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Abstract. We study minimization problems for deterministic ω-automata in the presence of don’t
care words. We prove that the number of priorities in deterministic parity automata can be effi-
ciently minimized under an arbitrary set of don’t care words. We derive that from a more general
result from which one also obtains an efficient minimization algorithm for deterministic parity
automata with informative right-congruence (without don’t care words). We then analyze lan-
guages of don’t care words with a trivial right-congruence. For such sets of don’t care words
it is known that weak deterministic Büchi automata (WDBA) have a unique minimal automa-
ton that can be efficiently computed from a given WDBA (Eisinger, Klaedtke 2006). We give a
congruence-based characterization of the corresponding minimal WDBA, and show that the don’t
care minimization results for WDBA do not extend to deterministic ω-automata with informative
right-congruence: for this class there is no unique minimal automaton for a given don’t care set
with trivial right congruence, and the minimization problem is NP-hard. Finally, we extend an
active learning algorithm for WDBA (Maler, Pnueli 1995) to the setting with an additional set of
don’t care words with trivial right-congruence.
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1. Introduction

In this paper we consider minimization and learning problems with don’t care sets for deterministic
automata on infinite words, called ω-automata in the following. For finite words, it is well known that
there is a unique minimal deterministic finite automaton (DFA) for each regular language L, which
can be computed efficiently by merging language equivalent states in a given DFA for L (see, e.g.,
[1]). The minimal DFA can be characterized by the Myhill-Nerode congruence on finite words, in
which two words are equivalent if they have the same extensions into the language L. The states
of the minimal DFA correspond to the equivalence classes of this congruence. This characterization
is also the basis for active learning algorithms that identify a DFA for an unknown language L by
equivalence and membership queries [2].

In some applications, some input words might not play a role because they do not occur and thus
it does not matter whether the automaton accepts them. Such a set of input words is called a don’t
care set in this paper. The minimization problem with a given don’t care set is then to compute a
minimal automaton that behaves the same as the given one on all words that are not in the don’t care
set. Minimal automata in this setting need not to be unique, and the problem (its decision variant)
becomes NP-hard [3].

For deterministic ω-automata, the minimization problem (without don’t cares) is harder than for
DFAs. There is a variety of acceptance conditions for ω-automata, the most basic one being the Büchi
condition. A deterministic Büchi automaton (DBA) has a set of accepting states, like a DFA, and a
run (an infinite state sequence) is accepting if an accepting state is visited infinitely often. It turns out
that the minimization problem for DBA is NP-hard [4], and minimal DBA for an ω-language are, in
general, not unique. Since a deterministic parity automaton (DPA) for a DBA-recognizable language
can be turned into an equivalent DBA without changing the transition structure (as shown in [5] for
Rabin conditions, which include parity conditions), minimization for DPA is also NP-hard. In a parity
condition, each state is assigned a priority (a natural number), and a run is accepting if the maximal
priority that occurs infinitely often is even. DPAs are interesting for algorithmic use because they
capture the full class of regular ω-languages (see [6, 7] for background on ω-automata), and their
acceptance condition is specified in a very compact way. For this reason we mainly study DPA and
subclasses thereof in this paper (note that a Büchi condition can be expressed with priorities 2 for
accepting and 1 for non-accepting).

The only class of deterministic ω-automata for which an efficient minimization algorithm is known
is the one of weak deterministic Büchi automata (WDBA) [8], in which every strongly connected
set consists only of accepting states, or only of non-accepting states. Minimal WDBA can also be
characterized by the Myhill-Nerode congruence (its natural extension to infinite words) [9, 10, 11],
and (a variant of) the active learning algorithm for DFAs from [2] has been adapted to WDBA [12].
As for minimization, this is the only class of ω-automata for which a polynomial time active learning
algorithm is known. Other active learning algorithms for regular ω-languages as in [13] learn different
representations that can only be translated to deterministic ω-automata with an exponential cost.

In [14] it is shown that there is an interesting class of don’t care sets for which the minimization
problem for WDBAs can be solved efficiently: If the don’t care set is a regular ω-language with a
trivial Myhill-Nerode congruence consisting only of one class (in the following, we refer to the Myhill-
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Nerode congruence simply as the canonical right-congruence of the language). For finite words the
only languages with this property are the trivial languages (all words or the empty language). For
ω-words, however, all languages in which membership only depends on the infinite suffix of the word
have a trivial right-congruence, for example, the set of all infinite words with infinitely many b. In
[14] such don’t care sets are used for reducing the size of WDBAs for sets of real numbers by making
certain representations of real numbers don’t cares.

This raises one of the questions that we study in this paper, which we answer positively: Can
the active learning algorithm from [12] be extended to this setting of a don’t care set with trivial
right-congruence?

We also investigate whether the minimization result for WDBAs with don’t care sets can be ex-
tended to larger classes of ω-automata. Since the correspondence between the states of the minimal
automaton and the classes of the right-congruence plays an important role in all these results, we con-
sider the class of deterministic ω-automata with informative right-congruence (abbreviated IRC) [15].
These are automata that use only one state per equivalence class, so their transition system is iso-
morphic to the transition system induced by the canonical right-congruence of the accepted language.
Minimal WDBA have informative right-congruence, and we study here the question whether efficient
minimization of DPA with IRC is possible under a don’t care set with trivial right-congruence.

Finally, we also consider the problem of optimizing the acceptance condition of a DPA under a
don’t care set. It is known that for a given DPA, one can efficiently compute an equivalent parity
condition on the same transition structure that uses the minimal number of different priorities [16].
In [17] such a priority minimization has turned out to be a useful step before applying heuristics for
reducing the state space of DPA resulting from a determinization procedure. The number of priorities
might be further reducible if we are given a set of don’t cares.

Our contributions on these questions can be summarized as follows:

• We show that polynomial time priority minimization on the transition structure of a given DPA
is possible for a don’t care set that is given by a DPA (in this case, it does not need to have trivial
right-congruence).

• We show that the minimization result for WDBA under don’t care sets with trivial right-congruence
does not extend to DPA with IRC: Given a DPA with IRC and a don’t care set with trivial right-
congruence, there is, in general, not a unique minimal DPA under this don’t care set, and (the
decision variant of) this don’t care minimization problem is NP-hard.

• The active learning algorithm for WDBAs can be adapted to the setting with a don’t care set
with trivial right-congruence.

The remainder of this paper is structured as follows. In Section 2 we introduce basic notation and
terminology. In Section 3 we consider the problem of optimizing parity conditions under a given set
of don’t care words. The state minimization problem for don’t care sets with trivial right-congruence
is discussed in Section 4, and in Section 5 we present the active learning algorithm for WDBAs under
a don’t care set with trivial right-congruence. In Section 6 we conclude.
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2. Preliminaries

An alphabet Σ is a finite set whose elements are called letters or symbols. By Σ∗ we denote the set of
all finite words over Σ, by ϵ the empty word, Σ+ := Σ∗\{ϵ}, and Σω denotes the set of all ω-words
over Σ. For α ∈ Σω we write α(i) for the letter of α at position i. An ω-word α ∈ Σω is ultimately
periodic if α = uvω := uvvv . . . for some u, v ∈ Σ∗ with v ̸= ϵ. An ω-language is a subset of
Σω, simply referred to as language in the following. The complement of a language is denoted by
L = Σω \ L.

Deterministic ω-automata consist of a deterministic transition graph (or deterministic transition
system), and an acceptance condition. The deterministic transition graph is a tuple T = (Σ, Q, δ, q0),
where Σ is an alphabet, Q is a finite set of states, δ : Q × Σ → Q is a transition function, and q0 is
the initial state. We define the extended transition function as δ∗ : Σ∗ → Q with δ∗(q, ϵ) := q and
δ∗(q, σw) = δ∗(δ(q, σ), w) for q ∈ Q, σ ∈ Σ, and w ∈ Σ∗. We sometimes write δ∗(w) for δ∗(q0, w).
Further, we assume that all states are reachable from the initial state.

We say that two states p, q ∈ Q are strongly connected if we can reach p from q and vice
versa, that is, there are u, v with δ∗(p, u) = q and δ∗(q, v) = p. A strongly connected component
(SCC) is a subset of states that are strongly connected, and a maximal strongly connected component
(MSCC) is an SCC that is not a proper subset of any other SCC. We define MSCC(q) := {p ∈ Q |
p is in the same MSCC as q}.

For α ∈ Σω, the run of α in T is an infinite sequence of states ρ ∈ Qω with ρ(0) = q0 and
ρ(i+ 1) = δ(ρ(i), α(i)) for all i ∈ N. The set of states that occur infinitely often in this run is called
the infinity set, and is denoted by Inf (ρ) := {q ∈ Q : ρ(i) = q for infinitely many i ∈ N}. Instead of
referring to ρ directly, we often write Inf T (α) for the set of states occurring infinitely often in the run
of α in T (we also use this notation for automata instead of transition systems).

Below we define different standard types of ω-automata. A deterministic Büchi automaton (DBA)
A = (Σ, Q, δ, q0, F ) has an acceptance condition in the form of a set F ⊆ Q of accepting (or final)
states. An ω-word is accepted by the DBA if and only if it produces a run that visits an accepting
state infinitely often. More formally, we say that A recognizes the ω-language L(A) = {α ∈ Σω |
Inf A(α) ∩ F ̸= ∅}. The class of DBA-recognizable ω-languages is denoted as DB.

A deterministic co-Büchi automaton (DCA) B = (Σ, Q, δ, q0, F ) also has a set F ⊆ Q of ac-
cepting states and recognizes the ω-language L(B) = {α ∈ Σω | Inf A(α) ⊆ F}. In other words,
a DCA accepts an ω-word if and only if it produces a run that exclusively visits accepting states in-
finitely often. We denote the class of DCA-recognizable ω-language as DC. Note that for a DBA
A = (Σ, Q, δ, q0, F ), the DCA B = (Σ, Q, δ, q0, Q\F ) recognizes L(A) (while the classes DB and
DC are not closed under complement, see [6]).

A weak deterministic Büchi automaton (WDBA) is a DBA with the additional property that each
MSCC is either contained in F or disjoint from F . It follows that any WDBA can be interpreted as a
DCA recognizing the same ω-language. Furthermore, the intersection DB ∩ DC defines precisely the
class of WDBA-recognizable ω-languages [9, 10, 11].

A deterministic parity automaton (DPA) A = (Σ, Q, δ, q0, c) has an acceptance condition in the
form of a priority function c : Q → N. An ω-word is accepted by the DPA if and only if it produces a
run such that the highest priority of any state that is visited infinitely often is even. More formally, we
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say that A recognizes the ω-language L(A) = {α ∈ Σω | max{c(q) | q ∈ Inf A(α)} is even.}. For
a set P ⊆ Q of states we let c(P ) = {c(p) | p ∈ P}. For a deterministic Muller automaton (DMA)
A = (Σ, Q, δ, q0,F) the acceptance condition is given as the set of accepting infinity sets F ⊆ 2Q

with L(A) = {α ∈ Σω | Inf A(α) ∈ F}. We refer to the class of DPA-recognizable ω-languages as
DP and the class of DMA-recognizable ω-languages as DM.

Note that Muller conditions are the most general ones since all the other conditions that are defined
here can be expressed as Muller condition. For algorithmic questions, however, Muller conditions are
not well suited because a Muller condition needs to explicitly list all accepting infinity sets. For this
reason, we mainly consider WDBA, DBA, DCA, and DPA in this article. It is well known that DPA
are as expressive as DMA, and that DBA and DCA are less expressive, that is, DB∪DC ⊊ DP = DM
(see, e.g., [7]). An ω-language is regular if it can be accepted by a DPA or DMA.

A deterministic ω-automaton is called minimal if there is no deterministic ω-automaton of the
same type with less states that accepts the same language. Besides the number of states, there is also
the question of the number of priorities used in a DPA. We thus call the priority function of a DPA
optimal if there is no priority function on the same transition graph that uses less priorities and accepts
the same language. Note that one could also use the number of transitions as criterion for minimality,
but for (complete) deterministic automata there is one transition for every combination of state and
input letter, so these two measures for minimality are equivalent in our setting.

A right-congruence (on finite words) is an equivalence relation ∼ ⊆ Σ∗ × Σ∗ with the property
that u ∼ v implies uσ ∼ vσ for all u, v ∈ Σ∗ and σ ∈ Σ. We write [u]∼ for the equivalence class
of u in ∼. If ∼ is clear from the context, we simply write [u]. The index of ∼, which is the number
of equivalence classes of ∼, is denoted by Ind(∼). A right-congruence ∼ of finite index induces
a finite deterministic transition system T∼ = (Σ, Q∼, δ∼, [ϵ]∼) with Q∼ = {[u]∼ | u ∈ Σ∗} and
δ∼([u], σ) = [uσ]∼. Vice versa, each deterministic transition system induces a right congruence in
which two words are equivalent if they lead to the same state.

For L ⊆ Σω, the canonical right-congruence ∼L of L is defined by u ∼L v if and only if
(uα ∈ L ⇔ vα ∈ L) for all α ∈ Σω. A deterministic ω-automaton that accepts a language L
has informative right-congruence (IRC) if its transition graph is isomorphic to T∼L . It is not hard
to see that, in general, regular ω-languages cannot be accepted by automata with informative right-
congruence (see [15] for a detailed analysis of automata with IRC). By IB, IC, IP, and IM we denote
the classes of ω-languages that can be accepted by a deterministic ω-automaton with IRC and the
corresponding accepting condition (Büchi, co-Büchi, parity, Muller, respectively). Note that in any
DMA (and hence also DBA, DCA, DPA) for L, two words u, v ∈ Σ∗ leading to the same state must
be ∼L-equivalent. Thus, there is a surjective homomorphism from the transition graph T of the DMA
into T∼L . The notion of homomorphism for two transition graphs T1, T2 with Ti = (Σ, Qi, δi, q0,i) is
defined as usual. It is a function h : Q1 → Q2 with h(q0,1) = q0,2 such that h(δ1(q, a)) = δ2(h(q), a)
for all q ∈ Q1 and a ∈ Σ. If there is a surjective homomorphism from T1 to T2, we also say that T2 is
a quotient of T1.

Don’t care words are redundant ω-words that we need not consider, that is to say we do not care
whether these words are accepted or rejected by an ω-automaton. Let L,L′ ⊆ Σω be two ω-languages
and D ⊆ Σω a set of don’t care words. We say that L and L′ are D-equivalent, denoted as L ≡D L′,
if and only if L\D = L′\D. We say that a deterministic ω-automaton A is D-minimal if and only if
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With A = (T , c) on the left, D = Σ∗aω , and
T ′ = T , we obtain

F ′
0 = {{q0, q1, q2, q3}, {q1, q2, q3}, {q0, q1}}

F ′
1 = {{q0, q1, q2}}

Figure 1. Illustration of DON’T CARE PRIORITY OPTIMIZATION. An optimal parity condition consistent
with (F ′

0,F ′
1) can redefine the priority of q0 to 2 and thus use one priority less.

there is no deterministic ω-automaton B of the same type with L(A) ≡D L(B) with less states than A.

3. Priority optimization

In this section we consider the problem of optimizing a parity condition under a given don’t care
set, referred to as DON’T CARE PRIORITY OPTIMIZATION: Given DPAs A,D with A = (T , c)
and D := L(D), find a parity condition c′ on T with the smallest number of priorities such that
L(T , c′) ≡D L(T , c). Figure 1 shows an example of a DPA A in which one priority less can be used
if the don’t care set is Σ∗aω.

We show that this problem can be solved in polynomial time. In fact, we consider a more general
problem, in which the transition system on which we compute the parity condition is a quotient of the
given DPA A. Formally, we define the problem of generalized parity optimization under don’t cares,
QUOTIENT DON’T CARE PRIORITY OPTIMIZATION, as follows: Given DPAs A,D with A = (T , c)
and D := L(D), a deterministic transition system T ′, and a surjective homomorphism h : T → T ′,
decide if there is a parity condition c′ on T ′ such that L(T ′, c′) ≡D L(T , c), and construct such a c′

with the smallest possible number of priorities if one exists.

Theorem 3.1. The problem QUOTIENT DON’T CARE PRIORITY OPTIMIZATION can be solved in
polynomial time.

The proof of this theorem follows from Lemma 3.2, Lemma 3.4, and Theorem 3.3 below. We start
with some definitions.

Let T = (Σ, Q, δ, q0) and T ′ = (Σ, Q′, δ′, q′0), and for P ⊆ Q define h(P ) = {h(q) | q ∈ P}.
From the DPA A, the don’t care set D, and the homomorphism h, we obtain two families (F ′

0,F ′
1) of

subsets of Q′, those that need to be accepting, and those that need to be rejecting in order to accept a
language that is D-equivalent to L(A). Formally, we define

F ′
0 = {R′ ⊆ Q′ | ∃α ∈ L(A) \D : h(Inf A(α)) = R′}

F ′
1 = {R′ ⊆ Q′ | ∃α ∈ L(A) \D : h(Inf A(α)) = R′}

We say that a parity condition c′ : Q′ → N is consistent with (F ′
0,F ′

1) if max(c′(R′)) is even for all
R′ ∈ F ′

0, and odd for all R′ ∈ F ′
1. See Figure 1 for an example.
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Lemma 3.2. With the notations introduced above, L(T ′, c′) ≡D L(T , c) iff c′ is consistent with
(F ′

0,F ′
1).

Proof:
The proof is immediate from the definitions: Let α ∈ Σω \ D. Since h is a homomorphism,
Inf T ′(α) = h(Inf A(α)). Thus, Inf T ′(α) ∈ F ′

0 if α ∈ L(A), and Inf T ′(α) ∈ F ′
1 if α ∈ L(A).

So L(T ′, c′) ≡D L(T , c) iff (T ′, c′) accepts precisely those words in Σω \D with infinity set in F ′
0,

which is the definition of consistency with (F ′
0,F ′

1). □

So for solving the problem QUOTIENT DON’T CARE PRIORITY OPTIMIZATION, we need to find
an optimal parity condition c′ that is consistent with (F ′

0,F ′
1). There is an algorithm that solves this

problem in polynomial time, which is presented in [18]. Unfortunately, the size of (F ′
0,F ′

1) can be
exponential in general, so we cannot construct it explicitly in a polynomial time algorithm. However,
the algorithm from [18] only needs to access (F ′

0,F ′
1) via queries of the following type: Given a set

P ′ ⊆ Q′ and t ∈ {0, 1}, return the set

Ut(P
′) =

⋃
{R′ ⊆ P ′ | R′ ∈ F ′

t},

that is, the union of all sets R′ ∈ F ′
t with R′ ⊆ P ′. Let us call such a function that returns Ut(P

′) a
Subset-Parity-Oracle for (F ′

0,F ′
1). We can thus reformulate the result from [18] as follows.

Theorem 3.3. ([18, Theorem 4])
There is a polynomial time algorithm that, given a Subset-Parity-Oracle for (F ′

0,F ′
1) that is com-

putable in polynomial time, constructs an optimal parity condition c′ on T ′ that is consistent with
(F ′

0,F ′
1) if one exists.

Thus, for a polynomial time algorithm solving QUOTIENT DON’T CARE PRIORITY OPTIMIZA-
TION, it suffices to show that one can implement a Subset-Parity-Oracle for (F ′

0,F ′
1) in polynomial

time, which is stated in the following lemma.

Lemma 3.4. There is a polynomial time algorithm that, given the inputs A = (T , c),D, T ′, h for the
problem QUOTIENT DON’T CARE PRIORITY OPTIMIZATION, a set P ′ of states of T ′, and t ∈ {0, 1},
returns the set Ut(P

′).

Proof:
Let A = (T , c) with T = (Σ, Q, δ, q0), D = (Σ, QD, δD, q

D
0 , d), and T ′ = (Σ, Q′, δ′, q′0). We

consider the case t = 0, the case t = 1 being symmetric. Let R′ ⊆ P ′ with R′ ∈ F ′
0. By definition

of F ′
0, there is α ∈ L(A) \ D with h(Inf A(α)) = R′. For the condition α ∈ L(A) \ D, we

consider the product of A and D, which is obtained by the standard product construction, restricted
to reachable states, and with the two priority functions c, d extended to pairs of states. Formally we
define Â = A×D = (Σ, Q̂, δ̂, q̂0, ĉ, d̂) with

• q̂0 = (q0, q
D
0 ),

• Q̂ = Q×QD restricted to the states reachable from q̂0 by application of δ̂,
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• δ̂((q1, q2), a) = (δ(q1, a), δD(q2, a))

• ĉ(q1, q2) = c(q1) and d̂(q1, q2) = d(q2)

Then α ∈ L(A) \D is equivalent to max(ĉ(Inf Â(α))) being even and max(d̂(Inf Â(α))) being odd.
This means that the set Inf Â(α) is a strongly connected set in Â on which the maximal c-priority is
even, and the maximal d-priority is odd.

We can view h also as a homomorphism from the product transition system Â to T ′ by setting
h(q1, q2) = h(q1) for all (q1, q2) ∈ Q̂. The condition h(Inf A(α)) = R′ then directly translates to Â
as h(Inf Â(α)) = R′.

In summary, the sets R′ ∈ F0 with R′ ⊆ P ′ are precisely those sets h(S) where S is a strongly
connected subset of states in Â with h(S) ⊆ P ′, max(ĉ(S)) even, and max(d̂(S)) odd.

Hence, for computing U0(P
′), we can proceed as follows.

• U0 := ∅

• For all even i in the range of c, and all odd j in the range of d:

– Let ÂP ′,i,j be Â restricted to the states (q1, q2) ∈ Q̂ with h(q1) ∈ P ′, c(q1) ≤ i, and
d(q2) ≤ j.

– For each MSCC S of ÂP ′,i,j with max(ĉ(S)) = i and max(d̂(S)) = j, let U0 := U0 ∪
h(S).

• Return U0

This procedure can be implemented to run in polynomial time because there are only polynomially
many pairs i, j to consider, the product Â and its restrictions ÂP ′,i,j as well as the MSCCs can all be
computed in polynomial time. □

4. State space minimization

In this section we consider minimization problems for deterministic ω-automata with informative
right-congruence under a given don’t care set. As explained in the introduction, we only consider
don’t care sets D with trivial right-congruence. We start with the observation that for such don’t care
sets, one can define a canonical right-congruence as a generalization of the standard Myhill-Nerode
congruence.

In the following, if not stated otherwise, let L ⊆ Σω be a regular ω-language and D ⊆ Σω a
regular ω-language of don’t care words with trivial right-congruence.

Definition 4.1. (D-congruence)
Given w,w′ ∈ Σ∗, we say that w and w′ are D-equivalent for L, denoted as w ∼L,D w′, if and only if
for all α ∈ Σω \D it holds that wα ∈ L ⇐⇒ w′α ∈ L. Note that ∼L,∅ is the same as ∼L.
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Clearly, w ∼L w′ implies w ∼L,D w′ for any don’t care set D. The opposite is obviously not true
because for D = Σω, all finite words are D-equivalent for every L. If D has trivial right-congruence,
it follows that α ∈ D ⇐⇒ wα ∈ D for all α ∈ Σω and w ∈ Σ∗. One can conclude that ∼L,D is a
right-congruence, as stated in the following proposition.

Proposition 4.2. For L,D ⊆ Σω such that D has trivial right-congruence, ∼L,D is a right-congruence.

Proof:
That ∼L,D is an equivalence relation directly follows from the definition and does not require D to
have trivial right-congruence. Now assume that u ∼L,D v and let σ ∈ Σ. For every α ∈ Σω \D we
also have σα ∈ Σω \D since D has trivial right-congruence. Hence uσα ∈ L ⇔ vσα ∈ L. □

Definition 4.3. (Informative D-congruence)
Let TL,D be the transition system associated with ∼L,D. A deterministic ω-automaton A with L :=
L(A) possesses informative D-congruence if its transition system is isomorphic to TL,D. We also
define IB(D) as the class of those ω-languages L for which there is a DBA A with informative D-
congruence such that L(A) ≡D L. The corresponding definitions for DCA, DPA, and DMA define
the classes IC(D), IP(D), IM(D). Note that for D = ∅ we obtain the definitions of informative
right-congruence.

If A is a DMA with L(A) ≡D L, then clearly two words w,w′ ∈ Σ∗ that lead to the same state
are ∼L,D-equivalent. This leads to the observation that a DMA with informative D-congruence is D-
minimal (since DPA, DBA etc. can be viewed as DMA, this observation holds for all acceptance types
considered in this paper). Thus, the classes IB(D), IC(D), IP(D), IM(D) consist of those languages
that have a D-minimal automaton with informative D-congruence (with the respective acceptance
condition).

Based on the results from Section 3, we can show that it is decidable in polynomial time whether
a given DPA has a D-minimal automaton with informative D-congruence.

Theorem 4.4. For given DPAs A and D where D = L(D) has a trivial right-congruence, it is de-
cidable in polynomial time whether L(A) is in IB(D), IC(D), or IP(D), and a corresponding DBA,
DCA, or DPA B with informative D-congruence and L(B) ≡D L(A) can be constructed in polyno-
mial time if one exists.

Proof:
Let L = L(A). Given two states p, q of A, it can be decided in polynomial time whether p ̸∼L,D q:
One can build the product Â of A × A × D, and then check if there is a strongly connected set S in
this product graph that is reachable from (p, q, qD0 ) (where qD0 is the initial state of D) and on which

(a) the maximal priority of states in the first component has different parity than the maximal priority
of states in the second component (the resulting word is accepted from p iff it is not accepted
from q),

(b) the maximal priority of states in the third component is odd (the resulting word is not a don’t care
word).
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An ω-word that reaches S from (p, q, qD0 ) and has S as infinity set, is a word outside D that witnesses
the difference between p and q.

The existence of of such a set can be tested by first removing all states in Â that are not reachable
from (p, q, qD0 ), leading to Â′. Then one iterates through all triples (i, j, k) of priorities that satisfy
properties (a) and (b). For each such triple one removes all states from Â′ with priority triple (i′, j′, k′)
and i′ > i or j′ > j or k′ > k, and then computes the MSCCs in the remaining graph. If one finds
an MSCC with a state that has priority triple (i, j, k), then one has found a witness for p ̸∼L,D q. If
this procedure does not find a witness for p ̸∼L,D q for any of the considered triples (i, j, k), then the
states are equivalent.

Once ∼L,D is computed, one can construct TL,D and the corresponding homomorphism from the
transition structure of A onto TL,D. By Theorem 3.1 one can decide in polynomial time whether there
is a parity condition on TL,D such that the resulting language is D-equivalent to L(A).

Since furthermore the constructed parity condition is optimal, one can also deduce whether there
is a Büchi or co-Büchi condition on TL,D that leads to a language that is D-equivalent to L(A). □

For D = ∅, this solves the minimization problem for IRC languages and DPAs, which has inde-
pendently been obtained in [19, Theorem 15.2] with a different proof.

Corollary 4.5. Given a DPA A, it is decidable in polynomial time whether L(A) is in IB, IC, or
IP, and a corresponding DBA, DCA, or DPA with informative right-congruence for L(A) can be
constructed in polynomial time if one exists.

We have seen that one can efficiently check if a language of a DPA has a D-minimal automaton
with informative D-congruence. We now analyze the question for which language classes D-minimal
automata are guaranteed to have informative D-congruence. As a first observation, we can explain
the result from [14] that for each WDBAs there is a unique D-minimal WDBA in terms of the D-
congruence.

Theorem 4.6. Given a WDBA A = (Σ, Q, δ, q0, F ) with L := L(A) and a regular ω-language
of don’t care words D ⊆ Σω with trivial right-congruence, A is D-minimal if and only if it has
informative D-congruence.

Proof:
Clearly, for any u, v ∈ Σ∗, it holds that δ∗(q0, u) = δ∗(q0, v) implies u ∼L,D v. It follows then that A
has at least Ind(∼L,D) states. Thus, we can conclude that any WDBA with informative D-congruence
is D-minimal, as well.

We now show that for each equivalence class κ of ∼L,D, all α ∈ Σω \D with infinitely many pre-
fixes in κ are in L, or all these α are outside L. This defines an acceptance status for each equivalence
class such that for two equivalence classes that are strongly connected (in the transition system TL,D)
the acceptance status is the same. Hence, TL,D can be equipped with a weak acceptance condition
such that the accepted language is D-equivalent to L.

As mentioned above, all finite words leading to the same state q are in the same equivalence class
of ∼L,D. If this equivalence class is κ, we call q a κ-state.
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Let α, β ∈ Σω \D be such that they both have infinitely many prefixes in κ. Assume that α ∈ L.
We show that also β ∈ L (the other case is symmetric). Let α = uα′ and β = vβ′, with u, v ∈ κ. Let
q be a κ-state in A such that no other κ-state in a different MSCC is reachable from q, and let w ∈ Σ∗

such that δ∗(w) = q. Then wα′ ∈ L \D because α′ /∈ D and u ∼L,D w.
Since uα′ and vβ′ have infinitely many prefixes in κ, the same is true for wα′ and wβ′. Thus

Inf A(wα
′), Inf A(wβ

′) ⊆ MSCC(q), by choice of q. Since wα′ ∈ L as seen above, also wβ′ ∈ L
because A is a WDBA. We conclude that β = vβ′ ∈ L because v ∼L,D w. □

This result for WDBAs raises the question whether it can be extended to larger classes of automata.
The next natural candidate is the class of deterministic ω-automata with informative right-congruence.
Since these have unique transition graphs defined by the right-congruence of their language, one might
hope that they behave similarly to WDBAs under don’t care sets with trivial right-congruence. We
show that this is not the case. Furthermore, D-minimal automata for deterministic ω-automata with
informative right-congruence need not to be unique and do not necessarily have informative right-
congruence.

Proposition 4.7. There is a don’t care set D with trivial right-congruence, and a DBA A with infor-
mative right-congruence, such that there are several non-isomorphic D-minimal DBA for A, and a
D-minimal DBA for A does not necessarily have informative right-congruence.

q0A : q1

q2

b, c

a

b
a, c c

a, b

q0B : q1

a, b

c

a, b, c

q0C : q1

a, b

c

a, c

b

q0D : q1

a, b

c

a

b, c

Figure 2. The DBA A has 3 different corresponding D-minimal DBA for the set of don’t care words D :=
Σ∗bω .

Proof:
Consider the DBA A in Figure 2 and let L := L(A). Each state corresponds to a different equivalence-
class in ∼L, namely q0 to [ϵ], q1 to [b] and q2 to [a]. These equivalence classes are distinct since bω ∈ L
and abω ̸∈ L, showing ϵ ̸∼L a and b ̸∼L a, and ϵ ̸∼L b is witnessed by cbω ∈ L and bcbω ̸∈ L. Thus,
L(A) ∈ IB and A is minimal for L. With D = Σ∗bω, we have a set of don’t care words with
trivial right-congruence, and any D-minimal DBA for L has at least two states as aω ̸∈ L(A) ∪ D
and cω ∈ L(A)\D. Figure 2 shows three different D-minimal DBA B, C, and D, all with different
transition graphs. Note that L(C), L(D) ∈ IB as bω ̸∼L′ cbω for L′ ∈ {L(C), L(D)}, but L(B) is the
set of all words containing infinitely many c, which has trivial right-congruence, so B does not have
informative right-congruence.

We used the set D = Σ∗bω ∈ DC of don’t care words, but the same results hold for the set of
don’t care words D′ = (Σ∗b)ω ∈ DB. □
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We now consider the computational complexity of the D-minimization problem for automata with
IRC, and show that it is NP-hard.

Definition 4.8. (D-minimization Problem for IRC)
Given a deterministic ω-automaton A with informative right-congruence, a DPA D accepting a set
of don’t care words D = L(D) with trivial right-congruence, and k ∈ N, does a corresponding
D-minimal ω-automaton B of the same type as A with at most k states exist?

Theorem 4.9. The D-minimization Problem for IRC is NP-hard for DBA, DCA, and DPA.

We show NP-hardness via reduction from the NP-complete Vertex Coloring Problem [20]: Given
an undirected graph G = (V,E) with |E| > 0 and k ∈ N, does there exist a coloring col : V →
{1, . . . , k} of the vertices such that col(v) ̸= col(u) for all (u, v) ∈ E?

We first briefly describe the idea for the reduction, and then enter the formal details. For an
undirected graph G = (V,E) with |E| > 0, we take the vertex set as alphabet, and consider the
language of all α ∈ V ω in which only one vertex appears infinitely often. This language can be
accepted by a DCA (a DPA with priorities 0 and 1) with one state of priority 0 for each vertex v,
which is reached with and loops on v, and one extra state qG of priority 1 that is reached whenever
the next vertex in the sequence is different from the previous one. As an example, consider the DCA
AG in Figure 3 without the transition labels of the form xv. These labels are added to ensure that the
resulting language has informative right-congruence: the sequence xωv is accepted only from the state
for v.

qG

1
AG :

v1

0

v2

0

v3

0

xv1 , xv2 , xv3
v1

v2

v3

v2, v3, xv2 , xv3

v1, xv1

v1, v3, xv1 , xv3

v2, xv2

v1, v2, xv1 , xv2

v3, xv3

q0

1
Acol :

q1

0

q2

0

xv1 , xv2 , xv3

v1

v2, v3

v2, v3, xv2 , xv3

v1, xv1

v1, xv1 v2, v3, xv2 , xv3

Figure 3. The D′-minimal DPA Acol and the DPA AG for G = ({v1, v2, v3}, {(v1, v2), (v1, v3)}) recognize
D′-equivalent ω-languages.

The don’t care set then includes all words α in which labels of the form xv occur infinitely often,
or from some point on successive vertices vv′ in α are not connected by an edge. With this don’t care
set, a D-minimal DPA Acol can use one state for each color class in a k-coloring instead of one state
for each vertex v, as illustrated in Figure 3. This shows NP-hardness of D-minimization for DCA and
DPA with IRC, and can easily be adapted to also work for DBA.

We now give the formal details of the reduction. For an undirected graph G with at least one
edge, define the DPA AG := (Σ, V ∪ {q0}, δG, qG, cG) with Σ := V ∪ {xv | v ∈ V } and for all
u, v ∈ V, u ̸= v:
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• δG(qG, u) = u and δG(qG, xu) = qG,

• δG(u, u) = u, δG(u, xu) = u, δG(u, v) = qG and δG(u, xv) = qG,
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• cG(qG) = 1 and cG(u) = 0.

Furthermore, define the set of don’t care words as D := D′ ∪D′′ with

• D′ := {wα | w ∈ Σ∗, α ∈ V ω,∀i ∈ N : ∃j > i : α(i) ̸= α(j) and ∀i ∈ N : α(i) ̸=
α(i+ 1) → (α(i), α(i+ 1)) ̸∈ E}

• D′′ := {α ∈ Σω | ∃v ∈ V : α(i) = xv for infinitely many i ∈ N}.

This set D is accepted by the DPA (Σ, {qx} ∪ (V × {1, 2, 3}), δD, qx, cD) with

δD((u, i), v) :=


(v, 1), if u = v

(v, 2), if u ̸= v and (u, v) ̸∈ E

(v, 3), if (u, v) ∈ E

for all u, v ∈ V and i ∈ {1, 2, 3}, as well as δD(qx, v) := (v, 2) and δD(q, xv) = qx for q ∈
{qx} ∪ (V × {1, 2, 3}) and v ∈ V , and finally cD(v, i) = i and cD(qx) = 4.

Lemma 4.10. AG has informative right-congruence.

Proof:
Let L := L(AG). For every u, v ∈ V with u ̸= v, we have uxωu ∈ L and xωu , vx

ω
u ̸∈ L. Consequently,

for every u, v ∈ V with u ̸= v, it holds that ϵ ̸∼L u and u ̸∼L v. □

Lemma 4.11. G can be colored using at most k different colors if, and only if, any D-minimal DPA
B with L(AG) ≡D L(B) has at most k + 1 states.

Proof:
First, we demonstrate that if G can be colored using at most k colors, this implies that any D-minimal
DPA B with L(AG) ≡D L(B) has at most k + 1 states: We assume that a vertex-coloring col : V →
{1, . . . , k} on G exists. Then we construct a corresponding DPA Acol := (Σ, {q0, . . . , qk}, δ, q0, c)
with transitions δ(q0, v) := qcol(v), δ(q0, xv) := q0,

δ(qi, v) :=

{
qi, if i = col(v)

q0, if i ̸= col(v),
and δ(qi, xv) :=

{
qi, if i = col(v)

q0, if i ̸= col(v),

as well as c(q0) = 1 and c(qi) = 0 for all i ∈ {1, . . . , k} and v ∈ V . Since col is a valid
vertex-coloring, it follows that L(Acol) only differs from L(AG) on words that are in D, and hence
L(AG) ≡D L(Acol).

Next we show that if a D-minimal DPA for L(AG) has at most k + 1 states, then G can be
colored using at most k colors: Assume that there exists a DPA C := (Σ, {0, . . . , k}, δ, 0, c) with
L(AG) ≡D L(C). There is at least one state q ∈ {0, . . . , k} such that c(q) is odd. W.l.o.g. let c(0) be
odd. Since C needs to accept each vω, we can define

col : V → {1, . . . , k} with col(v) := min{q ∈ Inf C(v
ω) | c(q) is even} for v ∈ V.

For (u, v) ∈ E any ω-word α ∈ (V ∗uv)ω is rejected by C. Thus, we have Inf C(u
ω) ∩ Inf C(v

ω) = ∅.
This mean that col is a valid vertex coloring on G which uses at most k different colors. □
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As demonstrated in Lemma 4.11, we can reduce any instance of the Vertex Coloring Problem to
an instance of the D-minimization Problem for IRC for DPA. Furthermore, the reduction is possible
in polynomial time, as the alphabet has a size of |Σ| = 2|V | and the number of states in AG is |V |+1.
It follows then that the D-minimization Problem with IRC for DPA is NP-hard.

The DPA used in the reduction are actually DCA, as we only utilize priorities 0 (final state) and
1 (non-final state). Consequently, the D-minimization Problem with IRC is NP-hard for DBA and
DCA, as well. This finishes the proof of Theorem 4.9.

5. Active learning of WDBA

In [12] it is shown that the minimal WDBA for an unknown language U that is WDBA recognizable
can be learned in polynomial time from membership and equivalence queries (the time is polynomial
in the size of the minimal WDBA for U and the size of the counterexamples provided by the oracle).
In this section, we consider the extension of this setting with an additional set D of don’t care words
with trivial right-congruence that is also unknown to the learner. We only consider WDBA in this
context, because this is the only class of ω-automata for which a polynomial time active learning
algorithm (with standard membership and equivalence queries) is known. The algorithm in [13] is
not polynomial, and learns a different representation whose translation to deterministic ω-automata is
exponential, in the worst case. Furthermore, in [18] it is shown that the IRC restriction does not help
for active learning, in the sense that polynomial time active learning of regular ω-languages with IRC
is not easier than polynomial time active learning of deterministic ω-automata in general.

As in [12], our algorithm can use membership and equivalence queries. Since there are don’t care
words, a membership query MEMBER(u, v) for u ∈ Σ∗ and v ∈ Σ+ returns “yes” if uvω ∈ U \D,
“no” if uvω ̸∈ U ∪D and “don’t care” if uvω ∈ D. For a hypothesis WDBA H, an equivalence query
EQUIV(H) either confirms that L(H) ≡D U , or provides a counterexample, which is an ultimately
periodic word uvω ∈ Σω \D with uvω ∈ (L(H)\U) ∪ (U\L(H)).

It turns out that it suffices to modify one part of the algorithm, which is called “conflict resolution”
in [12], in order to deal with the don’t care words. As in the original algorithm, we use an observation
table in order to approximate ∼U,D. An observation table consists of a prefix closed set S ⊆ Σ∗, a
suffix closed set E of ultimately periodic words with E ∩D = ∅, and a function f : (S ∪SΣ)×E →
{“yes”,”no”} with f(s, uvω) := MEMBER(su, v) for all s ∈ S and uvω ∈ E. Since D has trivial
right-congruence and D ∩ E = ∅, we know that MEMBER(su, v) is “yes” or “no” for all s ∈ S and
uvω ∈ E, so we will never ask membership queries for don’t care words.

In the table view, the rows are indexed with the elements from S ∪ SΣ and the columns are
indexed with the elements from E. The entries in the row for s ∈ S ∪SΣ are an approximation of the
information required for identifying the equivalence class of s in ∼L,D. This row is captured by the
function fs : E → {“yes”,”no”} with fs(uv

ω) := f(s, uvω) for each s ∈ S ∪ SΣ. The observation
tables are constructed in such a way that the rows of all elements in S are different, a property that is
often referred to as reduced observation table. In the following we only work with reduced observation
tables.

The elements from S correspond to the states of the WDBA, and the rows indexed by SΣ are used
for the transitions. We say that an observation table is closed if and only if for every s ∈ SΣ there is
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t ∈ S with fs = ft. For a closed observation table we can then define the corresponding transition
system TS,f = (Σ, S, δf , ϵ) with δf (s, σ) := t for the unique t ∈ S with fsσ = ft. The following
lemma states that this transition system is isomorphic to the transition system induced by ∼U,D if S
contains as many elements as there are equivalence classes.

Lemma 5.1. If |S| = Ind(∼U,D), then TS,f is isomorphic to TU,D.

Proof:
Since |S| = Ind(∼U,D), there is one representative of each equivalence class in S. For s ∈ S and
σ ∈ Σ, the unique t ∈ S with fsσ = ft must be the representative of the equivalence class of sσ. □

The following lemma states that for ω-words that belong to the table, the transition system is
always in a state that classifies the remaining suffix correctly.

Lemma 5.2. Let (S,E, f) be a closed observation table, α ∈ S ·E, and w ∈ Σ∗ be a prefix of α with
α = wα′. Further, let r = δ∗f (ϵ, w). Then α ∈ U iff rα′ ∈ U .

Proof:
We can write α = sβ with s ∈ S and β ∈ E. If w is a prefix of s, the claim follows since S is prefix-
closed and thus δ∗f (w) = w. Otherwise, α′ is a suffix of β and hence α′ ∈ E since E is suffix-closed.
Let α′ = σα′′ and r′ = δf (r, σ) = δ∗f (wσ). We show that rα′ ∈ U iff r′α′′ ∈ U , which proves the
claim by induction on the length of w. We have that rα′ ∈ U iff f(r, α′) = “yes” iff f(rσ, α′′) =
“yes” iff f(r′, α′′) = “yes” since r′ is the unique element in S with fr′ = frσ. □

It remains to determine the accepting states of TS,f in order to obtain a hypothesis WDBA. This
is done by marking for each α ∈ S · E the states in Inf TS,f (α) with “yes” if α ∈ U , and with “no”
if α /∈ U . The marking fails if and only if there are two states s, t in the same MSCC such that s is
marked “yes” and t is marked “no” (s and t can be the same if there is a state that is marked in both
ways). Otherwise, the marking succeeds and we ask an equivalence query for H = (TS,f , F ) with
F := S \ {q ∈ S | a state in MSCC(q) is marked “no”} the set of states that are not in the MSCC of
a state that is marked “no”.

s tx

z

w
y

Figure 4. The situation described in Lemma 5.3 with sxω ∈ U\D and tyω ̸∈ U ∪D.

It remains to deal with the case that the marking fails. The situation described in the following
lemma is illustrated in Figure 4. The proof is based on Lemma 5.2.

Lemma 5.3. If the marking fails, there are s, t ∈ S, and z, w ∈ Σ∗ with δ∗f (sz) = t and δ∗f (tw) = s,
as well as xω, yω ∈ E with s ∈ Inf TS,f (sx

ω) and t ∈ Inf TS,f (ty
ω) such that f(s, xω) = “yes” and

f(t, yω) = “no”.
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Proof:
If the marking fails, there are s, t ∈ S in the same MSCC such that s is marked “yes” and t is
marked “no”. Since s, t are in the same MSCC, the are words z, w connecting them. Furthermore,
by definition of the marking, there are α, β ∈ S · E with α ∈ U and s ∈ Inf TS,f (α), and β /∈ U
and t ∈ Inf TS,f (β). Since α, β are ultimately periodic, and s and t are visited infinitely often in the
respective runs, we can decompose α and β as α = uxω and β = vyω with δ∗f (u) = s, δ∗f (v) = t, and
xω, yω ∈ E. By Lemma 5.2 we obtain that sxω ∈ U and tyω /∈ U , and thus f(s, xω) = “yes” and
f(t, yω) = “no”. □

From the situation described in Lemma 5.3 we want to extend the observation table such that a
new state is discovered. This is done by finding a distinguishing experiment, which is of the form
rvα ∈ Σω with r ∈ S such that for r′ := δ∗f (rv) we have r′α ̸∈ U ⇐⇒ rvα ∈ U . Adding vα and
its suffixes to E ensures by Lemma 5.2 that δ∗f ′(rv) ̸= r′ in the next hypothesis with table (S′, E′, f ′).
Hence δ∗f ′(rv) ∈ S′ \ S, which means that the number of discovered states increases. The algorithm
in [12] can produce a distinguishing experiment with suffix (zw)ω, which might be a don’t care word
in our setting. We therefore have to identify a distinguishing experiment with a suffix that already
appears in the table and thus cannot be a don’t care word.

Lemma 5.4. For n := Ind(∼U,D) and the setting in Lemma 5.3, there is i ≤ n such that one of
the following is a distinguishing experiment: s(xnzynw)ixω, s(xnzynw)ixnzyω, t(ynwxnz)iyω, or
t(ynwxnz)iynwxω.

Proof:
The D-minimal WDBA A = (Σ, Q, δ, q0, F ) for U has at most n MSCCs, thus for all w1, w2 ∈ Σ∗,
there is an integer i ≤ n such that δ∗(w1w

j
2) ∈ MSSC(δ∗(w1w

i
2)) for all j ≥ i. Since every MSCC

in A either consists entirely of final states or contains no final states, it follows that there must be an
integer i ≤ n with

s(xnzynw)ixω ∈ U ⇐⇒ s(xnzynw)ixnzyω ∈ U or
t(ynwxnz)iyω ∈ U ⇐⇒ t(ynwxnz)iynwxω ∈ U.

To see that, note that δ∗(s(xnzynw)ixn) is in the MSCC of the infinity set of s(xnzynw)ixω by the
above observation. So if, for example, s(xnzynw)ixω ∈ U and s(xnzynw)ixnzyω ̸∈ U , then the
infinity set of s(xnzynw)ixnzyω must be in another MSCC than the one of s(xnzynw)ixω. This
change of MSCC can happen at most n times.

We obtain the distinguishing experiment as follows. If s(xnzynw)ixω ̸∈ U , then rvα with r = s,
v = (xnzynw)i and α = xω satisfies the conditions with r′ = δ∗f (rv) = s. If s(xnzynw)ixnzyω ∈ U ,
then choose r = s, v = (xnzynw)ixnz and α = yω with r′ = δ∗f (rv) = t. Similarly for the other
cases. □

According to Lemma 5.4, the following procedure finds a distinguishing experiment in time
O(n2). Since we do not know the value of n, we have to check the candidates from Lemma 5.4
for increasing values, called k in the procedure. The procedure returns the word for which all suffixes
need to be added to E:
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1. Initialize k = 1, then repeat the following steps:

2. Let z′ := xkz and w′ := ykw.

3. If sz′yω ∈ U , terminate and return xkzyω

4. If tw′xω ̸∈ U , terminate and return ykwxω

5. For i ∈ {1, . . . , k} do

(a) If s(z′w′)ixω ̸∈ U , terminate and return (z′w′)ixω

(b) If t(w′z′)iw′xω ̸∈ U , terminate and return (w′z′)iw′xω

(c) If s(z′w′)iz′yω ∈ U , terminate and return (z′w′)iz′yω

(d) If t(w′z′)iyω ∈ U , terminate and return (w′z′)iyω

6. Set k := k + 1 and go back to step 2.

We now have all the ingredients for the modified learning algorithm: The algorithm initializes an
observation table with S = {ϵ}, E = ∅ and goes through the following steps:

1. Add t ∈ SΣ with ∀s ∈ S : ft ̸= fs to S until the table is closed, and then construct TS,f .

2. Mark the states in Inf TS,f (sα) according to f(s, α) for every s ∈ S and α ∈ E. If the marking
fails, find a distinguishing experiment, add its suffixes to E and go back to step 1, else let
H = (TS,f , F ) with F := S \ {q ∈ S | a state in MSCC(q) is marked “no”}.

3. If EQUIV(H) returns a counterexample α, add α and its suffixes to E and go back to step 1,
else return H.

An example run of the algorithm can be found in the appendix.

Theorem 5.5. Let n := Ind(∼U,D). The algorithm learns a D-minimal WDBA H with L(H) ≡D U
in time that is polynomial in n and the length of a longest counterexample.

Proof:
The algorithm starts with E = ∅ and thus the table is closed since all the functions fw have empty
domain. By definition, the first hypothesis then accepts all words and the equivalence query returns a
word outside U and D (if there is any, otherwise a D-minimal WDBA has been found). By Lemma 5.1
the transition system constructed by the algorithm is isomorphic to TU,D once |S| = n. Then the
marking will not fail anymore, so the algorithm will terminate with a correct hypothesis once it has
for each MSCC at least one word with infinity set in that MSCC.

It remains to show that the algorithm keeps discovering new states. If the table is not closed, a
new element is added to S. So eventually, a transition system for a hypothesis will be constructed. If
the marking fails, then adding the suffixes of a distinguishing experiment ensures that a new state is
discovered (this follows from Lemma 5.2, as explained earlier).
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Otherwise, the suffixes of a counterexample are added to E. If the table remains closed, then the
next marking either fails or in the resulting hypothesis at least one MSCC is marked differently than in
the previous hypotheses for this transition system. This can happen at most n times before the marking
fails or the hypothesis is correct. This means that the main loop terminates after at most O(n2) rounds.
A distinguishing experiment can be found with at most O(n2) membership queries (see Lemma 5.4
and the algorithm thereafter). The number of rows in the table is at most n+ n|Σ|, and the number of
columns is linear in the sum of the lengths of the counterexamples and the distinguishing experiments.
By construction, the length of the distinguishing experiments is polynomial in n and the length of the
longest element in E (see Lemmas 5.3 and 5.4). □

Note that the size of an automaton for D does not play any role for the complexity of the learning
algorithm. The learner does not know D, it only knows that D has a trivial right-congruence. Based
on this knowledge, the algorithm is designed in such a way that all membership queries are made for
words outside D. The only way how D affects the complexity of the learner is by the number of
classes in ∼U,D, which is at most the number of classes in ∼U (if two ω-words are equivalent for ∼U ,
they are clearly also equivalent for ∼U,D). The counterexamples for equivalence queries are chosen
by the oracle, so their lengths are not under control of the learner. However, since the hypothesis
automata used in equivalence queries have at most Ind(∼U,D) many states, there always exists a
counterexample of size polynomial in Ind(∼U,D).

6. Conclusion

We have shown that the problem of priority optimization for DPA under a given don’t care set can
be solved efficiently, and that active learning of WDBA under a don’t care set with trivial right-
congruence is possible in polynomial time. Minimization of automata with IRC under such a don’t
care set D is NP-hard, and D-minimal automata are not unique, which shows that DPA with IRC do
not inherit all the good properties of WDBA. However, minimization without don’t cares for DPAs
that accept languages in IP is possible in polynomial time.

Since DPAs are a model that is used in synthesis problems (see [21] for a recent tool based on
parity automata), it would be interesting to see if one can identify synthesis problems with don’t cares
in which the priority minimization can improve the results of such synthesis algorithms.
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A. Appendix

A.1. Example Run of Learning Algorithm from Section 5

We illustrate the learning algorithm with an example execution. Let Σ := {a, b, c}, U := abω +
baω+(ab)ω and D := Σ∗bω. We show the closed observation tables and the hypotheses the algorithm
produces. The entries in the observation table are denoted as 1 for ”yes” and 0 for ”no”.

The first hypothesis for S = {ϵ} and E = ∅ is the WDBA accepting everything. Let aω be the
counterexample, which is added to E:

aω

ϵ 0

b 1

a 0

ba 1

bb 0

→ ϵH1 : b

a
b

b

a

The marking fails and we have s = b, t = ϵ, x = a = y, z = b = w. For k = 1 and w′ = ab, we
find that ϵabaω ̸∈ U . As such, we add abaω and its suffixes to the observation table:

aω baω abaω

ϵ 0 1 0

a 0 0 0

b 1 0 0

aa 0 0 0

ab 0 0 0

ba 1 0 0

bb 0 0 0

→

ϵH2 :

a

b

a

b

a, b

b

a



C. Löding and M.P. Stachon / Minimization and Learning of ω-Automata with Don’t Cares 91

The marking succeeds and we get (ab)ω ∈ U as a counterexample. We extend the observation
table accordingly and repeat the algorithm:

aω baω abaω (ab)ω (ba)ω

ϵ 0 1 0 1 0

a 0 0 0 0 1

b 1 0 0 0 0

aa 0 0 0 0 0

ab 0 0 0 1 0

ba 1 0 0 0 0

bb 0 0 0 0 0

aaa 0 0 0 0 0

aab 0 0 0 0 0

aba 0 0 0 0 1

abb 0 0 0 0 0

→

ϵH3 :

a

b

aa

ab

a

b

a

b

b

a

a, b

a

b

The algorithm terminates and outputs H3 with Lω(H3). H3 has informative D-congruence and is
therefore D-minimal.
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