T E(F )].

Definition 2.3. If
∣

∣

{

F ∈ T : x ∈ V (F )
}
∣

∣ = 1
2 degH(x) for every x ∈ V (H) \ U , and if R(U,T )

is a tree, then we call HT a quasi spanning tree of faces of H , and the vertices in U (V (H) \ U)
are called proper (quasi) vertices. If U = V (H), then HT is called a spanning tree of faces.

In other words, a spanning tree of faces is a spanning bridgeless cactus whose cycles are face

boundaries.

Definition 2.4. The leapfrog extension Lf(G) of a 2−connected cubic plane graph G is the cubic

plane graph obtained from G by replacing every v ∈ V (G) by a hexagon C6(v), with C6(v) and

C6(w) sharing an edge if and only if vw ∈ E(G); and these hexagons are faces of Lf(G).

We note in passing that we call leapfrog extension what is called in other papers vertex envelope,

or leapfrog construction, or leapfrog operation, or leapfrog transformation (see e.g. [14, 15, 16, 17]).

If a plane graph has a face-coloring with color set X, the faces of color x ∈ X will be called

x−faces.
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Observation 1. We observe that if H is a plane eulerian graph with δ(H) ≥ 4 having an A−trail L,

then L defines uniquely a quasi spanning tree of faces. Conversely, a (quasi) spanning tree of faces HT

defines uniquely an A−trail in HT (where T is defined as in the paragraph preceding Definition 2.3).

Proof:

Start with a 2−face-coloring of H with colors 1 and 2, suppose the outer face of H is colored 1. To

show the first part of Observation 1, let VL(H) = {V1, V2} be the A−partition of V (H) induced by

L (see Definition 2.1.(iii)). Now, the set of all 2−faces defines a quasi spanning tree of faces HT with

V1 being the set of all quasi vertices of HT . The second part of Observation 1 follows similarly. ⊓⊔

The aforementioned relation between the concepts of A−trail and (quasi) spanning tree of faces is

not a coincidence. In fact, it had been shown ([13, pp. V I.112− V I.113] – see also Theorem A) that

• Barnette’s Conjecture is true if and only if every simple 3−connected eulerian triangulation of

the plane admits an A−trail.

We point out, however, that the concept of (quasi) spanning tree of faces is a somewhat more

general tool to deal with hamiltonian cycles in plane cubic graphs, than the concept of A−trails. We

are thus focusing our considerations below on the complexity of the existence of A−trails and (quasi)

spanning trees of faces in plane (eulerian) graphs.

Parts of this paper are the result of extracting some results and their proofs of [11]; they have not

been published in a refereed journal yet. Moreover, we relate some of the results of this paper to the

theory of A−trails, as developed in [13].

Next we list some results of the preceding joint paper [1] which will be essential for the current

paper. In general, when we say that F is an X−face (X c−face), we mean that F ∈ X (F /∈ X ).

Consider a 3−connected cubic plane graph G with a facial 2−factor Q. Given a quasi spanning

tree of faces HT in the reduced graph H = G/Q, we assume the outer face is not in T , and traverse

the A−trail of HT (see the second part of Observation 1), to obtain a hamiltonian cycle C in G such

that the faces of Q corresponding to the proper vertices of HT lie inside of C whereas the faces of Q
corresponding to quasi vertices of HT lie outside of C . In fact the following is true.

Theorem B. ([1, Proposition 1]) Let G be a 3−connected cubic plane graph G with a facial 2−factor

Q. Then, the reduced graph H = G/Q has a quasi spanning tree of faces, HT , with the outer face

not in T , if and only if G has a hamiltonian cycle C with the outer Qc−face outside of C , with all

Q−faces corresponding to proper vertices of HT inside of C , with all Q−faces corresponding to quasi

vertices of HT outside of C , and such that no two Qc−faces sharing an edge are both inside of C .

Theorem C. ([1, Corollary 7]) Every simple 4−connected eulerian triangulation of the plane has a

quasi spanning tree of faces.

Note, however, that it is an open problem whether such triangulations have an A–trail.

Additionally, two old results are listed below.
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Theorem D. ([18, Corollary 3]) The problem of deciding whether a planar eulerian graph admits an

A−trail remains NP-complete for 3−connected graphs having only 3−cycles and 4−cycles as face

boundaries, and for which all faces with 4−cycles as boundaries have the same color in the 2−face-

coloring.

In contrast, Andersen et al. in [19] gave a polynomial algorithm for finding A−trails in simple

2−connected outerplane eulerian graphs.

Theorem E. ([14, Theorem 23]) The decision problem of whether the leapfrog extension of a plane

cubic graph with multiple edges is hamiltonian is NP-complete.

3. Graph theoretical results and polynomially solvable problems

In proving Propositions 3 and 6 and Theorem 11 in [1], we used implicitly some algorithms to con-

struct a (quasi) spanning tree of faces. In all of them, we find some triangular face such that the graph

resulting from the contraction of this face, still satisfies the hypothesis of the respective result. By

repeating this process, finally the contracted faces together with a special face form a (quasi) spanning

tree of faces. Note that it is possible to identify the contractible faces in linear time, since every sim-

ple plane graph has O(n) faces, where n is the order of a graph under consideration. Therefore, our

algorithms for finding a quasi spanning tree of faces in [1] are polynomial.

We show next that one can decide in polynomial time whether the reduced graph H with a set D
of edge-disjoint faces in H has a spanning tree of faces in D provided every face boundary of H is a

digon or a triangle.

The Spanning Tree Parity Problem: Given a graph G and a collection of disjoint pairs of edges,

{{ei, fi} | i = 1, . . . , k}. The Spanning Tree Parity Problem (STPP) asks whether G has a

spanning tree T satisfying |{ei, fi} ∩ E(T )| ∈ {0, 2}, for each i = 1, . . . , k.

Note that the STPP is solvable in polynomial time (see [20, 21]).

Theorem 3.1. Let G be a 3−connected cubic plane graph having a facial 2−factor Q and H = G/Q.

Let D be a set of edge-disjoint faces in H such that D covers all of V (H) and such that all faces in D
are either digons or triangles. Then we can decide in polynomial time whether H has a spanning tree

of faces in D, yielding a hamiltonian cycle for G, by a spanning tree parity algorithm.

Proof:

Construct a graph H
′

related to H as follows. V (H
′

) = V (H). If xyx is a digon in D, then let xy be

an edge in H
′

. If xyzx is a triangle in D, then put edges xy and yz in H
′

(the naming of the vertices

of the triangle with the symbols x, y, z is arbitrary but fixed). A spanning tree of faces in D for H then

corresponds to a spanning tree T in H
′

satisfying |{xy, yz} ∩E(T )| ∈ {0, 2}, for each triangle xyzx
in D. Thus, these conditions on pairs of edges in H

′

transform the problem of finding a spanning tree

of faces in D for H , yielding a hamiltonian cycle for G by Theorem B, equivalently in polynomial

time into an STPP in H
′

. ⊓⊔
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If D contains faces with four or more sides, say a face xyztx, then we could include three edges

linking these four vertices, say xy, yz, and zt, and require that a spanning tree must contain either all

three or none of these three edges. Such a Spanning Tree Triarity Problem (STTP), as we shall see

later in Theorem 4.2, turns out to be NP-complete.

The following result demonstrates the close relationship between A−trails and spanning trees of

faces vis-a-vis hamiltonian cycles.

Theorem 3.2. Let G be a Barnette graph whose faces are 3−colored with color set {1, 2, 3} and

suppose without loss of generality that the outer face of G is a 3−face. The following statements are

equivalent.

(i) G has a hamiltonian cycle C with the 2−faces lying inside of C , the 3−faces lying outside of C ,

and 1−faces on either side;

(ii) the reduced graph H obtained by contracting the 1−faces has an A−trail;

(iii) the reduced graph H
′

obtained by contracting the 2−faces has a spanning tree of 1−faces;

(iv) the reduced graph H
′′

obtained by contracting the 3−faces has a spanning tree of 1−faces.

Proof:

(i) ⇒ (ii) : Let TC be a closed trail in H induced by hamiltonian cycle C of G having the properties

described in (i). TC is an eulerian trail, otherwise there are two faces of G with two different colors

2 and 3 lying on one side of C . This obvious contradiction to (i) guaranties that TC is an eulerian

trail. Since all 2−faces (3−faces) of G are lying inside (outside) of C , for every 1−face F1 of G
we conclude that E(F1) ∩ E(C) is a matching. Therefore, every pair of consecutive edges of TC

corresponds to a path of length three in C such that the central edge of this path from one side belongs

to a 1−face boundary, and from the other side all three edges belong to an i−face boundary, i ∈ {2, 3}.

Thus, any two consecutive edges of TC belong to a face boundary in H and so TC is an A−trail.

(ii) ⇒ (i) : The 3−face-coloring of G induces a 2−face-coloring in H using colors 2 and 3 and such

that the outer face of H is a 3−face. Now it is easy to see that any A−trail of H can be transformed

into a hamiltonian cycle C of G with the 2−faces lying inside of C , the 3−faces lying outside of C ,

and 1−faces lying on either side.

(i) ⇒ (iii) : Now consider the 2−face-coloring of H
′

induced by the 3−face-coloring of G. Let

U = V (H
′

) be the vertex set corresponding to the 2−faces. Also, let T be the set of 1−faces of H
′

corresponding to the 1−faces in int(C).

Observe that Gint := C ∪ int(C) is a spanning outerplane subgraph of G, and that the weak

dual (the subgraph of the dual graph whose vertices correspond to the bounded faces) of Gint is a tree

(see [13]). Therefore, H
′

int ⊂ H
′

being the reduced graph of Gint after contracting the 2−faces, is a

spanning tree of faces in H
′

.

(iii) ⇒ (i) : Suppose H
′

has a spanning tree of 1−faces H
′

T
. Then H

′

T
has a unique A−trail which

can be transformed into a hamiltonian cycle C of G such that the 2−faces (corresponding to V (H
′

))
lie in int(C) and the corresponding 3−faces lie in ext(C).
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The equivalence of (i) and (iv) is established analogously by looking at Gext := C ∪ ext(C)
which is also an outerplanar graph. ⊓⊔

An application of Theorems 3.1 and 3.2 yields the following.

Corollary 3.3. Let G be a Barnette graph with a 3−face-coloring with color set {1, 2, 3}, and let H
be the reduced graph obtained by contracting the 1−faces. Suppose all vertices of H have degree

4 or 6. Then one can decide in polynomial time whether H has an A−trail which in turn yields a

hamiltonian cycle in G.

Proof:

Let H be the reduced graph of G obtained by contracting the 1−faces, and let H
′

be the reduced

graph of G obtained by contracting the 2−faces instead of the 1−faces. Then each 1−face of G
yields a digon or triangle in H

′

. By Theorem 3.2, an A−trail in H corresponds to a spanning tree of

1−faces in H
′

and vice versa. Since all 1−faces of H
′

are either digons or triangles, one can decide

in polynomial time by Theorem 3.1 whether such a spanning tree of 1−faces exists in H
′

. ⊓⊔

By Observation 1, we have the following theorem in which we make use of the fact that an (eu-

lerian) triangulation of the plane admits two interpretations, namely: as the dual of a plane cubic

(bipartite) graph, and as the contraction of a facial (even) 2−factor Q in G whose faces in Qc are

hexagons.

Theorem 3.4. Let G be a Barnette graph and let F be the set of its faces. Let QF be the facial

2−factor of Lf(G) corresponding to F and let the color classes of the 3−face-coloring of Lf(G) be

denoted by F1, F2, and F3 such that F3 = QF , and thus F1, F2 translates into a 2−face-coloring of

Lf(G)/QF denoting the corresponding sets of faces by F1, F2 and whose vertex set (corresponding

to F3) be denoted by V3. G∗ denotes the dual of G. Then the following is true.

(1) G∗ = Lf(G)/QF .

(2) G is hamiltonian if and only if Lf(G) has a hamiltonian cycle C such that int(C) = F1 ∪F
′

3 and

ext(C) = F2 ∪ F
′′

3 where F3 = F
′

3∪̇F
′′

3 .

Statement (2) is equivalent to

(3) G∗ has a non-separating A−trail if and only if there is a partition V3 = V
′

3 ∪̇V
′′

3 such that

Lf(G)/QF has a quasi spanning tree of faces containing all of F1 and where V
′

3 is its set of

proper vertices and V
′′

3 is its set of quasi vertices. (V
′

3 and V
′′

3 are the vertex sets in Lf(G)/QF

corresponding to F
′

3 and F
′′

3 , respectively, - see (2) above).

Proof:

By Definition 2.4 and definition of the dual graph of a plane graph, statement (1) is true.

Next we show that (2) is true. Assume G has a hamiltonian cycle C0 = e1e2 . . . en such that

ei = vivi+1 for i = 1, . . . , n − 1, en = vnv1. Let e = vivj ∈ E(G) be the edge corresponding

to e
′

∈ E(C6(vi)) ∩ E(C6(vj)) ⊂ E(Lf(G)), for 1 ≤ i 6= j ≤ n (see Definition 2.4 concerning

C6(vi)).
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Now we construct a hamiltonian cycle C in Lf(G) corresponding to C0 as follows. Consider

C◦ = {e
′

i | i = 1, . . . , n}. If C6(vi+1) ∈ F1 (C6(vi+1) ∈ F2) where {e
′

i, e
′

i+1} ⊂ E(C6(vi+1)),

add the path in C6(vi+1) connecting the endvertices of e
′

i and e
′

i+1 outside (inside, respectively) C0

to C◦, for i = 1, . . . , n − 1. Then add the path in C6(v1) connecting the endvertices of e
′

1 and e
′

n

inside (outside, respectively) C0 to C◦; call the final set thus constructed C . By the construction of C ,

int(C) = F1 ∪ F
′

3 and ext(C) = F2 ∪ F
′′

3 where F3 = F
′

3∪̇F
′′

3 . Since every vertex v ∈ V (Lf(G))
is incident to an adge e which belongs to an i−face boundary, i ∈ {1, 2}, by F1 ⊂ int(C) and

F2 ⊂ ext(C), we have C traverses the edge e and then v ∈ V (C). Therefore, C is hamiltonian.

Conversely, it is straightforward to see that a hamiltonian cycle in Lf(G) as described yields a hamil-

tonian cycle in G. Thus, (2) is true.

Theorem A emplies that (2) is equivalent to the left side of (3).

And finally we show that (2) is equivalent to the right side of (3). Again consider a hamiltonian

cycle in G. By (2), there is a hamiltonian cycle C in Lf(G) such that int(C) = F1∪F
′

3 and ext(C) =
F2 ∪ F

′′

3 where F3 = F
′

3∪̇F
′′

3 . Now, let V
′

3 be the set of vertices in Lf(G)/QF corresponding to F
′

3.

Then, it can be seen easily that R(V
′

3 , F1) is a tree; and therefore, Lf(G)/QF has a quasi spanning

tree of faces containing all of F1 and where V
′

3 is its set of proper vertices. Thus, (3) is true. The

converse is true by Theorem 3.2. ⊓⊔

Theorem 3.4 puts hamiltonicity in G in a qualitative perspective of the algorithmic complexity

regarding quasi spanning trees of faces of a special type in the reduced graph of the leapfrog extension

of G. In fact, if G is a class of Barnette graphs where hamiltonicity can be decided in polynomial time,

then the same can be said regarding special types of quasi spanning trees of faces in the reduced graphs

of the leapfrog extensions of the elements of G (as stated in the theorem). For, given a hamiltonian

cycle C0 in G ∈ G, a non-separating A−trail LC0
in G∗ can be found in polynomial time which in

turn yields a quasi spanning tree of faces in Lf(G)/QF as described in (3), also in polynomial time.

Compare this with Theorem E and Theorem C.

The following proposition shows that if Barnette’s Conjecture is false then there is a particular

edge e in some hamiltonian Barnette graph such that every hamiltonian cycle of that graph contains e.

Proposition 3.5. If there exists a non-hamiltonian Barnette graph, then there exists a hamiltonian

Barnette graph G1 with a particular edge e = uv such that e ∈ E(C) for every hamiltonian cycle C
of G1. Furthermore, if e1 and e2 are the two edges other than e incident to u in G1, then G1 has a

hamiltonian cycle Ci traversing e and ei, for i = 1, 2.

Proof:

Suppose G0 is a smallest counterexample to Barnette’s Conjecture.

First we construct a hamiltonian Barnette graph G1 with a particular edge e0 = u0v0 such that

e0 ∈ E(C) for every hamiltonian cycle C of G1.

Let Q = wxyzw be a facial quadrilateral in G0 and let a1 be the third neighbour of a in G0, for

a ∈ {w, x, y, z}.

Set G
′

0 = (G0 \ {w, x, y, z}) ∪{w1x1, y1z1} and G
′′

0 = (G0 \ {w, x, y, z})∪{w1z1, x1y1}. Both

G
′

0 and G
′′

0 are planar, cubic and bipartite.
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Suppose that G
′

0 is 3−connected. By minimality of G0, the graph G
′

0 has a hamiltonian cycle. Fur-

thermore, no hamiltonian cycle of G
′

0 goes through either the edge w1x1 or the edge y1z1; otherwise,

we can extend this cycle to a hamiltonian cycle in G0, a contradiction.

We have thus guaranteed that no hamiltonian cycle in G1 = G
′

0 traverses a particular edge w1x1,

and thus every hamiltonian cycle traverses an edge e0 adjacent to w1x1, as desired. The same conclu-

sions can be drawn if G
′′

0 is 3−connected.

Suppose now that G
′

0 and G
′′

0 are both 2−connected only. Then there are two edge cuts of size

four, T1 and T2, in G0 such that {wx, yz} ⊂ T1 and {wz, xy} ⊂ T2.

Removing the vertices w, x, y, z and the remainder of the two edge cuts T1 and T2 separates G0

into four components R1, R2, R3, R4, with the removed edges of G0 including an edge from Ri to

Ri+1, for i = 1, 2, 3, and an edge from R4 to R1, plus the four edges from the four Ri’s incident to a

vertex of Q. That is, each Ri is incident to three edges whose endvertices not in Ri can be identified to

a single vertex ri to obtain a bipartite R
′

i, since their three endvertices in Ri are at even distance from

each other. For, in the 2−vertex-coloring of G0, the three vertices of degree 2 of Ri, 1 ≤ i ≤ 4, must

have the same color; otherwise, two copies of such Ri could be used to construct a cubic bipartite

graph having a bridge. Clearly, R
′

i is 3−connected, cubic, planar, and bipartite, for each i = 1, . . . , 4.

By minimality of G0 each such R
′

i has a hamiltonian cycle, yet it is not the case that each of the

three choices of two edges incident to ri yields a hamiltonian cycle, since otherwise we could obtain

a hamiltonian cycle for G0. Thus one of the three edges incident to ri in R
′

i must belong to every

hamiltonian cycle, thus yielding a Barnette graph G1 = R
′

1 with an edge e0 = u0v0 that belongs to

every hamiltonian cycle of G1.

If G1 has a hamiltonian cycle C
′

i traversing e0 and e
′

i = u0v
′

i, for i = 1, 2, then let e = e0,

Ci = C
′

i , and ei = e
′

i, for i = 1, 2. This would complete the proof of Proposition 3.5. Thus, suppose

instead that every hamiltonian cycle in G1 is forced to traverse e
′

1 = u0v
′

1 ∈ E(G1) as well.

Let C0 = f0, f1, . . . , fn−1 where f0 = e0 and f1 = e
′

1 be a fixed hamiltonian cycle of G1 and let

k to be the largest index such that the section f0, . . . , fk−1 belongs to every hamiltonian cycle of G1,

whereas fk does not belong to every hamiltonian cycle of G1. Such k must exist; otherwise G1 would

be a uniquely hamiltonian graph which is impossible since G1 is cubic. Denote fk−1 = e = uv such

that fk is incident to u. Set e1 = fk, and let e2 be the third edge incident to u. Now, there must be a

hamiltonian cycle C1 other than C0 not containing e1 since e1 = fk does not belong to all hamiltonian

cycles of G1. Thus C1 traverses e and e2. This finishes the proof of Proposition 3.5. ⊓⊔

4. NP-complete problems

We now establish several NP-completeness results.

In the proof of Theorem D, one may assume without loss of generality that the outer face and all

quadrilaterals have color 2. Then by Observation 1, we have the following corollary.

Corollary 4.1. Let G be a Barnette graph with a 3−face-coloring with color set {1, 2, 3}. Assume

the outer face of G is colored 2 and H is the reduced graph obtained by contracting the 1−faces

and equipped with a 2−face-coloring. Suppose that H has only triangles and quadrilaterals as face

boundaries, and for which all quadrilaterals have color 2 in the 2−face-coloring. Then the decision



10 B. Bagheri Gh. et al. / On Finding Hamiltonian Cycles in Barnette Graphs

problem of whether H has a quasi spanning tree defined by the set of all (triangular) 3−faces is

NP-complete.

In Theorem 4.2, we give a similar result concerning the reduced graph H containing only digons and

quadrilaterals. For such a graph, we are trying to find a spanning tree of quadrilaterals.

The decision problem of whether a 3−connected planar cubic graph G0 has a hamiltonian cycle

is NP-complete, as shown by Garey et al. [22]. Let e = uv ∈ E(G0). Then the decision problem

of whether G0 has a hamiltonian cycle traversing this specified edge e, is also NP-complete. Let

G
′

0 = G0 \ {e}. Thus, the decision problem of whether G
′

0 has a hamiltonian path from u to v is also

NP-complete.

Theorem 4.2. Let G be a Barnette graph. Let cf be a 3−face-coloring of G with color set {1, 2, 3},

and let H be the reduced graph obtained by contracting the 1−faces and equipped with a 2−face-

coloring induced by cf . Suppose that the 2−faces in H are quadrilaterals and the 3−faces in H are

digons. Then the decision problem of whether H has a spanning tree of 2−faces is NP-complete.

Proof:

We want to construct G and H as stated in the theorem. To this end, consider G0 and G
′

0 as described

in the paragraph preceding the statement of Theorem 4.2 and assume G
′

0 is the plane graph resulting

by edge deletion from a fixed imbedding of G0. Let H be the plane graph resulting by replacing every

edge of the radial graph R(G
′

0) with a digon; H is eulerian and hence 2−face-colorable. First color

the digons corresponding to edges in R(G
′

0) with color 3. The remaining faces of H are quadrilaterals

Q = xfx
′

f
′

x corresponding to xx
′

∈ E(G
′

0) ∩ bd(F ) ∩ bd(F
′

) with F and F
′

in G
′

0 corresponding

to f, f
′

∈ V (R(G
′

0)). Color these quadrilaterals with color 2. Let G be the plane cubic graph

obtained from H by replacing each w ∈ V (H) with a cycle Cw = w1 . . . wdegH(w)w1 and replacing

ei = uiw ∈ E(H) with e
′

i = uiwi, for i = 1, . . . , degH (w). We have κ(H) ≥ 2, but κ
′

(H) > 2.

Therefore, G is 3−connected and thus a Barnette graph whose 3−face-coloring has color set {1, 2, 3};

the 1−faces of G correspond to the vertices of H .

Claim 4.3. A set L of edges in G
′

0 forms a hamiltonian path from u to v in G
′

0 if and only if HT

is a spanning tree of 2−faces in H where T is the set of 2−faces (which are quadrilaterals) in H
corresponding to the edges in E(G

′

0) \ L.

Suppose L is a hamiltonian path from u to v in G
′

0. Let L
′

= E(G
′

0) \ L (which is a perfect

matching in both G0 and G
′

0), and let T be the set of all quadrilaterals in H corresponding to L
′

.

Note that since L is a hamiltonian path, for any two edges g, h ∈ L
′

, there is a sequence of edges

g = ℓ1, ℓ2, . . . , ℓk = h in L
′

such that each pair of edges ℓi, ℓi+1 belongs to a face boundary in G
′

0,

1 ≤ i ≤ k− 1. Therefore the 2−faces in T induce a connected subgraph of H . Notice also that every

vertex in H belongs to some face in T since every vertex x ∈ V (G
′

0) is incident to an edge in L
′

, and

every face F in G
′

0 contains at least one edge of L
′

in its boundary.

Finally, there is no cycle of 2−faces in HT . Suppose to the contrary, we had a cycle Q1Q2 . . . QrQ1

of 2−faces in HT . Since the number of 2−faces in HT containing x is equal to deg
G

′

0

(x)−degL(x) =

1, for every vertex x ∈ V (G
′

0), so Qi and Qi+1 share a vertex f ∈ V (H) corresponding to a face
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F ∈ F(G
′

0). Thus {q1, q2, . . . , qr} ⊂ L
′

, with qi corresponding to the face Qi in the cycle of 2−faces

in HT , separates the graph G
′

0 into at least two components; so the hamiltonian path L would have

to contain at least one of these edges qi ∈ L
′

, a contradiction. Therefore, HT is a spanning tree of

2−faces for H .

Conversely, suppose HT is a spanning tree of 2−faces for H . Let L
′

be the corresponding edges

in G
′

0 (which appear as chords of the elements of T if one draws G
′

0 and H in the plane as described

before); and let L = E(G
′

0)\L
′

. Each vertex x ∈ V (G
′

0) belongs to exactly one 2−face Q = xfx
′

f
′

x
in T , since every other 2−face in T containing x also contains either f or f

′

, and therefore these two

2−faces share two vertices joined by parallel edges and thus cannot both be in the spanning tree of

faces HT . Therefore every vertex in G
′

0 is incident to exactly one edge in L
′

, and so the two vertices

u and v of degree 2 in G
′

0 are incident to exactly one edge in L, while the remaining vertices of degree

3 in G
′

0 are incident to exactly two edges in L. That is, L induces a path joining u and v in G
′

0 plus

a possibly empty set of cycles in G
′

0, such that the path and the cycles are disjoint and cover all of

V (G
′

0). We show that L cannot contain a cycle in G
′

0, and so L is just a hamiltonian path joining u
to v.

Suppose L contains a cycle C = h1h2 . . . hkh1 in G
′

0. Let F and F
′

be faces of G
′

0 inside and

outside the cycle C , respectively, and let f and f
′

be the vertices in H corresponding to F and F
′

,

respectively. Since f and f
′

are vertices in the spanning tree HT of 2−facces, there is a unique

sequence of 2−faces Q∗
1, Q

∗
2, . . . , Q

∗
l in T such that Q∗

1 contains f , Q∗
l contains f

′

and each pair

Q∗
i−1, Q∗

i share a vertex fi corresponding to a face in G
′

0, for 2 ≤ i < l. In particular, if we denote

f1 = f and fl = f
′

, then for some pair fi, fi+1, for the corresponding face Fi in G
′

0 we must have

Fi ⊆ G
′

0∩int(C) and for the corresponding face Fi+1 in G
′

0 we must have Fi+1 ⊆ G
′

0∩ext(C). This

implies that the 2−face Q∗
i in HT corresponds to one of the edges in L and not in L

′

, a contradiction.

This completes the proof of Claim 4.3.

Therefore by Claim 4.3, H has a spanning tree of 2−faces if and only if G
′

0 has a hamiltonian

path from u to v, and so the decision problem of whether H has a spanning tree of 2−faces is NP-

complete. ⊓⊔

We obtain two Corollaries from this result.

Corollary 4.4. Let G be a Barnette graph with a 3−face-coloring with color set {1, 2, 3}, and let H
′

be the reduced graph obtained by contracting the 1−faces. Suppose all vertices of H
′

have degree 8.

Then the decision problem of whether H
′

has an A−trail is NP-complete.

Proof:

Consider the reduced graph H in the statement of Theorem 4.2 where all 2−faces in H are quadri-

laterals, corresponding to a facial 2−factor of octagons in G. If we contract in G these octagonal

2−faces, we obtain an 8−regular reduced graph H
′

. By Theorem 3.2, H
′

has an A−trail if and only

if H has a spanning tree of 2−faces, and this problem is NP-complete by Theorem 4.2. ⊓⊔

Corollary 4.5. Let G be a Barnette graph with a 3−face-coloring with color set {1, 2, 3}, and let

H0 be the reduced graph obtained by contracting the 1−faces. Suppose that the 2−faces in H0 are

octagons and digons and the 3−faces in H0 are triangles. Then the decision problem of whether H0

has a spanning tree of faces is NP-complete.
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Proof:

Start with G0 and G
′

0 as at the beginning of the proof of Theorem 4.2, and construct the reduced graph

H as in the proof of Theorem 4.2, with 2−colored quadrilaterals and 3−colored digons. If e and f are

the two parallel edges of a 3−colored digon, subdivide e with vertex w and subdivide f with vertex

x. Join w and x by two parallel edges. The 3−colored digon splits thus into two 3−colored triangles

and a 2−colored digon, while the 2−colored quadrilaterals become 2−colored octagons, in the new

reduced graph H0.

Suppose H has a spanning tree of 2−colored quadrilaterals HT . Select the corresponding 2−colored

octagons in H0. For a 3−colored digon consisting of two edges e and f in H , if one of the two

2−colored quadrilaterals containing e or f is in T , then select the 2−colored digon joining the subdi-

vision vertices w and x; if neither of the two 2−colored quadrilaterals containing e or f is in T , then

select one of the two 3−colored triangles containing w and x. The 2−colored and 3−colored faces in

H0 thus selected, involving 2−colored octagons, 2−colored digons, and 3−colored triangles, form a

spanning tree of faces in H0.

Conversely, suppose H0 has a spanning tree of faces H0T0 . Let T be the set of 2−colored quadri-

laterals in H such that the corresponding 2−colored octagons are in T0. Note that for each digon in

H , at most one of the corresponding two 3−colored triangles and 2−colored digon in H0 can be in

T0. Thus HT is a spanning tree of 2−colored (quadrilateral) faces.

Note that the reduction process between these two decision problems can be done in polynomial

time, since every simple plane graph has O(n) faces, where n is the order of graph.

Thus H0 has a spanning tree of arbitrary faces if and only if H has a spanning tree of 2−colored

faces, and NP-completeness follows from Theorem 4.2. ⊓⊔

Finally we show that if Barnette’s Conjecture is false, then it would be NP-complete to decide

whether a Barnette graph is hamiltonian.

Theorem 4.6. Assume that Barnette’s Conjecture is false. Then the decision problem of whether a

Barnette graph has a hamiltonian cycle, is NP-complete.

Proof:

Takanori et al. [10] showed that the decision problem of whether a 2−connected cubic planar bipartite

graph R has a hamiltonian cycle is NP-complete.

If such an R has a 2−edge-cut {e1, e2} that separates R into two components R
′

and R
′′

, then

their endpoints in either side are at odd distance (see the above argument), so we may instead join

the two endpoints of e1 and e2 in R
′

and R
′′

, separately, and ask whether R
′

and R
′′

both contain a

hamiltonian cycle containing the added edge joining the endpoints of e1 and e2.

Repeating this decomposition process, we eventually reduce the decision problem of whether R
has a hamiltonian cycle to the decision problem of whether various Ri’s each contain a hamiltonian

cycle going through certain prespecified edges, with each Ri being 3−connected or the cubic multi-

graph on 2 vertices. Thus the decision problem of whether a Barnette graph G
′

has a hamiltonian

cycle going through certain prespecified edges is NP-complete.

Let a Barnette graph G
′

with certain prespecified edges e
′

1, . . . , e
′

k that a hamiltonian cycle must

traverse, be given. Denote e
′

i = xiyi,1 and NG
′ (xi) = {yi,1, yi,2, yi,3}, for i = 1, . . . , k.
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Suppose that Barnette’s Conjecture is false. Then by Proposition 3.5, there exists a hamiltonian

Barnette graph Gi with a vertex ui ∈ V (Gi) and NGi
(ui) = {vi,1, vi,2, vi,3} such that every hamilto-

nian cycle in Gi traverses ei = uivi,1 ∈ E(Gi), i = 1 . . . , k. Furthermore, Gi has a hamiltonian cycle

traversing ei and uivi,j , for i = 1, . . . , k and j = 2, 3.

Construct a new Barnette graph

G =

(

G
′

\ {x1, . . . , xk}

)

∪

( k
⋃

i=1

(Gi \ {ui})

)

∪

( k
⋃

i=1

{vi,1yi,1, vi,2yi,2, vi,3yi,3}

)

.

Since every hamiltonian cycle in Gi traverses the edge ei and Gi has also a hamiltonian cycle

traversing ei and uivi,j , for i = 1, . . . , k and j = 2, 3, the resulting graph G has a hamiltonian cycle if

and only if G
′

has a hamiltonian cycle traversing the edges e
′

1, . . . , e
′

k . Moreover, G can be constructed

from G
′

in polynomial time and its vertex set is also polynomially enlarged from G
′

. Therefore, the

decision problem whether the resulting Barnette graph G has a hamiltonian cycle, is NP-complete. ⊓⊔

References

[1] Bagheri Gh B, Feder T, Fleischner H, Subi C. Hamiltonian cycles in planar cubic graphs with facial

2−factors, and a new partial solution of Barnette’s Conjecture. J. Graph Theory, 2021. 96(2):269–288.

doi:10.1002/jgt.22612.

[2] Tait PG. Listing’s Topologie. Philosophical Magazine (5th ser.), 1884. 17:30–46. Reprinted in Scientific

Papers, Vol. II, pp. 85–98.
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