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Abstract. Coverings of undirected graphs are used in distributed computing, and unfoldings of
directed graphs in semantics of programs. We study these two notions from a graph theoretical
point of view so as to highlight their similarities, as they are both defined in terms of surjective
graph homomorphisms. In particular, universal coverings and complete unfoldings are infinite
trees that are regular if the initial graphs are finite. Regularity means that a tree has finitely many
subtrees up to isomorphism. Two important theorems have been established by Leighton and Nor-
ris for coverings of finite graphs. We prove similar results for unfoldings of finite directed graphs.
Moreover, we generalize coverings and similarly, unfoldings to graphs and digraphs equipped
with finite or infinite weights attached to edges of the covered or unfolded graphs. This gen-
eralization yields a canonical ”factorization” of the universal covering of any finite graph, that
(provably) does not exist without using weights. Introducing ω as an infinite weight provides us
with finite descriptions of regular trees having nodes of countably infinite degree. Regular trees
(trees having finitely many subtrees up to isomorphism) play an important role in the extension
of Formal Language Theory to infinite structures described in finitary ways. Our weighted graphs
offer effective descriptions of the above mentioned regular trees and yield decidability results. We
also generalize to weighted graphs and their coverings a classical factorization theorem of their
characteristic polynomials.
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2 B. Courcelle / Unfoldings and Coverings

1. Introduction

We first review informally some basic notions and results. The notion of covering of an undirected
graph has been introduced by Reidemeister [22] as a discrete analogue of coverings of surfaces. It has
proved to be useful in the theory of distributed computing where a network is considered as an undi-
rected graph N whose edges represent communication channels. The questions are whether certain
problems such as the election problem (consisting in distinguishing a unique node of the network) can
be solved by a distributed algorithm (of a certain type). This is possible if the graph N is minimal
for the covering relation, equivalently if the universal coverings of N defined from any two different
nodes are not isomorphic rooted trees. The universal covering of an undirected graph is an infinite
tree. It has a characterization in the sense of Category Theory and can be constructed as the infinite
tree of the walks in the graph originated from a node and that do not take the same edge twice in a row
(in opposite directions). Starting from any two nodes yields isomorphic trees (without roots). Detailed
definitions will be given in Section 4. The universal covering of a finite graph is a regular tree, i.e.,
a tree that has finitely many subtrees up to isomorphism (i.e., finitely many isomorphism classes of
subtrees). The application of coverings to distributed computing was initiated by Angluin in [2].

Unfoldings of directed graphs are used in the study of abstract programs called transition systems
in order to represent their semantics [4, 12, 15]. In particular, the complete unfolding1 of a directed
graph equipped with a distinguished vertex (representing the ”begin” instruction) is a rooted tree that is
infinite if the graph has directed cycles. The complete unfolding of the graph representing a transition
system S encodes all computations of the program abstracted into S. If the graph is finite, its complete
unfolding is a regular tree. Precise definitions will be given in Section 3.

We are interested in unfoldings and coverings from a graph theoretical point of view. Both notions
are defined in terms of surjective graph homomorphisms that are bijective on the neighbourhoods of
vertices related by the considered homomorphisms. The notion of neighbourhood is thus a parameter
that gives rise to different but related notions: unfoldings, coverings and even others [15]. For un-
foldings of directed graphs, the neighbourhood of a vertex x is the set of edges outgoing from x. For
coverings of undirected graphs, it is the set of edges incident to x. We study unfoldings and coverings
by means of graph homomorphisms, quotient graphs, infinite trees and, in particular, regular ones.
One of our objectives is to highlight the similarities between the two notions, regarding the definitions
and also some results without using any cumbersome categorical framework.

In the theory of coverings, a theorem by Norris [21] states that two regular rooted trees Tx and Ty,
that define the universal covering T of a finite undirected graph with p vertices by starting the walks
from x and y are isomorphic if their truncations at depth p − 1 are isomorphic. Another important
theorem by Leighton [18] states that, if two finite undirected graphs have isomorphic universal cover-
ings, then they have a common finite covering. Its proof is quite difficult. We prove a special case that
subsumes the known case of regular graphs [3].

Weighted graphs.
Moreover, we extend the definitions of unfoldings and coverings in the following ways. A directed

graphs is weighted if each edge has a weight, a positive integer or the infinite cardinal ω. An edge

1It is simply called unfolding in [4, 12, 15].
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of weight 3 (resp. ω) unfolds into 3 directed edges (resp. countably many) with the same origin. We
define complete unfoldings accordingly, and we obtain regular trees from finite graphs. These trees
have nodes of infinite degree2 in the case where some edges have weight ω, which generalizes the
usual definitions. We call complete unfolding what is usually called the unfolding (this tree is unique
up to isomorphism), and we define as unfolding of a weighted directed graph H a weighted directed
graph that lies inbetween H and its complete unfolding. ”Inbetween” is formally defined in terms of
surjective homomorphisms that are locally bijective as explained above. Each regular rooted tree T
is the complete unfolding of a finite unique canonical weighted directed graph, that can be used as a
finite description of T . We extend to weighted directed graphs the theorems by Leighton and Norris
described above3.

We also extend the notion of covering to weighted undirected graphs. In this case, weights in
N+ ∪ {ω} are attached to half-edges: an edge that is not a loop has two half-edges and thus two
weights. A loop is a half-edge (without any matching opposite half-edge) and has a single weight.
Each such graph H has a unique universal covering (unicity is up to isomorphism) that is an infinite
tree T without root denoted by UC(H). It is formally defined from the unfolding of a directed graph,
where p parallel directed edges from a vertex x to y replace a weight p attached to an half-edge incident
with x whose matching half-edge is incident with y. It is not from walks as easily as in the case of
unweighted graphs.

We call strongly regular a tree T of the form UC(H) for some finite weighted graph H . This
means that T yields finitely many regular rooted trees Tx, up to isomorphism, by taking its different
nodes x as roots. This is a new notion. Each strongly regular tree is the universal covering of a
canonical (it is unique up to isomorphism) finite weighted graph of minimal size, and thus, has a
finitary description. It can be seen as a kind of minimal factorization. The infinite rooted binary tree
is regular, but it is not strongly regular after forgetting its root.

Our new definitions and main results
1) We define and study coverings and unfoldings in close connection by considering them as

two instances of the same notion of a locally bijective homomorphism, based on different types of
neighbourhood. In both cases we introduce weights on edges. Infinite weights yield trees of infinite
degree having finite descriptions.

2) Our first main result states that two finite graphs have isomorphic universal coverings if and only
if they are coverings of a unique minimal weighted graph. Using weighted graphs is here necessary.

3) Our second main theorem extends that by Norris to universal coverings and to complete unfold-
ings of finite, weighted, graphs and directed graphs.

4) Our third main theorem extends that by Leighton to complete unfoldings of weighted directed
graphs. We give an easy proof of it for coverings of graphs in a special case that subsumes the
previously known cases and yields new cases.

5) Finite weighted undirected graphs are defined by matrices in a natural way. Our fourth main
theorem extends to them a factorization of the characteristic polynomials of their coverings that is

2Here, we extend the notion of regular tree that arises from the theory of recursive program schemes [10].
3In the forthecoming article [13], we will establish the first-order definability of regular trees, among all trees, and also of
the universal coverings of finite weighted graphs, as described below. These proofs use our extensions of Norris’s Theorem.
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known in the case of finite graphs without weights. Hence, our approach fits nicely in Algebraic
Graph Theory.

6) We identify as strongly regular the universal coverings of the finite weighted graphs. They form
a proper subclass of regular trees that we study more in [13].

Summary of the article: Basic definitions are in Section 2. Unfoldings of weighted directed graphs
are defined and studied in Section 3. Coverings of weighted undirected graphs are defined and studied
in Section 4. We study universal coverings of weighted graphs in Section 5 and we discuss Leighton’s
Theorem for graphs in Section 6.

2. Basic definitions

This section reviews notation and some easy lemmas. Definitions for graphs and trees are standard,
but we make precise some possibly ambiguous terminological points.

2.1. Sets, multisets and weighted sets.

All sets, graphs and trees are finite or countably infinite (of cardinality ω).
The cardinality of a set X is denoted by |X| ∈ N∪{ω}. This latter set is equipped with an addition

+ that is the standard one on N together with the rule ω + x = x+ ω = ω for all x in N ∪ {ω}.
We denote by [p] the set {1, . . . , p} and by N+ the set of positive integers.
A weighted set is a pair (X,λ) where X is a set and λ is a mapping X → N+∪{ω}. We call λ(x)

the weight of x, and, for Y ⊆ X , we define4 λ(Y ) := Σ{λ(x) | x ∈ Y }. A weighted set can be seen
as a multiset, where λ(x) is the number of occurrences of x. From a set X, we get the weighted set
denoted by (X,1) where all weights are 1. We define Set(X,λ) := {(x, i) | x ∈ X, i ∈ N+, 1 ≤ i ≤
λ(x)} so that λ(X) = |Set(X,λ)| .

We denote by ⊎ the union of multisets, equivalently of weighted sets: (X,λ) ⊎ (Y, λ′) := (X ∪
Y, λ′′) where λ′′(x) is λ(x) + λ′(x) if x ∈ X ∩ Y and λ(x) or λ′(x) otherwise.

Let (X,λ) and (Y, λ′) be weighted sets. A surjective mapping κ : X → Y is a weighted surjection
or a surjection of multisets: (X,λ) → (Y, λ′) if, for every y ∈ Y , we have λ′(y) = λ(κ−1(y)), hence
is the sum of weights of the x’s such that κ(x) = y. If X is a set, hence, if λ has value 1 for all x ∈ X ,
a weighted surjection κ : X → Y satisfies λ′(y) =

∣∣κ−1(y)
∣∣ for every y ∈ Y . Figure 1 illustrates this

notion, see Example 2.2(1).

Lemma 2.1: Let (X,λ) and (Y, λ′) be weighted sets.

1) A mapping κ : X → Y is a weighted surjection if and only if there exists a bijection κ′ :
Set(X,λ) → Set(Y, λ′) such that5 κ′(x, i) = (y, j) implies κ(x) = y.

2) If there are weighted surjections κ : (X,λ) → (Y, λ′) and α : Z = (Z,1) → (Y, λ′), there
exists a weighted surjection β : Z = (Z,1) → (X,λ) such that α′ = κ′ ◦ β′, where α′, κ′, β′ are

4For typographical reasons, we use the notation Σ{λ(x) | x ∈ Y } rather than
∑

x∈Y λ(x) and we will do the same below
in Sections 3.1 and 4.2.
5To simplify notation, we write κ′(x, i) instead of κ′((x, i)) and we will do the same in many similar cases.
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related to α, κ, β as in 1). For each triple p, q, r such that κ(p) = α(r) = q, we can define β such that
β(r) = p.

3) We have λ(X) = λ′(Y ) if and only if there exists a set S ⊆ X × Y and a weight function µ
on S such that µ(S) = λ(X) = λ′(Y ) and for every x ∈ X , λ(x) = µ(S ∩ {(x, y) | y ∈ Y }) and
similarly, for every y ∈ Y , λ′(y) = µ(S ∩ {(x, y) | x ∈ X}).

Proof:
Let (X,λ) and (Y, λ′) be weighted sets.

1) Assume that we have κ : X → Y and a bijection κ′ : Set(X,λ) → Set(Y, λ′) as in the
statement. Then κ is surjective. For each y ∈ Y , the mapping κ′ induces a bijection Set(κ−1(y), λ) →
Set({y}, λ′), hence λ′(y) = λ(κ−1(y)). Hence, κ is a weighted surjection.

Conversely, let κ : X → Y be a weighted surjection. For each y in Y , since λ′(y) = λ(κ−1(y)),
we can define a bijection: Set(κ−1(y), λ) → Set({y}, λ′). The union of all these bijections defines
κ′ as desired.

2) Let κ and κ′ be as in 1). We have a bijection α′ : Z = Set(Z,1) → Set(Y, λ′). We define
β′ : Z=Set(Z,1) → Set(X,λ) by β′ := κ′−1◦α′, from which we get the desired weighted surjection
β : (Z,1) → (X,λ) such that α′ = κ′ ◦ β′. The condition on p, q, r is straightforward to satisfy.

3) Assume we have λ(X) = λ′(Y ). Consider any bijection µ′ : Set(X,λ) → Set(Y, λ′). Then,
we define µ(x, y) as the cardinality of the set {((x, i), (y, j)) | µ′(x, i) = (y, j)} if it is not empty.
We let S ⊆ X × Y be the set of all pairs (x, y) such that µ′(x, i) = (y, j) for some i, j. We obtain the
desired weight function on S. The converse is clear. □

In Assertion 3), we call S a witness of the equality of weights λ(X) = λ′(Y ). If X and Y are
disjoint, we can consider it as a bipartite graph whose edges are between X and Y , and are weighted
by µ. The weight λ(x) of vertex x is the sum of the weights of its incident edges. See Example 2.2(3).

Examples 2.2: Weighted relations between weighted sets.
(1) Let X consist of a, b, c, d of respective weights 2, 3, 4 and ω and Y consist of u and v of

respective weights 5 and ω. The mapping κ: a 7−→ u, b 7−→ u, c 7−→ v, d 7−→ v is a weighted
surjection, illustrated in Figure 1. One possible bijection κ′ satisfying Assertion (1) of Lemma 2.1 is:
(a, i) 7−→ (u, i) for i = 1, 2, (b, i) 7−→ (u, i + 2) for i = 1, 2, 3, (c, i) 7−→ (v, i) for i = 1, . . . , 4,
(d, i) 7−→ (v, i+ 4) for i ≥ 1.

Figure 1. A weighted surjection, see Example 2.2(1).
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(2) We examplify Assertion (2). Let X,Y, κ, κ′ be as above and Z := N+. Let α : Z → Y that
maps i 7→ u for i = 1, . . . , 5 and i 7→ v for i > 5. We obtain β′ that maps i 7→ (a, i) for i = 1, 2,
i 7→ (b, i− 2) for i = 3, 4, 5, i 7→ (c, i− 5) for i = 6, . . . , 9, and i 7→ (d, i− 9) for i > 9. We deduce
the weighted surjection β : Z → Y. This construction works if we are given p := c, q := v and
r := 7 (cf. the last point of Assertion (2)). If p := d, we can modify accordingly the definition of β′.

(3) To illustrate Assertion (3), we use X consisting of a, b, c, d of respective weights ω, 4, 2 and ω
and Y consisting of u, v, w, x, y of respective weights ω, 4, 3, 5, 1. We can take S to consist of (a, u)
and (d, u) of weight ω, (a, v), (c, v), (c, w) and (d, y) of weight 1, (b, v) and (b, w) of weight 2 and
(d, x) of weight 5. See Figure 2. This is clearly not the unique way to define S.

Figure 2. The weighted set S of Example 2.2(3).

If, with the same weighted set X, we take Y consisting of y1, . . . , yn, . . . all of weight ω, then
we can take S to consist of (b, y1) of weight 4, (c, y1) of weight 2 and (a, yi) and (d, yi) of weight ω
for all i. □

2.2. Graphs

By a graph we mean an undirected graph, and we call digraph a directed graph, for shortness sake.
A graph is defined as a triple G = (V,E, Inc) where V is the set of vertices, E is the set of edges,

and Inc is the incidence relation. The notation e : x − y indicates that edge e links vertices x and y,
called its ends, equivalently, that (e, x) and (e, y) belong to the set Inc ⊆ E×V . A triple (V,E, Inc)
defines a graph if and only if V and E are disjoint, Inc ⊆ E × V , and for each e ∈ E, there are one
or two vertices x ∈ V such that (e, x) ∈ Inc.

A pair in Inc is called a half-edge. We write e : x − x if e is a loop at x, i.e., incident with x. It
is equivalent to a single half-edge. We denote by E(x) the set of edges incident with x, and by N(x)
the set {y ∈ V | x− y}. We have x ∈ N(x) if there is a loop at x. A graph is simple if no two edges
have the same set of ends. Hence, it has no two parallel edges. It may have loops, where at most one
loop is incident with any vertex.

A walk starting at a vertex x is a possibly infinite sequence x0, e1, x1, . . . , en, xn, . . . such that
x = x0, x1, . . . , xn, . . . are vertices and each ei is an edge whose ends are xi−1 and xi. It is a path if
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the vertices x0, . . . , xn, . . . are pairwise distinct. In both cases, we say that each xi is accessible from
x0. Its length is the number of edges. A path x0, . . . , xn defines a cycle if n ≥ 2 and there an edge
between x0 and xn. Its length is n+ 1.

A directed graph (a digraph) is defined similarly as a triple G = (V,E, Inc). Its edges are called
arcs. An arc e is directed from its tail x to its head y, and we denote this by e : x → y. Its two
half-arcs are (x, e) and (e, y), which encodes the direction of e. Hence Inc ⊆ (V × E) ∪ (E × V ).
A triple (V,E, Inc) defines a digraph if and only if V and E are disjoint, Inc ⊆ (V ×E)∪ (E × V ),
and for each e ∈ E, there are vertices x, y ∈ V such that (x, e) and (e, y) belong to Inc.

A loop e at x has two half-arcs (x, e) and (e, x). A digraph is simple if, for any x, y, it has no
two arcs from x to y. In that case, G can be defined as a pair (V,E) where E ⊆ V × V . To simplify
notation, we will also define such G as a pair (V,E) where an arc in E is defined the pair of a tail and
a head.

We denote by E+(x) the set of arcs outgoing from x, and by N+(x) the set of heads of the arcs
in E+(x). We have x ∈ N+(x) if there is a loop at x.

A directed walk starting at a vertex x is a possibly infinite sequence x0, e1, x1, . . . , en, xn, . . . as
above such that x = x0 and ei : xi−1 → xi for each i. Without ambiguity unless it is reduced to the
single vertex x0, it can be specified as the sequence of arcs e1, . . . , en, . . . . Its length is its number of
arcs. It is a directed path if the vertices x0, . . . , xn, . . . are pairwise distinct. We say that each xi is
accessible from x0. A digraph is strongly connected if any two vertices are accessible from each other.
A directed path x0, . . . , xn defines a directed cycle if n ≥ 1 and there is an arc xn → x0.

A rooted digraph G has a distinguished vertex called the root, denoted by rtG, from which all
vertices are accessible by a directed path. We denote by G/x the induced subgraph of G whose
vertices are those accessible from x by a directed path. (The study of rooted trees uses this notion with
same notation). We define x as its root.

We denote by Und(G) the graph underlying a digraph G: each arc e : x → y of G is made into
an edge e : x− y of Und(G). Hence, it need not be simple if G is.

We write VG, EG, EG(x), E
+
G(x), N

+
G (x), IncG etc. to specify, if necessary, the relevant graph or

digraph G.
For graphs and digraphs, inclusion is denoted by ⊆, i.e. G = (V,E, Inc) ⊆ H = (V ′, E′, Inc′) if

and only if V ⊆ V ′, E ⊆ E′ and Inc ⊆ Inc′. Induced inclusion denoted by ⊆i holds if, furthermore,
E is the set of edges or arcs of E′ whose ends, tails and heads are in V . We write then G = H[V ].

A homomorphism η : G → H of graphs or of digraphs maps VG to VH , EG to EH , IncG to IncH
and preserves incidences in the obvious way. It maps loops to loops but can map a nonloop edge or
arc to a loop. If G and H are rooted, it maps the root of G to that of H . Isomorphism is denoted by ≃
and the isomorphism class of G by [G]≃.

If η : G → H is a homomorphism of graphs or of digraphs, we make G into a labelled graph or
digraph Gη by equipping each vertex, edge or arc x by the label η(x). Formally, Gη = (V,E, Inc, η).
Hence, this labelled graph encodes G and η. We will use this notion when H is finite. Other graph
labellings will be defined at the relevant places.

We extend the notion of a homomorphism by allowing ”forgetful” operations. A homomorphism
Und(G) → H where G is directed and H is not is also considered as a homomorphism G → H .
Similar conventions concern labelled graphs.
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Definition 2.3: Quotient graphs and digraphs

(a) An equivalence relation ∼ on a graph G = (V,E, Inc) is an equivalence relation on V ∪E such
that each equivalence class is either a set of vertices or a set of edges, and, if e and e′ are equivalent
edges6, then each end of e is equivalent to an end of e′.

(b) The quotient graph G/ ∼ is then defined as (V/ ∼, E/ ∼, IncG/∼) such that ([e]∼, [v]∼) ∈
IncG/∼ if and only if (e′, v′) ∈ Inc for some e′ ∼ e and v′ ∼ v.

(c) The definition is similar for a digraph G: we require that if e and f are equivalent arcs, then
the tail (resp. the head) of e is equivalent to that of f . The quotient digraph is defined as for graphs.

(d) In both cases, we have a surjective homomorphism η∼ : G → G/ ∼ that maps a vertex, an
edge or an arc to its equivalence class. An edge e : x− y is mapped to a loop in G/ ∼ if x ∼ y. The
same holds for arcs.

Remark 2.4: An equivalence relation ∼ on the vertex set V of G = (V,E, Inc) can be extended to
edges or arcs as follows: two edges are equivalent if and only if each end of one is equivalent to some
end of the other; two arcs are equivalent if and only if their tails are equivalent and so are their heads.

A notion of quotient graph of a digraph follows then by Definition 2.3. □

2.3. Trees

A tree is a nonempty simple connected graph without loops or cycles. We call nodes its vertices.
This convention is useful in the frequent case where we discuss simultaneously a graph and a tree
constructed from it.

The set of nodes of a tree T is denoted by NT . A subtree of a tree T is a connected subgraph,
hence, it is a tree. A tree has (locally) finite degree if each node has finite degree. It has bounded
degree if the degrees of its nodes are bounded by a same integer.

A rooted tree is a tree T equipped with a distinguished node r called its root. We denote it some-
times by Tr to specify simultaneously the root and the underlying undirected tree T. In a way depend-
ing on r, we direct its edges so that every node is accessible from r by a directed path. If x → y in
Tr, then y is called a son of x, and x is the (unique) father of y. The depth of a node is its distance to
the root (the root has depth 0). The height of a rooted tree is the least upper-bound of the depths of its
nodes. A star is a rooted tree of height 1.

Let R be a rooted tree; its root is rtR. By forgetting its root and making its arcs undirected, we get
a tree T := Unr(R). Hence, R = TrtR . If x is a node of R, then the digraph R/x is a rooted tree
with root x, called the subtree of R issued from x. It is induced on the set of nodes accessible from x
by a directed path. If i ∈ N, the truncation at depth i of R, denoted by R ↾ i, is the induced subgraph
of R whose nodes are at distance at most i from the root, that is, are accessible from it by a (unique)
directed path of length at most i. It is a rooted tree with the same root as R and R ↾ 0 is the tree
reduced to the root rtR.

A homomorphism of rooted trees: R → R′ is a homomorphism of directed graphs that maps rtR
to rtR′ . A homomorphism from a rooted tree R to a tree T is defined as a homomorphism of trees:
Unr(R) → T .

6An edge e : x− y and a loop f : z − z are equivalent if x ∼ y ∼ z.
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Lemma 2.5: An isomorphism of rooted trees η : R → R′ induces, for each u ∈ NR, an isomorphism:
R/u → R′/η(u) and, in particular, a bijection N+

R (u) → N+
R′(η(u)) such that R/v ≃ R′/η(v) if

v ∈ N+
R (u).

3. Unfoldings of directed graphs

Certain abstract programs can be formalized as transition systems that are finite directed graphs with
information attached to vertices and arcs. A vertex of the graph is a state of the corresponding transi-
tion system. An initial state r is specified. The tree of directed walks starting at r collects all possible
computations of the corresponding transition system. It is called its unfolding [4, 12, 15].

We will consider unfoldings from a graph theoretical point of view, without offering any new
application to semantics. We will generalize them and define unfoldings of digraphs whose arcs have
weights. In particular, an arc of weight ω with head y unfolds into countably many arcs whose heads
yield y by the unfolding homomorphism. We will obtain a notion of regular tree that generalizes the
classical one in that the nodes can have infinite outdegrees. These trees are the unfoldings of finite,
weighted and rooted digraphs.

In this section, all trees are rooted and thus directed in a canonical way. In [4, 12, 15] the unfolding
of a rooted digraph G is what we will call its complete unfolding. We will call unfolding of such a
digraph G a rooted digraph that lies inbetween, via surjective homomorphisms, the digraph G and
its complete unfolding, denoted by Unf (G). This terminology is thus similar to that concerning
coverings and universal coverings.

The main contributions of this section are the use of possibly infinite weights, the decidablility of
isomorphism in Theorem 3.14, and two theorems similar to those by Norris and Leighton for universal
coverings of finite undirected graphs, see Theorems 3.20 and 3.22.

Equality of trees and digraphs will be understood in the strict sense: same nodes or vertices, and
same arcs. Equality via an isomorphism is specified explicitely in statements and proofs, and denoted
by ≃.

3.1. Weighted directed graphs and their unfoldings

We will equip digraphs with weights in N+ ∪ {ω}. We recall from Section 2.2 that a digraph can be
defined as a pair (V,E) where each arc e is an ordered pair of vertices.

Definition 3.1: Weighted digraphs.

A weighted digraph is a triple G = (V,E, λ) such that (V,E) is a digraph whose set of arcs E
is weighted, that is, equipped with a weight function λ : E → N+ ∪ {ω}. We denote by E+(u) the
weighted set (E+(u), λ) and by N+(u) the weighted set (N+(u), λ′) such that λ′(v) = Σ{λ(e) | e :
u → v}.

A digraph7 is a weighted digraph whose arcs have all the weight 1.

7Digraph will mean ”without weights” and possibly with parallel arcs.
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A weighted digraph is simple or rooted if the underlying digraph is. If x is a vertex of a weighted
digraph G, then G/x (cf. Section 2.2) is a rooted and weighted digraph with root x. If G is strongly
connected, the digraphs G/x have all the same vertices and arcs as G.

In the special case where G is simple digraph, then E+(u) = (E+(u),1), N+(u) = (N+(u),1)
and the head mapping is a bijection E+(u) → N+(u). □

We can handle parallel arcs by means of weights. That is, an arc (x,y) of weight λ(x, y) > 1
encodes λ(x, y) parallel arcs from x to y.

Definition 3.2: Unfolding

Let H and G be rooted and weighted digraphs.
(a) A surjective homomorphism η : G → H is an unfolding of H if it induces a weighted surjection

EG → EH . In particular, if u ∈ VG and η(u) = x, then η induces a weighted surjection E+
G(u) →

E+
H(x). If G and H are simple digraphs, then η induces a bijection E+

G(u) → E+
H(x) and a bijection

N+
G (u) → N+

H (x).
We will also say that G is an unfolding of H or that H unfolds into G. From the accessibility

condition in the definition of a rooted digraph, unfoldings only concern connected graphs. They are
called op-fibrations by Boldi and Vigna [9].

(b) An unfolding G → H is complete if G is a rooted tree without weights (equivalently, all
weights are 1). We will also say that G is a complete unfolding of H or that H unfolds completely
into G.

Examples 3.3: (1) A loop of weight 1 (resp. 2) unfolds completely into an infinite directed path (resp.
into the infinite binary rooted tree).

(2) An arc x → y of weight ω such that x is taken as root unfolds (not completely) into any finite
star, where at least one arc has weight ω. It unfolds completely into a star Sω, i.e., any tree whose root
has ω sons that are leaves8. If in addition, there is a loop y → y of weight 1, this rooted and weighted
digraph unfolds completely into the union of ω infinite directed paths with the same origin, that are
otherwise disjoint.

Proposition 3.4: (1) If η : G → H and κ : H → K are unfoldings, then κ◦η is an unfolding G → K.
(2) If η : G → H is an unfolding, u ∈ VG and x = η(u), then η is an unfolding9G/u → H/x.

Proof:
(1) The composition κ◦η induces a weighted surjection EG → EK as κ and η do the same EH → EK

and EG → EH respectively. This observation proves the assertion.
(2) Clear from Definition 3.2. □

The following theorem implies that every rooted and weighted digraph H has, up to isomorphism,
a unique complete unfolding.
8Any two such trees are isomorphic. By thinking of trees up to isomorphism, which is adequate since any two complete
unfoldings of a rooted digraph are isomorphic, we can also write the star Sω .
9This is a short expression for ”the restriction of η to G/u is an unfolding G/u → H/x”. Similar shortenings will be used
at other places.
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Theorem 3.5: Let H be a rooted and weighted digraph.
1) H has a complete unfolding.
2) If β : T → H is a complete unfolding, then:

(U) For every unfolding κ : G → H , there is a complete unfolding η : T → G such that
β = κ ◦ η.

3) Any two complete unfoldings of H are isomorphic.
4) If β : T → H is an unfolding such that Condition (U) holds, then T is a rooted tree, hence a
complete unfolding of H .

Properties 2) and 4) show that the complete unfoldings of H are characterized by a universal
property in the sense of Category Theory. One can speak of the complete unfolding of H, well-defined
up to isomorphism. The following notion helps to approximate, level by level, a complete unfolding.
The height of a rooted tree is the least upper-bound of the distances of its nodes to the root.

Definition 3.6: Depth-limited unfoldings.
Let A be a rooted tree of height at most i (cf. Section 2.3) and H be a rooted and weighted

digraph. An i-unfolding η : A → H is a homomorphism (it is not necessarily surjective) satisfying
the following condition:

For every node u of A at distance at most i− 1 from the root, if η(u) = x and e is an arc
of H with tail x, then

∣∣η−1(e) ∩ E+
A (u)

∣∣ = λH(e). □

The complete unfolding of a rooted unweighted digraph H can be constructed as the tree of finite
walks starting from the root. As weights in digraphs represent parallel arcs, this construction must be
adapted. This is the purpose of the following definition, that replaces parallel arcs with sets of parallel
ones.

Definition 3.7: The expansion of a weighted digraph.
Let H = (V,E, λ) be a weighted digraph. Its expansion is the digraph Exp(H) = (V, Set(E, λ))

having the arc (e, i) : x → y if e : x → y in H and (e, i) ∈ Set(E, λ). (The mapping Set is defined
in Section 2.1) The digraph Exp(H) is infinite if some arc has weight ω, and/or, of course, if V is
infinite. If H has a root, then Exp(H) has the same root.

We now prove Theorem 3.5.

Proof:
Let H be a rooted and weighted digraph.

1) The rooted digraph Exp(H) is an unfolding of H , and we denote by ε the corresponding
homomorphism Exp(H) → H . By Proposition 3.4, we need only construct a complete unfolding T
of Exp(H). We define it as the tree of directed walks in Exp(H) that start from rtH , the common
root of Exp(H) and H . The father of a node (e1, . . . , ep) is (e1, . . . , ep−1).

Let α : T → Exp(H) map (e1, . . . , ep) to the head of ep; if p = 0, then (e1, . . . , ep) is the empty
walk, mapped to rtH ; the arc from (e1, . . . , ep−1) to (e1, . . . , ep) is mapped to ep. We say that this arc
of T is of type ep.
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Then α is a complete unfolding T → Exp(H) and β := ε◦α yields a complete unfolding T → H .
We will denote T by Unf (H). Note that Unf (H) is a concrete tree made of walks in Exp(H).

If H is a rooted tree, then Exp(H) ≃ H and α and β are isomorphisms as one checks easily.

2) We let β : Unf (H) → H be the particular complete unfolding constructed in 1) and κ : G → H
be any unfolding.

By induction on i, we construct for each i, an i-unfolding ηi : Unf (H) ↾ i → G such that κ ◦ ηi is
the restriction of β to Unf (H) ↾ i (the restriction of Unf (H) to nodes at distance at most i from the
root) in such a way that ηi+1 extends ηi. The union of the mappings ηi will be a complete unfolding
η : Unf (H) → G such that β = κ ◦ η.

We construct ηi+1 from ηi as follows. Let u = (e1, . . . , ei) ∈ NT ↾i be mapped to w ∈ VG by
ηi. There is a weighted surjection µu : N+

Unf (H)(u) → N+
G (w) such that κ ◦ µu is the restriction

of β to N+
Unf (H)(u). Its existence follows from Lemma 1.1(2), as N+

Unf (H)(u) is a set, equivalently,

the weighted set N+
Unf (H)(u) = (N+

Unf (H)(u),1). Then, we let ηi+1 be the union of ηi and all such
mappings µu for all nodes u of Unf (H) at depth i.

To prove 3) and to complete the proof of 2), we let κ : G → H be a complete unfolding, hence,
G is a tree. Then, the complete unfolding η : Unf (H) → G is an isomorphism. Hence, any two
complete unfoldings of H are isomorphic and 2) holds for any complete unfolding β of H.

4) Let β : T → H be an unfolding such that Condition (U) holds. Let G be a complete unfolding
of H . There is an unfolding γ : T → G. Since G is a tree, T is also a tree, hence a complete unfolding
of H . □

We will reserve the notation Unf (H) to the complete unfolding defined as a tree of walks in H . It
is defined in [4, 12, 15], but not characterized by a universality property.

3.2. Complete unfoldings and regular trees

The notion of an infinite regular tree is important in applications to semantics, in particular because
the complete unfolding of a finite transition system is regular [4, 10, 11], and more generally for the
monadic second-order logic of infinite structures, see [12, 15]. We will consider regular trees that are
complete unfoldings of finite digraphs.

A graph, a digraph or a tree can have labels attached to its vertices, nodes, edges or arcs.

Definition 3.8: Regular trees.

A rooted, possibly labelled, tree T is regular10 if it has finitely many subtrees T/x (inheriting
the possible labels of T ), up to isomorphism, which we will denote by u.t.i., that is, if the set of
isomorphism classes {[T/x]≃ | x ∈ NT } is finite. In the latter case, its cardinality is the regularity
index of T, denoted by Ind(T ). If T is regular, each subtree T/x is regular of no larger index because
(T/x)/y = T/y for y ≤T x (which means that x is on the directed path from the root to y). □

10Slightly different notions of regular trees are studied in [10, 12, 15]. However, they have in common the finiteness of the
set of subtrees T/x up to isomorphism.
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Every finite tree is regular. A rooted tree of height 1 (a star) is regular of index 2. We will prove that
the complete unfolding of a finite, rooted and weighted digraph H , that may have infinite weights, is
regular of index at most |VH | and has a canonical ”factorization” in terms of a finite weighted digraph
analoguous to the minimal automaton of a regular language.

Let G be a weighted digraph. Let ≈ be the equivalence relation11 on VG such that x ≈ y if and only
if Unf (G/x) ≃ Unf (G/y). According to the definitions of Section 1.2, the quotient H := G/ ≈ is
the simple digraph defined as follows: VH := {[x]≈ | x ∈ VG} and EH := {([x]≈, [y]≈) | G
has an arc x → y}. If G is rooted, we take rtH := [rtG]≈. We have a surjective homomorphism
η : G → H. We now define weights on the arcs of H . If e is an arc x → y of G, we define
λ′
G(e) := Σ{λG(f) | f : x → z is an arc of G for some z ≈ y}.

Lemma 3.9: Let x, x′ be vertices of G such that x ≈ x′.
(1) If there is an arc x → y for some y, then there is one x′ → y′ such that y′ ≈ y.
(2) If e is an arc x → y, e′ is an arc x′ → y′ such that y′ ≈ y, then λ′

G(e) = λ′
G(e

′).

Proof:
(1) Assume x ≈ x′. Let α : Unf (G/x) → G/x by the unfolding homomorphism, mapping the root
x of Unf (G/x) to x, and similarly α′ : Unf (G/x′) → G/x′ mapping the root x′ of Unf (G/x′) to
x′. Let µ be an isomorphism Unf (G/x) ≃ Unf (G/x′). It maps x to x′.

Let e be an arc x → y of G. There is u in Unf (G/x) such that α(u) = y and x → u in Unf (G/x).
Let y′ := α′(µ(u)). We have x′ → µ(u), hence an arc x′ → y′ in G.

We have Unf (G/y) ≃ Unf (G/x)/u ≃ Unf (G/x′)/µ(u) ≃ Unf (G/y′). Hence, y′ ≈ y.
(2) If e is an arc x → y of G and with the same notation as in (1), we observe that, since α is an

unfolding, λ′
G(e) is the number of sons u of the root of the tree Unf (G/x) such that Unf (G/x)/u ≃

Unf (G/y). Then, if e′ is an arc x′ → y′, we have similarly that λ′
G(e

′) is the number of sons u′

of the root of the tree Unf (G/x′) such that Unf (G/x′)/u′ ≃ Unf (G/y′). Since y′ ≈ y, we have
λ′
G(e) = λ′

G(e
′). □

Definition 3.10: The canonical quotient of a rooted and weighted digraph.
Let G be a rooted and weighted digraph and H := G/ ≈ as above. The mapping η such that

η(x) := [x]≈ if x ∈ VG and η(e) := ([x]≈, [y]≈) if e is an arc x → y of G is a homomorphism
G → H that is surjective by Lemma 3.9(1).

We define a weight function on H by λH([x]≈, [y]≈) := λ′
G(e) for any arc e : x → z of G such

that z ≈ y. It is well-defined by Lemma 3.9(2).
Furthermore, if G is vertex-labelled, then x ≈ y implies that x and y have same label. The quotient

digraph H := G/ ≈ is vertex-labelled and the homomorphism η : G → H preserves labels.
We define the size |G| of a digraph G as |VG| + |EG|. □

Proposition 3.11: (1) The homomorphism η : G → G/ ≈ is an unfolding.
(2) If G is finite, then G/ ≈ is, up to isomorphism, the unique rooted and weighted digraph of

minimal size of which G is an unfolding.
11If G is rooted so that Unf (G) is defined, an equivalent expression of x ≈ y is Unf (G)/u ≃ Unf (G)/v where u, v are
nodes of Unf (G) such that α(u) = x, α(v) = y and α : Unf (G) → G is the complete unfolding.
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Proof:
(1) As observed in Definition 3.10, the homomorphism η : G → G/ ≈ is surjective. It is an unfolding
by the proof of Lemma 3.9(2).

(2) If G is finite, then |G| ≥ |H|. If α : G → K is an unfolding, then there is an unfolding
β : K → H that we define as follows:

β(u) := [x]≈ where u ∈ VK and α(x) = u;

β(e) := ([x]≈, [y]≈) where e : u → v is an edge of K, α(x) = u, α(y) = v and x → y is an edge
of G.

It is easy to see that β is an unfolding. Hence, |K| ≥ |H|. If |K| = |H|, it is an isomorphism. □

Example 3.12: Figure 3 shows to the left a weighted digraph G with vertex set {s, u, v, w, x, y, z}.
The weights that are not shown are equal to 1. We have s ≈ w ≈ y and u ≈ v ≈ x ≈ z. The quotient
digraph G/ ≈ is shown to the right. □

Figure 3. A digraph G and its quotient G/ ≈, cf. Example 3.12.

We now consider the case where R is a regular tree. Theorem 3.14 will prove that ≈ and G/ ≈
are computable if G is finite.

Theorem 3.13: (1) A rooted tree T is regular of index at most p if it is the complete unfolding of a
finite, rooted and weighted digraph having p vertices.

(2) Conversely, a regular tree T is the complete unfolding of a unique rooted and weighted simple
digraph having Ind(T ) vertices.

(3) If η : T → H is a complete unfolding of a rooted and weighted digraph having p vertices
(p ∈ N+), then the labelled rooted tree Tη (where each node u is labelled by η(u)) is regular of index
at most p.

Proof:
(1) Let η : T = Unf (H) → H be the unfolding homomorphism where H is a rooted and weighted
digraph having p vertices. If u, v ∈ NT and η(u) = η(v) = x, then T/u ≃ T/v because these two
trees are complete unfoldings of H/x by Proposition 3.4(2). It follows that T is regular and its index
is at most the number of vertices of H .
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(2) Conversely, let T be a regular tree of index p. Let ≈ be the equivalence relation on NT such
that u ≈ v if and only if T/u ≃ T/v. We have T/u ≃ Unf (T/u). The quotient construction of
Definition 3.10 shows that T is the complete unfolding of the finite, rooted and weighted digraph
T/ ≈, that has p vertices.

(3) Easy extension of (1). □

Finite, rooted and weighted digraphs can be used as finite descriptions of regular trees. Although
an arc of weight p ∈ N+ can be replaced (cf. Definition 3.7) by p parallel arcs and a loop of weight
q ∈ N+ by q loops, the use of weights gives more concise descriptions. Furthermore, the weight ω
makes it possible to describe trees of infinite degree in finitary ways, by means of finite arc-labelled
digraphs12. The following result shows that this description is effective.

Theorem 3.14: Given a finite weighted digraph H and two vertices x, y ∈ VH , one can decide whether
Unf (H/x) ≃ Unf (H/y).

We need a few technical definitions and lemmas.

Definition 3.15: Equivalent weighted sets.

Let R be an equivalence relation on a set V and X,Y ⊆ V.
(a) Let X = (X,λ) and Y = (Y, λ′) be weighted sets.
We write X ∼ Y (mod R) if:

(C) For every equivalence class C of R, we have λ(C ∩X) = λ′(C ∩ Y ).

Equivalently, for every x ∈ X , there is y ∈ Y such that λ([x]R ∩X) = λ′([y]R ∩ Y ) and (x, y) ∈ R,
and similarly, for every y ∈ Y , there is x ∈ X such that (x, y) satisfies the same property. This is an
equivalence relation. Condition (C) implies that λ(X) = λ′(Y ).

(b) A witness of the equivalence X ∼ Y (modR) is a set S ⊆ X×Y with weight function µ, that
is the (disjoint) union of witnesses of the weight equalities λ(C ∩X) = λ′(C ∩Y ) for all equivalence
classes C of R, (cf. Lemma 2.1(3). □

We say that an equivalence relation R refines an equivalence relation R′ on the same set if each
class of R′ is a union of classes of R. This is written R ⊆ R′, by considering equivalence relations as
sets of pairs.

In the following two lemmas, V,R,X and Y are as in the previous definition.

Lemma 3.16: If X ∼ Y (mod R) and R ⊆ R′, then X ∼ Y (mod R′).

Proof:
Each class C ′ of R′ is the union of (disjoint) classes C1, C2, . . . of R. Hence, λ(C ′ ∩X) = λ(C1 ∩
X) + λ(C2 ∩X) + . . . and similarly for Y . The result follows. □

12In Section 4, weights on half-edges of graphs will be even more important, as they will allow us to describe, as universal
coverings of finite weighted graphs, trees of finite degree that are not universal coverings of any finite graph. Furthermore,
weights ω will yield trees with nodes of infinite degree.
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Lemma 3.17: Assume that X ∼ Y (mod R). Let U and W be sets, and κ and η be weighted surjec-
tions13, respectively U → X and W → Y . There is a bijection ℓ : U → W such that (κ(u), η(ℓ(u)) ∈
R for all u in U . Furthermore, for any u0 ∈ U and w0 ∈ W such that (κ(u0), η(w0)) ∈ R, one can
find ℓ as above such that ℓ(u0) = w0.

Proof:
We have a bijection γ : Set(X,λ) → Set(Y, λ′) such that14 γ(x, i) = (y, j) implies (x, y) ∈ R, and
bijections κ′ : U → Set(X,λ) and η′ : W → Set(Y, λ′). We define ℓ := η′−1 ◦ γ ◦ κ′.

For proving the last assertion, we choose γ such that γ(κ(u0), i) = (η(w0), j) for some i, j. □

The bijection ℓ is uniquely defined if λ([x]R ∩X) = λ′([y]R ∩ Y ) = 1 for all x ∈ X and y ∈ Y ,
but not otherwise. We now prove Theorem 3.14.

Proof:
Let H be a finite weighted digraph15 and ≈ be the equivalence relation on VH such that x ≈ y if and
only if Unf (H/x) ≃ Unf (H/y). We recall from Section 2 that N+

H (x) is the set of heads of the arcs
with tail x and that N+

H (x) := (N+
H (x), η) where η(y) is the sum of the weights λH(e) of the arcs

e : x → y (cf. Definition 3.2, H may have parallel arcs).

Claim 1: The equivalence relation ≈ satisfies the following property, that we state for an arbitrary
equivalence relation R on VH :

(E): If xRy then N+
H (x) ∼ N+

H (y) (mod R).

Proof : This follows from Lemma 2.4 and the definitions. □

Claim 2: If R is an equivalence relation on VH that satisfies Property (E), then R ⊆ ≈.

Proof : We consider (x, y) ∈ R, and we let κ : T → H/x and κ′ : T ′ → H/y be the unfolding
homomorphisms where T := Unf (H/x) and T ′ := Unf (H/y).

For each i, we construct by induction an isomorphism ηi : T ↾ i → T ′ ↾ i such that (κ(u), κ′(ηi(u))) ∈
R for every node u of T ↾ i, and ηi+1 extends ηi. The common extension of these isomorphisms will
be an isomorphism T → T ′, proving that x ≈ y.

We let η0 map rtT to rtT ′ . We have (x, y) = (κ(rtT ), κ
′(η0(rtT ))) ∈ R, as was to be verified.

We now define ηi+1 extending ηi.
Consider v in T ↾ (i + 1) at depth i + 1 and its father u. Then w := ηi(u) is a node of T ′ ↾

i. Furthermore κ induces a weighted surjection N+
T (u) → N+

H (κ(u)), and similarly, κ′ induces a
weighted surjection N+

T (w) → N+
H (κ′(w)). By the inductive property of ηi, we have (κ(u), κ′(w)) ∈

R. Hence, by Property (E), we have N+
H (κ(u)) ∼ N+

H (κ′(u))(mod R). By Lemma 3.17, there is
a bijection ℓu : N+

T (u) → N+
T (w) such that (κ(s), κ′(ℓu(s)) ∈ R for each s in N+

T (u) (s is in
T ↾ (i+ 1)). We define ηi+1(s) := ℓu(s) for every son s of u in T .

13A weighted surjection of a set X onto a weighted set is well-defined by considering that each element of X has weight 1.
14We recall that we write γ(x, i) for γ((x, i)).
15It is not necessarily rooted.



B. Courcelle / Unfoldings and Coverings 17

We do that for all nodes v at depth i+ 1 in T . We obtain the desired extension with the inductive
property (t, ηi+1(t)) ∈ R for every node t of T ↾ (i+ 1). □

There are finitely many equivalence relations R on VH . For each of them, one can check if it
satisfies Property (E) and contains the pair (x, y). Then x ≈ y if and only if one of them has these two
properties. □

The following algorithm is similar to the minimization of finite deterministic automata. It will
help to prove Theorem 3.20.

Algorithm 3.18: Deciding the isomorphism of complete unfoldings.

Input: A finite weighted digraph16 H .
Output: The equivalence relation ≈ on VH such that x ≈ y if and only if Unf (H/x) ≃ Unf (H/y).

Method: We define a decreasing17 sequence of equivalence relations Ri, i ≥ 0 on VH as follows:

R0 = VH × VH ;

Ri+1 = Ri ∩ {(x, y) | N+
H (x) ∼ N+

H (y) (mod Ri)}.

We have Ri+1 = Ri for some i := imax, and we output Ri as the desired result.

Proposition 3.19: Algorithm 3.18 is correct and terminates with imax ≤ |VH | − 1.

Proof:
Let R be the intersection of the relations Ri. It is clear that if Ri+1 = Ri, then Ri+2 = Ri+1 etc... so
that, Ri = R. This guarantees termination.

Each step such that Ri+1 ̸= Ri splits at least one equivalence class of Ri. Such a splitting cannot
be done more than |VH | − 1 times.

We now prove the correctness, i.e., that ≈ = R.
We prove that ≈ ⊆ Ri for all i. This is clear for i = 0. Assume now ≈ ⊆ Ri. If x ≈ y,

then N+
H (x) ∼ N+

H (y) (mod ≈), hence N+
H (x) ∼ N+

H (y) (mod Ri) by Lemma 3.16, and so,
(x, y) ∈ Ri+1. Hence, ≈ ⊆ R.

The relation R satisfies Property (E), hence R ⊆ ≈ by Claim 2 in the proof of Theorem 3.14. □

The following result is similar to a theorem by Norris [21] about universal coverings that we
presented in the introduction and that we will generalize in Section 4 to weighted graphs. See [13],
it implies that, for every regular tree, there is a first-order sentence using the generalized quantifier
”there exists ω elements x that satisfy...” of which it is the unique model that is a rooted tree.

Theorem 3.20: Let H be a finite weighted digraph with p vertices. If x, y ∈ VH , then:

Unf (H/x) ↾ (p− 1) ≃ Unf (H/y) ↾ (p− 1) implies Unf (H/x) ≃ Unf (H/y).
16It need not be connected. In order to decide whether Unf (G/x) ≃ Unf (G′/y) where G ̸= G′, we can use this algorithm
by taking for H the union of G and a disjoint copy of G′.
17It is decreasing for set inclusion. Hence, the equivalence Ri+1 refines Ri.
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Proof:
We use the relations Ri of Algorithm 3.18. We know by Proposition 3.19 that ≈ = Rp−1.

Claim: If Unf (H/x) ↾ (p− 1) ≃ Unf (H/y) ↾ (p− 1), then (x, y) ∈ Rp−1.
Proof : By using induction, we prove that for every i:
Unf (H/x) ↾ i ≃ Unf (H/y) ↾ i implies (x, y) ∈ Ri.
If i = 0, this fact holds because (x, y) ∈ R0 for all x, y.
We prove the case i + 1 by assuming that we have an isomorphism α : Unf (H/x) ↾ (i + 1) →

Unf (H/y) ↾ (i + 1). Hence Unf (H/x) ↾ i ≃ Unf (H/y) ↾ i and (x, y) ∈ Ri by the induction
hypothesis.

We now check that N+
H (x) ∼ N+

H (y) (mod Ri) in order to obtain that (x, y) ∈ Ri+1.
Let η : Unf (H/x) → H/x and η′ : Unf (H/y) → H/y be complete unfoldings. We have

η(rtUnf (H/x)) = x and η′(rtUnf (H/y)) = y.
For each son u of rtUnf (H/x), α defines an isomorphism:
Unf (H/x)/u ↾ i → Unf (H/y)/α(u) ↾ i,
where α(u) is a son of rtUnf (H/y). But Unf (H/x)/u = Unf (H/η(u)) and Unf (H/y)/α(u) =

Unf (H/η′(α(u))). Hence (η(u), η′(α(u))) ∈ Ri by induction.
Then N+

H (x) is the set of such η(u) and N+
H (y) is that of such η′(α(u)). By counting occurrences,

we obtain N+
H (x) ∼ N+

H (y)(mod Ri). Hence, (x, y) ∈ Ri+1. □

If Unf (H/x) ↾ (p−1) ≃ Unf (H/y) ↾ (p−1), we have (x, y) ∈ Rp−1 by the claim, hence x ≈ y
as was to be proved since Rp−1 = ≈ by Proposition 3.18. □

Remark 3.21: By the proof of Proposition 3.19, Unf (H/x) ↾ (p−1) ≃ Unf (H/y) ↾ (p−1) implies
Unf (H/x) ↾ i ≃ Unf (H/y) ↾ i for all i. We might think that this implies Unf (H/x) ≃ Unf (H/y).
This argument is correct only if Unf (H/x) and Unf (H/y) have finite degree, by using König’s
Lemma, as in the proof of Lemma 2.7 of [17].

However, this implication is false for trees with nodes of infinite degree. Let T be the union of the
finite paths 0 → (1, i) → (2, i) → · · · → (i, i) for all i ∈ N+, and T ′ be T together with the infinite
path 0 → 1 → 2 → · · · → i → . . . . They are not isomorphic, but T ↾ i ≃ T ′ ↾ i for each i. Theorem
3.14 is used for proving Theorem 3.20. To prove its Claim 2, we cannot use König’s Lemma because
the trees Unf (H/x) and Unf (H/y) need not have finite degree. Instead, we construct a sequence of
isomorphisms:

ηi : Unf (H/x) ↾ i → Unf (H/y) ↾ i such that ηi+1 extends ηi.

Their common extension yields an isomorphism: Unf (H/x) → Unf (H/y). □

The following theorem is similar to that of Leighton about coverings ([18], see below Theorem
4.10), and much easier to prove.

Theorem 3.22: Given two finite, rooted and weighted digraphs G and H , the following properties are
equivalent:

1) G and H are unfoldings of a finite rooted and weighted digraph,
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2) G and H have isomorphic complete unfoldings,
3) G and H have a common finite unfolding.
They are decidable.

Proof:
Without loss of generality, we assume that G and H are disjoint.

1) =⇒2) If G and H are unfoldings of a finite rooted and weighted digraph M , then the complete
unfolding of M is a complete one of both G and H by Theorem 3.5(2).

2) =⇒3) Let γ : T → G and η : T → H be complete unfoldings of G and H .

If u ∈ NT , then T/u ≃ Unf (G/γ(u)) ≃ Unf (H/η(u)) by Proposition 3.4(2).
We define ≈ as the equivalence relation on VG ∪ VH such that x ≈ y if and only if Unf ((G ∪

H)/x) ≃ Unf ((G ∪H)/y)), where Unf ((G ∪H)/x) = Unf (G/x) if x ∈ VG and similarly for H
as G and H are disjoint.

For helping to understand the technical details, we first present the proof for the special case where
there are no two distinct nodes u, v in T with same father, and such that T/u ≃ T/v. This fact implies
that all arcs in G and H have weight 1. In such a case:

(*) if u ∈ NT , the relation T/v ≃ Unf (G/y) defines by Lemma 2.4 a bijection between the
sons v of u in T and the vertices y in N+

G (γ(u)). A similar fact holds for H with the vertices y in
N+

H (η(u)).

We define a digraph L as follows. Its set of vertices is VL := {(x, y) | x ∈ VG, y ∈ VH

and Unf (G/x) ≃ Unf (H/y)}. For each (x, y) ∈ VL, the relation ≈ defines, by Fact (*) above,
a bijection between N+

G (x) and N+
H (y).We define in L an arc (x, y) → (x′, y′) (of weight 1) if

x′ ∈ N+
G (x) and y′ ∈ N+

H (y) (and of course x′ ≈ y′).

We now define K := L/(rtG, rtH). It is a finite and rooted digraph. The projection π1 such that
π1(x, y) := x is an unfolding K → G. The other projection is an unfolding K → H .

We now consider the general case. The construction is similar, but the definition of the arcs
(x, y) → (x′, y′) of L is more complicated because the relation ≈ is not necessarily a bijection
between N+

G (x) and N+
H (y).

We define VL as above. For each (x, y) ∈ VL, we have N+
G (x) ∼ N+

H (y)(mod ≈) by Lemma
2.4. We choose a witness (Sx,y, µx,y) of N+

G (x) ∼ N+
H (y)(mod ≈), cf. Definition 3.15(b). We

define in L an arc (x, y) → (x′, y′) of weight µx,y(x
′, y′) for each (x′, y′) in Sx,y. We now define

K := L/(rtG, rtH). It is rooted and weighted with at most |VG|.|VH | vertices.

Claim: K is an unfolding of G, and, similarly, of H .

Proof of claim: Let π map a vertex (x, y) of K to the vertex x of G, and an arc (x, y) → (x′, y′)
to the arc x → x′ of G. We make a few observations.

(1) If (x, y) ∈ VL and x− x′ is an arc of G, there is an arc (x, y) → (x′, y′) in L. If (x, y) ∈ VK

then (x′, y′) and the arc (x, y) → (x′, y′) are in K that is a subgraph of L.

(2) If x is a vertex in G, there is a directed path from rtG to x and, by (1), a directed path in L
from the root (rtG, rtH) to (x, y) ∈ VL for some y ∈ VH . All vertices and arcs of this path are in K.
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It follows that π is a surjective homomorphism: K → G. We now check Definition 3.2. We verify
the following condition.

(**) For every (x, y) ∈ VK and x′ ∈ N+
G (x), we have:

λG(x, x
′) = Σ{λK((x, y), (x′, y′)) | (x′, y′) ∈ VK}.

By the definition of K, λK((x, y), (x′, y′)) = µx,y(x
′, y′), and the pairs (x′, y′) are in Sx,y. The

weighted set (Sx,y, µx,y) is chosen so that λG(x, x
′) = Σ{µx,y(x

′, y′) | (x′, y′) ∈ Sx,y}. This proves
(**), the claim and point 3).

3) =⇒1) Assume that γ : T → G and η : T → H are complete unfoldings.
Let ≈ be the equivalence relation on NT such that u ≈ v if and only if T/u ≃ T/v. We define M

as the weighted graph T/ ≈, cf. Definition 3.11 and the proof of Theorem 3.12. There are unfoldings:
γ′ : G → M and η′ : H → M . We omit details.

The decidability follows from Theorem 3.19. □

Remarks 3.23: In the proof of 2) =⇒3), T is a complete unfolding of K by Theorem 3.5. Note
however that in this proof, K is not defined in a unique way, in particular because the weighted
relations (Sx,y, µx,y) are not uniquely defined. It is however in the special case we first considered.

4. Coverings

In this section and the next two ones, we will consider undirected graphs, simply called graphs, and
their coverings. We recall from Section 2.1 that a graph G is defined as a triple (V,E, Inc) where the
elements of Inc (a subset of E × V ) are its half-edges. This description allows graphs with parallel
edges and loops. An edge e is a loop at a vertex x if and only if (e, x) ∈ Inc and there is no pair
(e, y) in Inc such that y ̸= x. We denote by Inc(x) the set of half-edges (e, x) for some e ∈ E. Its
cardinality is the degree of x, where a loop at x counts for one.

We will use trees (undirected and without root) and rooted trees, in particular the regular trees
considered in the previous section. Trees and graphs may be labelled.

The main contributions of this section are the definition of weighted graphs, that can be seen
as graph interpretations of degree matrices. We extend coverings to weighted graphs. If two finite
graphs have a common (finite) covering, they cover a common (finite) weighted graph (Theorem
4.10). Regarding characteristic polynomials, we obtain an extension of a known factorization result
(Section 4.3). We postpone to Section 5 the study of universal coverings of weighted graphs.

As in Section 3, equality of trees and graphs is understood in the strict sense: same nodes or
vertices, and same edges or arcs. Equality up to isomorphism is specified explicitely and denoted
by ≃.

4.1. Coverings of graphs: definitions and known results

We mainly review known definitions and facts from [2, 3, 7, 8, 16, 17, 18, 21]. Our main reference for
all assertions is [16] by Fiala and Kratochvı́l.
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We define the adjacency matrix AG of a finite graph G such that VG = [p] := {1, . . . , p} for some
p as follows: AG[x, y] = AG[y, x] is the number of edges between x and y and AG[x, x] is the number
of loops at x.

Definition 4.1: Covering.

(a) Let G,H be graphs. A covering γ : G → H is a surjective homomorphism such that, if
γ(x) = y, then γ defines a bijection EG(x) → EH(y). We will also say that G is a covering of H .

(b) Let G,H be finite, VG = [p] and VH = [q]. A surjective mapping γ : VG → VH can be
represented by a p× q-matrix Bγ such that Bγ [i, j] := if γ(i) = j then 1 else 0. Each row of this
matrix has a unique 1 and each column has at least one 1. Then, γ defines a covering if and only if
AGBγ = BγAH . □

An edge covers a loop incident to a single vertex. More generally, a k-regular graph, i.e. such that
all vertices have degree k, covers k loops incident to a single vertex.

Proposition 4.2: Let γ : G → H be a covering.

(1) If δ : H → K is a covering, then δ ◦ γ : G → K is a covering.
(2) If G and H are finite and H is connected, then, either γ is an isomorphism or |VG| > |VH | and

then, |VG| / |VH | = |IncG| / |IncH | and this number is a positive integer.
(3) If H is a tree and G is connected, then G is a tree and γ is an isomorphism.

Proof:
Assertion (2) is due to Reidemeister (see [7, 8, 22]). Here is a proof sketch (cf. Section 2.1 in [16]).

Let T be a spanning tree of H . It does not include the loops that are irrelevant to connectedness.
Then, γ−1(ET ) is a set of edges of G. By the definition of a covering, it is the union of k pairwise
disjoint trees, all isomorphic to T by γ. This union includes all vertices, hence |VG| / |VH | = k.

We now prove that |IncG| / |IncH | = k.

Consider the edges e of G such that γ(e) is a loop at x in H . Such an edge may link two vertices
in different connected component of G. We have the pair (γ(e), x) in IncH and a single pair of the
form (e, u) such that γ(u) = x in each connected component of G. Hence, there are k such edges e.

Consider now the edges e of G such that γ(e) : x − y is not a loop in H . We have (γ(e), x) and
(γ(e), y) in IncH . Each e yields exactly two pairs (e, u) and (e, v) in IncG such that γ(u) = x and
γ(v) = y. There are exactly 2k such pairs (e, u) and (e′, v) in IncG. Hence, |IncG| / |IncH | = k.

(3) This is known from [16, 22] if H is finite. Assume now that H is infinite. Consider as in (2)
the edges of γ−1(EH) of G. They form a union of spanning trees T of G. There are no other edges in
G. As G is connected, it is a tree. □

Definition 4.3: Degree matrix

(a) For every finite graph G, there is a unique partition (B1, . . . , Bp) of VG having a minimum
number of classes, such that for every i, j ∈ [p], every vertex x in Bi has the same number of neigh-
bours, say ri,j , in Bj . It is called the degree (refinement) partition. It can be computed in polynomial
time [6].
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(b) Let α : VG → [p] maps a vertex x to the integer i such that x ∈ Bi. We call α a good indexing
of VG. The numbers ri,j can be organized into a p× p matrix MG,α such that and MG,α[i, j] = ri,j .
It is called the degree (refinement) matrix of G. This matrix may not be symmetric. □

Figure 4. None of these graphs covers any smaller graph. See Example 4.4.

Example 4.4: The two graphs of Figure 4 have degree partition (B1, B2) where B1 = {a} and B2

consists of the six other vertices. The corresponding matrix is M :=

[
0 6

1 2

]
. As both have 7 vertices,

a prime number, they cannot cover any graph apart themselves by Proposition 4.2(2) (an observation
made by Boldi and Vigna in [9]). They cover a common weighted graph H whose weight matrix is
M , see Example 4.20(4). □

Lemma 4.5: If G and H are finite, if α is a good indexing of VH and γ : G → H is a covering, then
α ◦ γ is a good indexing of VG and MG,α◦γ = MH,α.

Proof:
Because of γ, the graphs G and H have same degree matrices (for some appropriate numbering of the
components of the degree partition, cf. [16], Section 4.1). Then α ◦ γ is a good indexing of VG and
the equality MG,α◦γ = MH,α follows from the definitions. □

Definition 4.6: Universal coverings
(a) A covering of a graph H that is a tree is called a universal covering of H (hence H is connected,

cf. Remark 4.19).
(b) Every connected graph H has a universal covering constructed as follows. For a vertex x of

H , we define UC(H,x) as the rooted tree of all finite walks in H that start at x and do not use
a same edge (including a loop) twice in a row. The tree Unr(UC(H,x)) is obtained by forgetting
the root of UC(H,x) and its orientation. It is a covering of H , hence a universal one. We have
Unr(UC(H,x)) ≃ Unr(UC(H, y)) for any two vertices x and y ([16], Section 4.2). Examples are
given below. □

Examples 4.7: (1) An edge is the universal covering of a single loop. A path with 4 vertices is that of
an edge with a loop at one of its ends.
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(2) If H consists of two parallel edges, then Unr(UC(H,x)) is a biinfinite path, i.e., the union
of two infinite paths originating from a same node. (A biinfinite path is somehow isomorphic to Z).
Equivalently, it is the unique tree u.t.i. (up to isomorphism) whose nodes have all degree 2. It is also
the universal covering of two loops at a same vertex or of any cycle.

(3) The universal covering of a connected k-regular graph is the infinite tree whose nodes have all
degree k. This is clear from the construction recalled in Definition 4.6(b). □

We recall that if u is a node of a tree T , then Tu is the rooted tree obtained by taking u as the root.

Proposition 4.8: Let H,H ′ be graphs.

(1) If γ : T → H is a universal covering and u ∈ NT , then Tu ≃ UC(H, γ(u)).
(2) If there an isomorphism of H to H ′ maps x to y, then UC(H,x) is isomorphic to UC(H ′, y).

Proof:
(1) We will prove below a generalization of this fact for weighted graphs.

(2) This is clear from the descriptions of UC(H,x) and UC(H ′, y) in terms of walks. □

By Assertion (1) and Definition 4.6(b), all universal coverings of H are isomorphic. One can speak
of the universal covering of H, denoted18 by UC(H).

Remark 4.9: The converse to Assertion (2) does not hold when H = H ′. Take for a counter-example
the union of the two graphs of Figure 4 with an edge between the two vertices marked a, that we will
call x and y. Then UC(H,x) ≃ UC(H, y) but there exists no automorphism of H that maps x to
y. □

The relevance to distributed computing can be stated as follows: if x and y are two nodes of a
network represented by a graph H and UC(H,x) ≃ UC(H, y), then, no computation in H (following
certain rules, see [2]) can distinguish x from y. It follows that an election algorithm that would select
x would also select y, hence would not be correct.

Theorem 4.10: Let G,H be finite and connected graphs. The following properties are equivalent.

(i) G and H have a common finite covering,
(ii) G and H have isomorphic universal coverings,
(iii) MG,α = MH,β for some good indexings α and β of VG and VH .

The implication (iii)=⇒(i) has a difficult proof by Leighton in [18]. We will prove in Theorem
6.1 below is a special case of it from which follows that of regular graphs, known from Angluin and
Gardiner [3].

If G and H have the same number of vertices, them (iii) implies that they are fractionally isomor-
phic by Theorem 6.5.1 of the book [23]. We will not develop this aspect in the present article.

18The use of boldface letters is intended to recall that UC(H) is only defined up to isomorphism. Most proofs about
universal coverings will be done from the concrete trees Unr(UC(H,x)).



24 B. Courcelle / Unfoldings and Coverings

We will interpret a degree matrix MG,α and a good indexing α of a graph G as a covering α :
G → M where M is a finite weighted graph. Furthermore, we will allow infinite weights and obtain
universal coverings that are trees of infinite degree, as in Section 3 for unfoldings.

Definition 4.11: Equivalences on graphs that yield coverings.

We recall from Section 1 that an equivalence relation ∼ on a graph G = (V,E, Inc) is an equiv-
alence relation on V ∪ E such that each equivalence class is a set of vertices or of edges, and, if
e and e′ are equivalent edges, then each end of e is equivalent to an end of e′. The quotient graph
is then defined as G/ ∼:= (V/ ∼, E/ ∼, IncG/∼) such that ([e]∼, [v]∼) ∈ IncG/∼ if and only if
(e′, v′) ∈ IncG for some e′ ∼ e and v′ ∼ v.

We say that such an equivalence ∼ is strong if, whenever x and x′ are equivalent vertices, it defines
a bijection between E(x) and E(x′). □

Proposition 4.12: (1) If ∼ is a strong equivalence on a graph G, then the surjection α : V ∪ E →
(V/ ∼) ∪ (E/ ∼) that maps x to its equivalence class [x]∼ is a covering G → G/ ∼.

(2) Every connected graph H is isomorphic to T/ ∼ where T is its universal covering and ∼ is a
strong equivalence relation on T .

Proof:
(1) The proof is straightforward.

(2) We let γ : T → H be a universal covering where T = (N,E, Inc). We define x ∼ y for
x, y ∈ N ∪ E if and only if γ(x) = γ(y). Then T/ ∼ is isomorphic to H . □

Quotients of trees will be studied in Sections 5.2 and 6.

4.2. Coverings of weighted graphs

We extend to weighted graphs the notion of covering. The two graphs of Example 4.4 cover a same
weighted graph but no same graph. The case of finite weighted graphs will be of particular interest,
because they provide us with finite descriptions of certain regular trees.

Definitions 4.13: Weighted graphs and weight matrices.

(a) A weighted graph is a quadruple G = (V,E, Inc, λ) such that (V,E, Inc) is a simple graph
(it has no two parallel edges and no two loops at a same vertex) and λ is a weight function: Inc →
N+ ∪ {ω}. The two halves of an edge may have different weights.

A graph G is made into a weighted graph W (G) as follows: p parallel edges between x and y are
fused into a single edge whose two half-edges have weight p; similarly, p loops at x are fused into a
single one at x of weight p. A simple graph is a weighted graph whose weights are all 1.

(b) A finite weighted graph G with vertex set equal to (or indexed by) [p] can be represented by
the weight matrix MG : [p] × [p] → N ∪ {ω} such that MG[x, y] := λG(e, x) if e : x − y. Then the
sum of weights of the half-edges is the sum of coefficients of MG.
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Definition 4.14: Coverings of weighted graphs

Let H and G be a weighted graphs. A covering γ : G → H is a surjective homomorphism of
unweighted graphs such that, if x ∈ VG, γ(x) = y and e ∈ EH(y), then:

λH(e, y) = Σ{λG(e
′, x) | e′ ∈ EG(x), γ(e

′) = e},
or equivalently, γ induces a weighted surjection (IncG(x), λG) → (IncH(y), λH).

We will say that G is a covering of H .

Remarks 4.15: (1) If in Definition 4.14, G be a graph, then λH(e, y) = |{e′ | e′ ∈ EG(x), γ(e
′) = e}| ,

and, equivalently, γ induces a weighted surjection IncG(x) → (IncH(y), λH). The degree of x in G
is the sum of weights of the half-edges in IncH(γ(x)).

(2) If H is a simple graph, then G is a graph and the condition implies that γ is injective on each
set IncG(x), whence bijective: we get the notion of covering of Section 4.1.

(3) Each graph G covers the weighted graph W (G). □

Coverings of finite weighted graphs, even having infinite weights, can also be expressed in terms
of weight matrices (as for graphs in terms of adjacency matrices, cf. Definition 4.1).

Let G and H be finite weighted graphs and α : VG → VH be surjective, where VG = [p] and
VH = [q]. This mapping is represented by the matrix Bα (as in Definition 4.1) such that:

Bα[i, j] := if α(i) = j then 1 else 0.

The following proposition is straightforward from the definition. For defining the product of two ma-
trices, we use the rules ω + x = ω for every x, ω.x = ω if x > 0 and ω.0 = 0. We need no
substractions.

Proposition 4.16: A homomorphism α : G → H is a covering if and only if MGBα = BαMH .

Remark 4.17: Here is a method to build a graph G that covers a finite or infinite weighted graph H .
It is similar to the construction of the proof of Proposition 4.2(2). Given H = (V,E, Inc, λ), we
construct G = (V ′, E′, Inc′), as follows (it is unweighted).

We choose a set V ′ and a surjective mapping α : V ′ → V . For each x ∈ V ′ and (e, α(x)) ∈
Inc, we create λ(e, α(x)) (yet abstract) half-edges incident with x, defined as pairs ((e, i), x) for
i = 1, 2, . . . , λ(e, α(x)). In this way, we have defined Inc′. We let α map ((e, i), x) to (e, α(x)).

We choose a partial matching M on Inc′ satisfying the following property:

A pair in M is of the form (((e, i), y),((e, j), z)) such that y ̸= z and e : α(y) − α(z) is
an edge of H , and this pair defines an edge f in G; we define α(f) := e.

If ((e, i), y) is not matched in M , then e is a loop in H incident with α(y); ((e, i), y) is a
loop f of G and define α(f) := e.

There are numerical constraints on V ′ and α, as we will see in Theorem 4.24.
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Figure 5. See Remark 4.17

For an example illustrating this construction, Figure 5 shows the weighted graph H of Example
4.4 with vertices a and b. It shows above an intermediate step H in the construction of G, where
α−1(a) = {a′} and α−1(b) consists of the six other vertices. The half-edges are solid lines. The
matching is shown by dotted lines. The two half-edges that are not matched yield loops in the final
graph shown to the right. Their drawing recalls that they count for one in the degree of their vertices.
The graph G covers the same weighted graph H as the two graphs of Figure 4. □

As for graphs (Proposition 4.2(1)), we have:

Proposition 4.18: Let G,H,K be weighted graphs. If γ : G → H and δ : H → K are coverings,
then so is δ ◦ γ : G → K. The same holds if G is a graph, or if G and H are graphs.

Remark 4.19: If two disjoint weighted graphs are coverings of H , then, their union is a covering of
H . If γ : G → H is a covering and G is connected, then H is connected because γ maps every path
in G to a walk in H . If H is not connected, then G is the union of (disjoint) coverings of its con-
nected components. It follows that we need only consider connected coverings of connected weighted
graphs.

Examples 4.20: 1) The complete bipartite graph K3,4 (with 3+4 vertices) covers H consisting of one
edge whose half-edges have weights 4 and 3. Although H is a tree, Proposition 4.2(3) does not hold.
Proposition 4.2(2) does not either: |VG| need not be a multiple of |VH | when G is a covering of a
weighted graph H .

2) A graph G consisting of 3 parallel edges covers the graph W (G) consisting of an edge whose
two half-edges have weight 3, that itself covers a loop of weight 3.

3) If H has a loop of weight p at a vertex x, then H is covered by the weighted graph built as
follows: we remove the loop at x, obtaining thus H ′; we take the union of H ′ and a disjoint copy of it
where x′ is the copy of x and we add one edge between x and x′ whose two half-edges have weight p.

4) The two graphs of Figure 4, Example 4.4 cover both the weighted graph H shown in Figure 5.
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5) The graph G consisting of two vertices, x and y, an edge e : x− y and loops f and g at x and y
with weights λ(e, x) = 3, λ(e, y) = 2, λ(f, x) = 4 and λ(g, y) = 5, covers H consisting of a single
vertex with a loop of weight 7.

The Kronecker product of a weighted graph H by an edge is a weighted bipartite graph, whose
universal covering is that of H . We will use this notion in Section 6.

Definition 4.21: Kronecker product by an edge.

Let H be a weighted graph. Its Kronecker (or categorical) product by K2 (a single edge) is the
weighted bipartite graph H×K2 defined as follows. Its vertex set is VH×K2 := VH×{1, 2}, partitioned
into (VH × {1}, VH × {2}). For each edge e of H between x and y ̸= x, H ×K2 we have the edge
ex,y : (x, 1) − (y, 2) (and also ey,x : (y, 1) − (x, 2)). A loop e at x yields a unique non-loop edge
ex,x : (x, 1)− (x, 2). The weight λG(ex,y, (x, i)) is λH(e, x) for i = 1, 2. □

Lemma 4.22: Let G and H be weighted graphs.

(1) There is a covering H ×K2 → H.

(2) From a covering α : H → G one can define a covering α′ : H ×K2 → G×K2.

Proof:
(1) The mapping π: (x, i) 7−→ x, ex,y 7−→ e is a covering: H × K2 → H . If H is connected and
bipartite, then H×K2 has two connected components, that are isomorphic. Each of them is a covering
of H .

(2) From α : H → G, we define α′ : H × K2 → G × K2 by α′(x, i) := (α(x), i) and
α′(ex,y) := α(e)α(x),α(y). □

In particular, every (finite) weighted graph is covered by a (finite) weighted bipartite graph.

Example 4.23: Weighted graphs, weight matrices and coverings.

Every matrix W : [p]× [p] → N ∪ {ω} such that W [x, y] = 0 implies W [y, x] = 0 is the weight

matrix of a finite weighted graph with p vertices. The matrix M :=

[
1 3

2 0

]
is the weight matrix of

H having one edge e : x − y, weights λ(e, x) = 3, and λ(e, y) = 2 and a loop at x of weight 1. It is
covered by the graph G equal to K2,3 with an additional edge between the two vertices of degree 3.
Then we have:

Bα =


1 0

1 0

0 1

0 1

0 1

, MG =


0 1 1 1 1

1 0 1 1 1

1 1 0 0 0

1 1 0 0 0

1 1 0 0 0

 and MGBα =


1 3

1 3

2 0

2 0

2 0

 = BαMH

where α(1) = α(2) = 1 and α(3) = α(4) = α(5) = 2. □
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The following theorem is stated without proof in [18] but is essential in this article (which proves
a part of Theorem 4.10 ; see also [16], Section 4.1).

Theorem 4.24: Given a finite weighted graph H with finite weights, one can decide if it is covered by
a finite unweighted graph G. If this is the case, one can construct G loop-free.

Proof:
Let H = ([p], E, Inc, λ) be a finite weighted graph with finite weights. We first assume that H has no
loops.

Assume that γ : G → H is a covering where G is a finite graph.
For each i, let wi :=

∣∣γ−1(i)
∣∣. Let ei,j : i − j be an edge of H , with i < j. Let mi,j = λ(ei,j , i)

and mj,i = λ(ei,j , j). We have
∣∣γ−1(ei,j)

∣∣ = mi,j .wi = mj,i.wj .
Consider the system ΣH of equations of the form mi,j .xi = mj,i.xj , with one equation for each

edge ei,j . It is satisfied by the numbers (w1, . . . , wp). This system may have no solution. We give an
example after the proof.

Claim 1: If ΣH has a solution (w1, . . . , wp) in positive integers, then this p-tuple is equal to
(
∣∣γ−1(1)

∣∣ , . . . , ∣∣γ−1(p)
∣∣) for some finite covering γ of H by a graph G.

Proof : We define G from (w1, . . . , wp). Its vertices are the pairs (i, s) where i ∈ [p] = V and
s ∈ [wi]. For an edge ei,j of H , we let m := mi,j .wi = mj,i.wj . We define as follows m edges
f1, . . . , fm between the vertices (i, s) and (j, s′) where s ∈ [wi] and s′ ∈ [wj ].

We partition [m] into pairwise disjoint intervals19 ;
[m] = I1 ∪ I2 ∪ · · · ∪ Iwi , where all intervals Iq have size mi,j , and also
[m] = J1 ∪ J2 ∪ · · · ∪ Jwj , where all intervals Jq have size mj,i.
For k ∈ [m], we define an edge fi,j,k between (i, s) and (j, s′) if and only if k ∈ Is ∩ Js′ . We

define γ(fi,j,k) := ei,j . Hence, γ is a surjective homomorphism.
For each vertex (i, s), if ei,j is an edge in H , then the edges fi,j,k such that γ(fi,j,k) := ei,j are

those such that k ∈ Is ∩ Js′ for some s′. There are mi,j such edges. Similarly for each vertex (j, s′)
such that ei,j is an edge in H (hence where i < j) , there are mj,i edges fi,j,k such that γ(fi,j,k) := ei,j :
they are those such that k ∈ Is ∩ Js′ for some s. Hence, G is a finite covering of H . □

Claim 2: A system ΣH has a solution in positive integers if and only if it has one in rational
numbers. This is decidable and a solution in positive integers can be computed if there is one. If H is
a tree, then ΣH has a solution.

Proof : We first decide if ΣH has a solution in real numbers. We eliminate unknowns one by one.
To eliminate an unknown x, we list the equations where it occurs: say ax = by, cx = dz, . . . , ex =

fu. Then, any solution must satisfy ba−1y = dc−1z = · · · = fe−1u. We replace the equations
containing x by the new equations ba−1y = dc−1z = · · · = fe−1u. The new system has one less
unknown and has a solution if and only if ΣH has one. From it, we get the value of x. We may obtain
two equations concerning the same variables, say gy = hz, and g′y = h′z, where g, h, g′, h′ are
positive rational numbers. We have no solution if gh′ ̸= g′h: we can stop the construction and report
a negative answer. Otherwise, we discard one of these two equations.
19We use intervals to be easy and concrete, but any two partitions will work. They yield different nonisomorphic graphs.
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If there is a solution, there is one in positive rational numbers. To obtain one in positive integers,
it suffices to multiply all its components by the least common multiple of the denominators.

If H is a tree, then, at each step, we can eliminate an unknown that belongs to a single equa-
tion, equivalently, that corresponds to a leaf. Hence, this step does not create any new equation. The
resulting system still corresponds to a tree. We continue in the same way and we get a solution. □

We now complete the main proof for weighted graphs with loops. Loops do not create constraints:
if we add to a weighted graph L a loop of weight q incident with a vertex x, and if a covering γ of L
by a graph G has been found, then we need only add q loops to G, incident to each vertex in γ−1(x).
We do that for all loops of the given graph H and we get a covering as wanted.

If we replace the obtained graph G by G ×K2 of Lemma 4.22, we obtain a loop-free graph that
covers G hence also H . □

Example 4.25: Let H be the cycle C3 with vertices 1,2,3 and weights on its half-edges such that we
get the equations 2x1 = 3x2, 4x2 = 3x3, x3 = 5x1. This system has no solution in positive integers.
This means that H is not covered by any finite graph. It is covered by the infinite tree described as
follows. Its set of nodes is N1 ∪ N2 ∪ N3 where N1, N2, N3 are infinite and pairwise disjoint; each
node in N1 has 2 neighbours in N2 and 5 in N3, each node in N2 has 3 neighbours in N1 and 4 in N3,
and each node in N3 has 1 neighbour in N1 and 3 in N3. This tree does not cover any finite graph. □

The following corollary is a key fact in the proof of Theorem 4.10 by Leighton [18]. It is an
immediate consequence of the proof of Theorem 4.24. If H is a graph, then the corresponding p-tuple
is (1,. . . ,1) by Proposition 4.2(2).

Corollary 4.26: Let H be a weighted graph with finite weights and vertex set [p]. If it has finite
coverings by graphs, then there is a unique p-tuple (n1, . . . , np) ∈ (N+)

p such that {(kn1, . . . , knp) |
k ∈ N+} is the set of p-tuples (

∣∣γ−1(1)
∣∣ , . . . , ∣∣γ−1(p)

∣∣) such that γ : G −→ H is a covering where
G is a finite graph.

4.3. Characteristic polynomials

It is known that if G is a covering of H where G and H are finite graphs, then the characteristic
polynomial of H is a factor of that of G ([16], Theorem 4). We extend this result to finite weighted
graphs.

Definitions 4.27: Characteristic polynomials.

(a) The characteristic polynomial PM of a p × p matrix M with coefficients in a ring with mul-
tiplicative unit, typically Z,R or C, is defined as the determinant of the matrix M − xIp where Ip is
the p× p (diagonal) unity matrix, denoted by det(M − xIp). It is a polynomial in x of degree p. The
characteristic polynomial PG of a finite graph G is defined as that of its adjacency matrix AG that is
symmetric with coefficients in N. The coefficients of PG are in Z.

(b) We define the characteristic polynomial of a finite weighted graph H with finite weights as
PH := det(MH−xIp) where MH is its weight matrix, having coefficients in N. For an example, if H
is as in Example 4.4, Remark 4.15(3) and Example 4.20(4), then PH = −x(2−x)−6 = x2−2x−6.
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Theorem 4.28: If G and H are finite weighted graphs with finite weights and G covers H , then PH

is a factor of PG.

Proof:
Immediate consequence of Proposition 4.16 and the following one. □

The representation of a surjective map α : [q] −→ [p] by a q× p matrix Bα is in Definition 4.1(b).

Proposition 4.29: Let M and N be, respectively, q × q and p × p matrices over a ring with multi-
plicative unit. Let α : [q] −→ [p] be a surjective mapping. If MBα = BαN , then PN is a factor of
PM .

Proof:
We transform the matrix M −xIq by row and column operations into a matrix M ′′ such that det(M −
xIq) = det(M ′′).

We do that in such a way that M ′′ has the block structure

[
N − xIp R

0 S

]
. It follows that det(M−

xIq) = det(N − xIp). det(S), hence PM = PN .det(S).

We can organize M in such a way that i ∈ α(i) for each i ∈ [p]. This means that i is the smallest
element of each set α(i). For each such i, we add to the i-th column of M, all its j-th columns, for
j ∈ α(i), j > i.

We obtain a matrix M ′ with same determinant as M − xIq. Since MBα = BαN, the first p
elements of the j-th line of M ′ are the same as those of the α(j)-th one . By substracting the i-th line
from each j-th line, for all i ∈ [p], j ∈ α(i), j > i, we get a matrix M ′′ of the desired form, with same
determinant as M − xIq and M ′′. This concludes the proof. □

Example 4.30: (1) For the matrices N = MH and M = MG of Example 4.23, we have q = 5, p = 2,
and:

M − xI5 =


−x 1 1 1 1

1 −x 1 0 0

1 1 −x 1 1

1 0 1 −x 0

1 0 1 0 −x

, M ′ =


1− x 3 1 1 1

2 −x 1 0 0

1− x 3 −x 1 1

2 −x 1 −x 0

2 −x 1 0 −x

,

M ′′ =


1− x 3 1 1 1

2 −x 1 0 0

0 0 −1− x 0 0

0 0 0 −x 0

0 0 0 0 −x

 =

[
N − xI2 R

0 S

]
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so that det(M − xI5) = det(N − xI2). det(S). One can check20 that:

det(N − xI2) = (x+ 2)(x− 3),det(S) = −x2(x+ 1) and

det(M − xI5) = −x2(x+ 1)(x+ 2)(x− 3).

(2) If G is a weighted graph with p vertices, then PG×K2(x) = (−1)pPG(x).PG(−x) where
G×K2 is the Kronecker product (Definition 4.21). This fact can be proved by using the algorithm of
the previous proposition.

5. Universal coverings of weighted graphs

We will construct the universal covering of a weighted graph from an unfolding of an associated
weighted and rooted digraph. This construction will enlighten the relationships between universal
coverings and complete unfoldings. It extends the description given for graphs in Definition 4.6(2),
based on walks that do not traverse an edge twice in a row. Because of weights, this construction is no
longer convenient.

Furthermore, we will use in a straighforward manner the results of Section 3.2 about complete
unfoldings, in particular our adaptation of Norris’s Theorem (Theorem 3.20), to obtain a corresponding
result about universal coverings of finite weighted graphs. We will also define strongly regular graphs,
a new notion linked with coverings of finite weighted graphs.

5.1. Universal coverings of weighted graphs

Definition 5.1: Universal coverings of weighted graphs.

A covering of weighted graphs γ : G → H is universal if G is a tree (without weights), which
implies that H is connected. We also say that G is a universal covering of H .

We will prove that any two universal coverings of a connected and weighted graph are isomorphic.
We first give some examples.

Examples 5.2: 1) An infinite tree whose nodes all have degree p where 1 < p ≤ ω is a universal
covering of a loop of weight p > 1. All nodes of the tree are mapped to the vertex at the loop. It is
also a universal covering of an edge whose half-edges both have weight p.

2) A tree such that every node of degree 3 is adjacent to a node of degree 4 and vice-versa is a
universal covering of K3,4 and also, of an edge whose half-edges have weights 4 and 3.

3) A tree consisting of one node adjacent to ω leaves is a universal covering of an edge whose
half-edges have weights 1 and ω.

4) A universal covering γ of the graph H consisting of a path x−y−z with a loop at x, all weights
being 1, is the path z1 − y1 − x1 − x2 − y2 − z2 with γ(x1) = γ(x2) = x, γ(y1) = γ(y2) = y and
γ(z1) = γ(z2) = z.

20By using for instance https://www.dcode.fr/matrix-characteristic-polynomial
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5) A biinfinite path (cf. Example 4.9(2)), is a universal covering of the following weighted graphs:

(a) a cycle (in particular two parallel edges) whose half-edges have weight 1, or an edge with both
half-edges of weight 2,

(b) the weighted graph H as in 4) except that the weight of the half-edge at z is 2,
(c) one loop of weight 2 or two loops of weight 1 incident to a same vertex,
(d) a path P with ends x and y ̸= x such that, either x and y have both a loop of weight 1, or x has

a loop of weight 1 and the half-edge (f, y) on21 P has weight 2, or the half-edges (e, x) and (f, y) on
P has both weight 2. □

We will describe a construction of a universal covering for weighted graphs and prove a character-
ization similar to that of complete unfoldings of Theorem 3.5, that entails unicity, u.t.i., of universal
coverings.

Definition 5.3: The symmetric weighted digraph of a weighted graph and its expansion.

(a) Let H = (V,E, Inc, λ) be a connected and weighted graph, for which we fix a linear order ≤
on V . The associated symmetric weighted digraph is Sym(H) := (V,E′, λ′) defined as follows. For
each edge e : x− y of E, we define the following arcs of E′ and their weights:

if x < y (e is not a loop), we define22 e+ : x → y and e− : y → x, of respective weights
λ(e, x) and λ(e, y),

if x = y (e is a loop), we define eℓ : x → x of weight λ(e, x).

(b) We define ES(H) as the expansion of Sym(H) (cf. Definition 3.7). It is the (unweighted)
digraph (V,E′′) defined as follows, directly from H . For each edge e : x − y of E, we define the
following arcs of E′′:

(e+, i) : x → y if x < y, for i ∈ N+, 1 ≤ i ≤ λ(e, x),

(e−, i) : y → x if x < y, for i ∈ N+, 1 ≤ i ≤ λ(e, y),

(eℓ, i) : x → x if x = y (e is a loop) for i ∈ N+, 1 ≤ i ≤ λ(e, x).

The digraphs Sym(H) and ES(H) are strongly connected as H is connected.

(c) Let ι : ES(H) → H be the homomorphism23 that is the identity on VH = VES(H) and is
defined as follows on the arcs of ES(H):

ι(e+, i) := e, ι(e−, i) := e and ι(eℓ, i) := e.

For each x ∈ VH , it induces a weighted surjection of the set E+
ES(H)(x) onto (IncH(x), λH). □

Any vertex x of the weighted digraph Sym(H) can be taken as a root. We obtain a rooted digraph
denoted by Sym(H)x, similarly as for Tx, Section 2.3. The accessibility condition of Section 2 is
satisfied because Sym(H) is strongly connected. We define ES(H)x in the same way.

21We mean that f belongs to the path P .
22The purpose of the order on vertices is to differenciate without ambiguity e+ from e−.
23A homomorphism can map a digraph to a graph, cf. Section 2.
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Figure 6. The graph H and the digraph Sym(H) of Example 5.4.

Example 5.4: Figure 6 shows a graph H and the digraph Sym(H) defined from the ordering x <
y < z. The drawing of the loop h of H recalls that it counts for 1 in the degree of x. For readability,
we denote in Sym(H) the arc e+ by e, the arc e− by e (and similarly for f and g), and the loop hℓ

by h. As H has no weights, i.e. all weights are 1, ES(H) = Sym(H), with the arc (e+, 1) identified
with e+, and similarly for the other arcs.

Figure 7 shows the rooted tree Unf (Sym(H)x) ↾ 3 that consists in the first three levels of
Unf (Sym(H)x). Its root is denoted by x. □

Figure 7. The rooted tree Unf (Sym(H)x) ↾ 3, see Example 5.4.

For defining the universal covering of a weighted graph, we generalize, by the following definition,
the condition of Definition 4.6(2) requiring that the walks defining nodes do not traverse twice in a row
a same edge or loop. That is, we eliminate from Unf (ES(H)x) the walks that violate this condition.

Definition 5.5: The pruning operation.
(a) Let H be a weighted graph and x ∈ VH . Then, Unf (ES(H)x) is a rooted tree, whose root is

denoted by x rather than by rtUnf (ES(H)x). The pruned rooted tree Pr(Unf (ES(H)x)) is obtained
by deleting nodes and arcs as follows:
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if a node u of Unf (ES(H)x) is a walk (e1, e2, . . . , en) in ES(H) (that starts from x), n > 1,
and, for some f ∈ E,

either en−1 = (f+, i), en = (f−, 1),

or en−1 = (f−, i), en = (f+, 1),

or en−1 = (f ℓ, i), en = (f ℓ, 1),

then, we remove from Unf (ES(H)x) the arc from w := (e1, e2, . . . , en−1) to u and the subtree issued
from u.

(b) We denote by UC(H,x) the rooted tree Pr(Unf (ES(H)x)). □

If H is a graph, i.e., all weights are 1, then UC(H,x) is as in Definition 4.6.

Example 5.6: We continue Example 5.4. Figure 8 shows the rooted tree Pr(Unf (Sym(H)x)) ↾ 3 =
UC(H,x) ↾ 3. The first case of pruning removes the subtree Unf (Sym(H)x)/u where u is the head
of the arc labelled by e at level 2 in the tree of Figure 7. □

Figure 8. The rooted tree UC(H,x) ↾ 3 = Pr(Unf(Sym(H)x)) ↾ 3. See Example 5.6.

The following theorem is similar to Theorem 3.5. We recall that Unr forgets the root and removes
the orientations of a rooted tree.

Theorem 5.7: Let H be a connected and weighted graph.
1) For each x ∈ VH , the tree Unr(UC(H,x)) is a universal covering of H .
2) If µ : T → H is a universal covering, then:

(C) For every covering κ : G → H , where G is connected and weighted, there is a
universal covering η : T → G such that µ = κ ◦ η.

3) Any two universal coverings of H are isomorphic.
4) If µ : T → H is a covering such that Condition (C) holds, then T is a tree, hence a universal

covering of H .



B. Courcelle / Unfoldings and Coverings 35

Proof:
1) By Definition 5.3(c), we have a homomorphism24 ι : ES(H) → H. Let x ∈ VH . We have an
unfolding homomorphism α : Unf (ES(H)x) → ES(H)x. It maps the root x of Unf (ES(H)x)
to x. We will prove that the homomorphism ι ◦ α : Unf (ES(H)x) → H/x induces a covering
Unr(UC(H,x)) = Unr(Pr(Unf (ES(H)x))) of H.

We let W be the (unrooted tree) Unr(Pr(Unf (ES(H)x))). We claim that it is a universal cover-
ing of H , with covering homomorphism induced by ι ◦ α.

First, we prove that α is surjective on Pr(Unf (ES(H)x)). Let y ∈ VH . There is a path P in
H from x to y. There is a path P ′ in Unf (ES(H)x) from x to some y′ whose image by ι ◦ α is y.
This path neither uses an arc of type (f+, i) after one of type (f−, j) or vice-versa, nor an arc of type
(f ℓ, i), otherwise P would have an edge occurring twice or a loop.

Hence, the path P ′ is not deleted by the pruning operation, so that y′ is in Pr(Unf (ES(H)x))
and yields y by ι ◦ α. Similarly, any edge e of H is on a path P from x with corresponding path
P ′ in Unf (ES(H)x) and e is the image under ι ◦ α of an arc in P ′. Hence, ι ◦ α is surjective on
Pr(Unf (ES(H)x)).

Next, we check the condition of Definition 4.14. Let u be a node of Pr(Unf (ES(H)x)). Let e be
an edge of H incident to α(u). The arcs of Unf (ES(H)x) incident to u whose image by α is e are as
follows, according to different cases.

Case 1: u is the root. There are λH(e) such arcs. They are all of type (e+, i) (cf. the proof of
Theorem 3.5(1) for the notion of type), or all of type (e−, i), or all of type (eℓ, i) and they are in
Pr(Unf (ES(H)x)). Hence λH(e, α(u)) = |{e′ | e′ ∈ ET (u), ι ◦ α(e′) = e}| .

Case 2: u is not the root and is the head of an arc of type (f+, i) or (f−, i) or (f ℓ, i) where f ̸= e.
We are exactly as in Case 1.

Case 3: u is not the root and is the head of an arc of type (e+, i) for some i. The arcs of
Unf (ES(H)x) we are considering are the λH(e, α(u)) arcs of types (e−, j) together with the arc
with head u. Hence, we seem to have one arc too much. But the pruning operation eliminates the arc
(e−, 1). Hence, we still have λH(e, α(u)) = |{e′ | e′ ∈ ET (u), ι ◦ α(e′) = e}| .

Case 4: As in Case 3 with an incoming arc of type (e−, i) or (eℓ, i) for some i. The argument is
as in Case 3.

Hence, ι ◦ α induces (via the restriction to Pr(Unf (ES(H)x))) a covering from the tree W :=
Unr(UC(H,x)) to H .

2) We prove the assertion for W := Unr(UC(H,x)) and ι◦α : W → H as in 1). We let κ : G →
H be a covering where G is connected and weighted. Let x′ ∈ VG be such that κ(x′) = x. For each i,
we construct an i-covering ηi : UC(H,x) ↾ i → Gx, i.e., a homomorphism such that Condition (S’)
holds for all nodes of UC(H,x) ↾ i at depth less than i. This is similar to the notion of i-unfolding in
Definition 3.6. We want that ηi+1 extends ηi and that κ ◦ ηi is the restriction of ι ◦α to UC(H,x) ↾ i.

For i = 0, we define η0(x) := x′.

24See Section 2.2 for homomorphisms from digraphs to graphs.
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We now define ηi+1 extending ηi . Let u be at depth i. We have a weighted surjection from
the set EW (u) to (IncH(x), λH) and a weighted surjection (IncG(ηi(u)), λG) to (IncH(x), λH).
Lemma 2.1(2) shows that we have a weighted surjection β from EW (u) to (IncG(ηi(u)), λG) such
that κ ◦ β = ι ◦ α on EW (u). Furthermore, we can choose β such that β(e) = ηi(e) where e is the
arc in UC(H,x)) with head ηi(u). (The node u is not the root of UC(H,x)).

If v is the head of an arc with tail u of type (f+, i) or (f−, i), then β(v) is the end of f different
from ηi(u); if the type is (f ℓ, i), then β(v) := ηi(u).

We define ηi+1 as ηi extended by all such mappings β. The union of the mappings ηi yields a
universal covering

η : W → G, where W := Unr(UC(H,x)).

If G is a tree, then η is an isomorphism UC(H,x) → G by Proposition 4.2(3). This completes
the proof of 2) and proves 3).

4) As in Theorem 3.5. □

Corollary 5.8: (1) If γ : T → H is a universal covering and x ∈ NT , then Tx ≃ UC(H, γ(x)).
(2) If x, y ∈ NT and γ(y) = γ(x), then Tx ≃ Ty.

Proof:
(1) Follows from the proof of Theorem 5.7(2).

(2) If x, y ∈ NT and γ(y) = γ(x), then Tx ≃ UC(H, γ(x)) = UC(H, γ(x)) ≃ Ty. □

As in Definition 4.6, we denote by UC(H) the universal covering of H , that is the isomorphism
class of the trees Unr(UC(H,x)).

Example 5.9: Figure 9 shows a weighted graph H and, to the right, the digraph ES(H). Figure 10
shows the first two levels of Unf (ES(H)x). The dotted arcs are eliminated by pruning. □

Figure 9. A weighted graph H and the digraph ES(H), see Example 5.9.

If R is a rooted tree, we define Sym(R) by adding to R an ”up-going” arc v → u for each arc
u → v. It is nothing but Sym(Unr(R)) constructed by Definition 5.3 with all weights equal to 1 and
a linear order such that x < y if x → y in R. We obtain a strongly connected rooted digraph with root
rtR. See Figure 11 for an example.
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Figure 10. The tree Unf(ES(H), x) ↾ 2, cf. Example 4.11.

Figure 11. The top part of the digraph Sym(UC(H,x)), cf. Examples 5.4 and 5.9.

Proposition 5.10: Let H be a weighted connected graph and x ∈ VH . We have
Unf (Sym(UC(H,x))) ≃ Unf (ES(H), x).

Proof:
Let γ : UC(H,x) → H be the covering homomorphism25. It is actually a homomorphism: UC(H ,
x) → ES(H) that is not surjective on arcs because of pruning. We extend γ into a surjective homo-
morphism γ′ : Sym(UC(H,x)) → ES(H) by defining γ′(e) for e ∈ ESym(UC(H,x)) − EUC(H,x) as
follows:

if e : u → v is of the form (f+, i) ∈ EES(H) (this means that we have f : γ(u)− γ(v) in H and
γ(u) < γ(v)), then, γ′(e) := (f−, 1),

if it is of the form (f−, i), then, γ′(e) := (f+, 1),
if it is of the form (f ℓ, i), then, γ′(e) := (f ℓ, 1).

These ”up-going” arcs restablish some arcs deleted by pruning, but not the deleted subtrees.
Then γ′ : Sym(UC(H,x)) → ES(H)x is an unfolding. It follows from Theorem 3.5 that

Unf (Sym(UC(H,x))) is a complete unfolding of ES(H)x. Hence, Unf (Sym(UC(H,x))) ≃
Unf (Sym(ES(H)x)). □

25It maps the root x of UC(H,x) to x.
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Example 5.11: We continue Example 5.4 illustrated in Figure 6. Figure 7 shows Unf (ES(H)x).
Figure 8 shows Pr(Unf (ES(H)x)) = UC(H,x). Figure 11 shows Sym(UC(H,x)) and its up-
going arcs. The deleted arc labelled by e that reaches u(see Figure 7) is restablished towards x. The
three arcs outgoing from u and labelled by h, e and g are not. □

The following theorem relates universal coverings to complete unfoldings. We will use it for prov-
ing Theorem 5.15 from Theorem 3.20.

Theorem 5.12: Let Hbe a weighted graph. For every two vertices xand y, we have:

UC(H,x) ≃ UC(H, y) if and only if Unf (ES(H)x) ≃ Unf (ES(H)y).

If H is finite, this property is decidable.

Proof:
If UC(H,x) ≃ UC(H, y), we have Sym(UC(H,x)) ≃ Sym(UC(H, y)). Hence, Unf (ES(H)x) ≃
Unf (ES(H)y) by Proposition 5.10.

For the converse, observe that UC(H,x) := Pr(Unf (ES(H)x)), hence is defined by using the
definition of nodes as walks.

The definition of Pr(R) where R := Unf (ES(H)x) uses a mapping s such that any node u of R
that is not the root is mapped by s to one of its sons such that R/s(u) ≃ R/w where w is the father
of u.

Let S := {s(u) | u ∈ NR, u ̸= rtR}. Then Pr(R) is obtained from R by deleting the subtrees
R/v for all v ∈ S.

Assume now that R is any rooted tree isomorphic to Unf (ES(H)x) and that S′ is any subset of
NR such that:

each node v in S′ is at depth at least 2,

each node u ̸= rtR has a unique son v in S′,

and R/v ≃ R/w where w is the father of u that is itself the father of v.

Then, the labelled rooted trees (Unf (ES(H)x), S) and (R,S′) are isomorphic26. It follows that
Pr(Unf (ES(H)x)) is isomorphic to the tree obtained from R by deleting the subtrees R/v for all
v ∈ S′. Hence UC(H,x) can be constructed, u.t.i, from any rooted tree isomorphic to Unf (ES(H)x)
and any appropriate set S′, without using the concrete description of the nodes of Unf (ES(H)x) by
walks. It follows that UC(H,x) ≃ UC(H, y) if Unf (ES(H)x) ≃ Unf (ES(H)y).

The last assertion follows from Theorem 3.14 applied to Sym(H) by using Algorithm 3.18. □

The next proposition defines from a tree a canonical weighted graph of which it is a universal
covering.

Proposition 5.13: Let T be a tree and ∼ be an equivalence relation on NT satisfying the following
condition:
26A node is labelled by 1 if it is in S or in S′ and by 0 otherwise.
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(N): if v ∼ v′, w is a neighbour of v, and v has exactly p (p may be ω) neighbours
equivalent to w, then v′ has exactly p neighbours equivalent to w,

then T is a universal covering of the weighted graph H := T/ ∼ defined as follows:

– VH := NT / ∼,

– EH contains the edge e : [v]∼− [w]∼ if and only if v is adjacent to some vertex in [w]∼
if and only if, by Condition (N), each vertex of [v]∼ is adjacent to some vertex in [w]∼,

– the weight λ(e, [v]∼) is the number of edges of T linking v and a vertex in some [w]∼
such that w is adjacent to v.

Proof:
Condition (N) implies that an edge [v]∼− [w]∼ is defined from an edge v−w of T , and that λ(e, [v]∼)
is well-defined. The mapping γ such that γ(v) = [v]∼ and γ(e) is the edge [v]∼ − [w]∼ if e : v−w is
a universal covering of H . If v ∼ w, then the edge [v]∼ − [w]∼ is a loop. □

Corollary 5.14: Every tree is a universal covering of a weighted graph.

Proof:
If T is a tree and ≈ is the equivalence relation on NT defined by x ≈ y if and only if Tx ≃ Ty , then
H := T/ ≈ is a weighted graph and T is a universal covering of it. □

5.2. Universal coverings of finite weighted graphs

We will call strongly regular the universal coverings of finite weighted graphs. These regular trees
have not been previously identified to our knowledge. We first extend a result proved by Norris
[17, 21] for graphs without weights. Our proof will use Theorem 3.20, the similar result for complete
unfoldings, by means of Theorem 5.12.

Theorem 5.15: Let T be a universal covering of a finite weighted graph H with p vertices. For every
two nodes x, y of T , we have Tx ≃ Ty if and only if Tx ↾ (p− 1) ≃ Ty ↾ (p− 1).

Proof:
We prove the property for Tx := UC(H,x) and Ty := UC(H, y). The ”only if ” direction is clear.

For proving the converse, assume UC(H,x) ↾ (p − 1) ≃ UC(H, y) ↾ (p − 1). We have also
Sym(UC(H,x) ↾ (p−1)) ≃ Sym(UC(H, y) ↾ (p−1)). The directed walks of length p−1 in ES(H)
that start from x are in bijection with the directed paths of length p− 1 in Sym(UC(H,x) ↾ (p− 1))
that start from x , the root of UC(H,x). It follows that Unf (ES(H)x) ↾ (p− 1) ≃ Unf (ES(H)y) ↾
(p − 1). Hence, by Theorem 3.20, we get Unf (ES(H)x) ≃ Unf (ES(H)y) and, by Theorem 5.12,
UC(H,x) ≃ UC(H, y). □

Example 5.16: Let us consider the graph H of Example 5.4 and Figures 6,7,8 (Section 5.1). Figure
7 shows Unf (Sym(H)x)) ↾ 3, and Figure 8 the result of pruning it. Figure 11 shows the first three
levels of Sym(UC(H,x)). The directed paths of length 3 in the tree Unf (Sym(H)x) that start from
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the root x correspond bijectively to the directed walks of length 3 in Sym(UC(H,x)) that start from
x. In the proof of Theorem 5.15, we use a similar observation for ES(H) where H is weighted. □

As a consequence of Theorem 5.15, we obtain in [13] a first-order definability result for the
strongly regular trees UC(H) similar to that for regular trees following from Theorem 3.20.

Definition 5.17: Regular unrooted trees.
We recall that the subtrees of a (labelled) rooted tree R are the (labelled) rooted trees R/x for

x ∈ NR. Their nodes are those of R accessible from x. By Definition 3.8, a rooted (labelled) tree R
is regular if the set of isomorphism classes [R/x]≃ for x ∈ NR is finite. In that case, its cardinality is
the regularity index Ind(R) of R.

A (labelled) tree T without root is regular if the rooted (labelled) tree Tx is regular for some
x ∈ NT .

Proposition 5.18: If a (labelled) tree T is regular, then the rooted (labelled) trees Ty are regular for
all y ∈ NT .

Proof:
Let Tx be regular for x ∈ NT . If y is a neighbour of x, then the subtrees of Ty are Ty, Ty/x and the
subtrees Tx/z for z /∈ {x, y}. Hence there are finitely many up to isomorphism. If y is at distance n
of x, there is a path x− z1 − · · · − zn−1 − y and each rooted tree Tz1 , . . . , Tzn−1 , Ty is regular by the
first observation. □

We may have Ind(Ty) > Ind(Tx), as shown in Example 5.21.

Definition 5.19: Strongly regular trees.
A possibly labelled tree T is strongly regular if it has finitely many associated rooted trees Tx,

u.t.i, that is, if the set {[Tx]≃ | x ∈ NT } is finite. □

We will prove that a strongly regular tree is regular. This is not an immediate consequence of the
definition as we do not require that any of the trees Tx is regular. However, all are.

Example 5.20: The rooted tree P such that NP := N and x ≤P y if and only if y ≤ x is an infinite
path P . It is regular, hence, the tree Unr(P ) is regular. The rooted trees Unr(P )x are all regular but
pairwise non isomorphic. Hence, Unr(P ) is not strongly regular.

Proposition 5.21: Let H be a finite, connected and weighted graph.
(1) Its universal coverings are strongly regular.
(2) For each x ∈ VH the rooted tree UC(H,x) is regular.

Proof:
(1) If η: T → H is a universal covering, then for each node x of T , we have Tx ≃ UC(H, η(x)) by
Corollary 5.8(1). Hence, T is strongly regular.

(2) Let x ∈ VH . The rooted tree Unf (ES(H)x) from which we get UC(H,x) by pruning is
regular, but this is not enough to conclude.
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Let γ: Unf (ES(H)x) → Sym(H) be the homomorphism that is the composition of the unfolding
α : Unf (ES(H)x) → ES(H)x and β : ES(H) → Sym(H) where β is the identity on vertices.

Let u and u′ be nodes of UC(H,x), hence of Unf (ES(H)x), that are not the root. Let e : v → u
and e′ : v′ → u′ be the arcs of Unf (ES(H)x) with heads u and u′. If γ(e) = γ(e′) then γ(u) = γ(u′)
and we have Pr(Unf (ES(H)x))/u ≃ Pr(Unf (ES(H)x))/u

′. Note that γ maps Unf (ES(H)x) to
Sym(H). We may have e = (f+, i) and e′ = (f+, j) so that γ(e) = γ(e′) = f+.

It follows that UC(H,x)/u ≃ UC(H,x)/u′ and that the subtrees of UC(H,x) are UC(H,x)
itself and those associated as above with the arcs of Sym(H). Hence, there are at most 1 + 2. |EH |
subtrees u.t.i, and UC(H,x) is regular. □

Theorem 5.22: A tree T is strongly regular if and only if it is the universal covering of a finite,
connected and weighted graph if and only if it is the universal covering of such a graph without loops.

Proof:
If T is the universal covering of a finite, connected and weighted graph, then it is strongly regular by
Proposition 5.21.

Conversely, let T be a strongly regular tree. Let ∼ be the equivalence relation on NT such that
x ∼ y if and only if Tx ≃ Ty. This equivalence relation satisfies Condition (N) of Proposition 5.13 and
has finitely many classes. Hence, by this proposition, T is a universal covering of the finite weighted
graph H := T/ ∼.

Finally we show how to replace H by H ′ without loops. A loop of weight p arises in H if a node
has p neighbours equivalent to it. To avoid loops, we define on T a proper 2-coloring. We define ∼′

such that x ∼′ y if and only if Tx ≃ Ty and x and y have the same color. Then T is a universal
covering of the finite weighted graph H ′ := T/ ∼′ that has no loop27. □

Examples 5.23: 1) Let T consist of a biinfinite path B (cf. Example 4.9(2)), where each node x has,
in addition, an incident pendent edge x − x′ for some new node x′. The rooted trees Tx for x ∈ NB

are all isomorphic, and so are the trees Tx′ . The quotient graph is the edge [x]∼ − [x′]∼ together with
a loop at [x]∼ of weight 2, that yields trees isomorphic to Tx. The two other half-edges have weight 1.

2) For the tree of Example 4.20(1), we get an edge with weights 3 and 4.

Remark 5.24: 1) Finite weighted graphs can be used as finite descriptions of strongly regular trees,
even of infinite degree. The construction of Theorem 5.22 defines a minimal and canonical one.

2) By Theorem 5.22, a strongly regular tree is the universal covering of a finite minimal weighted
graph H . It is not necessarily that of a finite graph G, otherwise such a graph G would cover H , and
Example 4.25 shows that this may be not possible.

Corollary 5.25: Every node-labelled strongly regular tree is regular.

Proof:
Immediate from Theorem 5.22 and Proposition 5.21. □
27Note that H ′ is a connected component of H ×K2 defined in Definition 3.21.
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6. Common coverings of finite graphs

Our aim is to examine the theorem by Leighton [18] that we stated in Theorem 4.10. Its proof is
quite difficult. Alternative no more easier proofs have been given that use tools from combinatorics,
topology and group theory [1, 5, 19, 20, 24, 25]. We will give an easy proof for particular cases,
including that of k-regular graphs proved in [3].

Theorem 6.1: If two finite connected graphs G and H are coverings of a same graph M , they have
a common covering by a graph K having at most 4 |VG| . |VH | vertices. The graph K has at most
|VG| . |VH | vertices if M is loop-free.

Proof:
We first assume that G,H and M are loop-free. (They may have parallel edges).

Let α : G → M and β : H → M be coverings. It follows that, if x − x′ is an edge of G, then
α(x) ̸= α(x′), and similarly for β. We construct K as follows:

VK := {(x, y) ∈ VG × VH | α(x) = β(y)}.
EK := {(e, f) ∈ EG × EH | α(e) = β(f)}.

An edge (e, f) of K links (x, y) and (x′, y′) if e : x−x′ and f : y− y′. We cannot not have (e, f)
linking also (x, y′) and (x′, y) because this would mean that β(y) = α(x) = α(x′) contradicting a
previous remark.

We define γ : K → G as the first projection, i.e., γ(x, y) := x and γ(e, f) := e. Similarly η :
K → H is the second projection. It is clear that γ and η are homomorphisms.

We prove that γ is surjective. Let x ∈ VG. There is y ∈ VH such that β(y) = α(x) because
β is surjective. Hence (x, y) ∈ VK and γ(x, y) = x. Let e : x − x′ be an edge of G. Then α(e) :
α(x) − α(x′) is an edge of M . There is in H an edge f : y − y′ such that β(f) = α(e). We have
β(f) : β(y)− β(y′), β(y) = α(x), β(y′) = α(x′). Then, η is surjective too.

It remains to prove that γ and η are coverings. We prove that for γ.

Consider (x, y) ∈ VK and its image x in G by γ. Let e1, . . . , ep be the edges of G incident
with x. Let f1, . . . , fq be the edges of H incident with y. The edges of M incident with α(x) are
α(e1), . . . , α(ep) that are pairwise distinct. Those incident with β(y) are β(f1), . . . , β(fq), also pair-
wise distinct. But α(x) = β(y), hence, q = p, and we can renumber these edges so that α(ei) = β(fi)
for each i. The edges of K incident with (x, y) are thus (ei, fi) for i = 1, .., p. Hence γ is a covering
as wanted. We have |VK | ≤ |VG| . |VH |.

If K is not connected, then each of its connected components is a covering as wanted.

We now consider the case where G,H and M may have loops. It follows from Lemma 4.22 that
we have coverings α′ : G×K2 → M ×K2 and β′ :H ×K2 → M ×K2. As G×K2, H ×K2 and
M ×K2 have no loops, the previous proof yields coverings γ :K → G×K2 and η :K → H ×K2.
As G ×K2 and H ×K2 cover G and H respectively, we have (by Proposition 4.16) coverings γ′ :
K → G and η′ :K → H where K has at most 4 |VG| . |VH | vertices. □

This theorem does not apply to the two graphs of Example 4.4.
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A k-regular graph has all its vertices of degree k. It may have loops. A loop contributes 1 to the
degree of its vertex.

Proposition 6.2: Let G and H be finite connected graphs. They have a common finite cover in the
following cases.

(1) They have the same degree matrix (up to a permutation of rows and columns), that is symmet-
ric.

(2) They are k-regular.
(3) Each of them has exactly one cycle, no loops, and they have isomorphic universal covers.

Proof:
(1) The degree matrix of G and H is the adjacency matrix (counting loops and parallel edges) of a
graph M covered by G and H. Theorem 6.1 is applicable. Note that M has loops if and only if some
values on the diagonal of the adjacency matrix are not null.

(2) The graphs G and H cover the graph with one vertex and k loops. Theorem 6.1 is applicable,
which gives the result proved in [3]. It is a special case of (1).

(3) The graph G is the union of a cycle x1−x2−· · ·−xn−x1 and pairwise disjoint trees Ti, each
of them having node xi and no node xj , for j ̸= i. Its universal cover U is the union of a biinfinite
path · · ·− z0− z1− z2−· · ·− zn− zn+1− zn+2−· · ·− z2n− z2n+1− . . . and, similarly, of pairwise
disjoint trees Ui containing nodes zi. The covering homorphism α maps each zp+kn to xp for p ∈ [n]
and k ∈ Z and, isomorphically, each tree Up+kn to Tp.

Hence, U can be seen, up to isomorphism, as a periodic biinfinite sequence of at most n finite
trees. From H , we have a similar description. A binifinite sequence of the form XZ = Y Z where X
has length n and Y has length p is equal to (XpY ′n)Z for a circular shift Y ′ of Y . From the sequence
XpY ′n one can build a common cover of G and H .

We can alternatively apply Theorem 6.1. We observe that X and Y ′ are respectively Sq and Sm

for some sequence S, hence, we can define a loop-free graph M with one cycle covered by G and H if
S has length at least 2. If S has length 1, one can define such a graph M with a loop of weight 2. □

By Lemma 4.22, it suffices to prove Theorem 4.10 for finite bipartite graphs, because if two finite
graphs G,H have a common universal cover T , then T covers also G×K2 and H×K2 that are finite
and bipartite. A common finite cover of G ×K2 and H ×K2 is also one of G and H . The proof of
[18] uses this observation. In order to indicate why its proof is difficult, we explain informally why a
natural proof generalizing that of Theorem 6.1 fails.

Definition 6.3: Quotients of strongly regular labelled trees.

(a) Let T be a tree. It is bipartite with bipartition (N1
T , N

2
T ) of its nodes. Let α be a labelling of

N1
T ∪ N2

T ∪ ET . We let ∼ be an equivalence relation on N1
T ∪ N2

T ∪ ET such that each equivalence
class is included in N1

T , or in N2
T or in ET , and two equivalent vertices or edges have the same label.

We require that if e and e′ are equivalent edges, then e : x − y, e′ : x′ − y′ for some x, y, x′, y′ such
that x ∼ x′ and y ∼ y′. Furthermore, we modify as follows the condition of Definition 4.11:



44 B. Courcelle / Unfoldings and Coverings

If x and y are equivalent vertices, then, ∼ defines a bijection ET (x) ∩ [e]∼ → ET (y) ∩
[e]∼.

We obtain a quotient graph T/ ∼ and a covering T → T/ ∼ that preserves labels.
(b) Let γ : T → G be a universal covering of a finite bipartite graph G. We label T as follows.

A node x ∈ NT is labelled by γ(x) and an edge e ∈ ET by γ(e). The labelled tree Tγ is strongly
regular. Assume now that η : T → H is a universal covering where H is also a finite and bipartite
graph. We define a labelled tree Tγ,η that combines the labels of Tγ and of Tη: a node x ∈ NT is
labelled by (γ(x), η(x)) and an edge e is labelled by (γ(e), η(e)). □

Letting G,H, γ, η and Tγ,η be as in this definition:

Proposition 6.4: If Tγ,η is strongly regular, there exists a finite bipartite graph K that is a covering of
both G and H .

Proof:
Let ≈ be the equivalence relation on NTγ,η such that x ≈ y if and only if (Tγ,η)x ≃ (Tγ,η)y. Two
equivalent nodes have the same label that is a pair in VG × VH . (However, Example 6.5 below shows
that two nodes may have the same label in Tγ,η without being equivalent for ≈).

Without assuming that Tγ,η is strongly regular, we first examine the neighbourhood of a node x.
Its incident edges have labels (e1, f1), . . . ., (ep, fp) and respective other ends z1, . . . ., zp. In G, the
vertex γ(x) has incident edges e1, . . . ., ep and respective other ends γ(z1), . . . , γ(zp). In H , the vertex
η(x) has incident edges f1, . . . , fp and respective other ends η(z1), . . . , η(zp).

If x′ ≈ x, then, since (Tγ,η)x ≃ (Tγ,η)x′ , the edges incident to x′ have labels (e1, f1), . . . , (ep, fp)
and respective other ends z′1, . . . ., z

′
p. Consider an isomorphism α: (Tγ,η)x → (Tγ,η)x′ . Since the

edge labels (e1, f1), . . . , (ep, fp) are pairwise distinct, it maps zi to z′i for each i. Hence, it is an
isomorphism (Tγ,η)zi → (Tγ,η)z′i and zi ≈ z′i. It follows that we get a quotient graph K := Tγ,η/ ≈
that inherits the labels of Tγ,η/ ≈ .

A vertex [x]≈ has label (γ(x), η(x)). An edge of K coming from g : x − y in Tγ,η (it links [x]≈
and [y]≈ in K) has label (γ(g), η(g)) ∈ EG × EH . This is well-defined by the above remarks about
neighbourhoods in Tγ,η.

We claim that K is a covering of both G and H. We let κ : VK ∪ EK → VG ∪ EG be defined as
follows: κ([x]≈) := γ(x), the first component of the label of [x]≈; if m : [x]≈ − [y]≈ is an edge of K
coming from g : x− y in Tγ,η, we define κ(m) := γ(g).

Claim: κ : K → G is a covering.
Proof : κ is a surjective homomorphism. To prove that it is a covering, we consider a vertex [x]≈

of K where x is a node in Tγ,η. We recapitulate the above observations.

The edges of Tγ,η incident with x are g1, . . . , gp with respective ends y1, . . . , yp and labels (e1, f1)
, . . . , (ep, fp). The edges of G incident with γ(x) are e1, . . . , ep. We get edges [x]≈ − [yi]≈ in K,
each with label (ei, fi). They yield by κ the edges e1, . . . , ep. Hence, κ is a bijection of EK([x]≈) to
EG(x). □

Similarly, we have a covering K → H .
Finally, if Tγ,η is strongly regular, the equivalence ≈ has finitely many classes and K is finite. □
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We do not obtain a proof of Theorem 4.10 because the tree Tγ,η constructed from two covering
homomorphisms of finite graphs G and H is not necessarily strongly regular.

Example 6.5: A tree Tγ,η that is not strongly regular.

We let G be the bipartite graph such that V 1
G = {a}, V 2

G = {b}, EG = {1, 2, 3, 4}, and H similarly
be such that V 1

H = {c}, V 2
H = {d}, EH = {5, 6, 7, 8}. They both have two vertices and four parallel

edges. Let γ : T → G be a universal covering of G.

We choose adjacent nodes r and s of T such that γ(r) = a, γ(s) = b and γ(e) = 1 where e : r−s.
We get a labelled tree Tγ . We will enrich its labelling so as to obtain a tree Tγ,η for some covering
η : T → H .

For this purpose, we replace each node label a of Tγ by (a, c), each label b of Tγ by (b, d), each
edge label 1 by (1,5) and each label 2 by (2,6). Then for each edge in the rooted tree Tr − Tr/s
(obtained by deleting Tr/s from Tr), we replace 3 by (3,7) and 4 by (4,8); for each edge in the subtree
Ts − Ts/r, we replace 3 by (3,8) and 4 by (4,7).

We get a labelled tree Tγ,η related to a universal covering η : T → H .
It is clear that Tγ,η is not strongly regular because the edge labels (3,7) are present in the part

Tr − Tr/s, but not in the other part Ts − Ts/r, and these two parts are infinite. □

Questions 6.6: Does Theorem 4.10 extend to finite weighted graphs?

It does in a somewhat trivial way for graphs whose weights are all ω . Let G and H be two such
connected weighted graphs. Let K be their product with VK := VG × VH and (x, y) − (x′, y′) in K
if and only if x − x′ and y − y′ in G and H respectively. Since ω + ω = ω the two projections π1 :
VK → VG and π2 : VK = VH are coverings.

The next case to consider would be when weights are 1 or ω.

7. Conclusion

We have generalized the notions of regular trees studied in [10, 11], in [4, 12, 15] and in [2, 7, 8, 21]
having motivations in program semantics by attaching weights to the arcs or edges of the digraphs or
graphs of which we consider complete unfoldings or universal coverings. In particular, infinite weights
yield trees with nodes of infinite degree. Our finite weighted graphs offer effective descriptions and
yield decidability results.

The new notion of a strongly regular tree defined as a universal covering of a finite weighted graph
is investigated in the companion article [13].
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