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Abstract. The state complexity, respectively, nondeterministic state complexity of a regular lan-

guage L is the number of states of the minimal deterministic, respectively, of a minimal non-

deterministic finite automaton for L. Some of the most studied state complexity questions deal

with size comparisons of nondeterministic finite automata of differing degree of ambiguity. More

generally, if for a regular language we compare the size of description by a finite automaton

and by a more powerful language definition mechanism, such as a context-free grammar, we en-

counter non-recursive trade-offs. Operational state complexity studies the state complexity of

the language resulting from a regularity preserving operation as a function of the complexity of

the argument languages. Determining the state complexity of combined operations is generally

challenging and for general combinations of operations that include intersection and marked con-

catenation it is uncomputable.
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1. Introduction

Descriptional complexity studies the relative succinctness between different representations of formal

languages [1]. For a quantitative understanding of regular languages the commonly used size measures

count the number of states or, in the case of nondeterministic finite automata, the number of transitions.

Early work on descriptional complexity of finite automata includes [2, 3, 4, 5, 6].

One of the most important open problems in descriptional complexity was originally raised by

Sakoda and Sipser in 1978 [7]. The question asks whether any two-way nondeterministic finite au-

tomaton M has an equivalent deterministic two-way automaton with a number of states bounded by

a polynomial on the number of states of M . Already Sakoda and Sipser conjectured a negative an-

swer to this question. Berman [8] and Sipser [9] showed that if one proves an exponential gap in the

succinctness of nondeterministic and deterministic two-way automata and the strings involved in the

separation have polynomial length, this implies that deterministic logarithmic space is a proper sub-

set of nondeterministic logarithmic space. Also Sipser [9] introduced a restricted version of two-way

automata, called sweeping automata, where the reading head may reverse only at the end-markers

and proved an exponential separation between nondeterministic and deterministic sweeping automata.

While the original question on the succinctness comparison of nondeterministic and deterministic

two-way automata remains open, an exponential separation has been established, besides sweeping

automata, for several other restricted variants [10, 11, 12].

This brief survey discusses three specific descriptional complexity topics: non-recursive trade-

offs, the state complexity trade-off between nondeterministic finite automata with differing degrees of

ambiguity, and, the state complexity of language operations. We generally focus on finite automaton

models, however, non-recursive trade-offs naturally deal with succinctness comparisons with more

powerful models. Descriptional complexity is a large and active research area and more information

can be found e.g. in the surveys [13, 14, 15, 16, 17, 18, 12, 19].

2. Non-recursive trade-offs

In a seminal work Stearns [6] studied the relative succinctness of regular languages represented by

deterministic finite automata (DFA) and deterministic pushdown automata (PDA). He showed that if a

deterministic PDA recognizes a regular language it can be a simulated by a DFA of triple-exponential

size. The work establishes also the decidability of regularity of the language of a deterministic PDA.

Generally the difference in succinctness of description between different representations of a regular

language can be arbitrary. This phenomenon is referred to as a non-recursive trade-off.

More formally, a family of languages L is represented by a descriptional system S if L = {L(R) |
R ∈ S}. Here L(R) is the language represented by descriptor R. A complexity measure is a total

recursive function c : S → N. For descriptional systems S1 and S2 equipped with a complexity

measure c, a function f is said to be an upper bound for the size blow-up for changing from system

S1 to S2 if for every language L that has representations in both systems, for every representation R1

of L in S1, the language L has a representation R2 in S2 where c(R2) ≤ f(c(R1)). Note that, for

example, when considering the trade-off between finite automata and pushdown automata we consider
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only the size of representations of regular languages. The trade-off between two descriptional systems

is said to be non-recursive if it is not upper bounded by any recursive function.

A central part of descriptional complexity research deals with non-recursive trade-offs. As a first

non-recursive size blow-up, Meyer and Fischer [4] showed that between finite automata and general

context-free grammars for regular languages the difference in economy of description can be arbi-

trary, that is, the trade-off is not upper bounded by any recursive function. Hartmanis [20] showed

that the descriptional complexity trade-off between deterministic and nondeterministic PDA is non-

recursive, even if the nondeterministic PDA is equipped with a proof in a formal system that it defines

a deterministic language. The proof is based on the fundamental idea due to Hartmanis that invalid

computations of a Turing machine can be encoded as a context-free language [21].

A couple of years later, based on Gödel’s technique for non-recursive shortening of proofs of

formal systems by additional axioms, Hartmanis [1] extended the method as a general technique for

proving non-recursive succinctness trade-offs. We state the result on non-recursive trade-offs using

the formulation by Kutrib [22] that is independent of a particular complexity measure.

Theorem 2.1. ([1, 22])

Let S1 and S2 be descriptional systems for recursive languages. The trade-off between S1 and S2 is

non-recursive if the following conditions hold.

There exists a descriptional system S3 and a property P that is not semi-decidable for languages

with a representation in S3 such that, given an arbitrary representation R ∈ S3, there exists an effective

procedure to construct a representation in S1 for some language LR with the property that LR has a

representation in S2 if and only if L(R) does not have property P .

In fact, as noted in [22] most proofs appearing in the literature to establish non-recursive trade-

offs rely on a technique analogous to Theorem 2.1, or are based on context-free language encodings

of invalid Turing machine computations from [21].

3. Ambiguity of NFAs and state complexity

The state complexity sc(L) (respectively, nondeterministic state complexity nsc(L)) of a regular lan-

guage L is the minimal number of states of a DFA (respectively, of an NFA) for L. Already from

[2, 4, 5] it is known that, for some regular languages L, sc(L) = 2nsc(L).

The degree of ambiguity of an NFA A on a string w is the number of accepting computations of

A on w. The NFA A is unambiguous (UFA) if any string has at most one accepting computation.

If the ambiguity of A on any string is bounded by a constant, A is finitely ambiguous (FNFA) and

A is polynomially ambiguous (PNFA) if the degree of ambiguity of A on input w is bounded by a

polynomial in the length of w.

Schmidt [23] developed methods to prove lower bounds for the size of UFAs and showed that

there exists an n-state UFA where the smallest equivalent DFA requires 2Ω(
√
n) states. The lower

bound was improved by different authors and Leiss [24] gives a construction of an n-state UFA with

multiple initial states where an equivalent DFA need 2n states. Leung [25] established the lower bound
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2n for determinization of an UFA with one initial state, as well as, showed that there exists an n state

FNFA for which any equivalent UFA needs 2n − 1 states.

Ravikumar and Ibarra [26] first considered systematically succinctness comparisons between FN-

FAs, PNFAs and general NFAs, and showed that any NFA recognizing a bounded language can be

converted to an FNFA with polynomial size blow-up. Leung [27] gave an optimal separation between

PNFAs and general NFAs. Using communication complexity Hromkovič et al. [28] give a signifi-

cantly simplified proof for a super-polynomial separation of NFAs and PNFAs, however, their proof

does not give the exact optimal size blow-up 2n − 1.

Theorem 3.1. ([27])

For n ∈ N there exists an n-state NFA An such that any PNFA for the language L(An) needs 2n − 1
states.

Ravikumar and Ibarra [26] also conjectured that polynomially ambiguous NFAs can be signifi-

cantly more succinct than finitely ambiguous NFAs. The question was solved affirmatively by Hrom-

kovič and Schnitger [29]. The below theorem gives a simplified special case of the result in [29]

that gives a superpolynomial succinctness separation between NFAs with degree of ambiguity, respec-

tively, O(mk−1) and O(mk), k ∈ N. However, the lower bound for the separation of n-state PNFAs

and FNFAs is not 2Θ(n) and the precise trade-off in the economy of description remains open.

Theorem 3.2. ([29])

For n ∈ N there exists a PNFA An with number of states polynomial in n such that any FNFA

recognizing the language L(An) has at least 2Ω(n
1

3 ) states.

Besides ambiguity the degree of nondeterminism can be measured, roughly speaking, by counting

the number of guesses in one computation [30] or by counting the number of all computations. The

tree width, a.k.a. leaf size or path size of an NFA A on input w is the number of leaves of the

computation tree of A on w [31, 32, 18, 33]. It is easy to see that an NFA with finite tree width can be

determinized with polynomial size blow-up but very little is known about succinctness comparisons

of NFAs with different non-constant tree width growth rates. For example, it remains open whether an

NFA with polynomial tree width may, in the worst case, require super-polynomially more states than

an equivalent unrestricted NFA. Similarly, the succinctness comparison between NFAs, respectively,

of finite and polynomial tree width remains open.

4. Operational state complexity

The effect of a regularity preserving operation f on the size of the minimal DFA (respectively, on the

size of a minimal NFA) is the operational state complexity of the operation. This is defined formally

below.

Definition 4.1. If f is an m-ary regularity preserving language operation, a (deterministic) state com-

plexity upper bound of f is a function g : Nm → N such that for any regular languages L1, . . . , Lm,

the language f(L1, . . . , Lm) has a DFA with at most g(sc(L1), . . . , sc(Lm)) states.
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The nondeterministic state complexity of an operation f is defined similarly. A function fsc :
N
m → N is the precise worst-case state complexity of f if fsc is a state complexity upper bound

of f and, furthermore, for any positive integers n1, . . . , nm there exist regular languages Li with

sc(Li) = ni, i = 1, . . . ,m, and the minimal DFA for f(L1, . . . , Lm) has fsc(n1, . . . , nm) states.

The state complexity of language operations was first considered by Maslov [3] but the paper re-

mained unknown in the west. A systematic study of operational state complexity of regular languages

was initiated by S. Yu in the 1990’s [19, 34]. The operational state complexity of extensions of finite

automata that have strong closure properties, such as input-driven pushdown automata, a.k.a. visibly

pushdown automata, has also been considered [35, 36].

In a series of papers Yu and co-authors have investigated the state complexity of combined oper-

ations and have determined the precise worst-case state complexity of all combinations of two basic

language operations [37, 13]. Establishing matching upper and lower bounds for the state complexity

of combined language operations is often involved and Ésik et al. [38] have introduced techniques to

estimate the state complexity of combined operations. For a general combination of operations that

include marked concatenation and intersection, Yu et al. [39] have shown that the question whether a

given integer function is a state complexity upper bound is undecidable in the following sense.

The marked concatenation of languages L1, L2, . . . , Ln is defined as L1♯L2♯ · · · ♯Ln where ♯ is a

new symbol not appearing in the languages Li. A (∩, ♯)-composition over the set {L1, L2, . . . , Ln},

n ≥ 2, of language variables is an expression β1♯β2♯ · · · ♯βr, r ≥ 2, where each βi is of the form

βi = K1 ∩K2 ∩ · · · ∩Kti , 1 ≤ ti ≤ n,

where Kj’s are distinct among the language variables Li, i = 1, . . . , n. A sequence of (∩, ♯)-
compositions Ci, i = 1, 2, . . . , is effectively constructible if there is an algorithm that on input i ∈ N

outputs Ci.

Theorem 4.2. ([39])

A sequence of (∩, ♯)-compositions Ci, can be effectively constructed such that, given i ∈ N and a

polynomial with positive integer coefficients P over the same number of variables as Ci, it is unde-

cidable whether or not P is a state complexity upper bound for the composition Ci (as defined in

Definition 4.1).
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