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Abstract. We look in detail at the structural liveness problem (SLP) for subclasses of Petri nets,

namely immediate observation nets (IO nets) and their generalized variant called branching im-

mediate multi-observation nets (BIMO nets), that were recently introduced by Esparza, Raskin,

and Weil-Kennedy. We show that SLP is PSPACE-hard for IO nets and in PSPACE for BIMO

nets. In particular, we discuss the (small) bounds on the token numbers in net places that are

decisive for a marking to be (non)live.

2012 ACM Subject Classification: Theory of computation→ Logic and verification

Keywords: Petri nets, immediate observation nets, structural liveness, complexity

1. Introduction

Petri nets are an established model of concurrent systems, and a natural part of related research aims

to clarify computational complexity of verifying basic behavioural properties for various (sub)classes

of this model. A famous example is the reachability problem for standard place/transition Petri nets,

which was recently shown to be Ackermann-complete ([1, 2, 3]).
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Here we are interested in the structural liveness problem (SLP): given a net N , is there an initial

marking M0 such that the marked net (N,M0) is live? We recall that a marked net (N,M0) is live if no

transition can become disabled forever, in markings reachable from M0. The liveness problem (LP),

asking if a marked net (N,M0) is live, has been long known to be tightly related to the reachability

problem [4]; hence LP has turned out to be Ackermann-complete as well. Somewhat surprisingly, for

SLP even the decidability status was open until recently (see, e.g., [5]); the currently known status is

that the problem is EXPSPACE-hard and decidable [6].

Here we look at the complexity of SLP for a subclass of place/transition Petri nets, namely for the

class of immediate observation Petri nets (IO nets), and their generalized variant called branching

immediate multi-observation Petri nets (BIMO nets). These models were introduced and studied

recently, in [7, 8, 9], motivated by a study of population protocols and chemical reaction networks.

Population protocols [10] are a model of computation where an arbitrary number of indistinguishable

finite-state agents interact in pairs; an interaction of two agents, being in states q1 and q2, consists

in changing their states to q3 and q4, respectively, according to a transition function. A global state

of a protocol is just a function assigning to each (local) state the number of agents in this state. It

is natural to represent population protocols by Petri nets where places represent (local) states, and

markings represent global states. The above mentioned IO nets represent a special subclass, so called

immediate observation protocols (IO protocols), that was introduced in [11]. Here an agent can change

its state q1 to q2 when observing that another agent is in state q3. We also note that BIMO nets can

be viewed as a generalization of Petri nets related to basic parallel processes (BPP nets), studied, e.g.,

in [12]. In the BPP nets each transition t has precisely one input place p, the edge (p, t) having the

weight 1. In the BIMO nets, for performing such a transition t it is not only necessary that the place p

has at least one token but there is also a context-condition, requiring that some places have sufficient

amounts of tokens. (The relation of BPP nets and BIMO nets resembles the relation of context-free

and context-sensitive grammars, where the word-concatenation is viewed as commutative.)

Among the results of [7] is the PSPACE-completeness of the liveness problem (LP) for IO nets.

The paper [7] does not deal with the structural liveness problem (SLP) directly but it can be derived

from its results that SLP is in PSPACE for IO nets.

Our contribution. We first show that also SLP is PSPACE-hard for IO nets. Here we proceed

similarly as [7] where the hardness proof for LP is given; we show a modification of a standard

simulation of linear bounded automata by 1-safe nets, but the construction for SLP is more subtle than

for LP. The PSPACE membership is straightforward for LP on IO nets, since IO nets are a special case

of conservative nets, but it is not so straightforward for SLP. We show that for a BIMO net, where

P is the set of places and w the maximum edge-weight, the fact whether or not a marking M is live

(M : P → N assigns the number of tokens to each place) is determined by the values M(p) that are

less than 2 · w · |P |. This result allows us to give a simple proof that SLP is in PSPACE (and thus

PSPACE-complete) for BIMO nets.

The organization of the paper. In Section 2 we give the basic definitions related to Petri nets,

and define the subclasses (BIMO, BIO, IMO, IO nets) in which we are interested; in part 2.3 we

summarize our results. Section 3 shows the PSPACE-hardness of the structural liveness problem

(SLP) for ordinary IO nets (where “ordinary” means that all edge-weights are 1). In Sections 4, 5 and

6 we prove the announced results for ordinary BIMO, BIO, IMO and IO nets. Section 7 extends these
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results to all BIMO, BIO, IMO, IO nets, by a simple construction. In Section 8 we use the achieved

results to show that SLP for BIMO nets is in PSPACE. Some additional remarks are given in Section 9.

2. Preliminaries, and results

By N we denote the set {0, 1, 2, . . . } of nonnegative integers, and we put [i, j] = {i, i+1, . . . , j} for

i, j ∈ N.

Multisets. Given a set U , called the universe, by a multiset M over U we mean a function M :
U → N; for x ∈ U we write x ∈ M if M(x) ≥ 1. We use the notation M = Hx1, x2, . . . , xnI for

finite multisets; here we have M(x) = |{i ∈ [1, n] ;xi = x}|, and we put |M | = n. A set X ⊆ U is

naturally viewed as a multiset X : U → {0, 1}. By ∅ we denote the empty (multi)set (∅(x) = 0 for

all x ∈ U ).

Given two multisets M,M ′ over U , we define the multisets M ′′ = M +M ′ and M ′′′ = M −M ′

so that M ′′(x) = M(x) + M ′(x) and M ′′′(x) = max{M(x) − M ′(x), 0} for all x ∈ U . By

M ≤M ′ we denote that M(x) ≤M ′(x) for all x ∈ U . We also use the intersection of multisets: for

M ′′ = M ∩M ′ we have M ′′(x) = min{M(x),M ′(x)} for all x ∈ U .

2.1. Standard Petri net definitions

Nets, subnets (ordinary, and weighted). A net N is a triple (P, T, F ) where P and T are finite

disjoint sets of places and transitions, respectively, and F : (P×T )∪(T×P ) −→ N is a flow function.

A pair (x, y) ∈ (P × T ) ∪ (T × P ) where F (x, y) ≥ 1 is also called an edge in N , and F (x, y) is

viewed as its weight. A net N = (P, T, F ) is ordinary if F is of the type (P×T )∪(T×P ) −→ {0, 1}
(hence the weights of edges are 1).

We use a standard depiction of nets; for instance, the net in Figure 1 has 6 places (circles), 6
transitions (boxes), and the depicted edges; the edge weights 1 are implicit. If the weight is larger than

1, then it is depicted explicitly, like, e.g., the weight 3 in Figure 9 (in Section 7).

p1 t1 p2

p3 t2t3p4t4

p5 t5t6p6

Figure 1. Example of a marked ord-BIMO net.
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Given a net N = (P, T, F ) and sets P ′ ⊆ P , T ′ ⊆ T , by N↓(P ′,T ′) we denote the (sub)net

(P ′, T ′, F ′) where F ′ arises from F by restricting its domain to (P ′ × T ′) ∪ (T ′ × P ′). Sometimes

we also deal with subnets arising by removing some edges.

Pre-msets, post-msets, siphons. Let N = (P, T, F ) be a fixed net. For each transition t ∈ T we

define its pre-mset •t and its post-mset t• as multisets over P where •t(p) = F (p, t) and t•(p) =
F (t, p), for each place p ∈ P .

A set of places S ⊆ P is a siphon if for each t ∈ T we have that t•∩S 6= ∅ entails •t∩S 6= ∅. For

instance, the set S = {p2, p3, p4} in Figure 1 is a siphon, since {t ∈ T | t• ∩ S 6= ∅} = {t1, t2, t3}
and {t ∈ T | •t ∩ S 6= ∅} = {t1, t2, t3, t4}.

Markings, marked nets. Given a net N = (P, T, F ), a marking M of N is a multiset over P (hence

M : P → N), where M(p) is viewed as the number of tokens on the place p (alternatively we also say

“in the place p”). For P ′ ⊆ P , M↓P ′ denotes the restriction of M to P ′. A place p ∈ P is marked at

M if M(p) ≥ 1; a set of places P ′ ⊆ P is marked at M if |M↓P ′ | ≥ 1.

When the places in P are ordered, we can also naturally view markings as vectors; e.g., the

marking M depicted in Figure 1 can be given as (4, 0, 0, 0, 0, 1). By 0 we denote the zero vector

(with the dimension clear from context). E.g., for the siphon S = {p2, p3, p4} in Figure 1 we have

M↓S = 0, i.e., the siphon S is unmarked at M .

A marked net (or a Petri net) is a tuple (N,M0) where N is a net and M0 is a marking of N , called

the initial marking.

Executions, reachability. Given a net N = (P, T, F ), a transition t is enabled at a marking M ,

which is denoted by M
t
−→, if M ≥ •t (i.e., M(p) ≥ F (p, t) for all p ∈ P ). If t is enabled at M ,

it can fire (or be performed, or be executed), which yields the marking M ′ = (M − •t) + t• (hence

M ′(p) = M(p)− F (p, t) + F (t, p) for all p ∈ P ); this is denoted by M
t
−→M ′.

A sequence M0
t1−→ M1

t2−→ M2 · · ·
tk−→ Mk is called an execution, from M0 to Mk, which is also

presented as M0
σ
−→ Mk where σ = t1t2 · · · tk. A marking M ′ is reachable from M if there is an

execution M
σ
−→ M ′. By [M〉 we denote the set of all markings that are reachable from M ; we also

write M
∗
−→M ′ instead of M ′ ∈ [M〉.

For instance, an execution of the net in Figure 1 is (1, 1, 1, 1, 1, 1)
t2−→ (1, 0, 2, 1, 2, 1)

t3−→ (1, 0, 1, 2,

2, 1)
t3−→ (1, 0, 0, 3, 2, 1)

t4−→ (2, 0, 0, 2, 2, 1)
t4−→ (3, 0, 0, 1, 2, 1)

t4−→ (4, 0, 0, 0, 2, 1)
t5−→ (4, 0, 0, 0,

1, 1)
t5−→ (4, 0, 0, 0, 0, 1). We might also note that generally any unmarked siphon S cannot get

marked; i.e., M↓S = 0 entails M ′
↓S = 0 for all M ′ ∈ [M〉.

Dead and live transitions, liveness and structural liveness. Given N = (P, T, F ), a transition t

is dead at a marking M if there is no M ′ ∈ [M〉 such that M ′ t
−→ (hence t is disabled in all markings

reachable from M ). A transition t is live at M if it is non-dead at each M ′ ∈ [M〉. We note that

a transition can be both non-live and non-dead at M .

A marking M of N is live if all transitions are live at M . A marked net (N,M0) is live if M0 is

live (for N ). A net N is structurally live if there is M0 such that (N,M0) is live.
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For instance, the net in Figure 1 is clearly not structurally live (if M(p6) = 0, then M is clearly

non-live, and otherwise there is M ′ ∈ [M〉 such that the siphon S = {p2, p3, p4} is unmarked at M ′,

i.e. M ′
↓S = 0). If we removed the edges (p3, t1), (t1, p3) and (p4, t1), (t1, p4), then the net would

become structurally live.

The liveness problem (LP) asks if a given marked net (N,M0) is live. The structural liveness

problem (SLP) asks if a given net N has a marking M0 for which (N,M0) is live.

Conservative nets, and the (structural) liveness problem. We call a net N = (P, T, F ) conserva-

tive if |•t| = |t•| for each t ∈ T ; in this case M
t
−→M ′ entails |M | = |M ′| (hence in every execution

the number of tokens is constant). We remark that the definition of conservative nets in the literature

is sometimes more general, in which case our notion corresponds to 1-conservative nets.

For the results of this paper, it is particularly useful to recall the well-known fact:

Proposition 2.1. The liveness problem (LP) for conservative nets is PSPACE-complete.

The PSPACE-hardness follows by a standard reduction from the acceptance problem for linear bounded

automata (LBA), even for ordinary conservative nets, as we also recall later in detail. For the mem-

bership in PSPACE we can refer to [13]; this holds even for the case with general edge-weights that

are given in binary.

Remark 2.2. It is useful to recall the idea of the PSPACE-membership: Given a conservative net

N , a transition t and a marking M , deciding if t is non-dead at M is obviously in NPSPACE (we

just perform a nondeterministically chosen execution from M until covering •t, i.e., until reaching

M ′ such that M ′ ≥ •t). Since NPSPACE=PSPACE, we deduce that deciding if t is dead at M is in

PSPACE. Given a conservative net N and a marking M , deciding if there is M ′ ∈ [M〉 and a transition

t that is dead at M ′ is thus in NPSPACE, hence in PSPACE, as well.

Remark 2.3. The liveness problem (LP) for general nets is well-known to be tightly related to the

reachability problem; the recent break-through results [3, 2, 1] thus show its huge computational com-

plexity, namely the Ackermann-completeness. The structural liveness problem (SLP) is more unclear

so far. For general nets SLP is known to be EXPSPACE-hard and decidable [6]; for conservative nets

we can show that SLP is EXPSPACE-hard and elementary [14].

2.2. Immediate observation nets, and their (more general) variants

We recall the notions of IO (immediate observation) nets and BIO (branching IO) nets, including the

multi-observer versions: IMO and BIMO nets. These nets were introduced in [7, 9], being originally

motivated by (special types of) population protocols. They have restricted types of transitions; we

start with defining the most general case.

Branching immediate multiple-observation (BIMO) transitions. Given a net N = (P, T, F ), we

say that a transition t ∈ T is a BIMO transition if |•t− t•| ≤ 1 (hence there is at most one place p for

which •t(p) > t•(p), in which case we have •t(p)− t•(p) = 1).
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Convention. In our considerations, for each BIMO transition t we will assume that •t 6= ∅. I.e., in the

case •t = ∅ we tacitly assume an additional “dummy place” D such that •t(D) = t•(D) = 1 and D is

marked in all considered markings.

Having the convention in mind, to each BIMO transition t we fix a presentation

t : ps
Hpo1 ,po2 ,...,poℓI−−−−−−−−−→ Hpd1 , pd2 , . . . , pdkI

(for some k, ℓ ∈ N) where

•t = HpsI + Hpo1 , po2 , . . . , poℓI, and t• = Hpo1 , po2 , . . . , poℓI + Hpd1 , pd2 , . . . , pdkI.

We note that the multisets HpsI, Hpo1 , po2 , . . . , poℓI, and Hpd1 , pd2 , . . . , pdkI are not necessarily disjoint

(their pairwise intersections might be nonempty).

The place ps is called the source place of t. If |•t− t•| = 1, then ps is the unique place satisfying
•t(ps) = 1 + t•(ps); if |•t− t•| = 0 (hence •t(p) ≤ t•(p) for all p ∈ P ), then we fix ps as one of the

places p for which •t(p) ≥ 1.

For instance, all transitions in Figure 9 (in Section 7) are BIMO-transitions; the only presen-

tation of t in Figure 9(left) is t : p1
Hp1I
−−→ Hp1, p1, p2I, t′ in Figure 9(right) can be presented as

t′ : p〈1,1〉
Hp〈1,2〉I
−−−−→ Hp〈1,1〉, p〈1,3〉, p〈2,1〉I or as t′ : p〈1,2〉

Hp〈1,1〉I
−−−−→ Hp〈1,2〉, p〈1,3〉, p〈2,1〉I, and t〈1,1〉 only

as t〈1,1〉 : p〈1,1〉
∅
−→ Hp〈1,2〉I (which is also written as t〈1,1〉 : p〈1,1〉 −→ Hp〈1,2〉I).

We observe that performing a BIMO-transition t : ps
Hpo1 ,po2 ,...,poℓI−−−−−−−−−→ Hpd1 , pd2 , . . . , pdkI (i.e.,

executing a step M
t
−→ M ′) can be viewed so that a “source” token from ps has “branched” into new

tokens in the destination places constituting the set {pd1 , pd2 , . . . , pdk}; the new tokens are created

in the destination places with the multiplicities determined by the multiset Hpd1 , pd2 , . . . , pdkI. We

note that it is not excluded that k = 0 (in which case the source token disappears since there are

no destination places) or that pdi = ps for some i (which is the case of the transition on the left of

Figure 9). Performing t is conditioned not only on the presence of a token in the source place ps but

also on the presence of enough tokens in the observation places constituting the set {po1 , po2 , . . . , poℓ};
this “enough tokens” is determined by the multiset Hpo1 , po2 , . . . , poℓI.

BIMO transitions of the type BIO, IMO, IO. Given a BIMO transition

t : ps
Hpo1 ,po2 ,...,poℓI−−−−−−−−−→ Hpd1 , pd2 , . . . , pdkI

we say that t is:

• a BIO transition if the multiset Hpo1 , po2 , . . . , poℓI is a singleton set {po} or the empty set (per-

forming t is conditioned on at most one observation-token, which is the case for all transitions

in Figure 8); in this case we also write

t : ps
po
−→ Hpd1 , pd2 , . . . , pdkI or t : ps −→ Hpd1 , pd2 , . . . , pdkI;
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• an IMO transition if the multiset Hpd1 , pd2 , . . . , pdkI is a singleton set {pd} (the source token

does not branch, nor disappears, it just moves from ps to pd); in this case we also write

t : ps
Hpo1 ,po2 ,...,poℓI−−−−−−−−−→ pd;

• an IO transition if it is a BIO and IMO transition; in this case we also write

t : ps
po
−→ pd or t : ps −→ pd.

Nets of the type BIMO, ord-BIMO, BIO, ord-BIO, IMO, ord-IMO, IO, ord-IO. For a type

X ∈ {BIMO, BIO, IMO, IO} we say that a net N is an X net if all its transitions are X transitions;

moreover, N is an ord-X net if N is an X net that is ordinary (the edge weights are just 1).

We note that for any BIMO transition t : ps
Hpo1 ,po2 ,...,poℓI−−−−−−−−−→ Hpd1 , pd2 , . . . , pdkI in an ordinary net it

holds that Hpo1 , po2 , . . . , poℓI and Hpd1 , pd2 , . . . , pdkI are two disjoint sets, and ps 6∈ {po1 , po2 , . . . , poℓ}
(while we still can have ps ∈ {pd1 , pd2 , . . . , pdk}).

We observe that IMO nets are conservative, hence Proposition 2.1 entails:

Proposition 2.4. The liveness problem (LP) for IMO nets is in PSPACE.

We recall that this also holds when the edge-weights (i.e., the multiplicities of observation places) are

given in binary. Moreover, the PSPACE-hardness proof for conservative nets has been enhanced in [7]

to show that LP is PSPACE-hard also for IO nets.

2.3. Results

Below we summarize the results of this paper.

a) By Theorem 3.3 and its proof we show that a modification of the hardness proof for the liveness

problem (LP) for IO nets in [7] can be enhanced to demonstrate the PSPACE-hardness of the

structural liveness problem (SLP) for ord-IO nets. (We remark that SLP is EXPSPACE-hard for

conservative nets [14].)

Table 1. Given a structurally live net with maximum edge-weight w, there is a live marking in which each

component is bounded by the 1st upper bound; moreover, the (non)liveness status of any marking does not

change if each component greater than the 2nd upper bound is replaced with this bound.

Class of nets 1st upper bound 2nd upper bound

ord-IO and ord-IMO 1 2 · |P |

IO 2 4 · |P |

IMO w 2 · w · |P |

ord-BIO and ord-BIMO |P | 2 · |P |

BIO and BIMO w · |P | 2 · w · |P |
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b) Table 1 summarizes our results concerning the sizes of live markings in the mentioned net classes,

as stated by the following theorem.

Theorem 2.5. Given a structurally live net N = (P, T, F ) of a type in the first column of Table 1,

with the maximum edge-weight w (where w = 1 if N is ordinary), then

1. there is a live marking M of N in which M(p) is no bigger than the respective 1st upper bound in

Table 1, for each p ∈ P ;

2. whether or not a marking M of N is live is determined by the restriction M↓P ′ where P ′ consists of

the places p for which the values M(p) are smaller than the respective 2nd upper bound in Table 1.

For instance, if an ord-IMO net N = (P, T, F ) is structurally live, then there is M0 : P → {0, 1}
such that (N,M0) is live; moreover, (N,M) is live iff (N,M ′) is live where M ′(p) = M(p) if

M(p) < 2 · |P | and M ′(p) = 2 · |P | otherwise (for all p ∈ P ).

c) By Theorem 8.1 we show that the structural liveness problem (SLP) for BIMO nets is in PSPACE

(and thus PSPACE-complete).

Regarding the result c), we note that our bounds from b) for IMO nets (already the 1st upper

bound, in fact) immediately show that SLP for IMO nets is in PSPACE (and thus PSPACE-complete),

by recalling Proposition 2.4. For general BIMO nets we show the PSPACE-membership of SLP by

using further ideas (one of them being captured by Lemma 4.2 in particular).

Remark 2.6. The papers [7, 9], and in particular the PhD thesis by Chana Weil-Kennedy in prepara-

tion, contain a detailed study of subclasses of BIMO nets, concentrating mainly on the general analysis

questions like reachability and coverability. The PSPACE-membership of structural liveness could be

also derived from the published results for IO nets, while for BIMO nets this will follow from the men-

tioned PhD thesis in preparation. Nevertheless, our direct handling of structural liveness for BIMO

nets yields stronger bounds captured by Table 1 and a more specific insight into this problem (that

remains so far a bit elusive for more general nets).

3. PSPACE-hardness of structural liveness for ord-IO nets

In this section, we show that the structural liveness problem (SLP) for ord-IO nets is PSPACE-hard;

this is achieved by an enhancement of (a modification of) the construction showing PSPACE-hardness

of the liveness problem (LP) from [7]. (This lower bound is later matched by a PSPACE upper bound

that holds for the most general of the considered classes, i.e., for BIMO nets, in which the edge-weights

are given in binary.)

We first introduce the notion of carriers of markings, and an observation captured by Proposi-

tion 3.2: Informally speaking, if we add a token onto a place p in a marking M where M(p) ≥ 1 (in

an ord-IO net N ), then this additional token could be imagined as pasted down to an original token

with which it can then be moving together (by repeating the transitions moving the original token),

whereas the resulting marking carrier remains the same.
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Remark 3.1. Later we will look at this observation in more detail for ord-BIMO nets, but now it

suffices to deal with ord-IO nets.

Carriers of markings. Given a net N = (P, T, F ) and a marking M of N , by car(M) we denote

the carrier of M , i.e. the set {p ∈ P |M(p) ≥ 1}.

Proposition 3.2. (Added tokens can be pasted down to original tokens in ord-IO nets)

We assume an ord-IO net N = (P, T, F ) and its execution M
σ
−→ M ′. Then for any M̄ ≥ M such

that car(M̄ ) = car(M) there are σ̄ and M̄ ′ ≥M ′ for which M̄
σ̄
−→ M̄ ′ and car(M̄ ′) = car(M ′).

Proof:

We prove the claim by induction on the value |σ| (the length of σ). We thus assume that M
σ
−→ M ′,

M̄ ≥ M , car(M̄ ) = car(M), and that the claim holds for all σ′ shorter than σ (by the induction

hypothesis). In the case |σ| = 0 the claim is trivial, so we now assume that σ = t σ′, where t : ps
po
−→

pd (or t : ps −→ pd) and M
t
−→ M ′′ σ′

−→ M ′. We thus have M̄(ps) ≥ M(ps) ≥ 1, and M̄
td
−→ M̄ ′′

where d = 1+ (M̄ (ps)−M(ps)). It is clear that M̄ ′′ ≥M ′′ and car(M̄ ′′) = car(M ′′); hence we can

apply the induction hypothesis to M ′′ σ′

−→ M ′ and M̄ ′′, which entails that M̄
td
−→ M̄ ′′ σ̄′

−→ M̄ ′ where

M̄ ′ ≥M ′ and car(M̄ ′) = car(M ′). ⊓⊔

Now we prove the announced PSPACE-hardness, by a reduction from the standard PSPACE-

complete problem asking if a deterministic linear bounded automaton with a two-letter tape-alphabet

accepts a given word.

Theorem 3.3. The structural liveness problem (SLP) for ord-IO nets is PSPACE-hard.

Proof:

We show the above announced reduction in a stepwise manner, also using informal descriptions that

are formalized afterwards. We thus assume a given deterministic linear-bounded Turing machine

LBA = (Q,Σ,Γ, δ, q0, {qACC, qREJ}) and a word w = x1x2 · · · xn, (1)

where Σ = Γ = {a, b}, n ≥ 1, and xi ∈ Σ = {a, b} for i ∈ [1, n]. W.l.o.g. we assume that

the computation of LBA on w (starting in the configuration q0w) finishes in the accepting state qACC

or the rejecting state qREJ with the head scanning the cell 1. We also view the transition function

δ : (Q r {qACC, qREJ}) × Γ → Q × Γ × {−1,+1} as the set of instructions (q, x, q′, x′,m), writing

rather (q, x, q′, x′,m) ∈ δ instead of δ(q, x) = (q′, x′,m), and w.l.o.g. we assume that q′ 6= q0 for

each instruction (q, x, q′, x′,m) ∈ δ; hence each computation of LBA, starting with the initial state q0,

never returns to q0.

It is straightforward (and standard) to simulate the computation of LBA on w = x1x2 · · · xn with

a 1-safe conservative Petri net (N〈LBA,w〉,M0), as we now sketch (see Figure 2(left)); by “1-safe” we

mean that M(p) ∈ {0, 1} for all M ∈ [M0〉 and all places p of N〈LBA,w〉. Given (1), we construct

N〈LBA,w〉 as follows.
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p〈i,x〉 p〈i,x′〉

p〈q,i〉 p〈q′,i+m〉

t〈INS,i〉

p〈i,x〉 p〈i,x′〉

p〈q,i〉 p〈q′,i+m〉

p〈INS,i〉

tBEGIN

〈INS,i〉 tEND

〈INS,i〉

tMOVE

〈INS,i〉

Figure 2. INS = (q, x, q′, x′,m) mimicked in N〈LBA,w〉 (left) and in N ′
〈LBA,w〉 (right).

• For each control state q ∈ Q and each head-position i ∈ [1, n] we create a place p〈q,i〉.

• For each tape-cell i ∈ [1, n] and each tape-symbol x ∈ Γ = {a, b} we create a place p〈i,x〉.

• Each instruction INS = (q, x, q′, x′,m) ∈ δ is implemented by net transitions t〈INS,i〉, i ∈ [1, n],
where •t〈INS,i〉 = {p〈q,i〉, p〈i,x〉} and t•〈INS,i〉 = {p〈q′,i+m〉, p〈i,x′〉}, excluding the cases where

i+m 6∈ [1, n]. (The notation stresses that the multisets •t〈INS,i〉 and t•〈INS,i〉 are sets.)

A configuration (q, i, u) of LBA, where q ∈ Q, i ∈ [1, n], and u = y1y2 · · · yn ∈ Γ∗ = {a, b}∗,

is mimicked by the marking of N〈LBA,w〉 with one token in p〈q,i〉 and one token in p〈j,yj〉 for each

j ∈ [1, n]. The initial configuration q0w of LBA is mimicked by the respective initial marking M0 in

N〈LBA,w〉, from which there exists only one execution, simulating the computation of LBA on w.

Since N〈LBA,w〉 is not an ord-IO net in general, we transform N〈LBA,w〉 to an ord-IO net N ′
〈LBA,w〉

as depicted in Figure 2: for each INS = (q, x, q′, x′,m) ∈ δ and i ∈ [1, n],

• we add a place p〈INS,i〉 and

• replace the transition t〈INS,i〉 with three IO transitions, namely

tBEGIN

〈INS,i〉 : p〈q,i〉
p〈i,x〉
−−−→ p〈INS,i〉, t

MOVE

〈INS,i〉 : p〈i,x〉
p〈INS,i〉
−−−−→ p〈i,x′〉, t

END

〈INS,i〉 : p〈INS,i〉

p〈i,x′〉
−−−−→ p〈q′,i+m〉;

in fact, we omit tMOVE

〈INS,i〉 if x = x′.

It is clear that N ′
〈LBA,w〉 starting from M0 also simulates the computation of LBA on w.

Since the computation of LBA always finishes with the head scanning the cell 1, we get that LBA

accepts w iff the “state-position token” from p〈q0,1〉 in M0 eventually moves to the place p〈qACC ,1〉.

Hence the reachability (and coverability) problem for ord-IO nets is PSPACE-hard (in fact, PSPACE-

complete).

For the liveness problem, we construct the ord-IO net N ′′
〈LBA,w〉 arising from N ′

〈LBA,w〉 as depicted

in Figure 3:

• we add a place pRUN, with a token in the initial marking M0, and a place pFREE, unmarked in

M0, and transitions tA : pRUN

p〈qACC ,1〉
−−−−−→ pFREE and t′A : pFREE

p〈qACC ,1〉
−−−−−→ pRUN;
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pFREE

pRUN

p〈qACC,1〉

tA

t′A

pFREE

p〈q,i〉

t〈q,i,q′,i′〉 t〈q′,i′,q,i〉

p〈q′,i′〉

p〈i,a〉

t〈i,a,i,b〉 t〈i,b,i,a〉

p〈i,b〉

Figure 3. Marked pFREE allows to freely change the mimicked configurations of LBA in N ′′
〈LBA,w〉.

• for each pair (〈q, i〉, 〈q′, i′〉) where 〈q, i〉 6= 〈q′, i′〉 we add a transition

t〈q,i,q′,i′〉 : p〈q,i〉
pFREE

−−−→ p〈q′,i′〉,

and for each (i, x, y) where i ∈ [1, n], x, y ∈ Γ = {a, b} and x 6= y we add a transition

t〈i,x,i,y〉 : p〈i,x〉
pFREE

−−−→ p〈i,y〉.

We can easily verify that LBA accepts w iff the initial marking M0 of N ′′
〈LBA,w〉 (mimicking q0w and

having a token in pRUN) is live: A crucial fact is that tA gets enabled iff LBA accepts w, after which any

configuration (i.e., any marking mimicking a configuration of LBA) can be repeatedly installed, which

makes each transition live, including all tBEGIN

〈INS,i〉, t
MOVE

〈INS,i〉, t
END

〈INS,i〉 (from Figure 2) and also tA due to t′A
(from Figure 3). Hence the liveness problem is PSPACE-hard (and PSPACE-complete) as well.

If LBA accepts w, then the ord-IO net N ′′
〈LBA,w〉 is structurally live since M0 is a live marking. But

to show the PSPACE-hardness of the structural liveness problem (SLP) we also need to guarantee

pFREE

t〈INIT,1〉

p〈INIT,1〉

t〈INIT,2〉

p〈INIT,2〉

. . .

t〈INIT,n〉

p〈INIT,n〉

tRUN
pRUN

p〈q0,1〉 p〈qACC,1〉

tA

p〈1,x1〉 p〈2,x2〉

. . .

p〈n,xn〉

t〈REV,1〉 t〈REV,2〉 t〈REV,n〉. . .

Figure 4. N̄〈LBA,w〉 arises from N ′′
〈LBA,w〉 by replacing t′A from Figure 3 by “hard-wiring” M0.
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that all markings are non-live in the respective net if LBA rejects w. This leads us to a final step of

our construction: the net N ′′
〈LBA,w〉 is modified by replacing the transition t′A (recall Figure 3) with a

collection of places and transitions that essentially “hard-wire” the initial marking M0, as depicted in

Figure 4; thus the final ord-IO net N̄〈LBA,w〉 arises.

More concretely, the net N̄〈LBA,w〉 arises from N ′′
〈LBA,w〉 by removing t′A (with its adjacent edges)

and adding the following objects (we recall that w = x1x2 · · · xn):

• places p〈INIT,i〉 for all i ∈ [1, n], with zero tokens in M0;

• a transition t〈INIT,1〉 : pFREE

p〈1,x1〉−−−−→ p〈INIT,1〉;

• for each i ∈ [2, n], transitions

t〈INIT,i〉 : p〈INIT,i−1〉

p〈i,xi〉−−−−→ p〈INIT,i〉 and t〈REV,i〉 : p〈INIT,i〉 −→ pFREE;

• a transition tRUN : p〈INIT,n〉

p〈q0,1〉−−−−→ pRUN.

(We do not need observation-places for transitions t〈REV,i〉.)

It is easy to check that we also have

LBA accepts w iff M0 is live in N̄〈LBA,w〉.

Indeed: We recall that LBA accepts w iff p〈qACC ,1〉 gets eventually marked when N̄〈LBA,w〉 starts with

M0. Then the token from pRUN can move to pFREE by tA, which allows to freely perform all transitions

that are changing the mimicked configurations of LBA and that are simulating the instructions INS =
(q, x, q′, x′,m) from δ. The token in pFREE can go back to pRUN only via performing the whole sequence

t〈INIT,1〉t〈INIT,2〉 · · · t〈INIT,n〉tRUN. (2)

Performing this sequence can be always “aborted” by performing one of the transitions t〈REV,i〉; on the

other hand, performing the whole sequence guarantees that the initial M0 (corresponding to the initial

configuration q0w) had been installed before the sequence (2) started; here we use the assumption that

in all INS = (q, x, q′, x′,m) ∈ δ we have q′ 6= q0, which entails that during performing the whole

sequence (2) no other transition could be performed (since the single “state-position token” must be

in p〈q0,1〉 during the whole sequence).

It remains to show that

if LBA rejects w, then each marking M of N̄〈LBA,w〉 is non-live.

For the sake of contradiction we assume that LBA rejects w and M is a live marking of N̄〈LBA,w〉.

Since M is live, it contains at least one token on some p〈q,i〉, and for each i ∈ [1, n] it contains at least

one token on one of the places p〈i,a〉 and p〈i,b〉; moreover, from M we can reach a marking in which

pFREE is marked and then install a “pseudoinitial” marking M̄0 ≥ M0 where car(M̄0) = car(M0)
(the carrier of the pseudoinitial marking coincides with the carrier of the initial marking). Since LBA

rejects w, for the sequence σ of transitions of N̄〈LBA,w〉 that simulates the computation of LBA on w we
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have M0
σ
−→M ′ where the state-position token in M ′ is on p〈qREJ ,1〉. In this marking M ′ all transitions

are dead: for each transition t in N̄〈LBA,w〉 there is a place pt ∈
•t such that M ′(pt) = 0. (We note that

the set S = {pt | t is a transition in N̄〈LBA,w〉} is a non-empty set of places that is unmarked in M ′,

and S is a siphon.) By Proposition 3.2 we also have M̄0
σ̄
−→ M̄ ′ where car(M̄ ′) = car(M ′), and thus

in M̄ ′ all transitions are dead as well (the above siphon S is also unmarked in M̄ ′). Since M̄ ′ ∈ [M〉,
we have got a contradiction with the assumption that M is live. ⊓⊔

4. Proof strategy for upper bounds

We first recall the monotonicity property of nets: if M1
σ
−→M2, then (M1 +M)

σ
−→ (M2 +M). This

entails a simple fact: if we ignore some places (that can be understood as marked with infinite amounts

of tokens), then any original execution can be performed in the case with ignored places as well.

Proposition 4.1. (If a transition is dead with ignored places, then it is dead originally)

Let N = (P, T, F ) be a (general) net. For all M,P ′, t, where M : P → N, P ′ ⊆ P , and t ∈ T , we

have: if t is dead in (N↓(P ′,T ),M↓P ′), then t is dead in (N,M) as well.

Proof:

For any execution M
σ
−→ M ′ in N there is obviously the execution M↓P ′

σ
−→ M ′

↓P ′ in N↓(P ′,T ).

Hence if t is non-dead in (N,M) (we have an execution M
σt
−→ M ′ of N ), then t is non-dead in

(N↓(P ′,T ),M↓P ′) as well. ⊓⊔

A crucial ingredient for proving the upper-bound results stated by Theorem 2.5 in Section 2.3

is captured by the following lemma, which will be proven in Section 5. (We use the designation

“Lemma” rather than “Proposition” for the claims that we highlight as crucial for our theorems.)

Lemma 4.2. (For ord-BIMO nets, if M0 is non-live, then there is a simple witness MW ∈ [M0〉)
A marking M0 of an ord-BIMO net N = (P, T, F ) is non-live iff there are

• MW ∈ [M0〉 (a witness marking),

• PCR ⊆ P (a set of crucial places), and

• a nonempty set TD ⊆ T (a set of dead transitions)

such that

1. |(MW)↓PCR
| < |PCR| (hence in MW the sum of tokens on the places from PCR is at most |PCR|−1),

and we can, moreover, require that MW(p) ∈ {0, 1} for each p ∈ PCR;

2. N↓(PCR ,TrTD) is an ord-IMO net (and is thus conservative);

3. all transitions from TD are dead in (N↓(PCR ,T ), (MW)↓PCR
).
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We note that N↓(PCR,T ) can have transitions t for which •t = t• = ∅; they are live but have no

effect. Technically we view such transitions also as IMO-transitions (we might again imagine a marked

dummy place serving as both the source and the destination).

In a particular case demonstrating Lemma 4.2, PCR can be a siphon of N that is unmarked at

MW. Recall Figure 1 with the siphon {p2, p3, p4} where TD = {t1, t2, t3, t4}. A more general case

is exemplified by the ord-BIMO net N = (P, T, F ) in Figure 5, with M0 satisfying M0(p) = 1
for all p ∈ P . (The “observation edges” in Figure 5 are drawn as dotted, for better lucidity.) By

executing M0
t3t4t2t1t1t6t6t6−−−−−−−−−→ MW we get the marking depicted in Figure 5, where we put PCR =

{p1, p2, p3, p4, p5} and TD = {t1, t6, t7}.

p1

t1

t2

p2

t3

p3t4

p4t5

p5 t6

p6

t7

p7

t8

t9

Figure 5. From (1, 1, 1, 1, 1, 1, 1) we reach the depicted MW, with PCR = {p1, p2, p3, p4, p5}.

We observe that the “if” direction of Lemma 4.2 is clear (by recalling Proposition 4.1). We also

observe that, given an ord-BIMO net N = (P, T, F ), MW : P → N, PCR ⊆ P , and TD ⊆ T ,

conditions 1 and 2 of Lemma 4.2 can be checked trivially, while deciding condition 3 is surely in

PSPACE (since N↓(PCR ,TrTD) is conservative): we recall Remark 2.2, and note that we can verify that

in (N↓(PCR ,TrTD), (MW)↓PCR
) we cannot cover •t ∩ PCR for any t ∈ TD.

Lemma 4.2 (whose “only if” direction is proven in Section 5) will allow us to derive the upper

bounds in Table 1 for ordinary nets in Section 6, which is extended to non-ordinary nets by a simple

construction in Section 7. These upper bounds also enable to give a smooth proof that reachability of

a “simple witness” MW of non-liveness of M0 in BIMO nets can be verified in polynomial space as

well; this is shown in Section 8.

5. Proof of Lemma 4.2

We first sketch the organization of the proof. We start by introducing the notion of optimal markings

and an observation that guarantees reachability of such markings, in the case of general live Petri nets.

Then we study optimal markings in the case of ord-BIMO nets; here we also use the notion of “relaxed

nets”, with omitted observation edges. A crucial fact is then captured by Lemma 5.3. Finally, another

general notion, of DL-markings where each transition is either dead or live and at least one is dead,

leads to finishing the whole proof of Lemma 4.2.
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Optimal markings, i.e. carrier-maximal and self-coverable markings.

Let N = (P, T, F ) be a net, and M a marking of N . We define the following notions:

• M is carrier-maximal if for each M ′ ∈ [M〉 we have |car(M ′)| ≤ |car(M)|;

• M is self-coverable if there is an execution M
σ
−→ M ′ where M ≤ M ′ and σ is full, i.e., each

t ∈ T has at least one occurrence in σ;

• M is optimal if M is both carrier-maximal and self-coverable.

For instance, the marking MW in Figure 5 is optimal for the net N ′ arising from the depicted net N by

removing all dead transitions (t1, t6, t7) with their incident edges.

Proposition 5.1. Let M0 be a live marking of a net N = (P, T, F ). Then there is an optimal marking

M ∈ [M0〉.

Proof:

Let M0 be a live marking of N = (P, T, F ); we assume T 6= ∅ (otherwise the claim is trivial). We

consider an infinite execution M0
σ1−→M1

σ2−→M2
σ3−→ · · · where

1. for each i ≥ 1, σi is full (contains all t ∈ T ), and

2. for each i ≥ 1 we have |car(Mi)| = max { |car(M)|;Mi−1
σ
−→M for some full σ}.

Such an execution obviously exists since M0 is live (which entails that all M ∈ [M0〉 are live).

We observe that Mi are carrier-maximal for all i ≥ 1: if we had Mi
σ
−→ M where |car(Mi)| <

|car(M)|, then Mi−1
σiσ−−→ M would violate the condition 2 (since σiσ is full). By Dickson’s lemma

there are i1, i2 such that 1 ≤ i1 < i2 and Mi1 ≤ Mi2 ; hence Mi1 is both carrier-maximal and self-

coverable (which also entails that |car(Mi1)| = |car(Mi2)|). ⊓⊔

The relaxed net Relax(N) associated with an ord-BIMO net N . Let N = (P, T, F ) be an ord-

BIMO net, and let E ⊆ (P ×T )∪ (T ×P ) be the set of its “moving” edges, i.e. the least set such that

each transition t : ps
{po1 ,...,poℓ}−−−−−−−→ {pd1 , . . . , pdk} entails that the edges (ps, t) and (t, pdj ) (j ∈ [1, k])

are in E. The relaxed net related to N is the subnet

Relax(N) = (P, T, F ′)

of N where for all (x, y) ∈ (P ×T )∪ (T ×P ) we have F ′(x, y) = 1 if (x, y) ∈ E, and F ′(x, y) = 0
otherwise. (We recall that we assume that each transition t has a fixed source place ps, and that here

we deal with sets {po1 , . . . , poℓ} and {pd1 , . . . , pdk} since the considered nets are ordinary.)

For instance, in the nets depicted in Figures 5, 6, and 7 the thick edges are those remaining in the

respective relaxed nets. We note that the edges between p5 and t7 in Figure 6 are thick, since t7 is

understood as t7 : p5 −→ {p5, p3}.

Informally speaking, Relax(N) represents the behaviour of N when the observation-condition is

relaxed, which means that a transition can fire even if its observation places are unmarked.
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p1
t1 p2 t2

t3

p3

t4
p4t5

p5

t6 t7

Figure 6. A structurally live ord-BIMO net.

Remark 5.2. For ord-IMO nets their relaxation nets are S-nets in terminology of, e.g., [15] (pre-

msets and post-msets of all transitions are singletons). Generally, for ord-BIMO nets their relaxation

nets are BPP-nets in terminology of, e.g., [12] (pre-msets of all transitions are singletons).

Nets Relax(N) as directed bipartite graphs, paths, (bottom, top) components. We recall that

any ordinary net N = (P, T, F ) (with F : (P × T ) ∪ (T × P ) → {0, 1}) can be naturally viewed

as a directed bipartite graph where P ∪ T is the set of vertices and {(x, y) ∈ (P × T ) ∪ (T × P ) |
F (x, y) = 1} is the set of edges. We thus use the standard notions like a path in Relax(N) or

a strongly connected component (scc) of Relax(N). By a proper successor of an scc C we mean

an scc C ′ such that C ′ 6= C and there is a path from C to C ′ (in Relax(N)). An scc C is a bottom

component if there is no proper successor of C; C is a top component if there is no C ′ such that C is

a proper successor of C ′.

For an scc C , by PC we denote the set of places in C (which is empty if C consists just of one

transition). We also say just “a component” instead of “an scc”.

For instance, Relax(N) related to N in Figure 5 has just one (strongly connected) compo-

nent, in Figure 6 we have four components, three of them being trivial (i.e. singletons), namely

{t5}, {p4}, {t4}, and in Figure 7 we have two components, in this case both nontrivial.

Rich and poor components in marked ord-BIMO nets. We assume a given ord-BIMO net N =
(P, T, F ). For a marking M : P → N, we say that

an scc C of Relax(N) is

{

rich at M . . . if M(PC) ≥ |PC |,

poor at M . . . if M(PC) < |PC |.

If C is a rich (or poor) scc in Relax(N) at M , then we also say that C is a rich (or poor) component

in (N,M). We note that any component consisting of a single transition is always rich.
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For instance, the only component of Relax(N) depicted in Figure 5 is rich at both (1, 1, 1, 1, 1, 1, 1)
and MW. We recall the net N ′ arising by removing the transitions t1, t6, t7 (from the net N depicted in

Figure 5), and note that all transitions of N ′ are live at MW. We have three components in (N ′,MW)
(one of them consisting just of p5), one rich and two poor. We also recall that MW is an optimal

marking in N ′.

Now we show a crucial fact (called “Lemma” rather than “Proposition” in line with our remark

before the statement of Lemma 4.2).

Lemma 5.3. (In optimal markings, tokens are “spread” and poor components are on top)

Let N = (P, T, F ) be an ord-BIMO net, and M0 an optimal marking. Then:

1. for each rich component C in (N,M0) we have M0(p) ≥ 1 for all p ∈ PC ;

2. for each poor component C in (N,M0) we have M0(p) ∈ {0, 1} for all p ∈ PC ;

3. for each poor component C in (N,M0) it holds that C is a top component of Relax(N), and

that N↓(PC ,T ) is an ord-IMO net (i.e., each transition in C has the source place in PC and

precisely one destination place in PC ).

Proof:

Let N = (P, T, F ), M0 satisfy the assumptions.

For the sake of contradiction we assume that the statement does not hold, and we choose a com-

ponent C0 (an scc of Relax(N)) such that C0 violates some of conditions 1 − 3, while all proper

successors of C0 (if some exist) do not violate these conditions. Each proper successor C of C0 is thus

a rich component and satisfies M0(p) ≥ 1 for all p ∈ PC (which is trivial when PC = ∅, i.e., when C

consists of a single transition). By PSUCC we denote the union of the sets PC for all proper successors

C of C0 (hence M0(p) ≥ 1 for all p ∈ PSUCC).

We fix two places p1, p
′
1 ∈ PC0

such that

M0(p1) ≥ 2 and M0(p
′
1) = 0; (3)

this is obviously possible in the case when C0 is rich and violates condition 1 as well as in the case

when C0 is poor and violates condition 2.

Since M0 is self-coverable, we can fix a full sequence σ ∈ T ∗ (containing all transitions from T )

such that M0
σ
−→ M̄ where M0 ≤ M̄ ; we note that car(M0) = car(M̄ ), since M0 is carrier-maximal.

We can easily verify that we also have

M0
σ1−→M1 and M0 ≤M1 (where car(M0) = car(M1)) (4)

for σ1 arising from σ by omitting all occurrences of transitions contained in the proper successors of

C0. This follows from the facts that M0(p) ≥ 1 for all p ∈ PSUCC, and that all destination places of

transitions in the proper successors of C0 are in PSUCC; hence σ1 is performable from M0, keeping

each place in PSUCC marked during the whole execution M0
σ1−→M1.

We get the desired contradiction in both cases C1 and C2 below; the cases cover all possibilities,

since each transition in C0 has at least one destination place in PC0
(which follows from the fact that

C0 does not consist of a single transition).
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Case C1. The (violating) scc C0 is not a top component of Relax(N), or there is a transition in C0

that has at least two destination places in PC0
.

In this case there is some p0 ∈ PC0
such that M0(p0) < M1(p0), referring to (4), since no

transition in σ1 decreases the token count in C0 while at least one transition in σ1 increases this count.

Since C0 is a strongly connected component of Relax(N), there must be a path from p0 to p′1 in C0

(referring to p′1 in (3)); let the sequence of the transitions on this path be t′1t
′
2 · · · t

′
m. Now we can

consider the execution

M0
σ1−→M1

σ1,1
−−→

σ1,2
−−→ · · ·

σ1,m
−−−→M ′

where σ1,j arises from σ1 by replacing an occurrence of t′j with t′jt
′
j (the second occurrence of t′j

moves the “excessive” token on its way from p0 towards p′1, maybe also generating additional tokens

on the way).

We clearly have car(M ′) ⊇ car(M0)∪{p
′
1}, which contradicts the assumption that M0 is carrier-

maximal.

Case C2. The (violating) scc C0 is a top component and each transition t in C0 has (the source

place and) precisely one destination place in PC0
.

Referring to the execution M0
σ1−→M1 from (4), we observe that we have M0(p) = M1(p) for all

p ∈ PC0
(in our case C2). Though we have M0(p1) ≥ 2, and there is a path from p1 to p′1 (we refer to

the places from (3)), we cannot immediately say that a token on p1 is “excessive”; to use an analogous

idea as in C1, we first adjust σ1 by a careful omission of some transition occurrences, to make clear

that we actually get an excessive token after all.

In the respective “omitting” construction, for t in C0 we use the expression p → t to denote that

p is the source place of t (we necessarily have p ∈ PC0
); the expression t → p denotes that p is the

destination place of t that belongs to PC0
.

Now we imagine constructing a sequence

seq = (σ1, p1), (σ2, p2), . . . , (σk, pk) (5)

where M0
σ1−→ M1 (recall (4)), and p1 is the place from (3), hence M0(p1) ≥ 2. Given (σi, pi), we

construct (σi+1, pi+1) as follows:

• if there is no transition t in σi where t→ pi, then halt (and put k = i);

• (otherwise) we write σi = σ′tσ′′ where t → pi and there is no t′ in σ′′ for which t′ → pi,

and put σi+1 = σ′σ′′ (the last transition occurrence putting a token in pi has been omitted); the

source place of t is taken as pi+1 (hence we have pi+1 → t→ pi).

We show that the construction of (5) keeps the following conditions 1− 3 (for all i = 1, 2, . . . , k);

we recall that PSUCC denotes the set of places of the proper successors of C0.

1. M0
σi−→Mi (for some Mi) where car(M0) = car(Mi) and Mi(pi) ≥ 2;
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2. pi ∈ PC0
(and we might have pi = pi′ for i 6= i′);

3. (a) each place from PSUCC is marked during the whole execution M0
σi−→Mi;

(b) for each p ∈ P r (PSUCC ∪{p1, pi}) we have Mi(p) = M1(p) (hence Mi(p) = M0(p) for

all p ∈ PC0
r {p1, pi});

(c) if pi = p1, then Mi(p1) = M0(p1);

(d) if pi 6= p1, then Mi(p1) = M0(p1)− 1 ≥ 1 and Mi(pi) = M0(pi) + 1.

The conditions surely hold for i = 1, since M0
σ1−→ M1 and M1(p) = M0(p) for all p ∈ PC0

; the

validity of condition 3(a) was noted around (4). We also note that pk = p1 (in (5)), since in the case

pi 6= p1 we have M0
σi−→ Mi and Mi(pi) = M0(pi) + 1, which entails that there is t in σi such that

t→ pi.

Now we assume that the conditions hold for i ∈ [1, k−1], and show that they hold for i+1 as well.

We recall that σi+1 = σ′σ′′ where σi = σ′tσ′′, t→ pi, and there is no t′ in σ′′ for which t′ → pi. Let

us write

M0
σi−→Mi as M0

σ′

−→ M̄1
t
−→ M̄2

σ′′

−→Mi.

Since the number of tokens on pi never increases in the execution M̄2
σ′′

−→ Mi and Mi(pi) ≥ 2, the

place pi is marked with at least two tokens during the whole execution M̄2
σ′′

−→ Mi. We verify that

σ′′ is enabled at M̄1: we recall that the destination places of t constitute a subset of {pi} ∪ PSUCC,

M̄1(p) ≥ 1 for all p ∈ PSUCC (by condition 3(a)), and there is no transition in σ′′ with the source place

in PSUCC (since σ′′ is a subsequence of σ1 defined in (4)).

In the execution M0
σ′

−→ M̄1
σ′′

−→ Mi+1 (which is M0
σi+1

−−−→ Mi+1) the place pi is marked with

at least one token during the whole segment M̄1
σ′′

−→ Mi+1, while each place from PSUCC is marked

during the whole execution M0
σi+1
−−−→Mi+1.

Since Mi+1 = (Mi − t•) + •t, we have:

• if pi = pi+1 (i.e., pi → t→ pi), then (Mi+1)↓(PrPSUCC) = (Mi)↓(PrPSUCC);

• if pi 6= pi+1, then

– Mi+1(p) = Mi(p) for all p ∈ P r (PSUCC ∪ {pi, pi+1}),

– Mi+1(pi) = Mi(pi)− 1, and

– Mi+1(pi+1) = Mi(pi+1) + 1.

Since Mi(pi) ≥ 2, and thus Mi+1(pi) ≥ 1, we have car(Mi) ⊆ car(Mi+1). The condition

car(Mi) = car(M0) and the assumption that M0 is carrier-maximal thus entail that car(Mi+1) =
car(M0); hence Mi(pi+1) ≥ 1 and Mi+1(pi+1) ≥ 2.

The validity of conditions 1−3 is thus clear for all i ∈ [1, k]. We note that the condition car(Mi) =
car(M0) entails that Mi(p

′
1) = M0(p

′
1) = 0 (referring to p′1 from (3)), and thus pi 6= p′1.
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The final element (σk, pk) of the sequence (5) satisfies p1 = pk, M0
σk−→ Mk where M0 ≤ Mk,

and p1 cannot be a destination place, and neither the source place, of any transition in σk. Since

M0(p1) ≥ 2, we get that M ′
0

σk−→ M ′
k where M ′

0 arises from M0, and M ′
k from Mk, by removing a

token on p1. This entails that there are executions Mi
σk−→ M̄i (where Mi ≤ M̄i) for all i = 1, 2, . . . , k

(since Mi arises from M ′
0 by adding a token on pi).

Since σk has arisen from σ1, in which all transitions from C0 occur, for some i ∈ [1, k] there must

be a path from pi to p′1 (in C0) such that all transitions on the path occur in σk; let the sequence of the

transitions on this path be t′1t
′
2 · · · t

′
m. Now we can consider the execution

M0
σi−→Mi

σk,1
−−→

σk,2
−−→ · · ·

σk,m
−−−→M ′

where σk,j arises from σk by replacing an occurrence of t′j with t′jt
′
j (the second occurrence of t′j

moves the “excessive” token on its way from pi towards p′1). We clearly have car(M ′) ⊇ car(Mi) ∪
{p′1} = car(M0) ∪ {p

′
1}, which contradicts the assumption that M0 is carrier-maximal. The proof is

thus finished. ⊓⊔

Now we recall a natural notion and a simple fact (for general nets).

DL-markings. A marking M of a (general) net N is a DL-marking if each transition is either dead

or live at M and at least one transition is dead at M .

Proposition 5.4. (From a non-live marking we can reach a DL-marking)

1. A marking M of a net N is non-live iff there is a DL-marking MDL ∈ [M〉.

2. Given a net N = (P, T, F ), if MDL is a DL-marking of N and TL ⊆ T is the set of transitions

that are live at MDL, then MDL is live in the net N↓(P,TL).

Proof:

The claim 2 and the “if” part of the claim 1 are trivial, hence it remains to look at the “only-if” part of

the claim 1. If t is a transition that is non-live at M , then there is M ′ ∈ [M〉 where t is dead; if t′ is a

transition that is non-live at M ′, then there is M ′′ ∈ [M ′〉 where t′ is dead, as well as t. By repeating

this reasoning we arrive at some DL-marking MDL ∈ [M〉, for any non-live M . ⊓⊔

Proof of Lemma 4.2 (the “only-if” direction).

Let M0 be a non-live marking of an ord-BIMO net N = (P, T, F ). By Proposition 5.4(1) there is a

DL-marking in [M0〉; by Propositions 5.4(2) and 5.1 there is even a DL-marking MDL ∈ [M0〉 that is

optimal (carrier-maximal and self-coverable) in N↓(P,TL) where TL is the set of transitions of N that

are live at MDL. (The marking MW depicted in Figure 5 is an example of such marking.)

Let us choose such an optimal MDL, and let PCR be the union of places from the strongly connected

components of Relax(N↓(P,TL)) that are poor at MDL (hence we surely have |(MDL)↓PCR
| < |PCR|).

By Lemma 5.3 we derive that MDL(p) ≥ 1 for all p ∈ P r PCR, MDL(p) ∈ {0, 1} for all p ∈ PCR,

and N↓(PCR ,TL) is an ord-IMO net. We also note that each transition t : ps
{po1 ,...,poℓ}−−−−−−−→ {pd1 , . . . , pdk}
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where ps ∈ P r PCR satisfies {pd1 , . . . , pdk} ⊆ P r PCR (if the source place is outside PCR, then all

destination places are outside PCR).

To finish proving Lemma 4.2, it suffices to show that the transitions from the set TD = T r TL

(consisting of the transitions that are dead at MDL in N ) are dead in (N↓(PCR ,T ), (MDL)↓PCR
). For the

sake of contradiction we assume that (MDL)↓PCR

σ
−→M (M : PCR → N) in N↓(PCR,T ) where σ ∈ (TL)

∗

and M ≥ (•t ∩ PCR) for some t ∈ TD. We recall that MDL(p) ≥ 1 for all p ∈ P r PCR, hence for σ′

arising from σ by omitting the transitions whose source place is outside PCR (and whose destination

places are thus outside PCR as well) we get MDL

σ′

−→M ′ in N . We have M ′ ≥ •t, since M ′ coincides

with M on PCR, and M ′(p) ≥ 1 for all p ∈ P rPCR; but this contradicts the assumption that t is dead

at MDL in N . �

6. Upper bounds for ordinary nets

In Section 6.1 we show an important lemma that clarifies the main bounds in Table 1 (in Section 2.3)

for ordinary nets; to this aim we also have a more detailed look at executions by viewing tokens as

individual objects. In Section 6.2 we give the strengthened bound for structurally live ord-IMO nets,

showing that here there are live markings having at most one token in each place; in Section 6.3 we

show that this does not hold for ord-BIO nets.

6.1. Live markings in ord-BIMO nets

In this section we prove the next lemma, which has a straightforward consequence for live markings

in ord-BIMO nets.

Lemma 6.1. Let N = (P, T, F ) be an ord-BIMO net, and let M,M ′ be two markings of N that

coincide except of one place p0 for which we have 2|P | − 1 ≤M(p0) = M ′(p0)− 1. Then M is live

iff M ′ is live.

Corollary 6.2. Let N = (P, T, F ) be an ord-BIMO net. The set LN of live markings of N is deter-

mined by its finite (basic) subset

BN = {M ∈ LN |M(p) ≤ B for all p ∈ P} where B = 2|P |−1,

since

LN = {M ∈ N
P |M ′ ∈ BN where M ′(p) = M(p) if M(p) ≤ B, and M ′(p) = B otherwise}.

Remark 6.3. We note that liveness is not generally monotonic, even for ord-IO nets. Figure 7 shows

an example of an ord-IO net with a live marking (as can be easily verified); adding a token to p2 yields

a non-live marking, since in this case firing t5t2t6 makes all transitions dead. Another example is the

ord-BIMO net in Figure 6; we can check that the markings (1, 0, 0, 0, 0) and (3, 0, 0, 0, 0) are non-live,

while (2, 0, 0, 0, 0) and (3, 0, 0, 0, 1) are live.
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p1

t1

p2

t2

p3

t3

t4

p4

t5

p5

t6

p6

t7

Figure 7. A live marking of an ord-IO net N ; adding a token on p2 makes it non-live.

Executions with individual tokens, ID-valuations, relations
t
 , , ∗.

Let us have a more detailed look at a fixed execution

M0
t1−→M1

t2−→M2 · · ·
tm−→Mm (6)

for an ord-BIMO net N = (P, T, F ). Now we view tokens as individual objects; each token is iden-

tified with its unique ID from an infinite domain IDSET (e.g., we can have IDSET = N). A marking

M : P → N thus has a related id-marking M̄ : P → PFIN(IDSET), where the finite sets M̄(p) and

M̄(p′) of IDs are disjoint when p 6= p′ (and |M̄ (p)| = |M(p)| for all p ∈ P ). We also define the

notion of an ID-valuation of the execution (6), as a sequence

M̄0
t1−→ M̄1

t2−→ M̄2 · · ·
tm−→ M̄m

that is stepwise created as follows: We start with attaching a unique ID to each token in the initial

marking M0, getting M̄0 : P → PFIN(IDSET). For i ∈ [1,m], M̄i arises from M̄i−1 by the following

change, based on the transition ti : ps
{po1 ,...,poℓ}−−−−−−−→ {pd1 , . . . , pdk}:

• one (arbitrarily chosen) ID I0 ∈ M̄i−1(ps) is removed (from the source place ps), and it is not

used anymore (i.e., I0 will not occur in M̄j(p) for any j ∈ [i,m] and p ∈ P );

• for each j ∈ [1, k], a fresh ID Ij (so far not occurring in the created ID-valuation) is added to

the destination place pdj ;

• moreover, we say that each of the “destination IDs” Ij is an immediate successor of the “source

ID” I0, which is denoted by I0  Idj ; in more detail we also write I0
ti
 Idj .

(The “observation IDs” on the places poj used by ti are not changed, being the same in M̄i as in

M̄i−1.) We note that if the source token from ps returns, i.e. ps ∈ {pd1 , . . . , pdk}, then the returning

token has a new ID, which is an immediate successor of the original one.
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We have thus defined what we mean by an ID-valuation M̄0
t1−→ M̄1

t2−→ M̄2 · · ·
tm−→ M̄m of the

execution (6), while we have also introduced the immediate-successor relation  on the set of IDs

used in this ID-valuation. We also define the successor relation  ∗, as the reflexive and transitive

closure of .

The relation  ∗ is clearly a partial order that can be presented by a set of (disjoint) trees where

the roots constitute the set
⋃

p∈P M̄0(p); this is captured by the next observation.

Fact 6.4. (Each used ID is a successor of a unique ID from M̄0)

Given an ID-valuation M̄0
t1−→ M̄1

t2−→ M̄2 · · ·
tm−→ M̄m (of an execution M0

t1−→ M1
t2−→ M2 · · ·

tm−→
Mm), for each triple i ∈ [0,m], p ∈ P , and I ∈ M̄i(p) there is a unique place p′ ∈ P and a unique ID

I′ ∈ M̄0(p
′) such that I′  ∗ I.

The next two propositions entail Lemma 6.1.

Proposition 6.5. Let N = (P, T, F ) be an ord-BIMO net, and let M0,M
′
0 be two markings of N

that coincide except of one place p0 for which we have |P | ≤ M0(p0) = M ′
0(p0) − 1. If (N,M0) is

non-live then (N,M ′
0) is non-live as well.

Proof:

Let N,M0,M
′
0, p0 be as in the statement, and let us assume that (N,M0) is non-live; we aim to show

that (N,M ′
0) is non-live as well.

By Lemma 4.2 there are an execution M0
σ
−→ MW, PCR ⊆ P , and a nonempty set TD ⊆ T such

that |(MW)↓PCR
| < |PCR|, and all transitions from TD are dead in (N↓(PCR ,T ), (MW)↓PCR

) (and thus also

in (N,MW) by Proposition 4.1). We call the places in PCR crucial, while the places in P r PCR are

don’t care places.

Let the execution

M0
σ
−→MW be of the form M0

t1−→M1
t2−→M2 · · ·

tm−→Mm = MW,

and let us fix an ID-valuation

M̄0
t1−→ M̄1

t2−→ M̄2 · · ·
tm−→ M̄m (7)

of this execution. We aim to show an execution M ′
0

σ′

−→ M ′ where (M ′)↓PCR
= (MW)↓PCR

, which

demonstrates that (N,M ′
0) is non-live.

We say that an ID I in M̄0(p) is black (or crucial) if there is a place p′ ∈ PCR and some I′ ∈ M̄m(p′)
such that I  ∗ I′ (hence if the initial individual token I has a successor on a crucial place in MW).

Since there are at most |P | − 1 tokens on the crucial places in MW, by Fact 6.4 we deduce that there

are at most |P | − 1 black IDs in
⋃

p∈P M̄0(p). Since M0(p0) ≥ |P |, at least one ID in M̄0(p0) is not

black; we fix one non-black ID I0 ∈ M̄0(p0), and we further view I0 as red. Moreover, if I
ti
 I′ and I

is viewed as red, then we also view I′ as red, and we also call the transition occurrence ti red. Hence

the red IDs are precisely the successors of I0, and

σ = t1t2 · · · tm can be written as σ0t
′
1σ1t

′
2σ2 · · · t

′
rσr

where σi ∈ T ∗ (for i ∈ [0, r]) and t′i, i ∈ [1, r], are precisely the red transition occurrences.
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We put

σ′ = σ0t
′
1t

′
1σ1t

′
2t

′
2σ2 · · · t

′
rt

′
rσr (8)

(each red transition occurrence in σ has been doubled), and we finish the overall proof by the following

claim, which entails that (N,M ′
0) is non-live (as we have aimed to prove).

Claim. There is an execution M ′
0

σ′

−→M ′ (for σ′ in (8)), and (M ′)↓PCR
= (MW)↓PCR

.

The claim thus entails that all t ∈ TD are dead in (N,M ′), by another use of Proposition 4.1. To

prove the claim, we recall that M ′
0 differs from M0 just by an additional token on p0, and we construct

an ID-valuation

M̄ ′
0

σ0t
′
1
t′
1
σ1t

′
2
t′
2
σ2···t′rt

′
rσr

−−−−−−−−−−−−−−→ M̄ ′

by adjusting the above ID-valuation (7) so that each red ID gets a “twin” ID as follows:

• M̄ ′
0 arises from M̄0 by equipping the additional token on p0 with a fresh ID I′0 that is viewed as

a twin of the red ID I0;

• for each j ∈ [1, r], when the (red) I is the source ID of the original (red) transition occurrence t′j ,

then the twin ID of I is the source of the added occurrence t′j; moreover, each (red) destination

ID of the original t′j gets a twin due to the added t′j .

It is clear that M̄ ′ differs from M̄m only so that each red ID in M̄m(p) has an additional twin in M̄ ′(p)
(for each p ∈ P ). Since all successors of the red ID I0 in M̄m are on the don’t care places (i.e., outside

the set PCR of crucial places), all successors of its twin ID I′0 are in M̄ ′ on the don’t care places as

well; this entails that (M ′)↓PCR
= (MW)↓PCR

. ⊓⊔

Remark 6.6. We note that the main idea of the proof of the next proposition (Proposition 6.7) is

related to the proof idea of Replacement Lemma in [9], though it is presented in a different technical

framework.

Proposition 6.7. Let N = (P, T, F ) be an ord-BIMO net, and let M0,M
′
0 be two markings of N that

coincide except of one place p0 for which we have 2|P | − 1 ≤M ′
0(p0) = M0(p0)− 1. If (N,M0) is

non-live then (N,M ′
0) is non-live as well.

Proof:

Let N,M0,M
′
0, p0 be as in the statement, and let us assume that (N,M0) is non-live; we aim to show

that (N,M ′
0) is non-live as well. (Now M ′

0(p0) arises from M0(p0) by removing a token, while in

Proposition 6.5 one token was added.)

We fix M0
σ
−→ MW, PCR ⊆ P , and TD ⊆ T guaranteed by Lemma 4.2 (in particular we recall

that |(MW)↓PCR
| < |PCR|). Similarly as in the proof of Proposition 6.5, we aim to show an execution

M ′
0

σ′

−→ M ′ where (M ′)↓PCR
= (MW)↓PCR

, by which the proof will be finished. We assume that

M0
σ
−→MW is of the form

M0
t1−→M1

t2−→M2 · · ·
tm−→Mm = MW,
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and for this execution we fix an ID-valuation

M̄0
t1−→ M̄1

t2−→ M̄2 · · ·
tm−→ M̄m. (9)

We view an ID I in M̄0(p) as black if there is a place p′ ∈ PCR and some I′ ∈ M̄m(p′) such that

I  ∗ I′; hence there are at most |PCR|−1 black IDs in the set
⋃

p∈P M̄0(p). Now M0(p0) ≥ 2|P |, and

we thus have at least |P |+1 non-black IDs in M̄0(p0) (since 2|P | − (|PCR| − 1) ≥ |P |+1). We view

all non-black IDs in M̄0(p0) as red, and all their successors (in (9)) are viewed as red as well; this also

determines which transition occurrences ti in (9) are red. We note that each red transition occurrence

changes the distribution of red IDs while not affecting non-red IDs; on the other hand, each non-red

transition occurrence does not affect red IDs (though it might need red IDs on its observation places).

We write σ = t1t2 · · · tm as σ0t
′
1σ1t

′
2σ2 · · · t

′
rσr where t′i, i ∈ [1, r], are precisely the red transition

occurrences in (9), and we also present (9) as

M̄ R
0

σ0t
′
1−−→ M̄ R

1

σ1t
′
2−−→ M̄ R

2 · · ·
σr−1t

′
r−−−−→ M̄ R

r
σr−→ M̄ R

r+1 (10)

where M̄ R
0 = M̄0 and M̄ R

r+1 = M̄m. (The superscript R in M̄ R
i is just a symbol that might be viewed

as referring to “oRiginal” id-markings, which differ from the constructed id-markings M̄ ′
i in (12).) We

observe that M̄ R
r and M̄ R

r+1 have the same distribution of red IDs, since the segment M̄ R
r

σr−→ M̄ R
r+1

does not contain any red transition occurrence; in particular, in both M̄ R
r and M̄ R

r+1 there are no red

IDs on the “crucial” places, i.e. on the places from PCR.

We recall that we aim to construct a suitable execution M ′
0

σ′

−→M ′; we will have

σ′ = σ0(t
′
1)

n1σ1(t
′
2)

n2σ2 · · · (t
′
r)

nrσr (11)

for certain multiplicities n1, n2, . . . , nr (also allowing ni = 0). In the proof of Proposition 6.5 we had

ni = 2 for all i ∈ [1, r] but here (when M ′
0(p0) = M0(p0)−1) the situation is more complicated. The

idea is that we aim to modify (10) so that we get

M̄ ′
0

σ0(t′1)
n1

−−−−−→ M̄ ′
1

σ1(t′2)
n2

−−−−−→ M̄ ′
2 · · ·

σr−1(t′r)
nr

−−−−−−−→ M̄ ′
r

σr−→ M̄ ′
r+1 (12)

where M̄ ′
0 arises from M̄0 (i.e., from M̄ R

0 ) by removing one red ID from p0 (hence at least |P | red IDs

remain in M̄ ′
0(p0)), and where the red transition occurrences are used so that (12) is an ID-valuation

of a desired execution M ′
0

σ′

−→ M ′. In (12) we will also view as red precisely those IDs that are

successors of the red IDs in M̄ ′
0(p0). We will construct (12) so that the red transition occurrences

(changing just the distribution of red IDs) will be precisely those in the segments (t′i)
ni (for all i ∈

[1, r]); each non-red transition occurrence, in a segment σi (i ∈ [0, r]), will cause the same ID-

change as its corresponding non-red transition occurrence in (10). More concretely, we aim to choose

the multiplicities ni so that σ′ (defined in (11)) is performable from M ′
0 and allows us to construct

a respective ID-valuation (12) so that the following conditions hold for all i ∈ [0, r+1]:

1. the id-marking M̄ ′
i in (12) coincides with M̄ R

i in (10) when the red IDs are ignored;
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2. for each p ∈ P : there is at least one red ID in M̄ ′
i(p) in (12) if, and only if, in (10) there is

a red ID in some of the sets M̄ R
0 (p), M̄

R
1 (p), . . . , M̄

R
i (p) and there is a red ID in some of the sets

M̄ R
i (p), M̄

R
i+1(p), . . . , M̄

R
r+1(p).

Hence in M̄ ′
i(p) in (12) we aim to remember, by a presence of a red ID, if in the corresponding

situation in (10) there has been a red ID on p in the past or at present; but there should be no red ID in

M̄ ′
i(p) if in the corresponding situation in (10) there is no red ID on p at present and in the future.

Conditions 1 and 2 clearly hold in the case i = 0, by our definition of M̄ ′
0 (arising from M̄ R

0 ).

Moreover, if conditions 1 and 2 hold in the case i = r+1 (and σ′ is performable from M ′
0), then we

are done, since in this case (M̄ ′
r+1)↓PCR

= (M̄ R
r+1)↓PCR

(due to the fact that there are no red IDs in
⋃

p∈PCR
M̄ R

r+1(p)), which entails (M ′)↓PCR
= (MW)↓PCR

.

Informally speaking, at most |P | red IDs will suffice to serve as the required “memory”; we will

create them from the successors of at most |P | red IDs in M̄ ′
0(p0) (recall that M̄ ′

0(p0) contains at least

|P | red IDs). But we should also take care of the required “cleaning” (to get (M ′)↓PCR
= (MW)↓PCR

);

e.g., if p0 ∈ PCR, then we have to remove all red IDs from p0.

To define the multiplicities ni in (12) rigorously, we first introduce a few technical notions. Refer-

ring to (10), for i ∈ [0, r+1] we put

Ri = {p ∈ P | M̄ R
i (p) contains a red ID}.

As we observed after defining (10), we have Rr = Rr+1, and Rr ∩PCR = ∅. We define “first-red” sets

and “last-red” sets for all i ∈ [0, r+1]:

• FRi = {p ∈ P | p ∈ Ri and p 6∈ R0 ∪ R1 · · · ∪ Ri−1};

• LRi = {p ∈ P | p ∈ Ri and p 6∈ Ri+1 ∪ Ri+2 · · · ∪ Rr+1}.

We note that FR0 = {p0}, the sets FRi (i ∈ [0, r+1]) are pairwise disjoint (hence |
⋃

i∈[0,r+1] FRi| ≤

|P |), and for i ∈ [1, r] each place in FRi is a destination place of t′i (which holds trivially in the case

FRi = ∅). For i ∈ [0, r−1], if the set LRi is nonempty then it is a singleton consisting of the source

place of t′i+1. For i ∈ [1, r], we say that t′i in (10) is

• a first-red-destination transition-occurrence, a first-rdto for short, if FRi 6= ∅;

• a last-red-source transition-occurrence, a last-rsto for short, if LRi−1 6= ∅.

Since the sets FRi are pairwise disjoint and FR0 = {p0}, there are at most |P |−1 first-rdtos. We

define a causality relation ⊳ on the set of first-rdtos:

t′i ⊳ t
′
j if the source place of t′j belongs to FRi (and thus is a destination place of t′i).

Hence each first-rdto t′i either has p0 as the source place, in which case there is no j such that

t′j ⊳ t
′
i, or there is precisely one j (j < i) such that t′j ⊳ t

′
i. Viewing the relation ⊳ as a directed graph, it

has the form of a forest (a set of directed disjoint trees). By ⊳∗ we denote the reflexive and transitive

closure of ⊳, and for each first-rdto t′i we put

POST⊳∗(t
′
i) = {j | t

′
i ⊳

∗ t′j}.
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We define the numbers ni, i ∈ [1, r], in (12) as follows, depending on t′i in (10):

• if t′i is a first-rdto but not a last-rsto, then ni = |POST⊳∗(t
′
i)|;

• if t′i is a last-rsto, with the source place ps, then ni = |{I | I is a red ID in M̄ ′
i−1(ps)}|;

• if t′i is neither a first-rdto nor a last-rsto, then ni = 0.

We note that we have not excluded that some t′i in (10) is both a first-rdto (some of its destination

places gets a red ID for the first time) and a last-rsto (its source place gets rid of red IDs for the rest of

the execution). We also note that ni ≥ 1 for each first-rdto t′i.

To show the validity of the above conditions 1 and 2, it is useful to add the following condition,

for the cases i ∈ [1, r]:

3. If t′i is a first-rdto (in (10)) and ps is its source place, then

the set M̄ ′
i−1(ps) (in (12)) contains at least 1 + |POST⊳∗(t

′
i)| red IDs.

This condition should thus hold also in the case when t′i is both a first-rdto and a last-rsto.

Now we show that the chosen ni indeed fulfill our goals, i.e., σ′ (in (11)) is performable from M ′
0

and we construct a respective ID-valuation (12) so that conditions 1−3 are satisfied for all i ∈ [0, r+1].

We first assume that condition 3 holds for all i ∈ [1, r], and under this assumption we show that 1
and 2 are then satisfied for all i = 0, 1, . . . , r+1; we use an induction on i. We have already noted that

1 and 2 are satisfied for i = 0 (where condition 3 does not apply). In the induction step we fix j ∈ [0, r]
and assume that σ0(t

′
1)

n1σ1(t
′
2)

n2 · · · σj−1(t
′
j)

nj is performable from M ′
0 and conditions 1 and 2 are

satisfied for i = j, in the so far constructed ID-valuation M̄ ′
0

σ0(t′1)
n1

−−−−−→ M̄ ′
1 · · ·

σj−1(t′j)
nj

−−−−−−−→ M̄ ′
j . To

extend the validity to the case i = j + 1, we first define the segment M̄ ′
j

σj
−→ M̄ ′

A in (12) by mimicking

the segment M̄ R
j

σj
−→ M̄ R

A in (10); the substrict A is just auxiliary. Both segments thus perform the same

(non-red) ID-changes, which is possible due to conditions 1 and 2 for the case i = j; in particular we

note that for each red ID used in observation places in the segment M̄ R
j

σj
−→ M̄ R

A there is a respective

red ID that can be used in M̄ ′
j

σj
−→ M̄ ′

A. In the case j = r we have M̄ ′
A = M̄ ′

r+1, and 1 and 2 obviously

hold for i = j+1 as well. If j < r, then conditions 1 and 2 for i = j and condition 3 for i = j+1

(which is so far just assumed) guarantee that we can add a segment M̄ ′
A

(t′j+1
)nj+1

−−−−−−−→ M̄ ′
j+1 in which all

transition occurrences are red. Moreover, both conditions 1 and 2 are satisfied for i = j+1:

• Condition 1 follows from the fact that the segment M̄ ′
j

σj
−→ M̄ ′

A mimics the segment M̄ R
j

σj
−→ M̄ R

A

(making precisely the same ID-changes for non-red IDs), while the segments M̄ R
A

t′j+1

−−→ M̄ R
j+1

and M̄ ′
A

(t′j+1
)nj+1

−−−−−−−→ M̄ ′
j+1 affect only red IDs.
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• If t′j+1 is a first-rdto but not a last-rsto (in (10)), then nj+1 ≥ 1 and performing (t′j+1)
nj+1

in (12) leaves at least one red ID in the source place of t′j+1; hence condition 2 is surely kept.

• If t′j+1 is a first-rdto and a last-rsto, then nj+1 ≥ 1 and performing (t′j+1)
nj+1 in (12) leaves no

red ID in the source place of t′j+1; hence condition 2 is kept as well.

• If t′j+1 is not a first-rdto (while it might be or not be a last-rsto), keeping condition 2 is also

obvious.

It remains to deal with condition 3, which should hold for all i ∈ [1, r] for which t′i are first-rdtos;

we recall that there are at most |P | − 1 first-rdtos. Now we use an induction based on the relation ⊳

(defined on the set of first-rdtos); we recall that ⊳ can be naturally viewed as a set of disjoint directed

trees. We fix the source place p of some first-rdto t′i and define

Sp = {i ∈ [1, r] | t′i is a first-rdto in (10) for which p is the source place}.

Let Sp = {i1, i2, . . . , ik} where i1 < i2 · · · < ik. We note that if there exists a last-rsto t′j whose

source place is p, then ik ≤ j. We have either p = p0, or there is a unique i0 (i0 < i1) such that t′i0 ⊳ t
′
i

for all i ∈ Sp (in which case p is a destination place of t′i0 , belonging to FRi0). We deal with these

two cases below (implicitly using the fact that the definition of ⊳ entails that the sets POST⊳∗(t
′
i1
),

POST⊳∗(t
′
i2
), . . . , POST⊳∗(t

′
ik
) are pairwise disjoint):

• p = p0 (basis of our induction)

Since
∑

i∈Sp0
|POST⊳∗(t

′
i)| ≤ |P | − 1 and there are at least |P | red IDs in M̄ ′

0(p0), condition 3
clearly holds for all i ∈ Sp0 .

• t′i0 ⊳ t
′
i for all i ∈ Sp (induction step, assuming that condition 3 holds for i0)

We note that M̄ ′
i0
(p) contains ni0 red IDs, hence at least |POST⊳∗(t

′
i0
)| red IDs. (Here we use

the inductive assumption for i0, which guaranteed that in the segment (t′i0)
ni0 of (12) we could

indeed make all transition occurrences red.) Since

ni0 ≥ |POST⊳∗(t
′
i0
)| = 1 +

∑

i,t′i0
⊳t′i

|POST⊳∗(t
′
i)| ≥ 1 +

∑

i∈Sp

|POST⊳∗(t
′
i)|,

condition 3 holds for all i ∈ Sp = {i1, i2, . . . , ik}.
⊓⊔

6.2. An ord-IMO net is structurally live iff there is a live {0, 1}-marking

In this section we prove the following fact for ord-IMO nets (thus proving another part of Theorem 2.5

that refers to Table 1); Section 6.3 shows that this does not hold for ord-BIO nets.

Lemma 6.8. (For structural liveness of ord-IMO nets the {0, 1} markings are decisive)

An ord-IMO net N = (P, T, F ) is structurally live iff there is a marking M0 : P → {0, 1} such that

(N,M0) is live.
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Proof:

The “if” direction is trivial, so we now deal with the “only-if” direction. For the sake of contradiction

we assume a fixed ord-IMO net N = (P, T, F ) for which a fixed marking M0 is live but all M ′
0 :

P → {0, 1} are non-live.

By Proposition 5.1 (and the fact that all M ∈ [M0〉 are live if M0 is live) we can assume that M0 is

optimal. Since M0 is thus self-coverable and the ord-IMO net N is conservative, there must be some

full σ = t1t2 · · · tm (in which each transition from T occurs at least once) such that

M0
σ
−→M0, i.e. M0

t1t2···tm−−−−−→M0. (13)

This easily shows that all strongly connected components of Relax(N) are pairwise isolated (there

is no edge from one scc to another scc). Hence for each M and all M ′ ∈ [M〉 we have |M ′
↓PC
| =

|M↓PC
| for all components C of Relax(N). (The number of tokens in each component is stable.)

Since M0 is optimal, by Lemma 5.3 for each component C that is rich at M0 we have M0(p) ≥ 1
for all p ∈ PC , and for each component C that is poor at M0 (hence |(M0)↓PC

| < |PC |) we have

M0(p) ∈ {0, 1} for all p ∈ PC . Let M ′
0 be the “carrier-marking” related to M0, i.e., for each p ∈ P

we have

M ′
0(p) = 0 if M0(p) = 0, and M ′

0(p) = 1 if M0(p) ≥ 1.

We say that M ′
0 arises from M0 by removing “superfluous tokens” (from rich components), and note

that (N,M ′
0) has the same rich components as (N,M0). We also recall that M ′

0 is non-live by our

assumption. Lemma 4.2 and its proof thus yield

M ′
0

σ′

−→MW, PCR, TD

where MW is a DL-marking for which the transitions from TD are dead and the transitions from TL =
T rTD are live. Moreover, due to the proof of Lemma 4.2 we can choose MW so that PCR is the union

of the sets PC for the components C of Relax(N↓(P,TL)) that are poor in (N↓(P,TL),MW).

We now aim to show that there is M̄0 ∈ [M0〉 such that M̄0 ≥ M ′
0 and (M̄0)↓PCR

= (M ′
0)↓PCR

;

then the execution M0
∗
−→ M̄0

σ′

−→ M ′
W contradicts the assumption that M0 is live (since (M ′

W)↓PCR
=

(MW)↓PCR
and transitions from TD are thus dead at M ′

W). The proof will thus be finished.

We first note that for each component C ′ of Relax(N↓(P,TL)) we have that PC′ is a subset of PC

for some component C of Relax(N); in other words, each component of Relax(N) is partitioned

into some components of Relax(N↓(P,TL)). Since for each component C of Relax(N) that is rich

at (the above carrier-marking) M ′
0 we have |M↓PC

| = |(M ′
0)↓PC

| = |PC | for all M ∈ [M ′
0〉, the

partition of C into the components of Relax(N↓(P,TL)) must contain at least one component C ′ that

is rich in (N↓(P,TL),MW). Hence for each component C of Relax(N) that is rich at M ′
0 there is

a place pNC ∈ PC r PCR (hence pNC is a don’t care place in (N↓(P,TL),MW)).

We recall that the rich components in (N,M ′
0) coincide with the rich components in (N,M0).

Our goal to show M0
∗
−→ M̄0 where (M̄0)↓PCR

= (M ′
0)↓PCR

will be realized by moving all superfluous
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tokens in each component C that is rich in (N,M0) onto a chosen place pNC ∈ PC r PCR. It is

clearly sufficient to show how to modify the execution (13) so that M0 is transformed just so that one

superfluous token from some p ∈ PCR is moved outside PCR, onto a particular pNC. Such a process can

be repeated until we get the desired M̄0, which finishes the proof.

Hence we fix some p ∈ PCR where M0(p) ≥ 2 (and thus M0(p) > M ′
0(p)); by our choice of M0

we have p ∈ PC for a component C that is rich in (N,M0). We fix some pNC ∈ PC r PCR (whose

existence has been discussed). There must be a path from p to pNC (in Relax(N)); let t′1t
′
2 · · · t

′
r be

the sequence of transitions on this path. We consider the execution

M0
σ1−→M1

σ2−→M2 · · ·
σr−→Mr (14)

where σi (i ∈ [1, r]) arises from σ in (13) by omitting all transitions contained in rich components,

except of one occurrence of t′i (hence t′1 occurs once in σ1, t′2 occurs once in σ2, etc.). Since all places

in rich components are marked in M0, it is easy to check that (14) is a valid execution, and that Mr

coincides with M0 except that Mr(p) = M0(p)−1 (hence Mr(p) ≥ 1) and Mr(pNC) = M0(pNC)+1.

Hence the carrier-markings of Mr and M0 are the same, namely M ′
0, but the amount of superfluous

tokens in Mr is less than in M0. ⊓⊔

6.3. A structurally live ord-BIO net in which all {0, 1}-markings are non-live

Here we show that Lemma 6.8 cannot be extended to ord-BIO nets, by providing a concrete example.

Roughly speaking, if we wanted to mimic the proof of Lemma 6.8 in the case of BIO nets, a prob-

p1

t1

p3t16

t15

t9 t10

p2

t13

t14

p4

t2

p6 t20

t19

t11t12

p5

t17

t18

t7 p12 t8 p7 t3 p8 t4 p9 t5

p10t6p11

Figure 8. A structurally live ord-BIO net N in which all M : P −→ {0, 1} are non-live.
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lem would arise at moving superfluous tokens to don’t care places: such moving can create further

superfluous tokens due to branching transitions.

Our example net N is depicted in Figure 8; for lucidity, instead of drawing two observation edges

(p, t) and (t, p) we draw just one, dotted or dashed, edge between p and t without end-arrows. The

respective properties of N are formulated by the next two propositions.

Proposition 6.9. The net N = (P, T, F ) in Figure 8 is structurally live.

Proof:

Let M0 be the marking of N depicted in Figure 8, i.e., M0(p3) = M0(p8) = 1, M0(p5) = 2, and

M0(p) = 0 for all p ∈ P r {p3, p5, p8}. The set of places {p7, p8, p9, p10, p11, p12} can be viewed as

a “control part” in which precisely one token is moving; i.e., for all M ∈ [M0〉 we have

1.
∑

i∈[7,12]M(pi) = 1.

The first three of “control transitions” t3, t4, t5, t6, t7, t8 require an observation token in p3, while the

last three require an observation token in p6; we also note that each of t4 and t5 adds a fresh token

to p2, while each of t7 and t8 adds a fresh token to p5. We now add the following conditions that are

satisfied for all M ∈ [M0〉:

2. if
∑

i∈[7,9]M(pi) = 1, then M(p5) ≥ 2;

3. if
∑

i∈[10,12]M(pi) = 1, then M(p2) ≥ 2;

4. if M(p7) = 1, then M(p1) +M(p2) ≥ 2 or M(p3) ≥ 1;

5. if M(p10) = 1, then M(p4) +M(p5) ≥ 2 or M(p6) ≥ 1;

6. if M(p8) +M(p9) = 1, then M(p3) ≥ 1;

7. if M(p11) +M(p12) = 1, then M(p6) ≥ 1;

8. if M(p9) = 1, then M(p2) ≥ 1;

9. if M(p12) = 1, then M(p5) ≥ 1.

We easily check that the conditions 1− 9 are satisfied for M0 (i.e., for M = M0). Now let M1 satisfy

1−9, and let M1
t
−→M2 (for some t ∈ T ). It is a routine to verify that M2 satisfies 1−9 as well: E.g.,

if t = t3, then M1(p7) = 1, M1(p3) = M2(p3) ≥ 1, and M2(p8) = 1; M2 thus obviously satisfies

the conditions 1− 9 (in particular 6).

In fact, we have shown that if M satisfies 1− 9, then each M ′ ∈ [M〉 satisfies 1− 9 as well. Now

we show that if M satisfies 1− 9, then no transition is dead at M ; this entails that each M satisfying

1− 9 (which includes M0) is live.

We fix some M satisfying 1 − 9. By condition 1, there is exactly one control transition t ∈
{t3, t4, t5, t6, t7, t8} whose source place is marked (by one token) at M ; we perform a case analysis:

• If t = t3 (hence M(p7) = 1), then by condition 4 we have either M(p3) ≥ 1, or we can mark

p3 by transition t1 that might need to be preceded by t9 or t10; then t3 can be executed.
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• If t = t6 (hence M(p10) = 1), then by condition 5 we have either M(p6) ≥ 1, or we can mark

p6 by transition t2 that might need to be preceded by t11 or t12; then t6 can be executed.

• If t ∈ {t4, t5}, then t can be executed by condition 6.

• If t ∈ {t7, t8}, then t can be executed by condition 7.

From M we can thus perform all control transitions so that both p3 and p6 are marked afterwards.

Then we can be further executing just the control transitions, which is increasing the number of to-

kens on p2 and p5. This makes clear that all transitions (including the “token-consuming transitions”

t13, t14, . . . , t20) can become enabled when we start from M . ⊓⊔

Proposition 6.10. For the net N = (P, T, F ) in Figure 8, each marking M : P → {0, 1} is non-live.

Proof:

We first show that any marking M satisfying one of the following two conditions

a) M(p1) +M(p2) ≤ 1 and M(p3) = 0,

b) M(p4) +M(p5) ≤ 1 and M(p6) = 0

is non-live. In the case a), t1, t3, t4, t5 are dead at M , since each of t3, t4, t5 needs to its enabling that

t1 is performed earlier, while t1 needs that t4 or t5 is performed earlier. The case b) is analogous, here

t2, t6, t7, t8 are dead at M .

Now we fix a marking M0 : P −→ {0, 1} and show that M0 is non-live, by analysing the following

cases C1 and C2.

C1 M0(p8) +M0(p9) > 0 or M0(p11) +M0(p12) > 0.

If M0(p11) +M0(p12) > 0, then we have M0
σ
−→M where σ contains no other transitions than

t13, t14, t15, t16, and M(p1) = M(p3) = 0, while M(p2) = M0(p2) ≤ 1. Hence M is non-live

by the above case a), which entails that M0 is non-live as well. If M0(p8) +M0(p9) > 0, then

we get the case b) analogously.

C2 M0(p8) +M0(p9) = 0 and M0(p11) +M0(p12) = 0.

We assume that M0
σt
−→ M is a shortest execution where t ∈ {t3, t6}; if it does not exist, then

M0 is non-live. For concreteness, we now assume that t = t6, and consider the following two

cases separately:

• M0(p7) = 0.

We observe that M(p2) ≤ M0(p2) ≤ 1 (since t3 and t6 do not occur in σ, and thus

t4, t5, t7, t8, and t9 cannot occur in σ either). Since M(p11) = 1, we have M
σ′

−→ M ′

where σ′ = (t13)
M(p1)(t15)

M(p3) and M ′(p1) = M ′(p3) = 0. Since M ′(p2) ≤ 1, the

above case a) shows that M ′ is non-live, which entails that M0 is non-live as well.
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• M0(p7) = 1.

Here M(p11) = M(p7) = 1 (since neither t3 nor t8 occurs in σ). We have M
σ′

−→ M ′

where σ′ = (t10)
M(p2)(t13)

M(p1)+M(p2)(t15)
M(p3) and M ′(p1) = M ′(p2) = M ′(p3) =

0. Again, we apply the above case a) to M ′, and deduce that M0 is non-live.

The case t = t3 (instead of t = t6) is analogous; here the above case b) applies. ⊓⊔

7. Extension to non-ordinary nets

In this section we finish proving Theorem 2.5 that is captured by Table 1 (in Section 2.3). This will be

accomplished by proving the next lemma.

Lemma 7.1. (Remaining results to fill Table 1)

Let N = (P, T, F ) be a BIMO net in which the maximum edge-weight is w. We have:

1. N is structurally live iff there is M : P → {0, . . . , w · |P |} such that (N,M) is live.

2. (N,M) is live iff (N,M ′) is live whenever M ′(p) = M(p) for all p ∈ P such that

min{M(p),M ′(p)} < 2 · w · |P |.

3. If N is an IMO net, then it is structurally live iff there is M : P → {0, . . . , w} such that (N,M)
is live.

We recall that the maximum edge-weight in IO nets is 2, which entails that the bounds for IMO

nets in Table 1 entail the bounds for IO nets. We prove Lemma 7.1 by a simple construction (illustrated

in Figure 9) that gives an ord-X net to a given X net, for X∈ {IO, IMO, BIO, BIMO}, and by recalling

the results for ordinary nets.

p1 t

3

2 p2 p〈1,2〉

p〈1,1〉

t〈1,1〉

t〈1,2〉

p〈1,3〉

t〈1,3〉

t′ p〈2,1〉

Figure 9. Transforming a BIMO transition t : p1
Hp1I
−−−→ Hp1, p1, p2I to an ord-BIMO transition t′ :

p〈1,1〉
Hp〈1,2〉I
−−−−−→ Hp〈1,1〉, p〈1,3〉, p〈2,1〉I.

An ord-BIMO net N ′ related to a given BIMO net N . Given a BIMO net N = (P, T, F ), we

define the function WMAX : P −→ N such that

WMAX(p) = max({F (p, t) | t ∈ T} ∪ {F (t, p) | t ∈ T}).

(For instance, in Figure 9 we have WMAX(p1) = 3.)
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From N = (P, T, F ), where P = {p1, p2, . . . , pm}, we create an ord-BIMO net N ′ = (P ′, T ′, F ′)
as follows (cf. Figure 9):

• P ′ arises from P so that each place pi ∈ P with WMAX(pi) ≥ 1 is replaced by new places

p〈i,1〉, p〈i,2〉, . . . , p〈i,WMAX(pi)〉.

• T ′ = {t′ | t ∈ T} ∪
⋃

i∈[1,m]{t〈i,1〉, t〈i,2〉, . . . , t〈i,WMAX(pi)〉} where

– for each i ∈ [1,m] we have t〈i,j〉 : p〈i,j〉 −→ p〈i,j+1〉 for all j ∈ [1,WMAX(pi)−1], and

t〈i,WMAX(pi)〉 : p〈i,WMAX(pi)〉 −→ p〈i,1〉;

– each edge (pi, t) in N , with weight F (pi, t), gives rise to ordinary edges (p〈i,1〉, t
′),

(p〈i,2〉, t
′), . . . , (p〈i,F (pi,t)〉, t

′) in N ′;

– each edge (t, pi) in N , with weight F (t, pi), gives rise to ordinary edges (t′, p〈i,1〉),
(t′, p〈i,2〉), . . . , (t

′, p〈i,F (pi,t)〉) in N ′.

It is easy to verify that the above ord-BIMO net N ′ related to a BIMO net N is an ord-X net if N is

an X net, for X∈ {BIO, IMO,IO}.

We say that a marking M of N = (P, T, F ), where P = {p1, p2, . . . , pm}, and a marking M ′ of

N ′ = (P ′, T ′, F ′) are related, which we denote by M ≈ M ′, if for each pi ∈ P with WMAX(pi) ≥ 1
we have

M(p) =
∑

j∈[1,WMAX(pi)]
M ′(p〈i,j〉).

It is straightforward to verify that M1 ≈M2 entails:

• if M1
t
−→ M ′

1, then M2
σt′
−−→ M ′

2 for some σ consisting of occurrences of t〈i,j〉 (i ∈ [1,m],
j ∈ [1,WMAX(pi)]), and we have M ′

1 ≈M ′
2;

• if M2

t〈i,j〉
−−−→M ′

2, then M1 ≈M ′
2;

• if M2
t′
−→M ′

2, then M1
t
−→M ′

1 where M ′
1 ≈M ′

2;

• M1 is live in N iff M2 is live in N ′.

The previous results for ordinary nets and the above construction thus entail Lemma 7.1.

Moreover, Lemma 4.2 can be generalized as follows:

Lemma 7.2. (For BIMO nets, if M0 is non-live, then there is a simple witness MW ∈ [M0〉)
For a BIMO net N = (P, T, F ), with the maximum edge-weight w, a marking M0 is non-live iff there

are

• MW ∈ [M0〉 (a witness marking),

• PCR ⊆ P (a set of crucial places), and

• a nonempty set TD ⊆ T (a set of dead transitions)
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such that

1. 0 ≤MW(p) ≤ w for each p ∈ PCR;

2. N↓(PCR ,TrTD) is an IMO net (and is thus conservative);

3. all transitions from TD are dead in (N↓(PCR ,T ), (MW)↓PCR
).

8. Structural liveness for BIMO nets is in PSPACE

The previous results allow us to give a straightforward proof of the following theorem; we note that

we assume a standard presentation of BIMO nets, with edge-weights given in binary.

Theorem 8.1. The structural liveness problem (SLP) for BIMO nets is in PSPACE (and is thus

PSPACE-complete).

Proof:

We suggest a nondeterministic algorithm, Algorithm 1; its input consists of a BIMO net N and

a marking M0 of N (with the values M0(p) given in binary), it works in polynomial space, and

it can finish successfully if, and only if, (N,M0) is non-live. (This establishes the claim, since

NPSPACE=PSPACE.)

Inspecting the presented pseudocode, the fact that Algorithm 1 works in polynomial space is ob-

vious, including the check at line 25: since N↓(PCR,T ) is an IMO net, and thus a conservative net,

determining whether •t can be covered from M↓PCR
is clearly solvable in polynomial space (when we

again recall that PSPACE=NPSPACE).

Lemma 7.2 and Theorem 2.5(2) guarantee that Algorithm 1 can return true if, and only if, (N,M0)
is non-live:

• If (N,M0) is non-live, then there are MW ∈ [M0〉, PCR, TD as given in Lemma 7.2. In this case

Algorithm 1 can simply perform a respective execution M0
σ
−→MW, by repeatedly choosing the

cases c = 1 and c = 2; forgetting the precise marking values above the bound 2 ·w · |P | (due to

the line 7) does not prevent this since there are the lines 18 − 19 in the case c = 2. Finally the

case c = 3 is chosen, with the respective PCR and some t ∈ TD.

• If (N,M0) is live, then all markings stored in M must be live: due to Theorem 2.5(2), and the

monotonicity of net executions (if M1
σ
−→M2, then M1 +M3

σ
−→M2 +M3), all such markings

are reachable from live markings (and thus are live themselves). This fact prevents Algorithm 1

from returning true.

⊓⊔

9. Additional remarks

As mentioned in the introduction, IO nets model the IO protocols, hence a subclass of the general

population protocols. The nets modelling the general population protocols, the pp-nets for short, are

also conservative, hence the liveness problem (LP) is also PSPACE-complete for them.
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Algorithm 1: (Nondeterministically) verify non-liveness of a marked BIMO net

Input: a BIMO net N = (P, T, F ), where P = {p1, p2, . . . , pm} and w is the maximum

edge-weight; and a marking M0 : P → N.

Output: at least one computation returns true if, and only if, (N,M0) is non-live.

1 begin

2 M ←M0 {M is a program variable containing the current marking};
3 (B1, . . . , Bm)← (false, . . . , false) {each place pi has an attached boolean variable Bi};
4 repeat

5 for i← 1 to m do

6 if M(pi) > 2 · w · |P | then

7 M(pi)← 2 · w · |P |; Bi ← true {Bi will not change anymore};
8 end

9 end

10 choose (nondeterministically) c ∈ {1, 2, 3};
11 if c = 1 then

12 choose a transition t that is enabled at the current marking M stored in M;

13 {the computation fails if there is no such t};

14 M ←M ′ where M
t
−→M ′;

15 end

16 if c = 2 then

17 choose i ∈ [1,m];
18 if M(pi) < 2 · w · |P | and Bi = true then

19 M(pi)← M(pi) + 1;

20 end

21 end

22 if c = 3 then

23 choose PCR ⊆ P such that N↓(PCR ,T ) is an IMO net;

24 choose t ∈ T ;

25 if t is dead in (N↓(PCR ,T ),M↓PCR
) then

26 return true;

27 end

28 end

29 until false {hence the cycle repeats forever if not finishing with a return or a fail};

30 end

On the other hand, in [14] we elaborate an extension of the lower-bound proof from [6] to show

that the structural liveness problem (SLP) is EXPSPACE-hard for the pp-nets.
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