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Abstract. Discrete tomography focuses on the reconstruction of functions from their line sums

in a finite number d of directions. In this paper we consider functions f : A → R where A
is a finite subset of Z

2 and R an integral domain. Several reconstruction methods have been

introduced in the literature. Recently Ceko, Pagani and Tijdeman developed a fast method to

reconstruct a function with the same line sums as f . Up to here we assumed that the line sums are

exact. Some authors have developed methods to recover the function f under suitable conditions

by using the redundancy of data. In this paper we investigate the case where a small number

of line sums are incorrect as may happen when discrete tomography is applied for data storage

or transmission. We show how less than d/2 errors can be corrected and that this bound is the

best possible. Moreover, we prove that if it is known that the line sums in k given directions are

correct, then the line sums in every other direction can be corrected provided that the number of

wrong line sums in that direction is less than k/2.
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1. Introduction

We consider functions f : A → R where A = {(i, j) ∈ Z
2 : 0 ≤ i < m, 0 ≤ j < n} for given

positive integers m,n and integral domain R, e.g. Z,R or a finite field. We assume that f is unknown,

but that its line sums in a positive number d of directions are given. The line sums are often referred

to as X-rays to highlight the link between discrete tomography and computed tomography scans. This

type of discrete tomography problem has been widely studied, see e.g. [1–10]. Discrete tomography

originated in the study of crystals which may be damaged when many X-rays are used [11, 12]. In

such applications the possible values of the line sums are linear combinations of a finite set of positive

real numbers. Later applications of discrete tomography were developed where the co-domain of f
can be chosen, such as distributed storage [13, 14], watermarking [15, 16], image compression [17]

and erasure coding [18–20].

It makes an essential difference whether the line sums are exact or not. If they are exact then there

is at least one function satisfying the line sums, but there may be infinitely many. In 1978 Katz [21]

gave a necessary and sufficient condition for the uniqueness of the solution. The structure of possible

solutions of a discrete tomography problem has been studied by numerous authors. It turns out that

proving the existence of a solution, and in case of existence a subsequent reconstruction, can be very

hard if the range of the function on A is restricted to a fixed finite set. In 1991 Fishburn, Lagarias,

Reeds and Shepp [11] gave necessary and sufficient conditions for uniqueness of reconstruction of

functions f : A→ {1, 2, . . . , N} for some positive integer N > 1. See also the thesis of Wiegelmann

[22]. In 1999 and 2000 Gardner, Gritzmann and Prangenberg [23, 24] showed under very general

conditions that proving the existence or uniqueness of a function f : A → N from its line sums in

d directions is NP-complete. The crux of the NP-results is that the co-domain is not closed under

subtraction.

If the co-domain R is an integral domain, then linear algebra techniques such as Gauss elimination

provide polynomial time algorithms. This is useful for the practical reconstruction of f , see e.g.

Batenburg and Sijbers [2]. In the present paper we investigate the theoretical structure of solutions

and leave such computational techniques aside. If the solution is not unique, then any two solutions

differ by a so-called ghost, a nontrivial function g : A → R for which all the line sums in the d
directions vanish. In 2001 Hajdu and Tijdeman [7] gave an explicit algebraic expression for the ghost

of minimal size and showed that every ghost is a linear combination of shifts of it. It implies that

arbitrary function values can be given to a certain set of points of A and that thereafter the function

values of the other points of A are uniquely determined by the line sums, see Dulio and Pagani [25].

Suppose A is an m by n grid and the line sums of a function f : A→ R in d directions are known.

Recently a method was developed to construct a function g : A→ R which has the same line sums as

f has in time linear in dmn as to the number of operations such as addition and multiplication. This

development started with four papers of Dulio, Frosini and Pagani [4, 26–28] with fast reconstruction

results for corner regions of A in case d = 2 or 3. Subsequently Pagani and Tijdeman [29] did so

for general d. In particular, their approach enables one to reconstruct f , if f is the only function

which satisfies the line sums in the d directions. Finally Ceko, Pagani and Tijdeman [30] developed

an algorithm to construct a function g : A → R in time linear in dmn such that g has the same line

sums as f . This yields a parameter representation of all the functions g : A→ R which have the same
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line sums as f . We think it is unlikely that there exists a general reconstruction method which requires

essentially less than O(dmn) operations, if the solution is unique.

A remaining problem is to construct the most likely consistent set of line sums if the measured line

sums contain errors. The most common cause of inconsistency of line sums is noise. This happens,

for example, if the line sums are approximations of line integrals. Here the assumption is that many

line sums may not be exact, but that for each line sum the difference between measured and actual

sum is small. Many algorithms have been developed to deal with this situation in case R = R,

often approximation methods which work well in practice but do not guarantee optimality. See for

example Parts 2 of the books edited by Herman and Kuba [9, 31] and the paper by Batenburg and

Sijbers [2].

The consistent set of line sums nearest to the measured line sums in case of R = R can be

constructed as follows. Consider the incidence matrix B of the lines in the d given directions and

intersecting A. This is an L by mn matrix where L is the total number of such lines. Then the range

of B forms a subspace in R
L. By constructing the orthogonal projection of the vector of the measured

line sums onto this subspace, we obtain the consistent line sum vector b0 nearest to the measured one.

Theorem 5.5.1 of [32] provides the standard tool from linear algebra to compute the vector b0. For

more details on this procedure see Theorem 4.1 of [33].

In the present paper we deal with another type of errors, viz. errors which may be arbitrary large,

but are small in number. For literature in this direction, see e.g. [13,14,18,19]. Again the properties of

the co-domain of f make an essential difference. Alpers and Gritzmann [34] showed that for functions

f : A→ {0, 1} the Hamming distance between any two solutions with equal cardinality of the lattice

sets is 2(d − 1). They remarked that the problem of determining how the individual measurements

should be corrected in order to provide consistency of the data is NP-complete whenever d ≥ 3.

The situation is again totally different and much more favourable if the co-domain of f is an integral

domain.

A common approach for error correction in linear systems involves solving an L1 minimization

problem [35, 36]. Candes, Romberg and Tao showed that an object may be recovered exactly from

incomplete frequency samples via convex optimization [37]. Chandra, Svalbe, Guédon, Kingston and

Normand [18] used redundant image regions to reconstruct the original function f in linear time. They

chose m,n and the directions appropriately and assumed that all the line sums in some directions were

wrong. This result is comparable with our Theorem 2.2 which, however, is valid for any m,n and any

finite set of directions. In Theorem 2.1 we show that if f : A → R and g : A → R do not have

the same line sums, then at least d line sums are different and in case of < d/2 wrong line sums

reconstruction of f can be done in polynomial time. (Even < d wrong line sums if it is known which

line sums are wrong). A simple example shows that here the bounds d and d/2, respectively, are the

best possible (see Section 3). After having corrected the wrong line sums, we have a consistent set

of line sums and the method from [29, 30] can be applied to find the optimal solution in the above

described sense.

Theorems 2.1 and 2.2 are stated in the next section. Moreover, in Sections 9-11 we give a pseu-

docode algorithm and an example, and prove that the complexity isO(d4mn) operations. Of course, it

may happen that the number of errors is much smaller than d/2. We introduce F for the total number

of errors and G for the maximum of the number of wrong line sums in some direction as parameters so



94 M. Ceko and all. / Error Correction for Discrete Tomography

that the amount of computation can be reduced if it is expected that there are far less than d/2 errors.

Here F and G can be freely chosen such that G ≤ F < d/2.

In the proofs of the theorems we use the fact that there is redundancy in the information given

by the line sums. Hajdu and Tijdeman [38] pursued an analysis of the redundacy by Van Dalen [39].

Their line sum relation lemma (Lemma 6.1) is the basis of the present paper. Besides, some properties

of Vandermonde determinants are derived and used. By the redundacy of data the values of the wrong

line sums do not matter. The lines with correct line sums are detected and the right values of the wrong

line sums are derived from the correct line sums.

2. The main results

Let d,m, n be positive integers and A = {(i, j) ∈ Z
2 : 0 ≤ i < m, 0 ≤ j < n}. Let D = {(ah, bh) :

h = 1, 2, . . . , d} be a set of pairs of coprime integers with ah ≥ 0 and bh = 1 if ah = 0. We call the

elements of D directions. For f : A→ R we define the line sum in the direction of (ah, bh) by

ℓh,t =
∑

(i,j)∈A, bhi−ahj=t

f(i, j) (1)

for h = 1, 2, . . . , d and t ∈ Z. Denote for all h and t by ℓ∗h,t the corresponding measured line sum. We

call line sums with ℓ∗h,t = ℓh,t correct line sums and others wrong line sums. In this paper we suppose

that all the line sums in the directions of D are measured and that there are less than d/2 wrong line

sums and show how to correct them.

Theorem 2.1. Let d,m, n be positive integers and let A and D be as defined above. Let f : A → R

be an unknown function such that for h = 1, 2, . . . , d the line sums ℓ∗h,t in the direction of (ah, bh) are

measured with in total less than d/2 wrong line sums. Then the correct line sums can be determined.

It is remarkable that the bound depends only on d and is independent of m,n and the directions

themselves. The restriction on the entries of the directions serves to choose one of the two directions

(a, b) and (−a,−b) which provide the same line sums.

If k directions with only correct line sums are known and there are not too many wrong line sums

in some other direction, then these wrong line sums can be corrected:

Theorem 2.2. Suppose, in the notation of Theorem 2.1, all the line sums in directions (ah, bh) are

known to be correct for h = 1, 2, . . . , k. Then the line sums can be corrected in each direction with

less than k/2 wrong line sums, and, moreover, in each direction with at most k wrong line sums where

it is known which line sums are wrong.

In Section 3 we show that the bound d/2 cannot be improved. Sections 4 and 5 contain results

related to Vandermonde determinants. The line sum relation lemma is proved in Section 6. Theorems

2.2 and 2.1 are derived in Sections 7 and 8, respectively. In Section 9 a pseudocode is provided, which

details the steps of the algorithm to find the correct line sums. An example in Section 10 illustrates

the algorithm. Section 11 provides an analysis of the complexity of the algorithm. In the final section

we state some conclusions.
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3. An example which shows that Theorem 2.1 cannot be improved

Change the value of f at one element of A. Then exactly d line sums change. Thus d of the pairs

of corresponding line sums are different. It follows that the bound d/2 in Theorem 2.1 is the best

possible.

Example 1. Consider the function f : A→ Z with one unknown value indicated by ?.

2 6 5 4

3 ? 2 0

5 1 4 2

6 3 1 4

Suppose the measured horizontal line sum through ? is 7, the measured vertical line sum through ? is

12 and both measured diagonal line sums through ? are 13. Then d = 4, the horizontal and vertical

line sums suggest that the value of ? is 2 whereas the diagonal line sums indicate that it should be 3.

Both values result in 2 = d/2 wrong line sums. ⊓⊔

Obviously this can be generalized for arbitrarily large m,n and d.

4. Vandermonde equations with variable coefficients

Let r be a positive integer. Let c0, c1, . . . , c2r−1 and t1, t2, . . . , tr be given real numbers with t1, t2,

. . . , tr distinct. It is well known and very useful that a system of linear equations

r
∑

i=1

tjixi = cj (2)

for j = 0, 1, . . . , r−1 in unknowns x1, x2, . . . , xr has a unique solution which can be found by using

a Vandermonde matrix. In this section we show how to solve the system of equations (2) for j = 0, 1,

. . . , 2r − 1, if both x1, x2, . . . , xr and t1, t2, . . . , tr are unknowns.

The method is based on the following lemmas.

Lemma 4.1. Let M be the r by r matrix with entries Mi,j =
∑r

h=1 t
i+j
h for i, j = 0, 1, . . . , r − 1.

Then

det(M) =
∏

1≤i<j≤r

(tj − ti)
2.

Proof:

Observe that M = V T · V where V is the Vandermonde matrix with Vi,j = tji for i = 1, 2, . . . , r and

j = 0, 1, . . . , r − 1. Therefore

det(M) = (det(V ))2 =





∏

i<j

(tj − ti)





2

.
⊓⊔
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Lemma 4.2. Let c0, c1, . . . , c2r−1 be given real numbers. If t1, t2, . . . , tr and x1, x2, . . . , xr satisfy

(2) for j = 0, 1, . . . 2r − 1, then

cj+r − cj+r−1B1 + · · ·+ (−1)rcjBr = 0 (3)

for j = 0, 1, . . . , r − 1 where B1, B2, . . . , Br are defined by

(z − t1)(z − t2) . . . (z − tr) = zr −B1z
r−1 + · · ·+ (−1)rBr. (4)

Proof:

We have

cj+r =

r
∑

i=1

tj+r
i xi =

r
∑

i=1

xi

r
∑

h=1

(−1)h−1Bht
j+r−h
i

=

r
∑

h=1

(−1)h−1Bh

r
∑

i=1

tj+r−h
i xi

=

r
∑

h=1

(−1)h−1Bhcj+r−h.
⊓⊔

We are now ready to show how system (2) can be solved if both x1, x2, . . . , xr and t1, t2, . . . , tr
are unknowns.

Lemma 4.3. Let r be a positive integer. Let c0, c1, . . . , c2r−1 be given real numbers. If nonzero real

numbers x1, x2, . . . , xr and distinct real numbers t1, t2, . . . , tr satisfy (2) for j = 0, 1, . . . , 2r − 1,

then B1, B2, . . . , Br defined by (4) can be determined by solving the linear system (3) for j = 0, 1,

. . . , r − 1. Subsequently t1, t2, . . . , tr can be found by computing the zeros of the polynomial

zr −B1z
r−1 +B2z

r−2 + · · ·+ (−1)rBr. (5)

If t1, t2, . . . , tr are chosen, the values of x1, x2, . . . , xr can be found by solving system (2) for j = 0,

1, . . . , r − 1.

Proof:

First we apply Lemma 4.2, where, by (2), we have to solve a system of r linear equations in r un-

knowns B1, B2, . . . , Br with coefficient matrix M∗ with M∗
i,j = (−1)r−i

∑r
h=1 t

i+j
h xh for i, j = 0,

1, . . . , r − 1. Note that

det(M∗) = ±x1x2 · · · xr · det(M)

where M is the matrix from Lemma 4.1. Since det(M∗) is nonzero by Lemma 4.1, we can solve the

system of r linear equations and so determine the numbers B1, B2, . . . , Br. By computing the zeros

of (5) the numbers ti are found. Note that the numbers t1, t2, . . . , tr cannot be distinguished and we

may assume t1 < t2 < · · · < tr. The expression for xi follows from solving system (2) for j = 0, 1,

. . . , r − 1 using Cramer’s rule. ⊓⊔
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Remark. Later on we apply Lemma 4.3 in such a way that the number ti corresponds to the line

bhx − ahy = ti for which the line sum is wrong and the corresponding number xi is equal to the

difference between the measured line sum and the correct line sum. We refer to Section 9, in particular

formula (17), for the way the xi’s are computed in practice.

We conclude this section with a simple application of the Vandermonde determinant.

Lemma 4.4. Let t1, t2, . . . , tr be distinct integers. If
∑r

i=1 t
j
ixi = 0 for j = 0, 1, . . . , k − 1, then

k < r or x1 = x2 = · · · = xr = 0.

Proof:

It follows from
∑r

i=1 t
j
ixi = 0 for j = 0, 1, . . . , r−1 that the ti’s are not distinct or all xi’s are 0. ⊓⊔

5. A Vandermonde-related determinant

We prove the following result.

Lemma 5.1. Let a1, a2, . . . , a2k, b1, b2, . . . , b2k be variables. Set Wu,v = aubv − avbu for u, v =

1, 2, . . . , 2k. Let M be a k × k matrix with entries Mh,H =
(

∏k
i=1Wi,k+H

)

/Wh,k+H for h,H =

1, . . . , k. Then

det(M) = (−1)k(k−1)/2





∏

1≤h1<h2≤k

Wh1,h2









∏

1≤H1<H2≤k

Wk+H1,k+H2



 .

Proof:

Clearly, we can consider det(M) to be a polynomial in the unique factorization domain R[a1, a2, . . . ,

a2k, b1, b2, . . . , b2k]. The degree of det(M) equals 2k2 − 2k. For each h1, h2 with 1 ≤ h1 < h2 ≤ k
the columns numbered h1 and h2 are proportional if ah1

bh2
= ah2

bh1
which implies det(M)=0.

Therefore det(M) is divisible by Wh1,h2
. Similarly, for each H1,H2 with 1 ≤ H1 < H2 ≤ k

the rows numbered H1 and H2 are proportional if ak+H1
bk+H2

= ak+H2
bk+H1

which implies that

det(M) is divisible by Wk+H1,k+H2
. The product of these distinct and coprime factors,





∏

1≤h1<h2≤k

Wh1,h2









∏

1≤H1<H2≤k

Wk+H1,k+H2



 ,

has degree 2k2 − 2k too. Therefore there is a real number c such that

det(M) = c





∏

1≤h1<h2≤k

Wh1,h2









∏

1≤H1<H2≤k

Wk+H1,k+H2



 .

Since aubv is lexicographically smaller than avbu for u < v, we infer that

c · ak−1
1 ak−2

2 · · · ak−1 · a
k−1
k+1a

k−2
k+2 · · · a2k−1 · b2b

2
3 · · · b

k−1
k · bk+2b

2
k+3 · · · b

k−1
2k
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is the smallest lexicographic element in the expansion of det(M). We claim that on comparing the

exponents it turns out that this term can only be obtained by developing the main diagonal of M .

The first column is the only one containing ak+1’s. Since no b1 should be chosen, the only possi-

bility is to choose −ak+1b2,−ak+1b3, . . . ,−ak+1bk from the leftmost element of the first column.

The second column is the only one containing ak+2’s. Therefore it has to be chosen k − 2 times

and the other has to involve a1. Since b2 should not be chosen anymore, we choose a1bk+2 and

−ak+2b3,−ak+2b4, . . . ,−ak+2bk from the element at the second column of the main diagonal. Con-

tinuing in this way it turns out that the only possible choice of the factors is in the expansion of entry

Mh,h the term with factors

a1bk+h, a2bk+h, . . . , ah−1bk+h,−ak+hbh+1,−ak+hbh+2, . . . ,−ak+hbk,

for h = 1, 2, . . . , k. Since the coefficient of the resulting product is (−1)k(k−1)/2, we conclude that

c = (−1)k(k−1)/2. ⊓⊔

Example 2. For k = 3 the matrix M is as follows, where the chosen elements to obtain the smallest

lexicographic element are boldface.







(a2b4 − a4b2)(a3b4 − a4b3) (a2b5 − a5b2)(a3b5 − a5b3) (a2b6 − a6b2)(a3b6 − a6b3)

(a1b4 − a4b1)(a3b4 − a4b3) (a1b5 − a5b1)(a3b5 − a5b3) (a1b6 − a6b1)(a3b6 − a6b3)

(a1b4 − a4b1)(a2b4 − a4b2) (a1b5 − a5b1)(a2b5 − a5b2) (a1b6 − a6b1)(a2b6 − a6b2)







An alternative version of Lemma 5.1 reads as follows.

Corollary 5.2. Let a1, a2, . . . , a2k, b1, b2, . . . , b2k be reals. Set Wu,v = aubv − avbu for u, v =
1, 2, . . . , 2k. Let M∗ = {M∗

h,H : h = 1, 2, . . . , k;H = 1, 2, . . . , k} be the matrix with entries

M∗
h,H = 1/Wh,k+H . Then

det(M∗) = (−1)k(k−1)/2





∏

1≤h1<h2≤k

Wh1,h2









∏

1≤H1<H2≤k

Wk+H1,k+H2





(

k
∏

h=1

k
∏

H=1

Wh,k+H

)−1

.

Proof:

Note that Mh,H = (
∏k

i=1Wi,k+H) ·M∗
h,H and that the factor within brackets is independent of h.

Hence,

det(M) =

(

k
∏

H=1

k
∏

i=1

Wi,k+H

)

det(M∗).

⊓⊔

6. The line sum relation lemma

The following result is of fundamental importance in our present study. It follows from Lemma 4.1

of [38]. For the convenience of the reader we give a direct proof here.
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Lemma 6.1. Let A,D, f, ℓh,t be as in Section 2. Let K be a subset of {1, 2, . . . , d}. For h = 1, 2,

. . . , k := |K| ≥ 2 define Eh,K by

Eh,K = (−1)h−1
∏

i,j∈K, i<j, i,j 6=h

(aibj − ajbi). (6)

Then
∑

h∈K

Eh,K

∑

t∈Z

tk−2ℓh,t = 0.

Proof:

Without loss of generality we may assume that K = {1, 2, . . . , k} with Dh = (ah, bh) for h =
1, 2, . . . , k. Put as = (as1, a

s
2, . . . , a

s
k) and b

s = (bs1, b
s
2, . . . , b

s
k) for s = 0, 1, 2, . . . . We denote the

determinant of the m×m matrix with i-th column vector xi = (x1,i, . . . , xm,i) by det(x1, . . . ,xm).
Furthermore, we denote the determinant of the matrix which we obtain by omitting its first column

vector and its h-th row vector by det(x2, . . . ,xm)h.

Obviously, for s = 0, 1, . . . , k − 2 we have

det(asbk−2−s,ak−2,ak−3
b,ak−4

b
2, . . . ,bk−2) = 0.

(Here the product of vectors is defined termwise.) By developing by the first column we obtain, for

s = 0, 1, . . . , k − 2,

k
∑

h=1

(−1)h−1ashb
k−2−s
h det(ak−2,ak−3

b,ak−4
b
2, . . . ,bk−2)h = 0.

Observe that (−1)h−1det(ak−2,ak−3
b,ak−4

b
2, . . . ,bk−2)h is the Vandermonde determinant Eh,k.

Hence, for arbitrary (i, j) ∈ A,

k
∑

h=1

(bhi− ahj)
k−2Eh,K =

k−2
∑

s=0

(

k − 2

s

)

ik−s−2js
k
∑

h=1

ashb
k−2−s
h Eh,k = 0.

Since for every direction any element of A is on exactly one line in that direction, we get

0 =
∑

(i,j)∈A

f(i, j)
k
∑

h=1

(bhi− ahj)
k−2Eh,K =

k
∑

h=1

∑

t∈Z

∑

(i,j)∈A,bhi−ahj=t

f(i, j)(bhi− ahj)
k−2Eh,K .

Thus

0 =
k
∑

h=1

∑

t∈Z

tk−2Eh,K

∑

(i,j)∈A,bhi−ahj=t

f(i, j) =
k
∑

h=1

∑

t∈Z

Eh,Ktk−2ℓh,t.
⊓⊔
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7. Error correction of line sums in one direction

For the proof of Theorem 2.2 we combine the preceding lemmas.

Proof of Theorem 2.2

Number the directions such that D1,D2, . . . ,Dk are directions with only correct line sums and direc-

tion DH for some fixed H with k < H ≤ d may have wrong line sums. For j ≤ k we apply Lemma

6.1 to the set Kj,H := {1, 2, . . . , j,H},

j
∑

h=1

Eh,Kj,H

∑

t∈Z

tj−1ℓh,t + EH,Kj,H

∑

t∈Z

tj−1ℓH,t = 0. (7)

Define and compute

c∗j,H =

j
∑

h=1

Eh,Kj,H

∑

t∈Z

tj−1ℓ∗h,t + EH,Kj,H

∑

t∈Z

tj−1ℓ∗H,t. (8)

From (7) and (8) we obtain,

j
∑

h=1

Eh,Kj,H

∑

t∈Z

tj−1(ℓ∗h,t − ℓh,t) + EH,Kj,H

∑

t∈Z

tj−1(ℓ∗H,t − ℓH,t) = c∗j,H . (9)

The choice of D1, D2, . . . , Dk implies ℓ∗h,t = ℓh,t for h = 1, 2, . . . , k and all t ∈ Z. Thus

EH,Kj,H

∑

t∈Z

tj−1(ℓ∗H,t − ℓH,t) = c∗j,H (10)

for j = 1, 2, . . . , k. Notice that by our assumption there are at most k non-zero terms ℓ∗H,t − ℓH,t, for

t = t1, t2, . . . , tr, say. Then we have a system of linear equations (2) with xi = ℓ∗H,ti
− ℓH,ti , cj =

c∗j,H/EH,Kj,H
. If t1, t2, . . . , tr are known, then we can simply solve system (2) and find ℓ∗H,ti

−ℓH,ti for

i = 1, 2, . . . , r and determine the correct line sum ℓH,ti for the line bHx−aHy = ti for i = 1, 2, . . . , r.

If it is unknown which lines bHx−aHy = ti have wrong line sums, then r < k/2. Let I be the largest

integer less than k/2. Then we consider the system of linear equations

I
∑

i=1

tj+h
i xi = cj+h for j = 0, 1, . . . , I;h = 0, 1, . . . , I.

The rank r of the matrix with element cj+h for j, h = 1, 2, . . . , I equals the number r of line sums

ℓH,ti with wrong line sums. Lemma 4.3 enables us to compute successively B1, B2, . . . , Br and

t1, t2, . . . , tr, indicating the lines bHx− aHy = ti where the wrong line sums are, and x1, x2, . . . , xr ,

which represent the errors ℓ∗H,ti
− ℓH,ti for i = 1, 2, . . . , r. Thus we can compute the correct line sums

ℓH,ti for i = 1, 2, . . . , r. ✷
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8. Detection of directions with wrong line sums

In this section we prove Theorem 2.1.

Proof of Theorem 2.1.

We introduce two parameters which may be used to reduce the amount of computation time: we

assume that we want to find the correct line sums if in total there are at most F wrong line sums and

these wrong line sums are in at most G directions. Thus G ≤ F < d/2. We prove the following

hypothesis by induction on k.

Hypothesis for k. The number of directions with wrong line sums that we have already detected

equals rk−1. The remaining directions form a set Rk such that if there is a wrong line sum in direction

Dh ∈ Rk, then there are at least k wrong line sums in direction Dh and for each direction Dh ∈ Rk,
∑

t∈Z

tjℓh,t =
∑

t∈Z

tjℓ∗h,t

for j = 0, 1, . . . , k − 2.

First we treat the case k = 2. We consider the sums ℓ∗h of the line sums ℓ∗h,t in each direction Dh.

Since there are at most G < d/2 directions with wrong line sums, the majority of directions has the

same correct value ℓ :=
∑

t∈Z ℓh,t which is the sum of all f -values and therefore independent of h.

We set the, r1 say, directions which have a different sum of line sums apart. We continue with the set

R2 of the other d− r1 directions. Observe that the directions in R2 may have wrong line sums too, but

that then in such a direction there are at least two errors, because the sum of the line sums is correct.

Thus the Hypothesis holds for k = 2.

Suppose the hypothesis is true for k with 2 ≤ k < G. It follows that the number of directions with

wrong line sums in Rk is at most

(G− rk−1)/k < (d− 2rk−1)/(2k). (11)

Hence all directions in Rk have correct line sums if d − 2rk−1 ≤ 2k and if this inequality holds, the

induction hypothesis is true for k + 1. In the sequel we assume

d− 2rk−1 ≥ 2k + 1. (12)

It follows that |Rk| = d−rk−1 ≥ 2k+1. By renumbering the directions we may assume D1,D2, . . . ,

Dk ∈ Rk. For h ∈ {1, 2, . . . , k}, H > k and Kk,H := {1, 2, . . . , k,H} we define and compute

c∗k,H =

k
∑

h=1

Eh,Kk,H

∑

t∈Z

tk−1ℓ∗h,t + EH,Kk,H

∑

t∈Z

tk−1ℓ∗H,t. (13)

From (7) with j = k and (13) we obtain, for all DH ∈ Rk,H > k, similarly to (9),

k
∑

h=1

Eh,Kk,H

∑

t∈Z

tk−1(ℓ∗h,t − ℓh,t) + EH,Kk,H

∑

t∈Z

tk−1(ℓ∗H,t − ℓH,t) = c∗k,H . (14)

We distinguish between the following two cases:
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A) More than (G− rk−1)/k directions DH ∈ Rk,H > k satisfy c∗k,H 6= 0.

B) At most (G− rk−1)/k directions DH ∈ Rk,H > k satisfy c∗k,H 6= 0.

Case A) Because of the induction hypothesis the number of H > k for which the direction DH

contains a wrong line sum does not exceed (G− rk−1)/k. Therefore there are at most (G− rk−1)/k
indices H > k with DH ∈ Rk and EH,Kk,H

∑

t∈Z t
k−1(ℓ∗H,t − ℓH,t) 6= 0. It follows that there is at

least one direction DH with
∑k

h=1 Eh,Kk,H

∑

t∈Z t
k−1(ℓ∗h,t − ℓh,t) 6= 0. This implies that there is an

h ∈ {1, 2, . . . , k} such that
∑

t∈Z t
k−1(ℓ∗h,t − ℓh,t) 6= 0. Thus there is a direction with a wrong line

sum among D1,D2, . . . ,Dk.

Case B) At least d− k − rk−1 − (G− rk−1)/k directions DH ∈ Rk with H > k have no wrong line

sum, hence satisfy ℓ∗H,t = ℓH,t for all t. We have, by (12),

d−k−rk−1−
d/2 − rk−1

k
=

d

2
+

(

d

2
− rk−1

)(

1−
1

k

)

−k ≥
d

2
+
1

2
−1−

1

2k
≥

d− 1

2
−1 ≥ k−1.

Since k < G < d/2, at least k directions dH ∈ Rk with H > k have no wrong line sums, hence

satisfy ℓ∗H,t = ℓH,t for all t. Let Dk+1,Dk+2, . . . , D2k be directions in Rk with
∑

t∈Z t
k−1(ℓ∗H,t − ℓH,t) = 0 for all t. Then we have, by (9), for H ∈ {k + 1, k + 2, . . . , 2k},

k
∑

h=1

Eh,Kk,H

∑

t∈Z

tk−1(ℓ∗h,t − ℓh,t) = c∗H = 0. (15)

Here we consider Eh,Kk,H
as coefficients and

∑

t∈Z t
k−1(ℓ∗h,t − ℓh,t) as unknowns. The coefficient

matrix has as typical element

Eh,Kk,H
= (−1)h−1

∏

i,j∈{1,2,...,k,H}, i<j, i,j 6=h

(aibj − ajbi).

We claim that the corresponding determinant is nonzero. Observe that the h-th column has a nonzero

factor

(−1)h−1
∏

i,j∈{1,2,...,k}, i<j, i,j 6=h

(aibj − ajbi)

in common. By dividing it out for h = 1, 2, . . . , k the coefficient Eh,Kk,H
reduces to

E∗
h,Kk,H

:=
∏

i∈{1,2,...,k}, i 6=h

(aibH − aHbi).

It follows from Lemma 5.1 that the determinant of the matrix with typical entry E∗
h,Dk,H

equals

(−1)k(k−1)/2





∏

1≤h1<h2≤k

(ah1
bh2
− ah2

bh1
)









∏

k+1≤H1<H2≤2k

(aH1
bH2
− aH2

bH1
)



 .
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Since this expression is nonzero, the system (15) has the unique solution
∑

t∈Z t
k−1(ℓ∗h,t − ℓh,t) = 0

for h = 1, 2, . . . , k.

By comparing the cases A and B we see that C∗
k,H 6= 0 for at most (G − rk−1)/k directions

DH ∈ Rk with H > k if and only if
∑

t∈Z t
k−1(ℓ∗h,t − ℓh,t) = 0 for h = 1, 2, . . . , k. Split the

d−rk−1 directions in Rk into subsets of k elements and a remainder subset of < k elements. Then we

have more than (d− rk−1)/k − 1 k-subsets. Among them at most (G− rk−1)/k < (d/2 − rk−1)/k
have a direction with a wrong line sum. Since, by (12),

d− rk−1

k
− 1−

d− 2rk−1

2k
=

d

2k
− 1 > 0,

we see that there is at least one k-subset without wrong line sums. Renumber the directions such that

this k-subset is {D1,D2, . . . ,Dk}. Then it follows as in (10) that

EH,DH

∑

t∈Z

tk−1(ℓ∗H,t − ℓH,t) = c∗k,H

for H > k with DH ∈ Rk. We define the set Rk+1 as the set of directions d1, d2, . . . , dk together

with the directions dH ,H > k for which c∗k,H = 0 and define rk as d − |Rk|. For all dh ∈ Rk+1 we

have
∑

t∈Z t
k−1(ℓ∗h,t− ℓh,t) = 0. By the induction hypothesis this is also true for the lower powers of

t. Therefore we have the system of equations
∑

t∈Z t
j(ℓ∗h,t − ℓh,t) = 0 for h = 1, 2, . . . , k; j = 0,

1, . . . , k − 1. It follows from Lemma 4.4 that ℓ∗h,t − ℓh,t = 0 for h = 1, 2, . . . , k, if the number of

nonzero terms is at most k. Thus we may assume that if there is a direction in Rk+1 with a wrong line

sum, then it has at least k + 1 wrong line sums. This completes the induction step.

We stop detecting directions with wrong line sums at level k if rk−1 = G or k > F − ρg where

ρg denotes the number of already detected wrong line sums. If rk−1 = G, then a wrong line sum in a

direction Dh ∈ Rk would lead to a total of G + 1 directions with wrong line sums which contradicts

the definition of G. If k > F − ρg, then a new direction with wrong line sums would give a total of

ρg + k > F wrong line sums, contradicting the definition of F . If a direction in Rk is detected with

wrong line sums, then ρg is augmented by k. When we stop, we have found all directions with wrong

line sums or the assumptions on F and G are not satisfied. In the latter case one might try a higher

value of F or G.

It remains to show how the errors can be found and corrected for every direction which contains

wrong line sums. For this we proceed as in the proof of Theorem 2.2. ✷

9. An error correction algorithm

In this section, we explicitly describe an algorithm for finding directions which contain wrong line

sums, and correcting the wrong line sums. Since there may be relatively few errors in practice, we

allow the user to specify the maximum number of errors F which have been made in at most G
directions, where G ≤ F < d/2. If F,G are not chosen, set F = G = ⌊(d− 1)/2⌋. We use ↔
to denote swapped elements. When the line sums of two directions are swapped, ℓ∗i,t ↔ ℓ∗j,t, it is

implicitly meant that this occurs for all t.
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The algorithm finds the directions that contain wrong line sums, then the wrong line sums them-

selves, and therafter uses the correct line sums to repair them. We use the variable g to count

the number of detected directions containing an erroneous line sum, and order the directions D =
{D1, . . . ,Dg,Dg+1, . . . ,Dd}, where Di contains wrong line sums for i ≤ g. We denote the total

number of already detected wrong line sums by ρg and the contribution of Dg to it by ρ∗g. Steps 1-7

of the algorithm find all directions for which the sum of line sums does not match the majority and

therefore have a wrong line sum. Steps 8-27 detect directions with at least k ≥ 2 errors which were

not detected yet. Steps 28-40 determine the wrong line sums themselves and correct them.

In Step 29 we introduce parameter S = F − ρg + ρ∗H which is an upper bound for the number of

wrong line sums in direction DH , since direction DH already contributed ρ∗H to ρg. In Step 31 we use

direction Dg+2S . Since

g + 2S ≤ g + 2F − 2(rg − rH) ≤ g + 2F − 2(g − 1) = 2F − g + 2 ≤ 2F + 1 ≤ d, (16)

this value of S is permitted. In Step 33 the exact number s of wrong line sums in direction DH is

determined.

The computation in Step 35 may not be exact. This is no problem, since the roots t1, t2, . . . , ts are

integers and can be found by rounding.

To apply Lemma 4.3 in Steps 36-39, we use Cramer’s rule in the form of the matrix determinant

lemma. Let V = (ti−1
j )si,j=1 be the Vandermonde matrix and fix i. Let uT = (uj)

r
j=1, vT = (vj)

r
j=1

be column vectors where uj = cj − ti−1
j and vj is equal to 1 for element i, and zero elsewhere. Then

we can write xi as

xi =
det(V + uvT )

det(V )
= 1 + vTV −1u = 1 +

r
∑

j=1

V −1
i,j uj . (17)

Therefore, we do not need to compute determinants for each i. Instead, a Vandermonde inverse matrix

is computed once.

The algorithm may also work well for values of F and G greater than d/2. This depends on the

way the errors in the line sums are distributed. If, after all, a function f∗ : A→ R has been computed,

then an easy check reveals whether the line sums of f∗ agree with the measured line sums.

Algorithm 1 Line sum error correction

Input: A finite set of (primitive) directions D = {(ah, bh) : h = 1, 2, . . . , d} and (measured) line

sums ℓ∗h,t in the directions of D of a function f : A → R such that ℓ∗h,t contains at most F errors

in at most G directions where G ≤ F < d/2 (F , G may optionally be specified).

Output: Corrected line sums ℓh,t.

1: for h← 1 to d do // Find directions with a wrong line sum

2: ℓ∗h ←
∑

t∈Z

ℓ∗h,t

3: g ← 0, ρg ← 0
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4: for h← 1 to d do

5: if ℓ∗h 6= median({ℓ∗1, ℓ
∗
2, . . . , ℓ

∗
d}) then

6: g ← g + 1; ρg ← ρg + 1, ρ∗g ← 1
7: Dg ↔ Dh; ℓ

∗
g,t ↔ ℓ∗h,t

8: k ← 2 // Find other directions with k ≥ 2 wrong line sums

9: while k ≤ F − ρg and g ≤ G do

10: maxDirections← min (G− g, ⌊(F − ρg)/k⌋)
11: i← g − k + 1
12: repeat

13: i← i+ k
14: count← 0
15: for H ← g + 1, . . . , i− 1, i+ k, . . . , d do

16: K0 ← {i, . . . , i+ k − 1,H}

17: cH ←
k
∑

h=1

Eg+h,K0

∑

t∈Z

tk−1ℓ∗h+i−1,t + EH,K0

∑

t∈Z

tk−1ℓ∗H,t // cf.(8)

18: if cH 6= 0 then

19: count← count+ 1
20: if count > maxDirections then

21: break

22: until count ≤ maxDirections
23: for H ← g + 1, . . . , i− 1, i+ k, . . . , d do

24: if cH 6= 0 then

25: g ← g + 1; ρg ← ρg−1 + k; ρ∗g ← k
26: Dg ↔ DH ; ℓ∗g,t ↔ ℓ∗H,t

27: k ← k + 1

28: for H ← 1 to g do // Correct errors in direction DH

29: S ← F − ρg + ρ∗H // An upper bound for the number of wrong line sums in DH

30: for j ← 1 to 2S do

31: K0 ← {g + 1, . . . , g + j,H}

32: cj ←
∑

t∈Z

tj−1ℓ∗H,t +
j
∑

h=1

Eg+h,K0

EH,K0

∑

t∈Z

tj−1ℓ∗g+h,t // cf. (8)

33: s← rank



















c1 c2 c3 · · · cS

c2 c3 c4 · · · cS+1

c3 c4 c5 · · · cS+2

...
...

...
. . .

...

cS cS+1 cS+2 · · · c2S−1


















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34:













B1

B2

...

Bs













←













cs −cs−1 · · · (−1)s−1c1

cs+1 −cs · · · (−1)s−1c2
...

...
. . .

...

c2s−1 −c2s−2 · · · (−1)s−1cs













−1 











cs+1

cs+2

...

c2s













// cf. (3)

35: t1, . . . , ts ← roots(zs −B1z
s−1 +B2z

s−2 − · · ·+ (−1)sBs) // cf. (4)

36: V ← (ti−1
j )si,j=1

37: W ← V −1 // cf. (17)

38: for i← 1 to s do

39: ℓH,ti ← ℓ∗H,ti
−

s
∑

j=1
Wi,jcj

40: ρg ← ρg + s− ρ∗H // Total of detected errors

10. An example

To illustrate the algorithm we give an example. To show the various aspects of the algorithm, we

choose d = 16, F = 7, G = 4. Let the directions be given by D = {D1,D2, . . . ,D16} with

D1 = (1, 0), D2 = (0, 1), D3 = (1, 1), D4 = (1,−1), D5 = (2, 1), D6 = (2,−1), D7 = (1, 2),
D8 = (1,−2) and eight other directions, e.g. D9 = (3, 1), D10 = (3,−1), D11 = (1, 3), D12 =
(1,−3), D13 = (3, 2), D14 = (3,−2), D15 = (2, 3), D16 = (2,−3). For reason of transparency we

assume that all the correct line sums are 0. We suppose that there are seven wrong line sums in three

directions, ℓ∗3,0 = −3, ℓ∗3,4 = 3, ℓ∗6,−6 = −2, ℓ∗6,1 = 1, ℓ∗8,3 = 2, ℓ∗8,5 = −4, ℓ∗8,7 = 2. Thus we have

two wrong line sums in direction (1, 1), two in direction (2,−1) and three in direction (1,−2). We

indicate the effects of the steps of the algorithm. Comments are given within square brackets.

Steps 4-7. [Selection of directions with deviant sum of line sums. Exchange of D1 and D6.]

median({ℓ∗1, ℓ
∗
2, . . . , ℓ

∗
d}) = 0 = ℓ∗h for all ℓ∗h’s except for ℓ∗6 = −1, g ← 1, ρ1 ← 1, ρ∗1 ← 1,

D1 ← (2,−1), D6 ← (1, 0), ℓ∗1,−6 ← −2, ℓ∗1,1 ← 1, ℓ∗6,−6 ← ℓ∗6,1 ← 0.

Steps 8-21. [k = 2, first try. Case A. This will fail since the test directions, D2 and D3, are as-

sumed to have correct line sums, but D3 has wrong line sums. See (6) for E.]

k ← 2, maxDirections← 3, i← 0, i← 2, count← 0, H ← 4, K0 ← {2, 3, 4}, c4 ← 12,

count← 1, H ← 5, K0 ← {2, 3, 5}, c5 ← 24, count← 2, H ← 6, K0 ← {2, 3, 6}, c6 ← 12,

count← 3, H ← 7, K0 ← {2, 3, 7}, c7 ← 12, count← 4, break.

Steps 12-27. [k = 2, second try, Case B. This succeeds since the test directions, D4 and D5, have

correct line sums. The double error in D3 will be detected. Exchange of D2 and D3.

The triple error in D8 will not be detected, since
∑

t ℓ
∗
8,t =

∑

t tℓ
∗
8,t = 0.]

i ← 4, count ← 0, H ← 2, K0 ← {4, 5, 2}, c2 ← 0, H ← 3, K0 ← {4, 5, 3}, c3 ← 36, count

← 1, cH ← 0 for H = 6, 7, ..., 16, H ← 3, g ← 2, ρ2 ← 3, ρ∗2 ← 2, D2 ← (1, 1), D3 ← (0, 1),
ℓ∗2,0 ← −3, ℓ∗2,4 ← 3, ℓ∗3,0 ← ℓ∗3,4 ← 0, k ← 3.
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Steps 9-27. [k = 3. Since the test directions D3,D4,D5 have only correct line sums, this is Case B

and the triple error in D8 will be detected. Exchange of D8 and D3.]

maxDirections ← 1, i ← 0, i ← 3, count← 0, K0 ← {3, 4, 5,H}, c6 ← c7 ← 0, c8 ← −96, count

← 1, ci ← 0 for i = 9, 10, . . . , 16, g ← 3, ρ3 ← 6, ρ∗3 ← 3, D3 ← (1,−2), D8 ← (0, 1), ℓ∗3,3 ← 2,

ℓ∗3,5 ← −4, ℓ∗3,7 ← 2, ℓ∗8,3 ← ℓ∗8,5 ← ℓ∗8,7 ← 0, k ← 4.

[Condition 9 on F is no longer satisfied. The directions with wrong line sums have been detected:

(2,−1), (1, 1), (1,−2), now D1,D2,D3.]

Steps 28-40: [Correction of the line sums for direction (2,−1). Note that since ℓ∗g+h,t = 0 for

g + h > 3, as in (10), cj reduces to cj =
∑

t∈Z t
j−1ℓ∗H,t.]

H ← 1, S ← 2, j ← 1, K0 ← {4, 1}, c1 ← −1, j ← 2, K0 ← {4, 5, 1}, c2 ← 11,

j ← 3, K0 ← {4, 5, 6, 1}, c3 ← −71, K0 ← {4, 5, 6, 7, 1}, c4 ← 431,

s ← 2, B1 ← −7, B2 ← 6, t1 ← −6, t2 ← −1, V ← (1, 1;−6,−1), W ← 1
5(−1,−1; 6, 1),

ℓ1,−6 ← ℓ1,1 ← 0, ρg ← 7.

Steps 28-40. [Correction of the line sums for direction (1, 1).]
H ← 2, S ← 2, c1 ← 0, c2 ← 12, c3 ← 48, c4 ← 192, s ← 2, B1 ← 4, B2 ← 0, t1 ← 0, t2 ← 4,

V ← (1, 1; 0, 4), W ← 1
4(4,−1; 0, 1), ℓ2,0 ← 0, ℓ2,4 ← 0, ρg ← 7.

Steps 28-40. [Correction of the line sums for direction (1,−2).]
H ← 3, S ← 3, c1 ← 0, c2 ← 0, c3 ← 16, c4 ← −240, c5 ← 2464; c6 ← −21600, s ← 3, B1 ←
−15, B2 ← 71, B3 ← −105, t1 ← −7, t2 ← −5, t3 ← −3, V ← (1, 1, 1;−7,−5,−3; 49, 25, 9),
W ← 1

8(15, 8, 1;−42,−20,−2; 35, 12, 1), ℓ3,−7 ← ℓ3,−5 ← ℓ3,−3 ← 0, ρg ← 7.

[All the wrong line sums have been detected and corrected. After all, it can be checked whether a

correct solution has been found indeed by computing the new line sums. If not, the number of wrong

line sums exceeded F or the number of directions with wrong line sums exceeded G.]

11. Complexity

In order to compute the complexity of the above algorithm we make some preliminary observations.

If there is an h such that ah ≥ m or |bh| ≥ n, then each line sum in direction (ah, bh) is the f∗-value

of exactly one point. Without loss of generality we may then assume that ah = m or |bh| = n,

respectively. Hence, for each h the value of |t| in (1) is at most 2mn and the number of directions d
does not exceed mn. We further use that g ≤ G ≤ F < d/2, h,H ≤ d and k ≤ G.

In our complexity computation we count an addition, subtraction, multiplication, division and a

comparison of two values as one operation. When computing the complexity we do not take into

account the size of the terms. (This can be quite high because of the factors tj . ) An operation may

therefore mean a multi-precision operation. We assume that the numbers tj for 0 ≤ j < 2d− 1, |t| ≤
2mn are computed once. This involves O(dmn) operations.
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The numbers t1, t2, . . . , ts which are computed in Step 35 of the algorithm are the numbers t
indicating the lines of the wrong line sums in direction H . By checking for each integer ≤ 2mn with

Horner’s method whether it is a zero of the polynomial, Step 35 takes O(dmn) operations.

In our analysis, we follow the steps of the pseudocode given in Section 9.

• Steps 1-2 (by the above remark on the number of line sums) require O(dmn) operations (addi-

tions).

• Steps 3-7 altogether need O(dmn) operations. (By the Floyd-Rivest algorithm the median can

be calculated in linear time, see [40].)

• Steps 9-11, 27 require O(F ) operations,

• Steps 12-14, 22 mean O(d/k) operations,

• Steps 15-17 involve O(dk2mn) operations. (According to (6.1) the computation of the E’s

takes O(k2) operations; k does not exceed F .)

• Steps 18-21 take O(G) operations,

• Steps 23-26 involve O(dmn) operations.

By the structure of this block, the complexity of Steps 9-27 is

O9−11,27O12−14,22(O15−21 +O23−26) = O(d
2mnF 2)

where Oi denotes the number of operations in Steps i.

• Step 28, in view of g ≤ G, implies O(G) repetitions,

• Step 29 needs O(G) additions,

• Step 30 implies O(F ) repetitions,

• Steps 31-32, since j ≤ 2F , require O(mnF 3) operations,

• Step 33 needs O(F 2) operations,

• Step 34, by Algorithm 2.3.2 on p. 58 of [41], altogether takes O(F 3) operations,

• Step 35, by Algorithm 2.2.2 on p. 50 of [41], needs O(F 3) operations,

• Step 36, by an earlier remark, needs O(dmn) operations,

• Steps 37-39 take O(F 2) operations,

• Step 40, by Algorithm 2.2.2 on p. 50 of [41], requires O(F 3) operations,

• Steps 41-43 need O(F 2) operations.
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By the structure of this block, the complexity of Steps 28-43 is given by

O28(O29−32 +O33−36 +O37−40 +O41−43) = O(mnG(F 3 + d)) = O(dmnF 2G)

where Oi denotes the number of operations implied by the corresponding Steps. Thus the algorithm

can be completed in O(d2mnF 2) operations.

12. Concluding remarks

After Ceko, Pagani and Tijdeman [30] had developed a fast method to reconstruct a consistent discrete

tomography problem, the next logical step was to determine what is the most likely set of consistent

line sums in case of inconsistency of line sums. If many line sums are almost correct, we refer to

Section 4 of [33]. In the present paper we study the case that only a small number of line sums is

wrong and show how to rectify the wrong line sums. We present an algorithm which performs the task

in O(d4mn) operations. However, the numbers involved in an operation may become quite large.

If the domain of f is finite, but not a rectangular grid, then the algorithm can be applied by

choosing A as the smallest rectangular grid with sides parallel to the coordinate axes containing the

domain and defining function value 0 for each point of A which does not belong to the domain of f .

In this way the domain of f is extended to A. Hereafter the given algorithm can be used.

An obvious question is whether the reconstruction method for cases with only few wrong line

sums can be extended to dimension three and higher. This seems to be hard for two reasons. Firstly a

higher dimensional version of Lemma 6.1 is wanted in order to be able to detect and correct the wrong

line sums. Secondly a three-dimensional version of the algorithm of Ceko, Pagani and Tijdeman is

only known under special conditions, see [42]. The general case might be quite complicated, because

it is much more complex to describe the convex hull of the union of all ghosts in dimension > 2 than

in dimension 2. Thus reconstruction is much more difficult.

Another question is whether it is possible to correct d/2 or more errors in the line sums. In a

generic case more wrong line sums will be corrected by the algorithm. The example in Section 3

shows that it is not always possible to correct the line sums in d/2 or more directions, since the f -

value of one point is uncertain. Theorem 2.2 shows that if the directions with wrong line sums can be

detected, per direction quite a few wrong line sums can be corrected.
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