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Abstract. We present two deductively equivalent calculi for non-deterministic many-valued log-

ics. One is defined by axioms and the other – by rules of inference. The two calculi are obtained

from the truth tables of the logic under consideration in a straightforward manner. We prove

soundness and strong completeness theorems for both calculi and also prove the cut elimination

theorem for the calculi defined by rules of inference.

1. Introduction

Non-deterministic many-valued logics [1, 2, 3] are a generalization of “ordinary” many-valued logics

and, in this note, we extend two of the “deterministic” calculi introduced in [9] to non-deterministic

ones. Like in [9], the logics under considerations are presented semantically, based on the connectives’

truth tables. The non-deterministic semantics of an ℓ-ary connective ∗ is given by the connective truth

table that is a function from the set of truth values V = {v1, . . . , vn}, n ≥ 2, into the set of the

non-empty subsets of V : ∗ : V ℓ → P (V ) \ {∅}.

Similarly to [9], we construct proof systems for non-deterministic many-valued logics out of the

truth tables for the connectives, cf. [4, 6, 7, 10, 11, 12, 13]. Our construction is general, transparent,

and uniform.
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This note is organized as follows. In Section 2 we introduce the many-valued logic NMVLA
1

that is based on an axiomatic approach and prove the strong soundness and completeness (i.e., with

respect to the consequence relation) theorem for that logic. In Section 3 we introduce the logic

NMVLR by, equivalently, replacing some axioms of NMVLA with rules of inference and prove

the cut elimination theorem. We conclude the paper with the appendix containing a list of calculi dual

to NMVLA and NMVLR. The proofs of the properties of these dual calculi are very similar to

their counterparts in [9] and are omitted.

2. Translating truth tables to axioms

The semantics of non-deterministic many-valued logic is as follows.

A valuation v is a function from the set of formulas Fm into the set of truth values V =
{v1, . . . , vn}, n ≥ 2, such that for each connective ∗,

v(∗(ϕ1, . . . , ϕℓ)) ∈ ∗(v(ϕ1), . . . , v(ϕℓ)))

The logic NMVLA considered in this section has only structural rules of inference and axioms

instead of logical rules, cf. [4, 10]. We use the notion of a labelled formula that is a pair (ϕ, k), where

ϕ is a formula and k = 1, . . . , n, introduced in [5, 7]. The intended meaning of such a labelled formula

is that vk is the truth value associated with ϕ.

Sequents are expressions of the form Γ → ∆, where Γ and ∆ are finite (possibly empty) sets

of labelled formulas and → is not a symbol of the underlying language. As we shall see in the

sequel, such sequents are more appropriate for meta-reasoning about labelled formulas than those

from [4, 6, 10, 11, 12, 13].

The axioms of NMVLA are sequents of the form

(ϕ, k) → (ϕ, k) (1)

k = 1, . . . , n, or of the form

(ϕ1, k1), . . . , (ϕℓ, kℓ) → {(∗(ϕ1, . . . , ϕℓ), k) : vk ∈ ∗(vk1 , . . . , vkℓ)} (2)

for each table entry ∗(vk1 , . . . , vkℓ). The latter axiom will be referred to as a table axiom.

The rules of inference of NMVLA are the structural rules below.

k-L-shift, k = 1, . . . , n,

Γ, (ϕ, k) → ∆

Γ → ∆, {ϕ} × {k}
2 (3)

1The subscript “A” indicates the axiom description of the logic.
2As usual, K denotes the complement {1, . . . , n} \K of K.



M. Kaminski / A Note on Calculi for Non-deterministic Many-valued Logics 145

k′, k′′-R-shift, k′, k′′ = 1, . . . , n, k′ 6= k′′,

Γ → ∆, (ϕ, k′)

Γ, (ϕ, k′′) → ∆
(4)

k-L-weakening, k = 1, . . . , n,
Γ → ∆

Γ, (ϕ, k) → ∆
(5)

k-R-weakening, k = 1, . . . , n,
Γ → ∆

Γ → ∆, (ϕ, k)
(6)

k-cut, k = 1, . . . , n,
Γ → ∆, (ϕ, k) Γ, (ϕ, k) → ∆

Γ → ∆
(7)

and

k′, k′′-resolution, k′, k′′ = 1, . . . , n, k′ 6= k′′

Γ → ∆′, (ϕ, k′) Γ → ∆′′, (ϕ, k′′)

Γ → ∆′,∆′′ (8)

In fact, by [9, Proposition 3.3], rules (7) and (8) are derivable from each other.

Remark 2.1. The axioms (1) belong to all the calculi considered in this paper and all the calculi in [9].

Also, the structural rules of all the calculi considered in this paper and in [9] are rules (3)–(8). Thus,

when the proofs for “deterministic” many valued logics in [9] rely on axioms (1) and rules (3)–(8),

only, they apply to the non-deterministic ones as well.

Proposition 2.2. ([9, Proposition 3.4]) The sequent

→ {ϕ} × {1, . . . , n} (9)

is derivable in NMVLA.

Next, we prove the strong completeness theorem for NMVLA.

Definition 2.3. A valuation v satisfies a sequent Γ → ∆ if the following holds.

• If for each (ϕ, k) ∈ Γ, v(ϕ) = vk, then for some (ϕ, k) ∈ ∆, v(ϕ) = vk.3

Definition 2.4. A set of sequents Σ semantically entails a sequent Σ, denoted Σ |= Σ, if each valua-

tion satisfying all sequents from Σ also satisfies Σ.

3 That is, v satisfies a sequent Γ → ∆, if the meta-value of the classical meta-sequent {v(ϕ) = vk : (ϕ, k) ∈ Γ} →
{v(ϕ) = vk : (ϕ, k) ∈ ∆} is “true.”
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Theorem 2.5. (Soundness and completeness of NMVLA) Let Σ be a set of sequents. Then

Σ ⊢NMVLA
Γ → ∆ if and only if Σ |= Γ → ∆.

An immediate corollary to Theorem 2.5 is that NMVLA is (strongly) decidable.

Regarding Theorem 2.5 itself, soundness is easy to verify and, for the proof of completeness, we

proceed as follows.

Lemma 2.6. ([9, Lemma 3.12]) If 6⊢NMVLA
Γ → ∆, then for no formula ϕ and no k′, k′′ such that

k′ 6= k′′, (ϕ, k′), (ϕ, k′′) ∈ Γ.

Proof of the completeness part of Theorem 2.5:

Assume to the contrary that Σ 6⊢NMVLA
Γ → ∆. Then, by Zorn’s lemma, there is a maximal (with

respect to inclusion) set of labelled formulas Γ including Γ such that for no finite subset Γ′ of Γ,

Σ 6⊢NMVLA
Γ′ → ∆.

We observe that for each formula ϕ there is a k ∈ {1, . . . , n} such that (ϕ, k) ∈ Γ.4 For the proof,

assume to the contrary that for each k ∈ {1, . . . , n} there is a finite subset Γk of Γ such that

Σ ⊢NMVLA
Γk, (ϕ, k) → ∆ (10)

Then, from (9) and (10), by n cuts we obtain

Σ ⊢NMVLA

n⋃

k=1

Γk → ∆

which contradicts the definition of Γ.

Let the valuation v : Fm → {v1, . . . , vn} be defined by

v(ϕ) = vk, if (ϕ, k) ∈ Γ (11)

We contend that v is well-defined.

First we show that v is a function. For the proof, assume to the contrary that for some formula ϕ
and some k′ and k′′ such that k′ 6= k′′ both (ϕ, k′) and (ϕ, k′′) are in Γ. Then, by (the contraposition

of) Lemma 2.6,

⊢NMVLA
(ϕ, k′), (ϕ, k′′) → ∆

which contradicts the definition of Γ.

Next, we are going to show that the function v : Fm → V defined by (11) is indeed a valuation.

The proof is by induction on the complexity of ϕ. The basis (in which ϕ is an atomic formula) is

by the definition of v, see (11), and, for the induction step assume that ϕ is of the form ∗(ϕ1, . . . , ϕℓ).

Let (ϕ, k) ∈ Γ and let v(ϕj) = vkj , j = 1, . . . , ℓ. By the induction hypothesis, (ϕj , kj) ∈ Γ,

j = 1, . . . , ℓ. In addition, from the table axiom (2), by a number of weakenings, we obtain

(ϕ1, k1), . . . , (ϕℓ, kℓ) → ∆, {(ϕ, k′) : vk′ ∈ ∗(vk1 , . . . , vkℓ)} (12)

4In other words, Γ is complete, cf. [7, paragraph 3.63] and the definition of the “classical” negation completeness.
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Now, assume to the contrary that v(ϕ) /∈ ∗(vk1 , . . . , vkj ). Then, from (12) and the axiom (ϕ, k) →
(ϕ, k), by a number of k, k′-resolutions,

(ϕ, k), (ϕ1 , k1), . . . , (ϕℓ, kℓ) → ∆

However, the latter contradicts the definition of Γ.

We note next that for no labelled formula (ϕ, k) ∈ ∆, v(ϕ) = vk. Indeed, if for some (ϕ, k) ∈ ∆,

v(ϕ) = vk, then, by the definition of v, see (11), (ϕ, k) ∈ Γ, which contradicts the definition of Γ.

It remains to prove that v satisfies each sequent in Σ. Let Γ′ → ∆′ ∈ Σ be such that v satisfies

each labelled formula in Γ′, which, by (11), is equivalent to Γ′ ⊆ Γ. We have to show that v satisfies

some labelled formula in ∆′, which, by (11), is equivalent to ∆′ ∩ Γ 6= ∅.

Assume to the contrary that ∆′ ∩ Γ = ∅. Let (ϕ, k) ∈ ∆′ and let v(ϕ) = vkϕ . Then, by (11),

kϕ 6= k and (ϕ, kϕ) ∈ Γ. From Γ′ → ∆′ by k, kϕ-R-shifts (for each (ϕ, k) ∈ ∆′) we obtain

Σ ⊢NMVLA
Γ′, {(ϕ, kϕ) : (ϕ, k) ∈ ∆′} →

from which, by weakenings,

Σ ⊢NMVLA
Γ′, {(ϕ, kϕ) : (ϕ, k) ∈ ∆′} → ∆ (13)

However, since

Γ′, {(ϕ, kϕ) : (ϕ, k) ∈ ∆′} ⊆ Γ

(13) contradicts the definition of Γ. ⊓⊔

3. Replacing axioms with with rules of inference

The sequent calculus NMVLR in this section is the “sequent counterpart” of the deduction system

SF d
M from [1, Section 3.1]. Namely, NMVLR results from NMVLA by replacing axioms (2) with

the rules of inference

Γ → ∆, (ϕj , kj), j = 1, . . . , ℓ

Γ → ∆, {(∗(ϕ1, . . . , ϕℓ), k) : vk ∈ ∗(vk1 , . . . , vkℓ)}
(14)

for each table entry ∗(vk1 , . . . , vkℓ).

Proposition 3.1. Let Σ and Σ be a set of sequents and a sequent, respectively. Then Σ ⊢NMVLR
Σ

if and only if Σ ⊢NMVLA
Σ.

Proof:

The proof is similar to that of [9, Proposition 4.1].
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For the proof of the “only if” part of the proposition it suffices to show that axioms (2) are derivable

in NMVLR. The derivation is as follows.

(ϕj , kj) → (ϕj , kj)

(ϕ1, k1), . . . , (ϕℓ, kℓ) → (ϕj , kj)
L-weakenings

j = 1, . . . , ℓ

(ϕ1, k1), . . . , (ϕℓ, kℓ)→{(∗(ϕ1, . . . , ϕℓ), k) : vk ∈ ∗(vk1 , . . . , vkℓ)}
(14)

Conversely, for the proof of the “if” part of the proposition it suffices to show that rules (14) are
derivable in NMVLA. The derivation is by ℓ cuts:

{Γ → ∆, (ϕj , kj) : j = 1, . . . , ℓ}, (ϕ1, k1), . . . , (ϕℓ, kℓ) → {(∗(ϕ1, . . . , ϕℓ), k) : vk ∈ ∗(vk1
, . . . , vkℓ

)}

Γ → ∆, {(∗(ϕ1, . . . , ϕℓ), k) : vk ∈ ∗(vk1
, . . . , vkℓ

)} ⊓⊔

Corollary 3.2. (Soundness and completeness of NMVLR) Let Σ and Σ be a set of sequents and a

sequent, respectively. Then Σ ⊢NMVLR
Σ if and only if Σ |= Σ.

Proof:

The corollary follows from Proposition 3.1 and Theorem 2.5. ⊓⊔

Theorem 3.3. (Cut/resolution elimination) Each NMVLR-derivable sequent is derivable without

cut or resolution.

Proof:

By double induction, the outer on the derivation length and the inner on the complexity of the principal

formula, we eliminate the first cut/resolution in the derivation.

The outer induction and the basis of the inner induction do not involve rules (14). Thus, they are

like in the corresponding proofs in [9, Section 4.2].

The the induction step of the inner induction is treated as follows.

Since ∗(ϕ1, . . . , ϕℓ) may be introduced into the succeedent, only, this is the case of k′, k′′-resolu-

tion (8), with ϕ being ∗(ϕ1, . . . , ϕℓ). Namely, we have

Γ → ∆, (ϕj , k
′

j), j = 1, . . . , ℓ

Γ → ∆, {(∗(ϕ1, . . . , ϕℓ), k) : vk ∈ ∗(vk′

1

, . . . , vk′

ℓ

)}

Γ → ∆, (ϕj , k
′′

j ), j = 1, . . . , ℓ

Γ → ∆, {(∗(ϕ1, . . . , ϕℓ), k) : vk ∈ ∗(vk′′

1

, . . . , vk′′

ℓ

)}

Γ → ∆, {(∗(ϕ1, . . . , ϕℓ), k) : vk ∈ ∗(vk′

1

, . . . , vk′

ℓ

), k 6= k′} ∪ {(∗(ϕ1, . . . , ϕℓ), k) : vk ∈ ∗(vk′′

1

, . . . , vk′′

ℓ

), k 6= k′′}

(15)

If (k′1, . . . , k
′
ℓ) 6= (k′′1 , . . . , k

′′
ℓ ) then, for some j = 1, . . . , ℓ, k′j 6= k′′j and we may apply k′j , k

′′
j -

resolution from which we proceed by R-weakenings:

Γ → ∆, (ϕj , k
′

j) Γ → ∆, (ϕj , k
′′

j )

Γ → ∆
Γ → ∆, {(∗(ϕ1, . . . , ϕℓ), k) : vk ∈ ∗(vk′

1

, . . . , vk′

ℓ

), k 6= k′} ∪ {(∗(ϕ1, . . . , ϕℓ), k) : vk ∈ ∗(vk′′

1

, . . . , vk′′

ℓ

), k 6= k′′}

Otherwise, i.e., if (k′1, . . . , k
′
ℓ) = (k′′1 , . . . , k

′′
ℓ ) then the conclusion of (15) is

Γ → ∆, {(∗(ϕ1, . . . , ϕℓ), k) : vk ∈ ∗(vk′
1
, . . . , vk′

ℓ
)}
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and we can replace (15) with any of its premises,

Γ → ∆, (ϕj , k
′

j), j = 1, . . . , ℓ

Γ → ∆, {(∗(ϕ1, . . . , ϕℓ), k) : vk ∈ ∗(vk′

1

, . . . , vk′

ℓ

)}

say.5 ⊓⊔

A. Duality

In the appendix, we consider two kinds of duality with respect to NMVLA and NMVLR. One is

the “distributive” duality resulting from the duality between metaconjunction and metadisjunction and

the other is the “sequent” duality resulting from the duality between the succeedent and the antecedent

of a sequent.

Accordingly, Section A.1 deals with the “di-stri-bu-ti-vely” dual systems NMVLADD and

NMVLRDD of NMVLA and NMVLR, respectively; and Section A.2 deals with the “sequent”

duality of NMVLR and NMVLRDD . The results in Section A.2 are the respective “antecedent”

counterparts of those in Sections 3 and A.1.

A.1. Distributive duality

In this section, we present the calculi NMVLADD and NMVLRDD which are distributively dual

and deductively equivalent to NMVLA and NMVLR, respectively, cf. [10]. These calculi are

presented in Sections A.1.1 and A.1.2. Both employ the following notation.

For a labelled formula (∗(ϕ1, . . . , ϕℓ), k), we define the set of sets of labelled formulas (∗(ϕ1, . . . ,

ϕℓ)× k)−1 by

(∗(ϕ1, . . . , ϕℓ)× k)−1 = {{(ϕ1, k1), . . . , (ϕℓ, kℓ)} : vk ∈ ∗(vk1 , . . . , vkℓ)} (16)

and, in what follows, we enumerate the sets in (∗(ϕ1, . . . , ϕℓ)× k)−1 as

(∗(ϕ1, . . . , ϕℓ), k)
−1 = {{(ϕ1, k1,q), . . . , (ϕℓ, kℓ,q)} : q = 1, . . . , s} 6 (17)

That is,

(∗(ϕ1, . . . , ϕℓ)× k)−1 = {Θ1, . . . ,Θs}

where

Θq = {(ϕ1, k1,q), . . . , (ϕℓ, kℓ,q)} (18)

q = 1, . . . , s.7

Next, for sets Θ1, . . . ,Θs of labelled formulas, Θq as in (18), q = 1, . . . , s, we define the set
s∨

q=1
Θq of sets of labelled formulas by

5In fact, the case of the equality (k′

1, . . . , k
′

ℓ) = (k′′

1 , . . . , k
′′

ℓ ) is the only modification needed for the extension of the proofs

of cut and resolution elimination in [9] to the case of non-deterministic logics.
6Note that s depends both on ∗ and k.
7Note the form of Θq: for each j = 1, . . . , ℓ it contains exactly one labelled formula with the first component ϕj .
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s∨

q=1

Θq = {{(ϕj1 , kj1,1), . . . , (ϕjs , kjs,s)} : (ϕjq , kjq,q) ∈ Θq , q = 1, . . . , s}

That is, for each q = 1, . . . , s, the elements of
s∨

q=1
Θq contain one element of Θq and nothing more.

Similarly, for a formula ∗(ϕ1, . . . , ϕℓ)) and a subset K of {1, . . . , n}, we define the set of sets of

labelled formulas (∗(ϕ1, . . . , ϕℓ)×K)−1 by

(∗(ϕ1, . . . , ϕℓ)×K)−1 = {{(ϕ1, k1), . . . , (ϕℓ, kℓ)} : ∗(vk1 , . . . , vkℓ) = {vk : k ∈ K}}

Remark A.1. Let k1, . . . , kℓ ∈ {1, . . . , n} and let K be such that ∗(vk1 , . . . , vkℓ) = {vk : k ∈ K}.

Then, in the above notation, table axioms (2) are

Θ → {∗(ϕ1, . . . , ϕℓ)} ×K

for all Θ ∈ (∗(ϕ1, . . . , ϕℓ)×K)−1.

A.1.1. Distributively dual axioms

The distributively dual counterpart of NMVLA, denoted NMVLADD, is based on Proposition A.2

below.

Proposition A.2. (Cf. [9, Proposition 5.3].) For all k and all

{(ϕj1 , kj1,1), . . . , (ϕjs , kjs,s)} ∈
∨

(∗(ϕ1, . . . , ϕℓ)× k)−1

the sequent

(∗(ϕ1, . . . , ϕℓ), k) → (ϕj1 , kj1,1), . . . , (ϕjs , kjs,s) (19)

is derivable in NMVLA.

The intuition lying behind Proposition A.2 is as follows. Using
∨

,
∧

, =⇒, and ⇐⇒ as meta-

connectives, we see that

vk ∈ v(∗(ϕ1, . . . , ϕℓ)) =⇒
∨

vk∈∗(vk1 ,...,vkℓ)

ℓ∧

j=1

v(ϕj) = vkj (20)

⇐⇒
∧

Λ∈
∨
(∗(ϕ1,...,ϕℓ),k)−1

∨

(ϕj ,kj)∈Λ

v(ϕj) = vkj

see (16) and (17). Now, writing (ϕ, k) for v(ϕ) = vk, we rewrite (20) as

(∗(ϕ1, . . . , ϕℓ), k) =⇒
∨

vk∈∗(vk1 ,...,vkℓ)

ℓ∧

j=1

(ϕj , kj)

⇐⇒
∧

Λ∈
∨
(∗(ϕ1,...,ϕℓ),k)−1

∨

(ϕj ,kj)∈Λ

(ϕj , kj)

Then, the succeedent of (19) comes from rewriting (20) as conjunction of disjunctions.
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The calculus NMVLADD results from NMVLA by replacing axioms (2) with the (distribu-

tively dual) axioms (19), cf. [10].

Theorem A.3. (Soundness and completeness of NMVLADD, cf. [9, Theorem 5.5].) Let Σ and Σ
be a set of sequents and a sequent, respectively. Then Σ ⊢NMVLADD

Σ if and only if Σ |= Σ.

A.1.2. Distributively dual rules of inference

The distributively dual calculus NMVLRDD results from NMVLR by replacing rules of infer-

ence (14) with the rule
Γ → ∆,Λ, Λ ∈

∨
(∗(ϕ1, . . . , ϕℓ),K)−1

Γ → ∆, {∗(ϕ1, . . . , ϕℓ)} ×K
(21)

Theorem A.4. (Soundness and completeness of NMVLRDD, cf. [9, Theorem 5.7].) Let Σ and Σ
be a set of sequents and a sequent, respectively. Then Σ ⊢NMVLRDD

Σ if and only if Σ |= Σ.

Theorem A.5. (Cf. [9, Theorem 5.8].) Each NMVLRDD-derivable sequent is derivable without cut

or resolution.

A.2. Sequent duality

One can think of NMVLR and NMVLRDD as sequent calculi with rules of introduction to the

succeedent only. In this section we replace these rules with the dual rules of introduction to the

antecedent and show the dual calculi posses all properties of the original ones.

For cut/resolution elimination in the calculi in this section we need the following rule of inference.

K-L-multi-shift, K ⊂ {1, . . . , n},

Γ, (ϕ, k) → ∆, k ∈ K

Γ → ∆, {ϕ} ×K
(22)

Remark A.6. This rule is derivable from its premises and (9) by cuts. However, we do not call it

“cut,” because it does not affect the subformula property8 : since K is a proper subset of {1, . . . , n},

K 6= ∅.

A.2.1. The sequent dual of NMVLR

The (dual) rules for introduction of ∗ to the antecedent are

Γ, (ϕ1, k1), . . . , (ϕℓ, kℓ) → ∆, vk ∈ ∗(vk1 , . . . , vkℓ)

Γ, (∗(ϕ1, . . . , ϕℓ), k) → ∆
(23)

for each k = 1, . . . , n, cf. [8, Proof of Theorem 8].

The proofs of Propositions A.7 and A.8 and Corollary A.9 below are like the corresponding proofs

of [9, Proposition 5.11], [9, Proposition 5.12]), and [9, Corollary 5.13].

8 We say that a labelled formula (ϕ, k) is a subformula of a labelled formula (ϕ′, k′), if ϕ is a subformula of ϕ′.
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Proposition A.7. Rules (23) are derivable in NMVLR.

Proposition A.8. Axioms (19) are derivable by (23).

The sequent calculus NMVLRSD results from NMVLR by replacing rules of introduction to

succeedent (14) with rules of introduction to antecedent (23) and adding to it the K-L-multi-shift (22).

Corollary A.9. Calculi NMVLRSD and NMVLR are deductively equivalent.

Theorem A.10. (Cf. [9, Theorem 5.14].) Each NMVLRSD-derivable sequent is derivable without

cut or resolution.

A.2.2. The sequent dual of NMVLRDD

In the case of NMVLRDD, the (dual) rules for introduction of ∗ to the antecedent are

Γ, (ϕj , kj) → ∆, (ϕj , kj) ∈ Λ

Γ, (∗(ϕ1, . . . , ϕℓ), k) → ∆
(24)

for each

Λ = (ϕj1 , kj1,1), . . . , (ϕjs , kjs,s) ∈
∨

(∗(ϕ1, . . . , ϕℓ), k)
−1

The proofs of Propositions A.11 and A.12 and Corollary A.13 below are like in the corresponding

proofs of [9, Proposition 5.17], [9, Proposition 5.18]) and [9, Corollary 5.19].

Proposition A.11. Rules (24) are derivable in NMVLRDD .

Proposition A.12. Axioms (19) are derivable from (24).

The sequent calculus NMVLRDDSD results from NMVLRDD by replacing rules of intro-

duction to succeedent (21) with rules of introduction to antecedent (24) and adding to it multi-shifts

(22).

Corollary A.13. Calculi NMVLRDDSD and NMVLRDD are deductively equivalent.

Theorem A.14. (Cf. [9, Theorem 5.20].) Each NMVLRDDSD-derivable sequent is derivable with-

out cut or resolution.
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