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Abstract. Graph embeddings play a significant role in the design and analysis of parallel algo-
rithms. It is a mapping of the topological structure of a guest graph G into a host graph H , which
is represented as a one-to-one mapping from the vertex set of the guest graph to the vertex set of
the host graph. In multiprocessing systems, the interconnection networks enhance the efficient
communication between the components in the system. Obtaining minimum wirelength in em-
bedding problems is significant in the designing of networks and simulating one architecture by
another. In this paper, we determine the wirelength of embedding 3-ary n-cubes into cylinders
and certain trees.

Keywords: embedding, edge isoperimetric problem, congestion, wirelength, 3-ary n-cube

*Address for correspondence: School of Computer Science and Engineering, Vellore Institute of Technology, Chennai-
600127, India.

Received April 2022; accepted April 2023.

ar
X

iv
:2

20
4.

12
07

9v
4 

 [
cs

.D
M

] 
 9

 M
ay

 2
02

3



270 S. Rajeshwari and M. Rajesh / Exact Wirelength of Embedding 3-Ary n-Cubes into certain Cylinders...

1. Introduction

A multiprocessor is a computer network designed for parallel processing. It has numerous nodes that
communicate by passing messages through a network. The pattern of connecting the nodes in a mul-
ticomputer is described as an interconnection network. By embedding a guest graph into a host graph,
an already formulated algorithm for the guest graph can be modified and used in the embedded host
architecture [1]. Embedding and its implications are extensively studied in [1–5]. Embedding has vast
applications in the complex connection networks such as network compression [6], visualization [7],
clustering [8], link prediction [9] and node classification [10]. The efficiency of a graph embedding is
determined by the optimal wirelength of the layout. The wirelength of a graph embedding originate
from VLSI designs, data structures, networks that deal with parallel computing systems, biological
models, structural engineering and so on [11]. The implementation of 100 billion transistors in a
Chip Multi-processor (CMP) has become a reality as microprocessor technology advances into the
nanoscale stage [12]. The chip architecture must consider how to efficiently use a high number of
transistors. The complexity of chip design is also rising, making it increasingly challenging on im-
proving the overall performance of the system by enhancing the performance of a single processing
core. Due to the key benefits of network-on-chip (NoC) such as high integration, low power con-
sumption, cheap cost and compact volume, it has become a widely used approach to designing very
large-scale integration (VLSI) systems [13,14]. Various NoC is analysed for effective communication
in CMP [15–18]. The topology structure must meet a few unique requirements for NoC, due to the
area restriction on processors, interconnection network and overall wirelength of NoC has emerged
as the most pressing problem of its effective communication. It is a secondary factor for NoC to take
into account when calculating the cost of their interconnection networks. The cost of wiring for con-
nectivity increases, with network complexity. Consequently, it is preferable to replace NoC with a
conventional network for the complex networks serving as a counterpart, where the embedding prob-
lem becomes a key feature in analysing NoC performance. The k-ary n-cube is a parallel architecture
used in implementation and message latency [19–21]. This architecture is the hypercube when k = 2
and the torus when k = 3. Hypercubes have been used in Ipsc/2 and Ipsc/860 and tori in J-Machine,
Cray T3D and T3E [22]. The topological properties of k-ary n-cubes have been explored in [23, 24].
Due to the advantageous topological properties of 3-ary n-cube, Q3

n such as symmetricity, pancyclic-
ity, short message latency and easy implementation it has been utilised to build multicomputers such
as the Cray XT5, Blue Gene/L supercomputers [25] and CamCube [26] systems. Embedding problem
on 3-ary n-cubes is extensively studied on paths, cycles with faulty nodes and links [27, 28]. Further
3-ary n-cubes have been embedded into paths, grids [29] and 3D Torus [30]. Fan et al. [31] had stud-
ied the fault tolerance of 3-ary n-cubes and embedding of the same into torus NoC. In this paper, the
optimal wirelength is computed for embedding 3-ary n-cubes into certain cylinders and certain trees
such as caterpillars, firecracker graphs and banana trees, which enables the efficient communication
of 3-ary n-cubes onto the above-mentioned network-on-chip.

2. Preliminaries

This section consists of the preliminary work required for our subsequent work.
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Definition 2.1. [32] The edge isoperimetric problem is to find a subset of vertices in a given graph
that induces the maximum number of edges among all subsets with the same number of vertices. In
otherwords, for a given r, 1 ≤ r ≤ |VG|, the problem is to find IG(r) = maxA⊆V,|A|=r |IG(A)|,
where IG(A) = {(u, v) ∈ E : u, v ∈ A}.

Definition 2.2. [33] Embedding of graph G into graph H is a one-to-one mapping f : V (G) →
V (H) such that f induces a one-to-one mapping Pf : E(G) → {Pf (u, v) : Pf (u, v) is a path in H
between f(u) and f(v), for every edge (u, v) in G}.

Definition 2.3. [33] For an edge e ∈ E(H), let cf (e) denote the number of edges (u, v) of G such
that e is in the path Pf (u, v) between vertices f(u) and f(v) in H . The wirelength of an embedding
f of G into H is given by WLf (G,H) =

∑
e∈E(H) cf (e). The wirelength of embedding G into H is

defined as WL(G,H) = min{WLf (G,H) : f is an embedding from G to H}.

Remark 2.4. For any set S of edges of H , cf (S) =
∑

e∈S cf (e).

Remark 2.5.
∑

v∈V (Gi)
degG(v) denotes the sum of degree of all vertices in Gi, where degG(v) is

the number of edges incident on a vertex v.

Lemma 2.6. ( [34], Congestion Lemma) Let f be an embedding of an arbitrary graph G into H . Let
S be an edge cut of H such that the removal of edges of S separates H into two components H1 and
H2 and let G1 = f−1(H1) and G2 = f−1(H2). Also S satisfies the following conditions:

1. For every edge (a, b) ∈ Gi, i = 1, 2, Pf (a, b) has no edges in S.

2. For every edge (a, b) in G with a ∈ G1 and b ∈ G2, Pf (a, b) has exactly one edge in S.

3. G1 and G2 are maximum subgraphs.

Then, cf (S) =
∑

v∈V (G1)
degG(v) − 2|E(G1)| =

∑
v∈V (G2)

degG(v) − 2|E(G2)| and cf (S) is
minimum.

Remark 2.7. In Lemma 2.6, if G is a regular graph then G1 is a maximum subgraph of G implies
that G2 is also a maximum subgraph of G.

Lemma 2.8. ( [35], k-Partition Lemma) Let f : G → H be an embedding. Let [kE(H)] denote a
multiset of edges of H with each edge in H repeated exactly k times. Let S1, S2, ..., Sr be a partition
of [kE(H)] such that each Si is an edge cut of H satisfying the Congestion Lemma. Then

WLf (G,H) =
1

k

r∑
i=1

cf (Si).
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3. 3-Ary n-cube, Q3
n

Definition 3.1. [36] The 3-ary n-cube, Q3
n (n ≥ 1) is defined to be a graph on 3n vertices, each of

the form x = (xn−1, xn−2, ..., x0), where 0 ≤ xi ≤ 2 for 0 ≤ i ≤ n− 1. Two vertices are joined by
an edge if and only if there exists j, 0 ≤ j ≤ n− 1, such that xj = yj ± 1 (mod 3) and xi = yi, for
every i ∈ {0, 1, ..., j − 1, j + 1, ..., n− 1}.

It is also recursively defined as the cartesian product of n cycles of order 3,

Q3
n = C3 ⊗ C3 ⊗ ...⊗ C3(n times).

Thus,

Q3
n =

{
C3, if n = 1.

C3 ⊗Q3
n−1, otherwise.

Each Q3
n contains three copies of Q3

n−1 as subgraphs. Recursively each Q3
n−1 has three copies of

Q3
n−2 as subgraphs. Thus we can partition Q3

n into 3 disjoint isomorphic copies Q3
n−1(0), Q

3
n−1(1),

Q3
n−1(2), where Q3

n−1(k), ∀ 0 ≤ k ≤ 2 denotes the subgraph induced by the vertices {(x =
xn−1, xn−2, ..., xi, .., x0) ∈ V (Q3

n)|xi = i}, for any i = 0, 1, 2. Each Q3
n−1(k) is a convex set of

Q3
n. Q3

n has kn−1 edges, having a perfect matching between Q3
n−1(k) and Q3

n−1(k+1), ∀ 0 ≤ k ≤ 2.
Q3
n−1(k) and Q3

n−1(k + 1) are adjacent subcubes, and the edges between them are called ‘bridges’.
The n dimensional Q3

n is 2n-regular [36]. See Figure 1.

Figure 1. 3-ary 3-cube, Q3
3.

Definition 3.2. [37] The Lexicographic order on a set of n-tuples with integer entries is defined as
follows: We say that (x1, ..., xn) is greater than (y1, ..., yn) if there exist an index i, 1 ≤ i ≤ n, such
that xj = yj for 1 ≤ j < i and xi > yi.

Sergei et al. [37] has studied the edge isoperimetric problem for the torus C3 × C3 which was solved
in [38, 39] by introducing a new characteristic, called δ−sequence which is defined as follows: For a
graph G = (V,E) with 1 ≤ k ≤ |V |, we define

δ(k) = I(k)− I(k − 1), with δ(1) = 0,
where I(k) is the maximum number of edges induced by any k vertices.
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Further δG = (δ(1), δ(2)...., δ(|V |)) is called the δ−sequence of G. The δ−sequence of C3 × C3 is
(0,1,2,1,2,3,2,3,4). This gives an optimal order for the maximum subgraph for C3 × C3 by lexico-
graphic ordering.

Theorem 3.3. [40] If the cartesian product ofG×G is optimal with vertices of lexicographic ordering
then it is optimal for Gn for any n ≥ 3.

The following corollary of Theorem 3.3 solves the edge isoperimetric problem in Q3
n, n ≥ 2.

Corollary 3.4. The Lexicographic ordering of vertices of Q3
n, n ≥ 2, is an optimal ordering for

inducing maximum subgraphs in Q3
n.

Remark 3.5. Let lexk = {0, 1, 2, ..., k − 1}, 1 ≤ k ≤ 3n denote the first k vertices in Q3
n, n ≥ 2

with lexicographic ordering.

Theorem 3.6. If G is a 3-ary n-cube, Q3
n, n ≥ 2, then IG(k) = k13

k1 +(k2+1)3k2 +(k3+2)3k3 +
...+ (kr + (r− 1))3kr , ki = 0, 1, 2, ..., n, 1 ≤ i ≤ r; where IG(k) is the number of edges induced in
any maximum subgraph on k vertices and k = 3k1 +3k2 +3k3 + ...+3kr , k1 ≥ k2 ≥ k3 ≥ .... ≥ kr.

Proof:
Consider Q3

n(k) where k = 3k1 + 3k2 + 3k3 + ... + 3kr . Q3
n(k) contains Q3

k1
, Q3

k2
,...,Q3

kr
where

Q3
ki
,∀ i > 1 is adjacent with Q3

ki−1
, ..., Q3

k2
, Q3

k1
. There are 3ki edges between Q3

ki
and each of Q3

kj
,

∀ j = 1, 2, ..., i − 1. Thus there exist (i − 1)3ki edges between Q3
ki

and Q3
kj

, ∀ j = 1, 2, ..., i − 1.
Further Q3

ki
, ∀ i = 1, 2, 3, ..., r also has ki3ki edges in it. This implies that Q3

ki
contributes (ki3ki +

(i− 1)3ki) = (ki + (i− 1))3ki edges to IQ3
n
(k). Hence the Lemma. ut

4. Embedding of Q3
n into cylinder C3 × P3n−1

Definition 4.1. [5] Let Pα and Cα denote a path and cycle on α vertices respectively. The 2-
dimensional grid is defined as Pα1 × Pα2 , where αi ≥ 2 is an integer for each i = 1, 2. The cylinder
Cα1 × Pα2 , where α1, α2 ≥ 3 is a Pα1 × Pα2 grid with a wraparound edge in each column.

Lexicographic ordered embedding: The lexicographic ordered embedding lex : Q3
n → C3 ×P3n−1

with labels 0 to 3n − 1 is an assignment of labels to the vertices of Q3
n in lexicographic order and the

vertices of C3 × P3n−1 as follows: Vertices in rth column are labeled as 3(r − 1) + 0, 3(r − 1) +
1, 3(r − 1) + 2 from top to bottom, where r = 1, 2, .., 3n−1.

Embedding Algorithm A:
Input: The 3-ary n-cube, Q3

n and the cylinder C3 × P3n−1 on 3n vertices.
Algorithm: Lexicographic ordered embedding of Q3

n into C3 × P3n−1 .
Output: The embedding lex of 3-ary n-cube, Q3

n into cylinder C3 × P3n−1 on 3n vertices is with
minimum wirelength.
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Notation. Cilex = {0, 1, 2, ..., 3i − 1}, for i = 1, 2, ..., 3n−1 − 1 denotes the first i column vertices
of C3 × P3n−1 with vertices labeled as in Embedding Algorithm A. From Remark 3.5, it is clear that
Cilex = lex3i. The following lemma is a consequence of Corollary 3.4.

Lemma 4.2. Cilex induces maximum subgraph in Q3
n for i = 1, 2, .., 3n−1 − 1.

Notation. Rjlex = {j, 3+j, ..., 3(3n−1)+j}, for j = 0, 1, 2 denotes the jth row vertices ofC3×P3n−1

with the lexicographic ordered embedding of Q3
n into C3 × P3n−1 .

Lemma 4.3. Rjlex induces maximum subgraph in Q3
n for j = 0, 1, 2.

Proof:
From Lemma 4.2, we know that the lexicographic ordering columnwise induces a maximum subgraph.
Hence to prove this lemma we have to show that the vertices in each row is isomorphic to subgraph
induced by lexicographic ordering 0, 1, 2, ..., 3n−1−1. For j = 0, 1, 2, define ϕj : Rjlex → lex3n−1 by
ϕj(3k + l) = 3l+ k + j. If the n-tuple representation of integer 3k + l is (γ1, γ2, ..., γn), then the n-
tuple representation of integer 3l+k+j is (γ2, γ3, ..., γn, γ1+j). Thus if the n-tuple representation in
two numbers x and y differ in exactly one bit, then it also holds good for f(x) and f(y). This implies
that (x, y) is an edge in Q3

n if and only if (f(x), f(y)) is an edge in Q3
n. Thus Rjlex and lex3n−1 are

isomorphic, which implies that Rjlex induces a maximum subgraph in Q3
n. ut

Theorem 4.4. The wirelength WL(Q3
n, C3 × P3n−1) is minimum for lexicographic ordered embed-

ding lex of Q3
n into C3 × P3n−1 , n ≥ 2.

Figure 2. (a) Vertical edge cuts Xt
i , 1 ≤ i ≤ 8, 1 ≤ t ≤ 2 of Cylinder C3 × P9 with lexicographic ordering.

(b)Horizontal edge cuts Yj , 1 ≤ j ≤ 2 of Cylinder C3 × P9 with lexicographic ordering.

Proof:
Consider the lexicographic embedding lex : Q3

n → C3 × P3n−1 given in the Embedding Algorithm
A. Xt

i , i = 1, 2, .., 3n−1 − 1 and t = 1, 2, shown in Figure 2(a) is the vertical edge cut of the
cylinder C3×P3n−1 . Removal ofXt

i disconnects C3×P3n−1 into two components Uit and U
′
it

, where
V (Uit) = Cilex. Yj , 0 ≤ j ≤ 2 as shown in Figure 2(b) are the horizontal edge cuts of the cylinder
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C3 × P3n−1 . Thus Yj disconnects C3 × P3n−1 into two components Vj and V
′
j , where V (Vj) = Rjlex.

See Figure 2(b). Let Sit and S
′
it

be the preimages of Uit and U
′
it

in Q3
n under lexicographic ordering

respectively. The edge partition Xt
i satisfies the first two conditions of the congestion lemma. To

satisfy condition (iii) of the congestion lemma, it is enough to prove that the edges induced by the
preimages Sit and S

′
it

are maximum subgraphs. That is, congestion cf (Xt
i ) is minimum, where Sit

is the subgraph induced by the vertices of Cilex. By Lemma 4.2, Sit is a maximum subgraph in Q3
n.

Hence by the Congestion Lemma cf (Xt
i ) is minimum for i = 1, 2, .., 3n−1 − 1. Similarly, let Tj

and Tj′ be the preimages of Vj and Vj′ in Q3
n under lexicographic ordering respectively. By Lemma

4.3, Tj is a maximum subgraph induced by the vertices of Rjlex. Hence by the Congestion Lemma
cf (Yj) is minimum for j = 0, 1, 2. Partition Lemma consequently implies that WL(Q3

n, C3×P3n−1)
is minimum. ut

Theorem 4.5. The minimum wirelength of embedding Q3
n into C3 × P3n−1 is given by

WL(Q3
n, C3 × P3n−1) = 3n−1

(
2
(
3n−1 − 1

)
+ 3
)
.

Proof:
By Congestion Lemma and 2-Partition Lemma,

WL(Q3
n, C3 × P3n−1) =

1

2

( 2∑
t=1

(3n−1)−1∑
i=1

clex(X
t
i ) +

2∑
j=0

clex(Yj)

)

=
1

2

(
4
(
3n−1

)(
3n−1 − 1

)
+ 6
(
3n−1

))
= 3n−1

(
2
(
3n−1 − 1

)
+ 3
)
. ut

5. Embedding of Q3
n into certain trees

A tree is an acyclic connected graph. Trees are the most basic graph-theoretic models utilised in
various domains, including automatic classification, information theory, data structure and analysis,
artificial intelligence, algorithm design, operation research, combinatorial optimization, electrical net-
work theory and network design [11]. We have embedded 3-ary n-cubes into certain trees such as
caterpillar, firecracker graph and banana tree which are well known in the literature by satisfying the
property of some graph variants [41–43]. The research on caterpillars and their embeddings [44, 45]
reveal that embedding problems are not simple. For instance, in [46, 47] the authors demonstrated the
NP-completeness of determining the least dilation of embedding a caterpillar into chain. These pre-
dominant use of trees in networks motivated us to study the embedding of 3-ary n-cubes into certain
trees mentioned above. In a tree traversal, labeling the vertices first time one visits is called preorder
traversal.
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5.1. Wirelength of embedding Q3
n in caterpillar

Definition 5.1. [5] A caterpillar is a tree which will be a path if all its leaves are deleted. The path
which is retained is called the backbone of the caterpillar.

Embedding Algorithm B:
Input: The 3-ary n-cube, Q3

n and 2-regular caterpillar denoted by 2-CAT on 3n vertices.
Algorithm: Label the vertices of 3-ary n-cube, Q3

n and caterpillar using lexicographic ordering and
preorder traversal respectively.
Output: The embedding lex of 3-ary n-cube, Q3

n into caterpillar on 3n vertices is with minimum
wirelength.

Lemma 5.2. The edge cuts Si, 1 ≤ i ≤ 3n−1 − 1 and Tj , 1 ≤ j ≤ 2(3n−1) as shown in Figure 3
induce maximum subgraphs in Q3

n.

Figure 3. Edge cuts of Caterpillar.

Proof:
By Theorem 3.3, the lexicographic ordering of vertices of Q3

n gives the optimal order for inducing
the maximum subgraph. The edge cut Si removes the edges in the backbone of the caterpillar, such
that each Si disconnects it into two components of lexicographic ordering which induce a maximum
subgraph in Q3

n. The edge cut Tj disconnects the caterpillar with exactly one vertex as one of the
components. Hence Si, ∀ i = 1, 2, ..., 3n−1 − 1 and Tj ,∀ j = 1, 2, ..., 2(3n−1) induce maximum
subgraph in Q3

n. ut

Lemma 5.3. The Embedding Algorithm B gives minimum wirelength of embedding Q3
n into 2-

regular caterpillar.

Proof. By Lemma 5.2 the edge cuts Si and Tj satisfy conditions of the Congestion Lemma. Therefore
cf (Si) and cf (Tj) are minimum. Then the partition lemma implies that wirelength is minimum.

Theorem 5.4. The minimum wirelength of embedding Q3
n into caterpillar is given by

WL(Q3
n, 2-CAT) = 2(3n−1)(3n−1 − 1) + (4n)(3n−1).
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Proof:
By Congestion Lemma and Partition Lemma,

WL(Q3
n, 2-CAT) =

3n−1−1∑
i=1

cf (Si) +

2(3n−1)∑
j=1

cf (Tj)

=
3n−1−1∑
i=1

((2n)(3i)− 2|E(3i)|) + (2n)(2(3n−1))

= 2(3n−1)(3n−1 − 1) + (4n)(3n−1). ut

5.2. Wirelength of embedding Q3
n in Firecracker graph

Definition 5.5. [48] A firecracker graph Fn,k is a graph obtained by the concatenation of n, k-stars
by linking one leaf from each.

In what follows, we consider concatenation of 3n−1 number of 3-stars.

Embedding Algorithm C:
Input: The 3-ary n-cube, Q3

n and firecracker graph, F3n−1,3 on 3n vertices.
Algorithm: Label the vertices of 3-ary n-cube, Q3

n and firecracker graph, F3n−1,3 using lexicographic
ordering and preorder traversal respectively.
Output: The embedding lex of 3-ary n-cube, Q3

n into firecracker graph, F3n−1,3 on 3n vertices is with
minimum wirelength.

Lemma 5.6. The edge cut Si, ∀ i = 1, 2, ..., 3n−1 − 1 of F3n−1,3 as shown in Figure 4 induces
maximum subgraph in Q3

n.

Figure 4. Edge cuts of F3n−1,3.

Proof:
The removal of edges in Si, 1 ≤ i ≤ 3n−1−1 disconnects F3n−1,3 into two components whose inverse
images under lex induce lexicographic ordering of the corresponding subgraphs of Q3

n. This implies
that the inverse images are maximum subgraphs of Q3

n. ut
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Lemma 5.7. The edge cuts Rj and Tk, ∀ j, k = 1, 2, ..., 3n−1 of F3n−1,3 as shown in Figure 4 induce
maximum subgraph in Q3

n.

Proof:
The result is obvious as one of the components due to the cuts is either a singleton set or an edge. ut

By Congestion Lemma and Partition Lemma, we arrive at the following result.

Theorem 5.8. Minimum wirelength is induced by the embedding algorithm of Q3
n into F3n−1,3 on 3n

vertices.

Theorem 5.9. The minimum wirelength of embedding Q3
n into F3n−1,3 is given by

WL(Q3
n, F3n−1,3) = 2

(
3n−1

)((
3n−1 − 1

)
+
(
2n− 1

)
+ n

)
.

Proof:
By Congestion Lemma and Partition Lemma,

WL(Q3
n, F3n−1,3) =

(3n−1)−1∑
i=1

cf (Si) +

3n−1∑
j=1

cf (Rj) +

3n−1∑
k=1

cf (Tk)

= 2
(
3n−1 × (3n−1 − 1)

)
+ (4n− 2)(3n−1) + (2n)(3n−1)

= 2
(
3n−1

)((
3n−1 − 1

)
+
(
2n− 1

)
+ n

)
. ut

5.3. Wirelength of embedding Q3
n in banana tree

Definition 5.10. [48] A banana tree Bn,k is a graph formed by linking one leaf of each of n copies
of a k-star graph to a single root vertex that is different from all of the stars.

Embedding Algorithm D:
Input: The 3-ary n-cube, Q3

n and banana tree, B
2,
⌊

3n

2

⌋ on 3n vertices.

Algorithm: Label the vertices of 3-ary n-cube, Q3
n and banana tree, B

2,
⌊

3n

2

⌋ using lexicographic

ordering and preorder traversal respectively.
Output: The embedding lex of 3-ary n-cube, Q3

n into banana tree, B
2,
⌊

3n

2

⌋ on 3n vertices is with

minimum wirelength.

Lemma 5.11. The edge cuts Rj and Tk, ∀ j, k = 1, 2 of B
2,
⌊

3n

2

⌋ as shown in Figure 5 induce

maximum subgraphs in Q3
n.

Proof:
The removal of edges in Rj and Tk, ∀ j, k = 1, 2 disconnects B

2,
⌊

3n

2

⌋ into two components whose

inverse images under lex induce lexicographic ordering of the corresponding subgraphs of Q3
n. This

implies that the inverse images are maximum subgraphs of Q3
n. ut
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Figure 5. Edge cuts of B
2,
⌊

3n

2

⌋.

Lemma 5.12. The edge cuts S1
i and S2

i , ∀ i = 1, 2, ...,
⌈
3n

2

⌉
− 3 of B

2,
⌊

3n

2

⌋ as shown in Figure 5

induce maximum subgraph in Q3
n.

Proof:
The result is obvious as one of the components due to the cuts is a singleton set. ut

By Congestion Lemma and Partition Lemma, we arrive at the following result.

Theorem 5.13. Minimum wirelength is induced by the embedding algorithm of Q3
n into B

2,
⌊

3n

2

⌋ on

3n vertices.

Theorem 5.14. The minimum wirelength of embedding Q3
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6. Conclusion

The optimal wirelength of 3-ary n-cube into certain cylinders and trees such as caterpillars, firecracker
graphs and banana trees are determined in this paper.
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