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Abstract. Given a subset ofX ⊆ Rn we can associate with every point x ∈ Rn a vector space V
of maximal dimension with the property that for some ball centered at x, the subset X coincides

inside the ball with a union of lines parallel to V . A point is singular if V has dimension 0.

In an earlier paper we proved that a 〈R,+, <,Z〉-definable relationX is 〈R,+, <, 1〉-definable if

and only if the number of singular points is finite and every rational section of X is 〈R,+, <, 1〉-
definable, where a rational section is a set obtained fromX by fixing some component to a rational

value.

Here we show that we can dispense with the hypothesis of X being 〈R,+, <,Z〉-definable by

requiring that the components of the singular points be rational numbers. This provides a topo-

logical characterization of first-order definability in the structure 〈R,+, <, 1〉. It also allows us to

deliver a self-definable criterion (in Muchnik’s terminology) of 〈R,+, <, 1〉- and 〈R,+, <,Z〉-
definability for a wide class of relations, which turns into an effective criterion provided that

the corresponding theory is decidable. In particular these results apply to the class of so-called

k−recognizable relations which are defined by finite Muller automata via the representation of

the reals in a integer basis k, and allow us to prove that it is decidable whether a k−recognizable

relation (of any arity) is l−recognizable for every base l ≥ 2.
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1. Introduction

In his seminal work on Presburger Arithmetic [18], Muchnik provides a characterization of definability

of a relation X ⊆ Zn in 〈Z,+, <〉 in terms of sections of X and local periodicity properties of X.

It also shows that the characterization can be expressed as a 〈Z,+, <,X〉-sentence, and thus can be

decided if 〈Z,+, <,X〉 is decidable. As an application Muchnik proves that it is decidable whether

a k−recognizable relation X ⊆ Zn is 〈Z,+, <〉-definable. Recall that given an integer k ≥ 2, X is

k−recognizable if it is recognizable by some finite automaton whose inputs are the base-k encoding

of integers (see [8]).

The present paper continues the line of research started in [2], which aims to extend Muchnik’s

results and techniques to the case of reals with addition. Consider the structure 〈R,+, <, 1〉 of the

additive ordered group of reals along with the constant 1. It is well-known that the subgroup Z of

integers is not first-order-definable in this structure. Let 〈R,+, <,Z〉 denote the expansion of 〈R,+, <
, 1〉 with the unary predicate “x ∈ Z”. In [2] we prove a topological characterization of 〈R,+, <, 1〉-
definable relations in the family of 〈R,+, <,Z〉-definable relations, and use it to derive, on the one

hand, that it is decidable whether or not a relation on the reals definable in 〈R,+, <,Z〉 can be defined

in 〈R,+, <, 1〉 and on the other hand that there is no intermediate structure between 〈R,+, <,Z〉 and

〈R,+, <, 1〉 (since then, the latter result has been generalized by Walsberg [23] to a large class of

o−minimal structures)

We recall the topological characterization of 〈R,+, <, 1〉 in 〈R,+, <,Z〉, [2, Theorem 6.1]. We

say that the neighborhood of a point x ∈ Rn relative to a relation X ⊆ Rn has a stratum if there

exists a direction such that the intersection of X with any sufficiently small neighborhood around x
is the trace of a union of lines parallel to the given direction. When X is 〈R,+, <, 1〉-definable, all

points have strata, except finitely many which we call singular. In [2] we give necessary and sufficient

conditions for a 〈R,+, <,Z〉-definable relation X ⊆ Rn to be 〈R,+, <, 1〉-definable, namely (FSP):

it has finitely many singular points and (DS): all intersections of X with arbitrary hyperplanes parallel

to n − 1 axes and having rational components on the remaining axis are 〈R,+, <, 1〉-definable. We

asked whether it is possible to remove the assumption that the given relation is 〈R,+, <,Z〉-definable.

In the present paper we prove that the answer is positive if a new assumption is added, see below. Let

us first explain the structure of the proof in [2]. The necessity of the two conditions (FSP) and (DS) is

easy. The difficult part was their sufficiency and it used very specific properties of the 〈R,+, <,Z〉-
definable relations, in particular the fact that 〈R,+, <, 1〉- and 〈R,+, <,Z〉-definable relations are

locally indistinguishible. In order to show the existence of a 〈R,+, <, 1〉-formula for X we showed

two intermediate properties, (RB): for every nonsingular point x, there exists a basis of the strata

subspace composed of vectors with rational components, and (FI): there are finitely many “neighbor-

hood types”, i.e., the equivalence relation x ∼ y on Rn which holds if there exists r > 0 such that

(x+ w ∈ X ↔ y + w ∈ X for every |w| < r) has finite index.

When passing from the characterization of 〈R,+, <,Z〉-definable relations to the characterization

of general ones the topological characterization uses the same intermediate properties but they are

much more delicate to establish and an extra condition (RSP) is required: all singular points of X
have rational components. Moreover we show that this characterization is effective under natural

conditions. Indeed, if every nonempty 〈R,+, <, 1,X〉-definable relation contains a point with rational
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components, then the 〈R,+, <, 1〉-definability of X is expressible in the structure 〈R,+, <, 1,X〉
itself. The crucial point is the notion of quasi-singular points generalizing that of singular points. We

were forced to consider this new notion because the 〈R,+, <, 1,X〉-predicate which defines singular

points in 〈R,+, <,Z〉 no longer defines them in general structures. In so doing we can turn the

criterion for 〈R,+, <, 1〉-definability into an effective criterion provided that the theory of 〈R,+, <
, 1,X〉 is decidable. More precisely we show that for every decidable expansion M of 〈R,+, <, 1〉
such that every nonempty M-definable relation contains a point with rational components, one can

decide whether or not a given M-definable relation is 〈R,+, <, 1〉-definable.

We extend the result of 〈R,+, <, 1〉-definability of a general relation to that of 〈R,+, <,Z〉-
definability. Every relation on the reals can be uniquely decomposed into some relations on the inte-

gers and some relations on the unit hypercubes ([10], see also [13]). This decomposition yields a sim-

ple characterization of the 〈R,+, <,Z〉-definable relations, which is expressible in

〈R,+, <,Z,X〉 provided that all nonempty 〈R,+, <,Z,X〉-definable relations contain a point with

rational components. Combining the result on 〈R,+, <, 1〉-definability for the reals and Muchnik’s

result on 〈Z,+, <, 1〉-definable integer relations we show that for every decidable expansion N of

〈R,+, <,Z〉 such that every nonempty N -definable relation contains a point with rational compo-

nents, one can decide whether or not a given N -definable relation is 〈R,+, <,Z〉-definable.

We also study a particularly significant case. The notion of k-recognizability for relations on in-

tegers can be extended to the case of relations on reals, by considering Muller automata which read

infinite words encoding reals written in base k, see [9, Definition 1]. The class of k−recognizable

relations coincides with the class of relations definable in some expansion of 〈R,+, <,Z〉 of the form

〈R,Z,+, <,Xk〉 where Xk is a base dependent ternary predicate [9, section 3]. This expansion satis-

fies the above required condition since it has a decidable theory and every nonempty k−recognizable

relation contains a point with rational components. The 〈R,+, <,Z〉-definable relations define a

subclass which has a very specific relevance since it coincides with the class of relations which are

k−recognizable for every k ≥ 2 [4, 5, 6]. A consequence of our result is that given a k−recognizable

relation it can be decided if it is ℓ−recognizable for all bases ℓ ≥ 2. This falls into the more gen-

eral issue of finding effective characterizations of subclasses of k−recognizable relations. A previous

result of this type was proved by Milchior in [17] by showing that it is decidable whether or not a

weakly k−recognizable subset of R is definable in 〈R,+, <, 1〉, where “weak” is defined as a natural

condition on the states of a deterministic automaton.

We give a short outline of our paper. Section 2 gathers basic definitions and notation. In Sec-

tion 3 we recall the main useful definitions and results from [2] in order to make the paper selfcon-

tained. In Section 4 we show that the conjunction of conditions (RSP), (RB) and (FI) characterizes the

〈R,+, <, 1〉-definable relations. In Section 5 we deal with the self-definable criterion of 〈R,+, <, 1〉-
definability. We introduce the crucial notion of quasi-singular point and show that it is definable in

〈R,+, <, 1,X〉. We also provide an alternative, inductive, formulation of 〈R,+, <, 1〉-definability for

X: every relation obtained from X by assigning fixed real values to arbitrary components contains

finitely many quasi-singular points. We then show how to extend the results to the case of 〈R,+, <,Z〉.
In Section 6 we show that the self-definable criterion of 〈R,+, <, 1〉-definability (resp. 〈R,+, <,Z〉-
definability) of a relation X ⊆ Rn can be turned into an effective criterion provided that X is definable

in a suitable decidable theory, and apply the result to the class of k-recognizable relations.
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Other related work.

Muchnik’s approach, namely expressing in the theory of the structure a property of the structure itself,

can be used in other settings. We refer the interested reader to the discussion in [22, Section 4.6]

and also to [19, 1, 17] for examples of such structures. A similar method has already been used in

1966, see [15, Thm 2.2.] where the authors are able to express in Presburger theory whether or not a

Presburger subset is the Parikh image of a context-free language.

The theory of (expansions of) dense ordered groups has been studied extensively in model theory,

in particular in connection with o-minimality, see e.g. [11, 12]. Let us also mention a recent series of

results by Hieronymi which deal with expansions of 〈R,+, <,Z〉, and in particular with the frontier

of decidability for such expansions, see, e.g., [16] and its bibliography.

2. Preliminaries

Throughout this work we assume the vector space Rn is provided with the metric L∞ (i.e., |x| =
max1≤i≤n |xi|). Let B(x, r) denote the open ball centered at x ∈ Rn and of radius r > 0. Given

x, y ∈ Rn let [x, y] (resp. (x, y)) denote the closed segment (resp. open segment) with extremities

x, y. We use also notations such as [x, y) or (x, y] for half-open segments.

Let us specify our logical conventions and notations. We work within first-order predicate calculus

with equality. We identify formal symbols and their interpretations. We are mainly concerned with

the structures 〈R,+, <, 1〉 and 〈R,+, <,Z〉. Given a structure M with domain D and X ⊆ Dn, we

say that X is definable in M, or M-definable, if there exists a formula ϕ(x1, . . . , xn) in the signature

of M such that ϕ(a1, . . . , an) holds in M if and only if (a1, . . . , an) ∈ X (this corresponds to the

usual notion of definability without parameters).

The 〈R,+, <, 1〉-theory admits quantifier elimination in the following sense, which can be inter-

preted geometrically as saying that a 〈R,+, <, 1〉-definable relation is a finite union of closed and

open polyhedra.

Theorem 2.1. [14, Thm 1] Every formula in 〈R,+, <, 1〉 is equivalent to a finite Boolean combination

of inequalities between linear combinations of variables with coefficients in Z (or, equivalently, in Q).

In particular every nonempty 〈R,+, <, 1〉-definable relation contains a point with rational compo-

nents.

3. Local properties of real relations

Most of the definitions and results in this section are taken from [2]. These are variants of notions and

results already known in computational geometry, see e.g. [3, 7] for the case of 〈R,+, <, 1〉-definable

relations. We only give formal proofs for the new results. In the whole section we fix n ≥ 1 and

X ⊆ Rn.

3.1. Strata

The following clearly defines an equivalence relation.
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Definition 3.1. Given x, y ∈ Rn we write x ∼X y or simply x ∼ y when X is understood, if there

exists a real r > 0 such that the translation w 7→ w+y−x is a one-to-one mapping from B(x, r)∩X
onto B(y, r) ∩X.

Example 3.2. Let X be a closed subset of the plane delimited by a square. There are ten ∼X-

equivalence classes: the set of points interior to the square, the set of points interior to its complement,

the four vertices and the four open edges.

Let Cl(x) denote the ∼-equivalence class to which x belongs.

Definition 3.3.

1. Given a non-zero vector v ∈ Rn and a point y ∈ Rn, let Lv(y) = {y + αv | α ∈ R} be the

line passing through y in the direction v. More generally, if X ⊆ Rn let Lv(X) denote the set
⋃

x∈X Lv(x).

2. A non-zero vector v ∈ Rn is an X-stratum at x (or simply a stratum when X is understood) if

there exists a real r > 0 such that

B(x, r) ∩ Lv(X ∩B(x, r)) ⊆ X. (1)

This can be seen as saying that inside the ball B(x, r), the relation X is a union of lines parallel

to v. By convention the zero vector is also considered as a stratum.

3. The set of X-strata at x is denoted StrX(x) or simply Str(x).

Proposition 3.4. [2, Proposition 3.4] For every x ∈ Rn the set Str(x) is a vector subspace of Rn.

Definition 3.5. The dimension dim(x) of a point x ∈ Rn is the dimension of the subspace Str(x). We

say that x is a d-point if d = dim(x). Moreover if d = 0 then x is said to be X-singular, or simply

singular, and otherwise it is nonsingular.

Example 3.6. (Example 3.2 continued) Let x ∈ R2. If x belongs to the interior of the square or

of its complement, then Str(x) = R2. If x is one of the four vertices of the square then we have

Str(x) = {0}, i.e., x is singular. Finally, if x belongs to an open edge of the square but is not a vertex,

then Str(x) has dimension 1, and two points of opposite edges have the same strata subspace, while

two points of adjacent edges have different strata subspaces.

It can be shown that all strata at x can be defined with respect to a common value r in expres-

sion (1).

Proposition 3.7. [2, Proposition 3.9] For every x ∈ Rn there exists a real r > 0 such that for every

v ∈ Str(x) \ {0} we have

B(x, r) ∩ Lv(X ∩B(x, r)) ⊆ X.
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Definition 3.8. A X-safe radius (or simply a safe radius when X is understood) for x is a real r > 0
satisfying the condition of Proposition 3.7. Clearly if r is safe then so are all 0 < s ≤ r. By convention

every real is a safe radius if Str(x) = {0}.

Example 3.9. (Example 3.2 continued) For an element x in the interior of the square or the interior

of its complement a safe radius is the (minimal) distance from x to the edges of the square. If x is

a vertex then Str(x) = {0} and every r > 0 is safe for x. In all other cases r can be chosen as the

minimal distance of x to a vertex.

Remark 3.10. If x ∼ y then Str(x) = Str(y), therefore given an ∼-equivalence class E, we may

define Str(E) as the set of common strata of all x ∈ E.

Observe that the converse is false. In Example 3.2 for instance, points in the interior and points

in the complement of the interior of the square have the same set of strata, namely R2, but are not

∼ −equivalent.

It is possible to combine the notions of strata and of safe radius.

Lemma 3.11. [2, Lemma 3.13] Let x ∈ Rn and r be a safe radius for x. Then for all y ∈ B(x, r) we

have Str(x) ⊆ Str(y).

Example 3.12. (Example 3.2 continued) Consider a point x on an (open) edge of the square and a safe

radius r for x. For every point y in B(x, r) which is not on the edge we have Str(x) ( Str(y) = R2.

For all other points we have Str(x) = Str(y).

Inside a ball whose radius is safe for the center, all points along a stratum are ∼-equivalent.

Lemma 3.13. Let x be non-singular, v ∈ Str(x) \ {0}, and r be safe for x. For every z ∈ B(x, r) we

have Lv(z) ∩B(x, r) ⊆ Cl(z).

Proof:

Let z′ ∈ Lv(z) ∩ B(x, r), and s > 0 be such that both B(z, s), B(z′, s) are included in B(x, r). For

every w ∈ B(0, s) we have z′ + w ∈ Lv(z + w) thus z + w ∈ X ↔ z′ +w ∈ X. ⊓⊔

3.2. Relativization to affine subspaces

We relativize the notion of singularity and strata to an affine subspace S ⊆ Rn. The next definition

should come as no surprise.

Definition 3.14. Given a subset X ⊆ Rn, an affine subspace S ⊆ Rn and a point x ∈ S, we say that

a vector v ∈ Rn \ {0} parallel to S is an (X,S)-stratum for the point x if for all sufficiently small

r > 0 it holds

B(x, r) ∩ Lv(X ∩B(x, r) ∩ S) ⊆ X. (2)

By convention the zero vector is also considered as a (X,S)-stratum. The set of (X,S)-strata of x
is denoted Str(X,S)(x). We define the equivalence relation x ∼(X,S) y on S as follows: x ∼(X,S) y if
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and only if there exists a real r > 0 such that x+w ∈ X ↔ y + w ∈ X for every w ∈ Rn parallel to

S and such that |w| < r. A point x ∈ S is (X,S)-singular if it has no (X,S)-stratum. For simplicity

when S is the space Rn we maintain the previous terminology and speak of X-strata and X-singular

points. We say that a real r > 0 is (X,S)-safe if (2) holds for every nonzero (X,S)−stratum v.

Remark 3.15. Singularity and nonsingularity do not go through restriction to affine subspaces. E.g.,

in the real plane, let X = {(x, y) | y < 0} and S = {(x, y) | x = 0}. Then the origin is not

X−singular but it is (X,S)−singular. All other elements of S admit (0, 1) as an (X,S)−stratum

thus they are not (X,S)−singular. The opposite situation may occur. In the real plane, let X =
{(x, y) | y < 0} ∪ S. Then the origin is X−singular but it is not (X,S)−singular.

3.2.1. Relativization of the space of strata

Lemma 3.16. Let S be an affine hyperplane of Rn and x ∈ S. Let V be the vector subspace generated

by StrX(x) \ Str(X,S)(x). If V 6= {0} then StrX(x) = V + Str(X,S)(x), and otherwise StrX(x) ⊆
Str(X,S)(x).

Proof:

It is clear that if V = {0} then every X-stratum of S is an (X,S)-stratum.

Now assume there exists v ∈ StrX(x) \ Str(X,S)(x). It suffices to prove that all w ∈ Str(X,S)(x)
belong to StrX(x). Let s > 0 be simultaneously (X,S)−safe and X−safe for x. Let 0 < s′ < s be

such that Lv(z) ∩ S ⊆ B(x, s) for every z ∈ B(x, s′). Let y1, y2 ∈ B(x, s′) be such that y1 − y2
and w are parallel. It suffices to prove the equivalence y1 ∈ X ↔ y2 ∈ X . Let y′1 (resp. y′2) denote

the intersection point of Lv(y1) and S (resp. Lv(y2) and S). We have y1, y
′
1 ∈ B(x, s), v ∈ StrX(x),

and s is X−safe for x, thus y1 ∈ X ↔ y′1 ∈ X. Similarly we have y2 ∈ X ↔ y′2 ∈ X. Now

y′1, y
′
2 ∈ B(x, s), y′1 − y′2 and w are parallel, and w ∈ Str(X,S)(x), which implies y′1 ∈ X ↔ y′2 ∈ X

and thus finally y1 ∈ X ↔ y2 ∈ X. ⊓⊔

Corollary 3.17. Let S be an hyperplane of Rn with underlying vector subspace V , and let x ∈ S be

non-singular. If StrX(x) \ V is nonempty then Str(X,S)(x) = StrX(x) ∩ V .

3.2.2. Relativization of the ∼-relation

Lemma 3.18. Let S be an hyperplane of Rn, y, z ∈ S, and v 6= {0} be a common X−stratum of y, z
not parallel to S. If y ∼(X,S) z then y ∼X z.

Proof:

Assume y ∼(X,S) z, and let r > 0 be (X,S)− and X− safe both for y and z. Since v is not parallel

to S, there exists s > 0 such that for every w ∈ Rn with |w| < s, the intersection point of Lv(y + w)
(resp. Lv(z + w)) and S exists because dim(S) = n − 1 and belongs to B(y, r) (resp. B(z, r)). It

suffices to show that y + w ∈ X ↔ z + w ∈ X. Let y + w′ be the intersection point of Lv(y + w)
and S.

By our hypothesis on s, y + w′ belongs to B(y, r). Moreover r is X−safe for y, v ∈ StrX(y),
and w′ − w is parallel to v, therefore y + w ∈ X ↔ y + w′ ∈ X. Similarly we have z + w ∈ X ↔
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z+w′ ∈ X. Now |w′| < r, thus by our assumptions y ∼(X,S) z we have y+w′ ∈ X ↔ z+w′ ∈ X
and therefore y + w ∈ X ↔ z + w ∈ X. ⊓⊔

Next we consider a particular case for S which plays a crucial role in expressing the characterisa-

tion stated in the main theorem. It is also a tool for reasoning by induction in Section 4.3.

Definition 3.19. Given an index 0 ≤ i < n and a real c ∈ R consider the hyperplane

H = Ri × {c} ×Rn−i−1.

The intersection X ∩H is called a section of X. It is a rational section if c is a rational number. We

define πH : Rn → Rn−1 as πH(x1, . . . , xn) = (x1, . . . , xi−1, xi+1, . . . , xn).

The following facts are easy consequences of the above definitions: for all x, y ∈ H and v a vector

parallel to H we have:

1. x ∼(X,H) y if and only if πH(x) ∼πH(X) πH(y)

2. v ∈ Str(X,H)(x) if and only if πH(v) ∈ StrπH (X)(πH(x)). In particular x is (X,H)−singular

if and only if πH(x) is πH(X)−singular.

3.3. Intersection of lines and equivalence classes

In this section we describe the intersection of a ∼-class E with a line parallel to some v ∈ Str(E). It

relies on the notion of adjacency of ∼-classes.

Definition 3.20. LetE be a nonsingular ∼- class and let v be one of its strata. A point x is v−adjacent

to E if there exists ǫ > 0 such that for all 0 < α ≤ ǫ we have x+ αv ∈ E.

Example 3.21. (Example 3.2 continued) We specify Example 3.2 by choosing the square as the unit

square with vertices (0, 0), (0, 1), (1, 0) and (1, 1). All elements of the bottom open edge of the

square belong to the same ∼-class E. The vector v = (1, 0) is a stratum of E. The vertex (0, 0)
is v−adjacent to E. Similarly every element of E is also v−adjacent to E. However the vertex (1, 0)
is not v−adjacent to E (but it is (−v)−adjacent to E).

The notion of adjacency is a property of the ∼-class.

Lemma 3.22. [2, Lemma 5.2] Let F be a ∼-class.

1. For all x, y ∈ F , all nonzero vectors v and all ∼-classes E, x is v-adjacent to E if and only if y
is v-adjacent to E.

2. For each vector v there exists a most one ∼-class E such that F is v-adjacent to E.

Consequently, if for some x ∈ F and some vector v, x is v-adjacent to E it makes sense to say

that the class F is v-adjacent to E.
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Lemma 3.23. [2, Corollary 5.6] Let x ∈ Rn be non-singular, E = Cl(x) and let v ∈ Str(x) \ {0}.

The set Lv(x) ∩E is a union of disjoint open segments (possibly infinite in one or both directions) of

Lv(x), i.e., of the form (y − αv, y + βv) with 0 < α, β ≤ ∞ and y ∈ E.

If α < ∞ (resp. β < ∞) then the point y − αv (resp. y + βv) belongs to a ∼-class F 6= E
such that dim(F ) < dim(E) and F is v-adjacent (resp. (−v)−adjacent) (or simply adjacent when v
is understood) to E.

4. Characterizations of 〈R,+, <, 1〉-definable relations

4.1. Characterization in 〈R,+, <,Z〉-definable relations

We recall our previous characterization of 〈R,+, <, 1〉-definable among 〈R,+, <,Z〉-definable rela-

tions.

Theorem 4.1. [2, Theorem 6.1] Let n ≥ 1 and let X ⊆ Rn be 〈R,+, <,Z〉-definable. Then X is

〈R,+, <, 1〉-definable if and only if the following two conditions hold

(FSP) There exist only finitely many X−singular points.

(DS) Every rational section of X is 〈R,+, <, 1〉-definable.

The necessity of condition (FSP) is proved by Proposition 4.6 of [2] and that of (DS) is trivial since

a rational section is the intersection of two 〈R,+, <, 1〉-definable relations. The proof that conditions

(FSP) and (DS) are sufficient uses several properties of 〈R,+, <,Z〉-definable relations which are

listed in the form of a proposition below.

Proposition 4.2. Let n ≥ 1 and X ⊆ Rn be 〈R,+, <,Z〉-definable. The following holds.

(RSP) The components of the X-singular points are rational numbers [2, Proposition 4.6].

(FI) The equivalence relation ∼ has finite index and thus the number of different vector spaces Str(x)
is finite when x runs over Rn [2, Corollary 4.5].

(RB) For all nonsingular points x, the vector space Str(x) has a rational basis in the sense that it can

be generated by a set of vectors with rational components [2, Proposition 4.7].

4.2. Characterization in arbitrary relations

Now we aim to characterize 〈R,+, <, 1〉-definability for an arbitrary relation X ⊆ Rn. We prove

that the conditions (FSP),(DS),(RSP) are sufficient, i.e., compared to Theorem 4.1 one can remove the

condition “X is 〈R,+, <,Z〉-definable” and add condition (RSP).

Theorem 4.3. Let n ≥ 1 and X ⊆ Rn. Then X is 〈R,+, <, 1〉-definable if and only if it satisfies the

three conditions (FSP), (DS), (RSP)

(FSP) It has only finitely many singular points.
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(DS) Every rational section of X is 〈R,+, <, 1〉-definable.

(RSP) Every singular point has rational components.

Observe that the three conditions are needed, as shown by the following relations which are not

〈R,+, <, 1〉-definable.

• Consider the binary relation X = {(x, x) | x ∈ Z}. The singular elements of X are precisely

the elements of X, thus X satisfies (RSP) but not (FSP). It satisfies (DS) because every rational

section of X is either empty or equal to the singleton {(x, x)} for some x ∈ Z, thus it is

〈R,+, <, 1〉-definable.

• The binary relation X = R×Z has no singular point thus it satisfies (FSP) and (RSP). However

it does not satisfy (DS) since, e.g., the rational section {0} × Z is not 〈R,+, <, 1〉-definable.

• The unary relation X = {
√
2} admits

√
2 as unique singular point, thus it satisfies (FSP) but

not (RSP). It satisfies (DS) since every rational section of X is empty.

Now we prove Theorem 4.3.

Proof:

The necessity of the first two conditions is a direct consequence of Theorem 4.1, that of the third

condition is due to Proposition 4.2.

Now we turn to the other direction which is the bulk of the proof and we proceed in two steps. First

we show that properties (FSP), (DS) and (RSP) imply properties (RB) and (FI) (Claims 4.4 and 4.5)

and then based on these two properties we show that there exists a 〈R,+, <, 1〉-formula defining X.

Claim 4.4. If X satisfies conditions (FSP), (DS) and (RSP) then it satisfies condition (RB).

Proof:

We prove that for every non-singular point x ∈ Rn, Str(x) has a rational basis. If n = 1 this follows

from the fact that for every x ∈ R the set Str(x) is either equal to {0} or equal to R, thus we assume

n ≥ 2.

For every i ∈ {1, . . . , n} let Hi = {(x1, . . . , xn) ∈ Rn | xi = 0}. Let us call rational

i−hyperplane any hyperplane S of the form S = {(x1, . . . , xn) ∈ Rn | xi = c} where c ∈ Q.

The underlying vector space of S is Hi.

Let x be a d−point with d ≥ 1, i.e., a point for which V = Str(x) has dimension d. For d = n the

result is obvious. For 1 ≤ d < n we prove the result by induction on d.

Case d = 1: It suffices to show that every 1−point x has a stratum in Qn. Let v ∈ Str(x)\{0}, and let

r > 0 be safe for x. We can find i ∈ {1, . . . , n} and two distinct rational i−hyperplanes S1 and S2,

not parallel to v, such that Lv(x) intersects S1 (resp. S2) inside B(x, r), say at some point y1 (resp.

y2). By Lemma 3.13 we have y1 ∼ x. By Corollary 3.17 it follows that

Str(X,S1)(y1) = StrX(y1) ∩Hi = StrX(x) ∩Hi
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and the rightmost expression is reduced to {0} since d = 1 and v 6∈ Hi. This implies that y1
is (X,S1)−singular, i.e., that πS1(y1) is πS1(X)−singular. Similarly y2 is (X,S2)−singular, i.e.,

πS2(y2) is πS2(X)−singular.

By condition (DS) the rational sections X ∩S1 (resp. X ∩S2) are 〈R,+, <, 1〉-definable, thus the

(n − 1)−ary relations πS1(X) (resp. πS2(X)) are also 〈R,+, <, 1〉-definable, and by our hypothesis

(RSP) this implies that πS(y1) (resp. πS(y2)) has rational components. Thus the same holds for y1
and y2, and also for y1 − y2, and the result follows from the fact that y1 − y2 ∈ StrX(x).

Case 2 ≤ d < n: Let I ⊆ {1, . . . , n} denote the set of indices i such that V 6⊆ Hi. We have V ⊆
⋂

i∈{1,...,n}\I Hi thus dim(V ) ≤ n − (n − |I|) = |I|, and it follows from our assumption dim(V ) =
d ≥ 2 that |I| ≥ 2.

Now we prove that V =
∑

i∈I(V ∩Hi). It suffices to prove V ⊆ ∑

i∈I(V ∩Hi), and this in turn

amounts to prove that dim(
∑

i∈I(V ∩Hi)) = d. For every 1 ≤ i ≤ n we have

dim(V +Hi) = dim(V ) + dim(Hi)− dim(V ∩Hi).

Now if i ∈ I then dim(V +Hi) > dim(Hi), i.e., dim(V +Hi) = n, which leads to dim(V ∩Hi) =
d + (n − 1) − n = d − 1. Thus, in order to prove dim(

∑

i∈I(V ∩Hi)) = d it suffices to show that

there exist i, j ∈ I such that V ∩Hi 6= V ∩Hj . Assume for a contradiction that for all i, j ∈ I we

have V ∩Hi = V ∩Hj . Then for every i ∈ I we have

V ∩Hi = V ∩
⋂

j∈I

Hj ⊆
⋂

j 6∈I

Hj ∩
⋂

j∈I

Hj = {0}

which contradicts the fact that dim(V ∩Hi) = d− 1 ≥ 1.

We proved that V =
∑

i∈I(V ∩ Hi), thus it suffices to prove that for every i ∈ I , V ∩ Hi has

a rational basis. Let v be an element of V \ Hi, and let r be safe for x. We can find a rational

i−hyperplane S not parallel to v and such that the intersection point of S and Lv(x), say y, belongs

to B(x, r). By Lemma 3.13 (applied to z = x) we have y ∼ x. Corollary 3.17 then implies

Str(X,S)(y) = StrX(y) ∩Hi = StrX(x) ∩Hi = V ∩Hi

which yields

StrπS(X)(y) = πS(V ∩Hi).

Now by condition (DS),X∩S is 〈R,+, <, 1〉-definable, and πS(X) as well. Therefore by Proposition

4.2 applied to X ∩ S, the relation X ∩ S satisfies (RB) thus πS(V ∩Hi) has a rational basis, and this

implies that V ∩Hi also has a rational basis. ⊓⊔

Claim 4.5. If X satisfies conditions (FSP), (DS) and (RSP) then it satisfies condition (FI).

Proof:

Before proving the claim we need a simple definition.
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Definition 4.6. Given X ⊆ Rn and a ∼-class E, we define the isolated part of E as the subset

Z = {x ∈ E | Lv(x) ⊆ E for all nonzero vectors v ∈ Str(E)}.

A subset of Rn isX-isolated (or simply isolated whenX is understood) if it is equal to the isolated

part of some ∼-class.

Example 4.7. Let X ⊆ R2 be defined as X = L1 ∪ L2 where L1 denotes the horizontal axis and

L2 denotes the open half-line L2 = {(x1, x2) | x2 = 1 and x1 > 0}. In this case there are three

∼-classes, namely E1 = X, E2 = {(0, 1)} and E3 = R2 \ (E1 ∪ E2). Let us describe the isolated

part for each of these ∼-classes. A point belongs to the isolated part of a ∼-class if whatever stratum

is chosen, all points in the direction are trapped in the class. For instance for the ∼-class E1 = X,

we can show that the isolated part is obtained by deletion of the half-line L2 of X, whose points are

clearly not trapped. Indeed the subspace Str(E1) is generated by the vector (1, 0). Therefore for every

v ∈ Str(E1), if x ∈ L1 then Lv(x) = L1 ⊆ E1, and if x ∈ L2 then the line Lv(x) intersects E2

thus Lv(x) 6⊆ E1. This shows the isolated part of E1 is equal to L1. The ∼-class E2 has dimension 0
thus obviously it is equal to its isolated part. Finally the isolated part of E3 is empty since the vector

v = (0, 1) is a stratum of E3 and for every x ∈ E3 the line Lv(x) intersects E1.

Lemma 4.8. Let X ⊆ Rn satisfy (FSP), (DS) and (RSP). We have

1. Let E be a ∼-class and Z be its isolated part. Then Z is a finite union of affine subspaces with

underlying vector subspace Str(E) each containing a point with rational components.

2. There exist finitely many isolated subsets.

Proof:

By induction on n. For n = 1 if X is equal to R or to the empty set, the only isolated set is X and it

obviously satisfies (1). Otherwise a nonempty isolated set Z consists of equivalent points of a ∼-class

of dimension 0, i.e., it is a union of singular points. Now by (FSP) and (DS) there exist finitely many

such points and they have rational components, which implies (1) and (2).
Now let n ≥ 1. All isolated sets Z included in a ∼-class E of dimension 0 satisfy (1), and

moreover there are finitely many such sets Z . Thus it suffices to consider the case where Z 6= ∅ and

Str(E) 6= {0}.

Let v ∈ Str(E) \ {0} and let i ∈ {1, . . . , n} be such that v 6∈ Hi. For every z ∈ Z we have

Lv(z) ⊆ Z , thus Z intersects the hyperplane Hi. All elements of Z ∩Hi are ∼X-equivalent thus they

are also ∼(X,Hi)-equivalent. Furthermore for every x ∈ Z ∩Hi we have Str(X,Hi)(x) = StrX(x)∩Hi

by Corollary 3.17 and thus for every w ∈ StrX(x) ∩Hi we have Lw(x) ⊆ Z ∩Hi. This shows that

πHi
(x) belongs to a πHi

(X)−isolated set, hence πHi
(Z) is included in a πHi

(X)−isolated set, say

W ⊆ πHi
(Hi).

Now by condition (DS) the set πHi
(X) is 〈R,+, <, 1〉-definable, thus by Theorem 4.1 it satisfies

also (FSP). By our induction hypothesis it follows that W can be written as W =
⋃p

j=1Wj , where

either all Wj’s are parallel affine subspaces with underlying vector space πHi
(Str(E)) each contain-

ing some point with rational components (by (1)), or each Wj is reduced to a point with rational
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components (by (1)). Every Wj which intersects πHi
(Z) satisfies Wj ⊆ πHi

(Z), which shows that

πHi
(Z) =

⋃

j∈J Wj for some J ⊆ {1, . . . , p}. That is, we have Z ∩ Hi =
⋃

j∈J W
′
j where each

W ′
j = π−1

Hi
(Wj). Observe that if x belongs to Wj and has rational components then the point x′ =

π−1
Hi

(x) also has rational components. Now Z = (Z ∩Hi) + Str(E) thus Z =
⋃

j∈J(W
′
j + Str(E)).

Since the underlying vector space of each W ′
j is included in Str(E), this proves (1).

Concerning (2) we observe that Z is completely determined by Z ∩ Hi, i.e., πHi
(Z). By our

induction hypothesis there are finitely many πHi
(X)−isolated parts W =

⋃p
j=1Wj and each X-

isolated part is determined by a subset of the form
⋃

j∈J Wj for some J ⊆ {1, . . . , p}. This proves

point (2). ⊓⊔

Now we turn to the proof of Claim 4.5. Lemma 4.8 shows that the number of ∼-classes having a

nonempty isolated part is finite. It thus suffices to prove that for every 0 ≤ d ≤ n there exist finitely

many d-classes E having an empty isolated part.

For d = 0 the result follows from (FSP ) and the fact that each 0−class is a union of singular

points. For d = n there exist at most two d−classes, which correspond to elements in the interior of

X or the interior of its complement.

For 0 ≤ d < n we reason by induction on d. Observe first that if a ∼-class E has dimension d and

has an empty isolated part, then there exist x ∈ E and v ∈ Str(E) \ {0} such that Lv(x) 6⊆ E. By

Lemma 3.23 this implies that there exist y ∈ Lv(x) and a ∼-class F such that y ∈ F , F is adjacent

to E, dim(F ) < dim(E), and [x, y) ⊆ Cl(x). Now by our induction hypothesis there exist finitely

many ∼-classes with dimension less than d. Thus in order to prove the claim, it suffices to show that

there are finitely many d-classes to which some d′-class with d′ < d is adjacent.

In order to meet a contradiction, assume that there exists a d′−class F which is adjacent to in-

finitely many d-classes, say Ej with j ∈ J . We may furthermore assume that for each class Ej there

is no integer d′ < d′′ < d such that some d′′-class is adjacent to Ej . Because of Lemma 3.22 it is

enough to fix an element y in F and investigate the classes to which it is adjacent.

We first consider the case d′ = 0.

Because of condition (FSP), for some real s > 0 the point y is the unique singular point inB(y, s).
Moreover for every j ∈ J , F is adjacent toEj , thus there exists a point xj ∈ Ej such that [xj , y) ⊆ Ej .

Let HLj denote the open halfline with endpoint y and containing xj . Observe that we necessarily have

HLj ∩B(y, s) ⊆ Cl(xj). Indeed, by Lemma 3.23 the condition HLj ∩B(y, s) ( Cl(xj) implies that

there exists a point z = y + α(xj − y) ∈ B(y, s) such that α > 1 and dim(z) < d. Since y is the

unique singular point in B(y, s) this implies dim(z) > 0 but then because of [xj , z) ⊆ Cl(xj) the

maximality condition stipulated for d′ is violated.

Let zj be the point on HLj at distance s
2 from y and let z be adherent to the set {zj | j ∈ J}. The

point z is nonsingular since y is the unique singular point in the ball B(y, s). Let v ∈ Str(z) \ {0}.

Consider some ℓ ∈ {1, . . . , n}, some rational ℓ−hyperplane S such that z 6∈ S and some real 0 < t <
s
2 such that Lv(B(z, t)) ∩ S ⊆ B(z, s2). The ball B(z, t) contains infinitely many non ∼-equivalent

points, and by Lemma 3.18 their projections on S in the direction v are non ∼(X,S)-equivalent. But

by condition (DS) the relation X ∩ S is 〈R,+, <, 1〉-definable, thus πS(X) satisfies condition (FI) of

Proposition 4.2, a contradiction.

Now we consider the case where d′ > 0.
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Choose some v ∈ Str(y) and let r be a safe radius for y. We can find 0 < s < r, k ∈ {1, . . . , n}
and some k−hyperplane S not parallel to v such that Lv(B(y, s)) ∩ S ⊆ B(y, r). By definition

of y, B(y, s) intersects infinitely many pairwise distinct d−classes. Given two non ∼-equivalent d-

points z1, z2 ∈ B(y, s), and their respective projections w1, w2 over S along the direction v, we have

w1 6∼(X,S) w2 by Lemma 3.18. This implies that there exist infinitely many ∼(X,S)-classes. However

by condition (DS), the relation X ∩S is 〈R,+, <, 1〉-definable, thus πS(X) satisfies condition (FI) of

Proposition 4.2, a contradiction. ⊓⊔

Now we turn to the proof of Theorem 4.3. Observe that X is equal to the union of ∼-classes of its

elements, thus by Claim 4.5, in order to prove that X is 〈R,+, <, 1〉-definable it suffices to prove that

all ∼X-classes are 〈R,+, <, 1〉-definable. More precisely, we prove that each ∼-class E is definable

from ∼-classes F with smaller dimension, i.e., that E is definable in the expansion of 〈R,+, <, 1〉
obtained by adding a predicate for each such F . We proceed by induction on the dimension d of

Str(E).
If d = 0 then E is a union of singular points, and by (FSP) and (RSP) it follows that E is a finite

subset of Qn thus is 〈R,+, <, 1〉-definable.

Assume now 0 < d ≤ n. By Claim 4.4 there exists a rational basis V (E) = {v1, . . . , vd} of

Str(E). Let Z ⊆ E be the isolated part of E and let E′ = E \ Z . By Lemma 4.8 (1), Z is a finite

union of parallel affine subspaces with underlying vector space V (E) each containing a point with

rational components, thus Z is 〈R,+, <, 1〉-definable. It remains to prove that E′ is 〈R,+, <, 1〉-
definable. We use the following characterization of E′.

Lemma 4.9. For every x ∈ Rn, we have x ∈ E′ if and only if there exist 1 ≤ p ≤ d and a sequence

of pairwise distinct elements x0, . . . , xp ∈ Rn such that x0 = x and

1. for every 0 ≤ k ≤ p − 1, xk+1 − xk ∈ V (E) and [xk, xk+1) does not intersect any ∼-class of

strictly smaller dimension than dim(E)

2. if F = Cl(xp) then F is (xp−1 − xp)-adjacent to E and dim(F ) < dim(E).

Proof:

We first prove that the conditions are sufficient. We prove by backward induction that [xk, xk+1) ⊆ E
for every 0 ≤ k ≤ p − 1. This will imply that x = x0 ∈ E, and the fact that xp − x belongs to

Str(E) and dim(F ) < dim(E) will lead to x ∈ E′. Set k = p − 1. By Point 2 of Lemma 3.22 the

element xp is (xp−1 − xp)-adjacent to E, thus [xp−1, xp) intersects E. Moreover [xp−1, xp) does not

intersect any ∼-class G such that dim(G) < dim(E), thus by Lemma 3.23 we have [xp−1, xp) ⊆ E.

For 0 ≤ k < p − 1, by our induction hypothesis we have xk+1 ∈ E. Moreover [xk, xk+1) does not

intersect any ∼-class G such that dim(G) < dim(E), thus [xk, xk+1) ⊆ E again by Lemma 3.23.

We prove the necessity. By definition ofE′ and Lemma 3.23 there exist v ∈ Str(E) and y ∈ Lv(x)
such that [x, y) ⊆ E and y 6∈ E. Decompose v = α1vi1 + · · · + αpvip where 0 < i1 < · · · < ip ≤ d
and α1, · · · , αp 6= 0. We can assume w.l.o.g that y is chosen such that p is minimal and furthermore

that αp is minimal too. For 0 ≤ k < p set xk = x+ α1vi1 + · · ·+ αkvik . By minimality of p and αp,

the segments [x0, x1), . . . , [xp−1, xp) intersect no class of dimension less than dim(E). Then y = xp
is (xp−1 − xp)-adjacent to E. ⊓⊔
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In order to prove that E′ is 〈R,+, <, 1〉-definable it suffices to show that we can express in

〈R,+, <, 1〉 the existence of a sequence x0, . . . , xp ∈ Rn which satisfies both conditions of Lemma

4.9. Observe that V (E) is finite and each of its element is 〈R,+, <, 1〉-definable, thus we can express

in 〈R,+, <, 1〉 the fact that a segment is parallel to some element of V (E). Moreover by (FI) there

exist finitely many ∼-classes F such that dim(F ) < dim(E), and all such classes are 〈R,+, <, 1〉-
definable by our induction hypothesis. This allows us to express condition (1) in 〈R,+, <, 1〉. For (2)
we use again the fact that there are only finitely many classes F to consider and that all of them are

〈R,+, <, 1〉-definable. ⊓⊔

4.3. An alternative noneffective formulation.

In this section we re-formulate Theorem 4.3 in terms of (generalized) projections of X by building

on the notion of generalized section which extends that of section, in the sense that it allows us to fix

several components.

Definition 4.10. Given n ≥ 1 and X ⊆ Rn, a generalized section of X is a relation of the form

Xs,a = {(x1, . . . , xn) ∈ X | xs1 = a1, . . . , xsr = ar} (3)

where r > 0, s = (s1, . . . , sr) is an r−tuple of integers with 1 ≤ s1 < · · · < sr ≤ n, and

a = (a1. . . . , ar) is an r−tuple of reals. When r = 0 we define Xs,a = X by convention, i.e., X is

a generalized section of itself. If r > 0 then the section is said to be proper. If all elements of a are

rational numbers then Xs,a is called a rational generalized section of X.

In the above definition, each Xs,a is a subset of Rn. If we remove the r fixed components

xs1 , . . . , xsr we can see Xs,a as a subset of Rn−r, which will be called a generalized projection

of X (resp. a rational generalized projection of X if Xs,a is a rational generalized section of X).

Proposition 4.11. For every n ≥ 1, a relation X ⊆ Rn is 〈R,+, <, 1〉-definable if and only if every

rational generalized projection of X has finitely many singular points and these points have rational

components.

Proof:

The proof goes by induction on n. The case n = 1 is obvious. Assume now n > 1.

Let X be 〈R,+, <, 1〉-definable and let Y be a rational generalized projection of X. If Y = X
then the result follows from Theorem 4.3. If Y is proper then Y is definable in 〈R,+, <, 1,X〉 thus it

is also 〈R,+, <, 1〉-definable, and the result follows from our induction hypothesis.

Conversely assume that every rational generalized projection of X has finitely many singular

points and they have rational components. We show that X satisfies all three conditions of Theo-

rem 4.3. Conditions (FSP) and (RSP) follow from our hypothesis and the fact that X is a rational

generalized projection of itself. It remains to prove condition (DS) namely that every rational sec-

tion of X is 〈R,+, <, 1〉-definable. This amounts to proving that every rational projection Z of X
is 〈R,+, <, 1〉-definable. Now every generalized projection Y of Z is also a generalized projection

of X, thus by our induction hypothesis Y has finitely many singular points and they have rational

components. Since Z is a proper projection of X, by our induction hypothesis it follows that Z is

〈R,+, <, 1〉-definable. ⊓⊔
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5. A definable criterion for 〈R,+, <, 1〉-definability in suitable struc-

tures

In this section we prove that for every n ≥ 1 and X ⊆ Rn, if every nonempty 〈R,+, <, 1,X〉-
definable relation contains a point with rational components then we can state a variant of Proposition

4.11 which is expressible in 〈R,+, <, 1,X〉. This means that there exists a 〈R,+, <, 1,X〉-sentence

(uniform in X) which expresses the fact that X is 〈R,+, <, 1〉-definable. This provides a definable

criterion for 〈R,+, <, 1〉-definability, similar to Muchnik’s result [18] for definability in Presburger

Arithmetic. We also extend these ideas to the case of 〈R,+, <,Z〉-definability.

In this section SX stands for the structure 〈R,+, <, 1,X〉.

5.1. Quasi-singular points

We aim to express 〈R,+, <, 1〉-definability of a relation X ⊆ Rn in the structure SX itself. A natural

approach is to express the conditions of Proposition 4.11 as an SX -sentence, however the formulation

involves the set Q as well as the set of X-singular elements. On the one hand Q is not necessarily

SX -definable, and on the other hand the naive definition of X−singularity involves the operation of

multiplication which is also not necessarily SX-definable. For the special case where X is 〈R,+, <
,Z〉-definable, we introduced in [2, Lemma 4.9] an ad hoc definition. Yet this definition does not

necessarily hold when the relation X is no longer assumed to be 〈R,+, <,Z〉-definable. In order to

overcome this difficulty we introduce a weaker property but that is still definable in SX . This proves

to be sufficient to establish our result.

Definition 5.1. Let X ⊆ Rn, x ∈ Rn, and r, s be two reals such that 0 < s < r.

• a vector v ∈ Rn is an (r, s)-quasi-stratum of x if |v| ≤ s and (y ∈ X ↔ y + v ∈ X) holds for

all y ∈ Rn such that y, y + v ∈ B(x, r).

• We say that x ∈ Rn is X−quasi-singular if it does not satisfy the following property:

there exist reals r, s > 0 such that the set of (r, s)-quasi-strata of x is nonempty, closed,

and is stable under v 7→ v/2. (4)

It is not difficult to check that if x is not singular and r is safe, then every stratum of x is an

(r, s)-quasi-stratum for 0 < s < r. However even for r safe, there may exist (r, s)-quasi-strata of x
which are not strata of x, as shown in the following example.

Example 5.2. Let n = 2, X = (Z ∪ {−3
2 ,−1

2 ,
1
2 ,

3
2})× R, and x = (0, 0). Then Str(x) is generated

by the vector (0, 1), and every real r > 0 is safe for x. Given 0 < s < r, the (r, s)-quasi-strata of x
can be characterized as follows:

• if r > 5
2 then the (r, s)-quasi-strata of x are vectors of the form (0, l) with |l| ≤ s (i.e these are

the strata of x with norm at most s).
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• if r ≤ 5
2 then these are vectors of the form (k2 , l) where k ∈ Z, k ≤ 2r, and |(k2 , ℓ)| ≤ s. Note

that for s < 1
2 , these are exactly the strata of x with norm at most s.

Lemma 5.3. Let X ⊆ Rn. The set of quasi-singular elements of X is SX-definable. Moreover the

property “X has finitely many quasi-singular elements” is SX-definable (uniformly in X) .

Proof:

The property that v is an (r, s)-stratum of x can be expressed by the formula

φ(X,x, r, s, v) ≡ 0 < |v| < s ∧ ∀y (y, y + v ∈ B(x, r) → (y ∈ X ↔ y + v ∈ X)).

The set of X-quasi-singular elements can be defined by the formula

QS(x,X) ≡ ¬∃r∃s ((0 < s < r) ∧ ∃v(φ(X,x, r, s, v))∧
∀v (φ(X,x, r, s, v) → φ(X,x, r, s, v2 ))∧
∀v (((|v| < s) ∧ ∀ǫ > 0(∃u (φ(X,x, r, s, u) ∧ |v − u| < ǫ))) → φ(X,x, r, s, v)))

(5)

The finiteness of the set of quasi-singular points can be expressed by the formula

FS(X) ≡ (∃t > 0 ∀x (QS(x,X) → |x| < t))

∧(∃u > 0(∀x∀y((QS(x,X) ∧QS(y,X) ∧ x 6= y) → |x− y| > u)))
(6)

⊓⊔

Lemma 5.4. Let X ⊆ Rn. If x is not quasi-singular then for some reals 0 < s < r there exists an

(r, s)-quasi-stratum of x and every (r, s)-quasi-stratum of x is a stratum of x.

Proof:

In this proof “quasi-stratum” stands for “(r, s)-quasi-stratum”. We consider the negation of QS. The

matrix of the formula consists of four conjuncts. The second conjunct asserts that there exists a quasi-

stratum. The third conjunct asserts that if a vector v is a quasi-stratum then for all integers p ≤ 0
the vector 2pv is a quasi-stratum. Also if p ≥ 0 and |2pv| < s then 2pv is a quasi-stratum. Indeed,

because B(x, r) is convex, if y and y + 2v belong to B(x, r) then y + v belongs to B(x, r) and we

have

y ∈ X ↔ y + v ∈ X ↔ z = y + 2v ∈ X. (7)

This generalizes to any p ≥ 0 provided |2pv| < s.

We will show that if v is quasi-stratum, then it is a stratum, i.e., if y, z ∈ B(x, r) and z ∈ Lv(y)
then y ∈ X ↔ z ∈ X. To fix ideas set z = y+2ℓβv for some real 0 < β < 1. Let αq =

∑

−q<i<0 ai2
i

with ai ∈ {0, 1}, be a sequence of dyadic rationals converging to β. Since |2iv| < s holds for all

−q < i < 0, every 2iv is a quasi-stratum and therefore so is αqv. Arguing as in (7) we see that for all

t, t + αqv ∈ B(x, r) we have t ∈ X ↔ t + αqv ∈ X. Because αq < 1 this shows that all αqv are

quasi-strata. The last conjunct implies that βv is a quasi-stratum and again using the same argument

as in (7) we get

y ∈ X ↔ y + βv ∈ X ↔ y + 2βv ↔ · · · ↔ z = y + 2ℓβv ∈ X ⊓⊔
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Lemma 5.5. For every X ⊆ Rn, every X−singular element is X−quasi-singular.

Proof:

If x ∈ Rn is not X−quasi-singular then there exist 0 < s < r and an (r, s)-quasi-stratum, which is a

stratum by Lemma 5.4. ⊓⊔

Lemma 5.6. If X ⊆ Rn is 〈R,+, <, 1〉-definable, every X−quasi-singular element is X−singular.

Proof:

We prove that if x ∈ Rn is notX−singular then it is not quasi-singular, i.e., that it satisfies ¬QS(x,X),
cf. Expression (5). We find suitable values of r, s such that the set of (r, s)-quasi-strata of x coincides

with the set of strata v of x such that |v| ≤ s. The result will then follow from the fact that Str(x) is a

non-trivial vector subspace.

The relation X is 〈R,+, <, 1〉-definable thus by [2, Corollary 4.4] there exists r > 0 such that

inside the ball B(x, r),X coincides with a finite collection of cones. By cone we mean an intersection

of open or closed halfspaces delimited by finitely many, say k, hyperplanes of dimension n − 1 and

containing x. Without loss of generality we can assume that r is safe. We show that a suitable value

for s is s = 1
k
r.

Since r is safe, every stratum v of x with |v| ≤ s is also an (r, s)-quasi-stratum of x. Conversely

let v be an (r, s)-quasi-stratum of x, and assume for a contradiction that v 6∈ Str(x). Then there exists

a point y ∈ B(x, r) such that the line Lv(y) intersects X and its complement inside B(x, r). Let h
be any homothety with ratio 0 < λ ≤ 1 centered at x such that the segment Lv(h(y)) ∩ B(x, r) has

length greater than r. Then, within B(x, r), the line Lv(h(y)) decomposes into 2 ≤ p ≤ k segments

which are alternatively inside and outside X. One of these segments has length at least 1
p
r ≥ s ≥ |v|.

We obtain that for some z ∈ Lv(h(y)) we have z, z + v ∈ B(x, r) and z ∈ X ↔ z + v 6∈ X, which

contradicts our assumption that v is an (r, s)-quasi-stratum of x. ⊓⊔

Note that in Lemma 5.6 the condition that X is 〈R,+, <, 1〉-definable cannot be removed. Con-

sider, e.g., X = R ×Q. Then it can be shown that for all x ∈ R2 we cannot find any reals 0 < s < r
for which the set of (r, s)-quasi-strata of x is closed, and this implies that x is X−quasi-singular.

However x is not X−singular since (1, 0) is an X−stratum for x.

5.2. Alternative characterization of 〈R,+, <, 1〉-definability in SX .

We can state the following variant of Theorem 4.3 for SX -definable relations under the hypothesis

that all nonempty SX-definable relations Y contain a point with rational components (recall that SX

stands for the structure 〈R,+, <, 1,X〉 where X is some fixed but arbitrary relation). Observe that

this implies that all definable finite subsets Y of Rn are included in Qn. Indeed, for all points y ∈ Y
with rational components the set Y \ {y} is SX -definable.

Proposition 5.7. Let n ≥ 1 and X ⊆ Rn be such that every nonempty SX-definable relation contains

a point with rational components. Then X is 〈R,+, <, 1〉-definable if and only if every generalized

projection of X has finitely many quasi-singular points.
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Proof:

We proceed by induction on n.

Case n = 1. Assume first that X is 〈R,+, <, 1〉-definable. The only generalized projection of X
that need to be studied is X itself. Now by Theorem 4.3, X has finitely many singular points, and by

Lemma 5.6 these are precisely its quasi-singular points.

Conversely assume that every generalized projection of X has finitely many quasi-singular points.

If the generalized projection is not X, then it is a singleton and there is nothing to check. It remains to

consider the case where the projection is equal to X. By Lemma 5.5 this implies that X has finitely

many singular points. Now X ⊆ R thus the set of X−singular points coincides with the topological

boundary Bd(X) of X. It follows that Bd(X) is finite, i.e., X is the union of finitely many intervals.

Moreover Bd(X) is SX -definable and by our assumption on SX it follows that Bd(X) ⊆ Q thus

every X−singular point is rational. The result follows from Theorem 4.3.

Case n > 1. Assume first that X is 〈R,+, <, 1〉-definable. The relation satisfies property (FSP) of

Theorem 4.3 and by Lemma 5.6 it has finitely many quasi-singular points. It thus suffices to consider

proper subsets of X. Assume without loss of generality that the projections are obtained by freezing

the 0 < p ≤ n first components. For every a = (a1, . . . , ap) ∈ Rp, consider the projection

Xa = {(xp+1, . . . , xn) ∈ Rn−p | (a1, . . . , ap, xp+1, . . . , xn) ∈ X}.

Consider the set A of elements a = (a1, . . . , ap) ∈ Rp such that the relation Xa has infinitely many

quasi-singular points. Using expression (6), the set A is SX -definable, thus it is 〈R,+, <, 1〉-definable

because so is X. If this set were nonempty, by Theorem 2.1 it would contain an element of Qp, which

means that there exists a rational generalized projection ofX which has infinitely many quasi-singular

points, a contradiction.

Conversely assume that every generalized projection of X has finitely many quasi-singular points,

and let us prove that X satisfies all conditions of Theorem 4.3. Condition (DS) follows from the fact

that every rational section of X is a generalized projection of X thus is 〈R,+, <, 1〉-definable by our

induction hypothesis. For conditions (FSP) and (RSP), we observe that X is a generalized projection

of itself thus the set of X−quasi-singular points is finite. By Lemma 5.3 this set is SX-definable thus

it is a subset of Qn by our assumption on SX , and the result follows from Lemma 5.5. ⊓⊔

5.3. Defining 〈R,+, <, 1〉-definability

The formulation of conditions in Proposition 5.7 allows us to express 〈R,+, <, 1〉-definability as a

sentence in the structure SX itself.

Theorem 5.8. Let n ≥ 1 and X ⊆ Rn be such that every nonempty SX-definable relation contains a

point with rational components. There exists a SX-sentence Φn (which is uniform in X) which holds

in SX if and only if X is 〈R,+, <, 1〉-definable.

Proof:

Let [n] denote the set {1, . . . , n}. By Proposition 5.7 it suffices to express the fact that every gener-

alized projection of X has finitely many quasi-singular points. This leads us to consider all possible
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generalized projections obtained by freezing a subset [n] \ I of components as in Definition 4.10. Let

RI denote the product of copies of R indexed by I and for all x, y ∈ RI set |x−y|I = |(x+z)−(y+z)|
for any z ∈ R[n]\I . For x ∈ RI and r ≥ 0 set BI(x, r) = {y ∈ RI | |x − y|I < r}. We use the pair

(n, I) as a parameter for the predicates φ,QS,FS (see Lemma 5.3). The symbol ξ stands for the

subvector with frozen components (we have ξ ∈ R[n]\I). With some abuse of notation we write ξ + z
for ξ ∈ R[n]\I and z ∈ RI , that is, if ξ = (ξi)i∈R[n]\I and z = (zi)i∈I then ξ + z = (w1, . . . , wn)
with wi = zi if i ∈ I and wi = ξi otherwise. We can define the predicates φn,I , QSn,I and FSn,I as

follows:

φn,I(X, ξ, x, r, s, v) ≡ ξ ∈ R[n]\I ∧ x, v ∈ RI ∧ 0 < |v|I < s

∧∀y ∈ RI(y, y + v ∈ BI(x, r) → (ξ + y ∈ X ↔ ξ + y + v ∈ X))

QSn,I(x, ξ,X) ≡ ¬∃r∃s((0 < s < r) ∧ ∃v (φn,I(X, ξ, x, r, s, v))
∧∀v (φn,I(X, ξ, x, r, s, v) → φn,I(X, ξ, x, r, s,

v
2 ))

∧∀u (((|u|I < s) ∧ ∀ǫ > 0(∃v (φn,I(X, ξ, x, r, s, v) ∧ |v − u|I < ǫ)))

→ φn,I(X, ξ, x, r, s, u)))

FSn,I(X, ξ) ≡ (∃t > 0∀x (QSn,I(x, ξ,X) → |x|I < t)

∧(∃s > 0(∀x∀y((QSn,I(x, ξ,X) ∧QSn,I(y, ξ,X) ∧ x 6= y) → |x− y|I > s)

This leads to the following definition of Φn:

Φn ≡
∧

I⊆[n]

∀ξ ∈ R[n]\I FSn,I(X, ξ). (8)

⊓⊔

Remark 5.9. One can prove that Theorem 5.8 does not hold anymore if we remove the assumption

that every nonempty SX -definable relation contains a point with rational components. Indeed consider

n = 1 (the case n ≥ 1 easily reduces to this case) and a singleton setX = {x} ⊆ R. Then by Theorem

2.1, X is 〈R,+, <, 1〉-definable if and only if x ∈ Q. Thus if there exists a SX-sentence Φn which

expresses that X is 〈R,+, <, 1〉-definable, then it is easy to transform Φn into a 〈R,+, <, 1〉-formula

Φ′
n(x) which defines Q in 〈R,+, <, 1〉, and this contradicts Theorem 2.1.

5.4. Extensions to 〈R,+, <,Z〉-definability

We extend the previous results to the case of 〈R,+, <,Z〉-definability. Here TX stands for the structure

〈R,+, <,Z,X〉 with n ≥ 1 and X ⊆ Rn. We prove that if every nonempty TX-definable relation

contains a point with rational components then one can express the property that X is 〈R,+, <,Z〉-
definable with a TX-sentence.

The construction is based on the decomposition of any set of reals into “integer” and “fractional”

sets, which allows us to reduce the 〈R,+, <,Z〉-definability of X, on one hand to the 〈Z,+, <〉-
definability of some subsets of Zn and on the other hand to the 〈R,+, <, 1〉-definability of a collection

of subsets of [0, 1)n. In order to express these two kinds of properties in TX , we rely respectively on

Muchnik’s Theorem [18] and on Theorem 5.8.
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We start with a property which holds for all relations under no particular assumption. Given a

relation X ⊆ Rn consider the denumerable set of distinct restrictions of X to unit hypercubes, i.e.,

τa
(
X ∩ ([a1, a1 + 1), · · · , [an, an + 1))

)

where a = (a1, · · · , an) ∈ Zn and τa is the translation x 7→ x − a. Let ∆m denote this collection

of sets where m runs over some denumerable set M . For each m ∈ M , let Σm ⊆ Zn satisfy the

condition

x ∈ Σm ↔ x+∆m = X ∩
(
[x1, x1,+1), · · · , [xn, xn,+1)

)

Observe that the decomposition

X =
⋃

m∈M

Σm +∆m (9)

is unique by construction. In the particular case of 〈R,+, <,Z〉-definable relations we have the fol-

lowing result.

Proposition 5.10. ([10, Theorem 7], see also [13]) A relation X ⊆ Rn is 〈R,+, <,Z〉-definable if

and only if in the decomposition (9) the following three conditions hold:

(FU) the set M in (9) is finite.

(IP) each Σm is 〈Z,+, <〉-definable.

(FP) each ∆m is 〈R,+, <, 1〉-definable.

Proposition 5.11. For all n ≥ 1 and X ⊆ Rn, if every nonempty TX-definable relation contains a

point with rational components then there exists a TX-sentence Γn (uniform in X) which holds if and

only if X is 〈R,+, <,Z〉-definable

Proof:

In view of Proposition 5.10 it suffices to show that the three conditions are expressible in 〈R,+, <,Z,X〉.
Let Φ(X) be the TX-formula which states that X is 〈R,+, <, 1〉-definable, see equation (8).

Condition (FU): Let x ≈ y denote the equivalence relation which says that the two points x and y
belong to the same Σm in the decomposition 9. It is expressed by the TX-formula

x ∈ Zn ∧ y ∈ Zn ∧ ∀z ∈ [0, 1)n (x+ z ∈ X ↔ y + z ∈ X) (10)

The finiteness of the number of classes is expressed by the TX-formula

∃N ∀x ∈ Zn ∃y ∈ Zn (|y| < N ∧ y ≈ x)

Condition (IP): By [18, Thm 1] for every Y ⊆ Zn there exists a 〈Z,+, <, Y 〉-formula Ψ(Y ) (uniform

in Y ) which holds if and only if Y is 〈Z,+, <〉-definable. Let Ψ∗(Y ) denote the 〈R,Z,+, <, Y 〉-
formula obtained from Ψ(Y ) by relativizing all quantifiers to Z. Given Y ⊆ Zn (seen as a subset of
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Rn), the formula Ψ∗(Y ) holds in 〈R,Z,+, <, Y 〉 if and only if Y is 〈Z,+, <〉-definable. Thus we can

express in TX the fact that all ≈-equivalence classes are 〈Z,+, <〉-definable with the formula

∀x ∈ ZnΨ∗((y ∈ Zn ∧ y ≈ x))

Condition (FP): The fact that every hypercube of X of unit side is 〈R,+, <, 1〉-definable is expressed

by

∀x1, . . . xn ∈ Zn Φ((0 ≤ y1 < 1 ∧ · · · ∧ 0 ≤ yn < 1 ∧ (x1 + y1, · · · , xn + yn) ∈ X)). ⊓⊔

6. Application to decidability

6.1. Deciding 〈R,+, <, 1〉-definability and 〈R,+, <,Z〉-definability

Theorem 5.8 and Proposition 5.11 prove the existence of definable criteria for 〈R,+, <, 1〉-definability

and 〈R,+, <,Z〉-definability for a given relation X, respectively. If X is definable in some decidable

expansion of 〈R,+, <, 1〉 (resp. 〈R,+, <,Z〉) then we can obtain effective criteria. This can be

formulated as follows.

Theorem 6.1. Let M be any decidable expansion of 〈R,+, <, 1〉 such that every nonempty M-

definable relation contains a point with rational components. Then it is decidable whether a M-

definable relation X ⊆ Rn is 〈R,+, <, 1〉-definable.

Proof:

Assume that X is M-definable by the formula ψ(x). In Equation (8), if we substitute ψ(x) for every

occurrence of x ∈ X then we obtain a M-sentence which holds if and only if X is 〈R,+, <, 1〉-
definable, and the result follows from the decidability of M. ⊓⊔

Theorem 6.2. Let N be any decidable expansion of 〈R,+, <,Z〉 such that every nonempty N -

definable relation contains a point with rational components. Then it is decidable whether a N -

definable relation X ⊆ Rn is 〈R,+, <,Z〉-definable (resp. whether a N -definable relation X ⊆ Rn

is 〈R,+, <, 1〉-definable).

Proof:

The claim about 〈R,+, <, 1〉-definability follows immediately from the fact that N satisfies the condi-

tions of Theorem 6.1. For 〈R,+, <,Z〉-definability, we use the same idea as for the proof of Theorem

6.1, but instead of Φn we use the sentence Γn of Proposition 5.11. ⊓⊔

6.2. Application to recognizable numerical relations

We finally apply the results of Section 6.1 to the class of k-recognizable relations on reals.

Let us recall that given an integer base k ≥ 2 and a non-negative real x, a k-encoding of x is any

right infinite word on the alphabet Σk = {0, . . . , k−1}∪{⋆} of the form w = ap . . . a1⋆a0a−1a−2 . . .
such that ai ∈ {0, . . . , k − 1} for every i ≤ p and x =

∑

i≤p aik
i. The definition extends to
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the case of negative reals x by using the k’s complement representation method where the leftmost

digit equals k − 1: a k−encoding of x is a right infinite word on the alphabet Σk of the form w =
ap . . . a1 ⋆ a0a−1a−2 . . . where ap = k − 1 and x = −kp + ∑

i≤p−1 aik
i. Note that every real has

infinitely many k-encodings.

In order for an automaton to be able to process n-tuples of representations in base k of reals we

prefix it, if necessary, with as few occurrences of 0 for the nonnegative components or k − 1 to the

negative components so that the n components have the same length to the left of the symbol ⋆. This

does not change the numerical values represented. By identifying a real with its k-encodings, relations

of arity n on R can thus be viewed as subsets of n-tuples of sequences on {0, . . . , k − 1} ∪ {⋆}, i.e.,

as subsets of

({0, . . . , k − 1}n)∗{
ntimes

︷ ︸︸ ︷

(⋆, . . . , ⋆)}({0, . . . , k − 1}n)ω

Definition 6.3. A relation X ⊆ Rn is k-recognizable if the set of k-encodings of its elements is

recognized by some deterministic Muller-automaton.

The collection of recognizable relations has a natural logical characterization.

Theorem 6.4. [9, Thm 5 and 6] Let k ≥ 2 be an integer. A subset of Rn is k-recognizable if and only

if it is definable in 〈R,Z,+, <,Xk〉 where Xk ⊆ R3 is such that Xk(x, y, z) holds if and only if y is

a power of k and z is the coefficient of y in some k−encoding of x.

Consequently, since the emptiness problem for recognizable relations is decidable, the theory of

〈R,Z,+, <,Xk〉 is decidable.

Moreover the class of 〈R,+, <,Z〉-definable relations enjoys the following characterization.

Theorem 6.5. [4, 5, 6] A subset of Rn is 〈R,+, <,Z〉-definable if and only if it is k-recognizable for

every integer k ≥ 2.

As a consequence, deciding whether a k-recognizable relation is l−recognizable for every base

l ≥ 2 amounts to decide whether it is 〈R,+, <,Z〉-definable. We can prove the following result.

Theorem 6.6. Given an integer k ≥ 2, it is decidable whether a k-recognizable relation X ⊆ Rn is

〈R,+, <,Z〉-definable (resp. whether a k−recognizable relation X ⊆ Rn is 〈R,+, <, 1〉-definable).

Proof:

By Theorems 6.2 and 6.4 it suffices to prove that every nonempty k-recognizable relation Y ⊆ Rn

contains an element in Qn. By our assumption the set of k-encodings of elements of Y is nonempty

and is recognized by a finite Muller automaton, thus it contains an ultimately periodic ω−word, which

is the k−encoding of some element of Qn. ⊓⊔
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