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Abstract. We consider a class of problems of Discrete Tomography which has been deeply in-
vestigated in the past: the reconstruction of convex lattice sets from their horizontal and/or vertical
X-rays, i.e. from the number of points in a sequence of consecutive horizontal and vertical lines.
The reconstruction of the HV-convex polyominoes works usually in two steps, first the filling step
consisting in filling operations, second the convex aggregation of the switching components. We
prove three results about the convex aggregation step: (1) The convex aggregation step used for
the reconstruction of HV-convex polyominoes does not always provide a solution. The example
yielding to this result is called the bad guy and disproves a conjecture of the domain. (2) The
reconstruction of a digital convex lattice set from only one X-ray can be performed in polynomial
time. We prove it by encoding the convex aggregation problem in a Directed Acyclic Graph.
(3) With the same strategy, we prove that the reconstruction of fat digital convex sets from their
horizontal and vertical X-rays can be solved in polynomial time. Fatness is a property of the
digital convex sets regarding the relative position of the left, right, top and bottom points of the
set. The complexity of the reconstruction of the digital convex sets which are not fat remains an
open question.
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1. Introduction

1.1. About discrete tomography

In the mid 1990s, researchers in Material Science and especially in three dimensional Electron Mi-
croscopy previewed the development of an upcoming technology able to count the number of atoms of
a material crossed by a beam of straight lines [1]. According to the same strategy than Computerized
Tomography, they intended to use this process in order to reconstruct the 3D structure of different ma-
terials (proteins, crystals...) with a very high level of precision. In this new framework, the classical
algorithms of Computerized Tomography have been unable to provide satisfying results. The CT al-
gorithms have been designed for the investigation of materials at a scale where it can be assumed to be
continuous. These algorithms are very poorly adapted for a level where the set of atoms is closer to a
discrete set of points. The discrete nature of the objects to be reconstructed is the first difficulty which
makes CT algorithms ineffective at the atomic scale. A second difficulty comes from the very low
number of X-rays -from 2 to 10- which can be used in Material Science since the X-rays damage the
atomic structure (as comparison, CT-scans provide usually hundreds of X-rays). The third difference
with Computerized Tomography is that for the reconstruction of the atomic structure of crystals (see
[2, 3] for crystalline structures of nano-particules computed with Discrete Tomography in the 2010s
years), the atoms are centered on a lattice so that the problem becomes the reconstruction of a lattice
set, namely in dimension 2 a binary matrix.

The development of the technology for counting the number of atoms on straight lines took finally
more time than expected but the impulse was given to explore this new range of questions dealing with
the reconstruction of discrete sets of points. The sequence of the numbers of points of the intersections
of a discrete set with consecutive parallel lines has been called by keeping the physical term of X-
ray while the reconstruction of a discrete set from X-rays took the name of Discrete Tomography
[4, 5, 6]. Due to the technical system providing the measurements and the complexity of the considered
problems, a special attention is given on the problem in dimension 2.

1.2. Problem statement

An X-ray is the sequence of the number of points of the intersection between a given lattice set and
the consecutive diophantine lines in a chosen direction. In the particular case of the horizontal and
vertical directions in dimension 2, we define the horizontal and vertical X-rays of a lattice set S ⊂
[0 · · ·m − 1] × [0 · · ·n − 1] as the two vectors H(S) and V (S) counting the numbers of points of S
in each row and column. Their coordinates are hj(S) = |{(x, y) ∈ S|y = j}| for 0 ≤ j ≤ n− 1 and
vi(S) = |{(x, y) ∈ S|x = i}| for 0 ≤ i ≤ m− 1 (Fig. 1).

It leads to introduce a generic problem of Discrete Tomography. The question is the existence of a
lattice set with given X-rays and belonging to a given classA of lattice sets. We consider in this paper
the problems of reconstruction from one or two X-rays.

Problem 1. (DTA(v))
Given a class A of finite lattice sets,
Input: one vector v ∈ Zm.
Output: does there exist a lattice set S ∈ A included in the strip [0 · · ·m− 1]× Z with V (S) = v ?
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Figure 1. The horizontal and vertical X-rays of the lattice set S are the vectors V (S) = (1, 2, 4, 5, 3, 1) and
H(S) = (2, 4, 4, 5, 1).

With a vertical and a horizontal X-ray instead of just a vertical X-ray, we have the following
problem:

Problem 2. (DTA(h, v))
Given a class A of finite lattice sets,
Input: two vectors h ∈ Zn and v ∈ Zm.
Output: does there exist a lattice set S ∈ A included in the rectangle [0 · · ·m−1]× [0 · · ·n−1] with
V (S) = v and H(S) = h ?

Figure 2. Main classes of convex lattice sets. The set S1 is not a polyomino since not connected. The set
S2 is not horizontally convex, S3 is not vertically convex. The set S4 is connected, horizontally and vertically
convex. It is an HV-convex polyomino and then belongs to the classH∩V ∩P . The set S5 is not digital convex
while S6 is digital convex (S6 ∈ C).
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The two problems DTA(v) and DTA(h, v) are highly dependant on the chosen classA. In the pa-
per, we focus our attention on convex lattice sets but different definitions might be considered (Fig. 2).

Definition 1.1. A lattice set S ⊂ Z2 is a polyomino if it is 4-connected namely if any pair of points
of S is connected by a sequence of points of S at Euclidean distance 1. The class of polyominoes of
Z2 is denoted P .

A lattice set S ⊂ Z2 is horizontally (vertically) convex if its intersection with any horizontal
(vertical) line is a set of consecutive points. The class of horizontally (vertically) convex lattice sets
is denoted H (V for vertically convex sets). Horizontally and vertically convex sets are simply said
HV-convex. Their class isH ∩ V .

A lattice set S ⊂ Z2 is digital convex if it is equal to its intersection with its real convex hull
S = convZ2(S) where the operator convZ2(.) denotes the integer convex hull namely convR2(.)∩Z2.
The class of the digital convex lattice sets is denoted C.

The class of HV-convex polyominoes is the intersectionH∩V ∩P . It is not convex in an ordinary
meaning. The digital convex sets are the intersections of convex polygons with the lattice Z2. Notice
that the digital convex lattice sets are obviously HV-convex (C ⊂ H ∩ V).

1.3. State of the art

It is known for a long time that for the whole class denoted W of all lattice sets, the problem
DTW(h, v) can be solved in polynomial time by specific algorithms [7, 8] or by min cut-max flow
algorithms (Fig. 3).

Figure 3. Reduction of an instance of DTW(h, v) to a problem of flow.

Many variants of the problem DTW(h, v) have been investigated, not only with horizontal and
vertical X-rays but in different dimensions, with different directions of X-rays and different kinds of
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atoms. If we focus on the two-dimensional case with horizontal and vertical X-rays, the complex-
ities of the problem DTA(h, v) have already been determined for several classes A. The problem
DTA(h, v) is NP-complete:

• for the class A = P of polyominoes [9]

• for the classes A = H or A = V of horizontally or vertically convex lattice sets [10].

• for the classA = H∩V of HV-convex lattice sets (it is a particular case of puzzle games called
nonograms) [9].

These NP -hardness results are however counter-balanced by two major results of the field published
in two seminal papers:

• The problem DTH∩V∩P(h, v) i.e the reconstruction of HV-convex polyominoes can be solved
in polynomial time [10].

• Results of uniqueness have been obtained for the class C of digital convex lattice sets with
different number of directions of X-rays. R. Gardner and P. Gritzmann characterized the sets
of d directions for which any digital convex lattice set is uniquely determined by its X-rays
[11]. With the directions of X-rays providing uniqueness, these results have been completed by
a polynomial time algorithm of reconstruction [12]. This algorithm follows the two steps used
for the reconstruction of HV-convex polyominoes [10].

Table 1. Milestones results and neighboring open questions

Class A Horizontal + vertical
X-rays

4 directions
or more

H ∩ V ∩ P
(HV-convex polyominoes)

DTH∩V∩P(h, v)
polynomial time [13]

open

C
(Digital convex sets)

DTC(h, v)
open

polynomial time
(if uniqueness) [11,
12]

1.4. Three results

Our goal is to address the problem DTC(h, v). It is a twenty years old open question of Discrete To-
mography [14, 15]. Unfortunately, we solve it only partially by providing a polynomial time algorithm
for a subclass of the digital convex sets C that we call fat. We present two intermediary results which
have their own interest. Then the article contains three results.

1 - The Bad Guy. The first result is about the reconstruction DTH∩V∩P(h, v) of HV-convex polymi-
noes. It has been observed since many years that the second step of the original algorithm presented
in [10] always provides a solution. It became an oral conjecture. We disprove it with a first counter-
example. This counter-example has been called by Andrea Frosini the bad guy.
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2 - Only One X-ray. The second result states the complexity of the problem of reconstruction of
digital convex sets from only one X-ray:

Theorem 1.2. The algorithm DAGTomo1 solves DTC(v) with a worst case time complexity in O(m11+
m(

∑m−1
i=0 vi)

5) where m is the number of columns of the X-ray and
∑m−1

i=0 vi the number of points
to determine.

The result is interesting by itself but also by the strategy of the algorithm. It reduces the computa-
tion of a solution to the research of a path in Directed Acyclic Graph of polynomial size.

3 - With Two X-rays and a Fatness Property. The third result is about the reconstruction of digital
convex lattice sets from horizontal and vertical X-rays namely DTC(h, v). We provide a polynomial
time algorithm called DAGTomo2 for reconstructing the fat digital convex sets (Fig. 5). The fatness
of a digital convex set is related to the positions of its points with minimal and maximal x and y
coordinates. These extreme points are the feet of the lattice set (Fig. 4).

Figure 4. The four feet of a lattice set S are the subsets denoted South, West, North and East.

Definition 1.3. Given a lattice set S ⊂ Z2, the South, West, North and East feet are
South(S) = {(x, y) ∈ S|∀(x′, y′) ∈ S, y′ ≥ y},
West(S) = {(x, y) ∈ S|∀(x′, y′) ∈ S, x′ ≥ x},
North(S) = {(x, y) ∈ S|∀(x′, y′) ∈ S, y′ ≤ y},
East(S) = {(x, y) ∈ S|∀(x′, y′) ∈ S, x′ ≤ x}.
The lattice set S is thin if there exists (X,Y ) ∈ Z2 such that the feet are strictly located in diagonally
opposite quadrants of (X,Y ) i.e verifying
either x(South(S)) < X < x(North(S)) and y(West(S)) < Y < y(East(S)),
or x(South(S)) > X > x(North(S)) and y(West(S)) > Y > y(East(S)).
If S is not thin, it is fat (Fig. 5).

The class of the fat lattice sets (Fig. 5) is denoted F . Then the class of the fat digital convex sets
is C ∩ F . The last result of the paper is the following theorem:

Theorem 1.4. The algorithm DAGTomo2 solves DTC∩F (h, v) with a worst case time complexity in
O(m7n7).
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Figure 5. Thin VS fat lattice sets. The fatness/thinness of an HV-convex lattice set depends on the relative
positions of its feet. A lattice set is thin if there exists an integer point (X,Y ) (represented by the green cross)
strictly separating the pairs of feet in diagonally opposite quadrants. Otherwise it is fat.

The time complexity of DAGTomo2 is high but polynomial. The complexity of the reconstruction of
the thin digital convex sets DTC\F (h, v) remains an open question.

1.5. Plan

The paper is organized with one section per result. The second section is focused on the reconstruction
of HV-convex sets. It presents the bad guy counter-example and introduces the material necessary to
prove Theorem 1.4.

The third section proves Theorem 1.2 by presenting a polynomial time algorithm DAGTomo1 for
solving DTC(v). The fourth section presents the polynomial time algorithm DAGTomo2 for solving
DTC∩F (h, v). It proves Theorem 1.4.

2. The structure of the bad guy counter-example

This section is focused on the reconstruction of HV-convex polyominos. It summarizes the results of
the two previous episodes [10] and [16] by defining the switching components and provides a counter-
example of a conjecture.
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2.1. Episode 1: the reconstruction procedure with its filling/aggregation strategy

The milestone paper [10] proved that the problem DTH∩V ∩P(h, v) can be solved in polynomial time.
There exists an extensive literature around this problem [17, 18] and several algorithms have been
derived from this algorithm [19, 12, 20, 21]. We recall its two steps strategy and how it deals with the
ambiguities of the reconstruction.

The strategy of the algorithm is to assume that some points of the solution are known and then to
perform a reconstruction procedure. The given subset of a solution S is denoted Kernel0. The algo-
rithm tries several subsets Kernel0 and for each, the algorithm repeats the reconstruction procedure.

Choosing the Feet. The first set of points Kernel0 assumed to belong to the solution is not chosen
randomly. The original strategy of [10] is to choose as set Kernel0 the four feet North, South, East,
and West (Fig. 4). The North and South feet might have at most m different positions while the
East and West feet might have at most n different positions. It leads us to perform the reconstruction
procedure for at most m2n2 different initial kernels Kernel0 (Fig. 6).

Figure 6. The feet and the corners. The kernel is initialized by choosing the positions of the four feet North,
South, East, and West. At each stage, the undetermined points are represented by small grey disks. The kernel
points are represented by small black disks in grey cells. The excluded points are red disks in pink cells. After
the filling step, the set of the undetermined points is 4-connected. It provides a partition of the undetermined
points in 4 corners.

We present now the reconstruction procedure. It uses a partition of the grid in three sets pre-
sented in the following paragraph. The two steps of the reconstruction procedure i.e the filling and
aggregation steps are presented in the later.

Kernel, Excluded and Undetermined Points. During the reconstruction procedure, the current
knowledge of the solution is described by a partition of the rectangular region of interest [0 · · ·m −
1]× [0 · · ·n− 1] in three sets denoted Kernel, Out, and Undetermined.

• The kernel Kernel contains the integer points which are currently known to belong to all solu-
tions (up to the considered subset Kernel0).
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• The set Out contains the integer points which are currently known to be excluded from all
solutions.

• The set of the integer points whose status In or Out of a solution has not yet been determined is
denoted Undetermined. It is also often called the shell.

For each execution of the reconstruction procedure, the kernel Kernel, the set of the excluded
points Out and the set Undetermined of the undetermined points are respectively initialized with
Kernel← Kernel0, Out← ∅ and Undetermined← [0 · · ·m− 1]× [0 · · ·n− 1] \Kernel0.

Filling Step. Once the three sets Kernel, Out and Undetermined have been initialized, the pre-
scribed X-rays and the prescribed properties of the solution (4-connectivity and HV-convexity) can be
used to decrease the set of the undetermined points. Some of them are added to the current solution
Kernel while some other points cannot belong to the solution and are added to Out. Then the new
determined points allow us to determine new points. The algorithm repeats this process until no unde-
termined point could be determined. This step of the reconstruction procedure from the initialization
to the stage where no undetermined point can be determined without ambiguity is called the filling
step.

We refer to [22, 12] for a complete presentation of the filling operations and suitable data struc-
tures.

The filling operations run until either finding a contradiction (a point of Kernel that should be also
assigned to Out or conversely) or until no undetermined point could be determined without ambiguity.

We illustrate the filling step on the bad guy instance DTH∩V∩P(h0, v0) with

h0 = (2, 4, 6, 7, 9, 8, 9, 9, 9, 7, 7, 8, 6, 5, 3, 1) (1)

and
v0 = (1, 2, 7, 7, 10, 9, 11, 11, 9, 9, 9, 6, 6, 2, 1). (2)

The chosen position of the feet is South = {(10, 0), (11, 0)}, North = {(5, 15)}, East = {(0, 12)}
and West = {(14, 5)} in Fig. 7.

If the filling operations find a contradiction, there is no solution with the considered position of
the feet. This branch of the computation is stopped. If there is no contradiction and it does not remain
any undetermined point, then a unique solution has been found with the considered position of the
feet. This branch of the computation also ends. We go to the aggregation step only if it remains
undetermined points without contradiction.

The Switching Components. We place us now in the case where the filling step did not find any
contradiction and where it remains some undetermined points. Then the kernel obtained by using
the filling operations of [10] has the properties to be HV -convex and 4-connected. The connectivity
allows us to partition the undetermined points in four subsets that we call the borders: the North West,
North East, South East and South West borders. They are respectively denoted NW, NE, SE and SW
(Fig. 6).
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Figure 7. Filling step. On the bad guy instance starting from a given position of the feet, we show the partition
of the region of interest in Kernel ∩Out ∩Undetermined at different stages.

Then we have a partition of the undetermined points in Undetermined = NW∪NE∩ SE∩ SW.
We can build another partition in the following way. The starting remark is that an undetermined point
cannot be isolated in a row or a column. Otherwise it would have been determined. The undetermined
points go by pair on each row and column. If for instance p = (i, j) is undetermined and belongs to
the South border SW∪SE, then the point denoted p = (i, j+vi) is a North undetermined point. These
two points are vertical correspondents. In the same way, any West undetermined point |p = (i, j) has
a horizontal East correspondent p| = (i+ hj , j) (Fig. 8). Horizontal and vertical correspondences are
symmetric relations.

We present now the main property of corresponding points (Fig. 9). If no one of two corresponding
points is aggregated to the kernel then the number of points on its row or column is too small. Con-
versely, if both points are aggregated to the kernel, there are too many points on the row or column. It
follows that exactly one point per pair of corresponding points has to be aggregated to the kernel. We
associate now to each undetermined point a Boolean variable assigned to 1 if we decide to aggregate
the point to the kernel and to 0 if it is rejected. These variables are called the aggregation variables. It
follows from the previous remark that the values of the aggregation variables of corresponding points
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Figure 8. Corresponding points and switching components. After the filling step, horizontal correspon-
dences are drawn in blue while the vertical correspondences are drawn in green on the bad guy instance. In this
case, the graph is composed of a unique cycle i.e switching component.

Figure 9. Switching components. In each switching component, we represent the points alternatively by
squares □ and diamonds ⋄ to express that their Boolean variables are negation from each other. Either the
squares, or the diamonds of a switching component are in a solution.

are the negation from each other. We represent graphically this relation by denoting the points either
with a square □ or with a diamond ♢.

If we consider now the graph of the corresponding points, each point is a vertex of degree 2. It
follows that the graph of correspondences is an union of cycles each one called switching component.

Definition 2.1. A switching component P is a cycle of corresponding undetermined points (Fig. 9).
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Aggregation Step. It remains us to determine which undetermined points should to be aggregated
the kernel or rejected. In other words, the problem is to find an assignation of the aggregation variables
associated to the undetermined points which provides a set which is 4-connected, HV-convex and has
the prescribed numbers of points in each row and column. The key point of the algorithm from [10]
is that these properties are easily expressed by a 2-CNF on the aggregation variables. Then finding
an HV-convex polyomino with the prescribed horizontal and vertical X-rays is reduced to a 2-SAT
instance. Then the aggregation step is resolved by computing and solving the 2-CNF in polynomial
time [23].

Old Oral Conjecture. 25 years after the seminal paper presenting this algorithm [10], no instance
was found where the 2-SAT CNF on the aggregation variables was not feasible. This observation led
to the following empirical conjecture: the 2-SAT formulas expressing the HV-convexity of a solution
on the aggregation variables always feasible.

To determine whether this conjecture is true or false and also for the reminder of the paper, we
now present some structural properties of the switching components.

2.2. Episode 2: structures of the switching components

Before going further, notice that the properties used for the reconstruction procedure of an HV-convex
solution can also be used for the reconstruction of digital convex lattice sets since digital convexity
implies HV-convexity.

According to [16], the structures of the switching components can be classified according to the
positions of the feet. There are six different configurations presented in Fig. 10. In the configurations
a), b), c), d), e), the positions of the feet provide thin solutions while the configuration f) is the
configuration of the fat convex lattice sets.

Figure 10. The six feasible configurations of the feet admitting HV-convex solutions [16]. We color in black
the feet and the points that can be directly determined because they are in the same rows or columns. We color
in red some of the points which can be directly excluded and in grey the regions of the undetermined points.

For each one of the six configurations, the set of undetermined points is restricted to a small num-
ber of regions. Each region corresponds horizontally and vertically to some other regions, so that we
can build the graph of the vertical and horizontal correspondences of the regions. The correspondence
graph in the configuration c) is for instance represented in Fig. 11. Such graphs admit a small number
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Figure 11. In the configuration c) the graph of correspondences between the undetermined regions.
We consider the graph of vertical and horizontal correspondences of the different regions that might contain
undetermined points (with different colors). Each region appears twice in the graph, once after a horizontal
correspondence and the other after a vertical correspondence. This graph admits six fundamental oriented
cycles and three without orientation. With feet in configuration c), the switching components are necessarily
concatenations of these three fundamental cycles.

Figure 12. The fundamental cycles of the switching components in each configuration (except the configu-
ration a) for which the path can have an arbitrary number of edges in the central region). Notice that the cycle
c3) has been forgotten in [16]. The list is now complete.
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of fundamental cycles i.e minimal closed paths. There are exactly three minimal cycles in the config-
uration c). The closed path in the graph are obtained by concatenation of these minimal cycles. The
fundamental minimal cycles in all configurations are represented in Fig. 12. They provide a better
understanding of the very constrained structures of the switching components.

2.3. The bad guy

Let us come back to the conjecture that the aggregation 2-SAT formula expressing the HV-convexity
of a solution is always feasible. For the configurations b), d), and f), it is true: a solution can be found
by aggregating to the kernel either all the squares or all the diamonds. For having a chance to provide
an example of a non feasible aggregation formula, we need squares and diamonds in the same region
as in the following counter-example.

The bad guy instance is in configuration c) and we have a unique switching component which is
a concatenation of a fundamental cycle c2) and a fundamental cycle c3) (these two cycles are drawn
in Fig. 12). The filling step is illustrated in Fig. 7. The correspondences are illustrated in Fig. 8 and
the Boolean aggregation variables are represented in Fig. 13. The 2-SAT formula expressing the HV-
convexity of a solution admits no solution since a square implies a diamond, which is contradictory.
It disproves the empirical conjecture. There exists reconstruction instances for which the aggregation
2-SAT CNF is not feasible.

Figure 13. Counter-example of the conjecture. The filling operations lead to a unique switching compo-
nent. It was conjectured that when the filling operations do not lead to an inconsistency, there exists always an
assignment of the switching components providing an HV-convex solution. It is false with this example. The
HV-convexity leads to inconsistent 2-clauses.
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3. Reconstructing digital convex sets from a unique X-ray in polynomial
time

We now consider the problem DTC(v) of the reconstruction of a digital convex lattice set from a
unique vertical X-ray. It is a fundamental question which provides new tools for tackling the problem
with horizontal and vertical X-rays.

In this section we provide a polynomial time algorithm called DAGtomo1 for solving DTC(v). We
start by reducing the problem to a bounded region of interest. Then we provide a reduction of the
problem to the research of a path in a DAG.

3.1. Work in a bounded region

We assume without loss of generality that the first and last coordinates of the input vector v are not
null. It guarantees that any solution S of DTC(v) contains points in the vertical lines x = 0 and
x = m− 1.

The lowest points of a solution S on these two lines are respectively called the left and right bottom
points. Then instead of searching an arbitrary solution of DTC(v), we are going to restrict our research
to a solution where the left and right bottom points belong to a bounded region.

The first remark is that vertical translations preserve the vertical X-ray and the digital convexity.
Then the set of the solutions of DTC(v) is invariant under vertical translations. It follows that if the
instance DTC(v) admits a solution, then there is a solution with the origin as left bottom point. It
allows us to reduce the problem DTC(v) to the research of a solution with the origin as left bottom
point.

The second remark is that the vertical shearing shear : x ← x, y ← y − x preserves the vertical
X-ray, the convexity, and the vertical line x = 0. Then the set of the solutions of the instance DTC(v)
is invariant by the vertical shear transform. It follows that if DTC(v) admits a solution S, then it admits
a solution S′ with the same left bottom point than S and such that the y coordinate of the right bottom
point of S′ is in the interval [0,m− 1[ (we recall here that the x coordinate of the right bottom points
is m− 1).

With these two remarks, we restrict the research of a solution of DTC(v) to a digital convex lattice
set with the origin as left bottom point and a right bottom point of coordinates (m − 1, ym−1) with
0 ≤ ym−1 < m− 1.

It follows that the points of the segment joining the two extreme bottom points are included in the
triangle Tm of vertices (0, 0), (m − 1, 0), and (m − 1,m − 1) (Fig. 15). This triangle Tm contains
m(m+1)

2 integer points.

We bound now the region of the other points of a solution. We consider the column x = i. The
coordinate of the vertical X-ray along the line x = i is vi. We notice that if a point (i, y) belongs
to a solution of DTC(v), then its vertical distance to the triangle Tm is at most vi − 1. Otherwise
the solution would not be convex. The region whose points (i, y) are at vertical distance at most vi
from Tm is denoted Rv. It contains at most m(m+1)

2 + 2
∑m−1

i=0 vi − 2m points where
∑m−1

i=0 vi is the
prescribed number of points of any solution. We have shown that if DTC(v) admits a solution, then
there exists a solution included in Rv. The algorithm DAGTomo1 searches for a solution in this region.
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Figure 14. Region of work. We fix the left bottom point at the origin. Then with vertical shearing, we can
assume without loss of generality that the right bottom point (m − 1, ym−1) belongs to the vertical segment
from (m−1, 0) to (m−1,m−2). We notice that the segment from the origin to (m−1, ym−1) is by definition
included in the convex hull of the solution and in the triangle Tm of vertices (0, 0), (m− 1, 0), (m− 1,m− 1).
By taking into account the vertical X-ray v, it provides a bounded region Rv containing a solution if there exists
one.

Figure 15. Quads. The nodes of the DAG are quads (colored in pink). The common columns of s and s are
highlighted in blue. For each one of these columns, the number of points of the quad is equal to the prescribed
value given by the vertical X-ray.

3.2. DAGTomo1

We present now the algorithm DAGtomo1 which solves DTC(v) by searching for a solution in the
region Rv. The strategy is to reduce the problem to the search of a path in a directed acyclic graph
(DAG).
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Figure 16. Oriented edges in the DAG. There is an edge between a pair of consecutive quads if they share
a segment and provide a strictly convex turn on the other side. The right quad is colored in red if it is not a
successor of the left quad and in green if they are both linked by an edge in the DAG.

The DAG. We consider the following Directed Acyclic Graph Γ(v) whose nodes are convex quads
with the prescribed vertical X-ray and linked by edges if they have a convex junction (Fig. 15 and
Fig. 16). To be more precise,

• the nodes of Γ(v) are quads made by a pair of non vertical segments s, s in the following
configuration.

1. First, the four vertices of the two segments s and s are in convex position (one vertex can
be in common if it is the origin or if its x coordinate is m− 1) and belong to Rv.

2. We denote [a · · · b] the interval of the common x-coordinates of the two segments s, s. We
assume that the integral interval [a..b] is not empty. Otherwise, the pair of segments s, s is
excluded from the nodes.

3. The last condition is that the segment s is above the segment s with the prescribed X-
ray. By denoting y(i) the y coordinate of the point of s of x coordinate i and y(i) the y
coordinate of the point of s of x coordinate i, we request ⌊y(i)⌋ − ⌈y(i)⌉ = hi. In other
words, the quad made by the convex hull of s, s must contain the prescribed number of
points for each column with x in [a..b].

• We consider two nodes s1, s1 and s2, s2. We denote [a1..b1] (respectively [a2..b2]) the interval
of the common x coordinates for the two pairs of segments s1, s1 (respectively s2, s2). The
DAG Γ(v) has an oriented edge from s1, s1 to s2, s2 if

1. they have a common segment: either s1 = s2 or s1 = s2,
2. the two segments s1 and s2 which are not equal are consecutive: the right vertex x of s1 is

equal to the left vertex of s2.
3. Moreover, the two different segments are in a convex configuration: the vertex x is not in

the convex hull of the other vertices.
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We introduce now two sets of nodes called Left and Right containing respectively the left-most
and right-most quads.

The set Left contains the quads with the origin as vertex. If the first coordinate of the X-ray v is
v0 = 1, then the quads s, s of Left are only triangles with the origin as left vertex of s and s. Otherwise
the two segments s, s of the quads in Left have respectively (0, 0) and (0, v0) as left nodes.

The set Right contains the quads with at least one vertex of x coordinate m − 1. If the last
coordinate of the X-ray v is vm−1 = 1, then the quads s, s of Right are only triangles with the right
vertex of coordinates x = m − 1 and 0 ≤ y ≤ m − 1. Otherwise, the quads s, s of Right have a
vertical edge between two vertices (m − 1, yr) with 0 ≤ yr ≤ m − 1 and the point of coordinates
(m− 1, yr + vm−1 − 1).

Reduction. We reduce the reconstruction DTC(v) of a digital convex set of vertical X-ray v to the
research of path going from Left to Right in the DAG Γ(v) (Fig. 17).

Figure 17. From a solution to a path in the DAG and conversely. We reduce the problem of finding a
solution of DTC(v) to the research of a path from Left to Right in the DAG Γ(v).

Proposition 3.1. The problem DTC(v) admits a solution if and only if there exists a path going from
Left to Right in the DAG Γ(v).

Proof:
By construction, if there exists a path in the DAG Γ(v), we consider the solution S obtained by union
of its quads. The constraints on the quads to be a node guarantee the prescribed X-ray while the
constraint on the direction of the turn at each edge guarantee the convexity of S. Thus a path from
Left to Right provides a solution of DTC(v).
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Conversely, if we have a solution S of DTC(v), its convex hull is fully covered by a sequence of
consecutive quads. It provides a path from Left to Right. It can be noticed that if one of the quads has
a vertical edge, the path is not unique since we can advance either on the upper side or on the lower
side of the convex hull of S. □

Algorithm. The algorithm DAGTomo1 builds a part of the DAG Γ(v) and searches for a path from
Left to Right.

The graph Γ(v) contains at most k4 nodes/quads where k is cardinality of the region Rv. Each
node has at most 2k edges since one of the left nodes is replaced by another point of Rv. There is no
interest in computing the whole graph Γ(v) since we search for a path issued from Left. The algorithm
DAGTomo1 computes the nodes reached from Left. The main loop of the algorithm is the following:
given a node/quad q, we consider the at most 2k quadrilaterals that can be consecutive neighbors of q.
We test whether the new quadrilateral has already been reached in a sorted list of all the quadrilateral
which have already been considered. This test takes O(log(k4)) time. If it is the first time that we
meet it, we test whether its X-ray is equal to the prescribed X-ray for the common columns of the
two segments. Computing the X-ray of a quad takes at most O(m) time. If the X-ray is valid, we
test the convexity of the turn in constant time and store q as antecedent. At last, we test whether this
quadrilateral belongs to Right in constant time.

The algorithm DAGTomo1 ends either when a path reaching Right is found or when all the nodes
reached by starting from Left have been explored. Its worst-case time complexity is O(k4(m +
log(k))). In order to provide a simple bound, we use m + log(k) ≤ mk. It provides a worst-case
time complexity in O(mk5). We have already bounded k by m(m+1)

2 + 2
∑m−1

i=0 vi − 2m. With
the inequality (a + b)n ≤ (2a)n + (2b)n = 2n(an + bn) for positive a and b, the property that k
is O(m2 +

∑m−1
i=0 vi) implies that k5 is O(m10 + (

∑m−1
i=0 vi)

5). It shows that the complexity of
DAGTomo1 is O(m11 +m(

∑m−1
i=0 vi)

5) and proves Theorem 1.2.

4. Reconstructing fat digital convex sets in polynomial time

In this section, we present the algorithm DAGTomo2 for reconstructing fat digital convex sets from
their horizontal and vertical X-rays. The property that this algorithm runs in polynomial time proves
Theorem 1.4.

The algorithm DAGTomo2 uses a two-step reconstruction procedure as presented for reconstructing
HV-convex polyominoes with first the filling step and secondly the aggregation step. We update the
filling step for taking into account the digital convexity which replaces the connectivity and the HV-
convexity. The updated filling operations are presented in Section 4.2. The aggregation step used for
HV-convex polyominoes is completely modified by using a DAG strategy as in Section 3. This main
new step is presented in section 4.3.

4.1. Initialization

As the classical algorithm reconstructing HV-convex polyominoes and described in Section 2, the
algorithm DAGTomo2 works with a partition of the grid in three sets of points [0 · · ·m− 1]× [0 · · ·n−
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1] = Kernel ∪ Out ∪ Undetermined. The kernel is initialized by choosing a position of the feet:
Kernel ← South ∪West ∪ North ∪ East. Notice that we do not only compute the kernel Kernel
but we will also maintain at each step its convex hull. For each position of the feet, we proceed to the
DAGTomo2 reconstruction procedure. This reconstruction procedure has two steps, first the filling step
and secondly the aggregation step.

4.2. Filling step

We precise now the filling operations of the reconstruction procedure. Some of the filling operations
are different from the ones used for reconstructing HV-convex polyominoes because we no more
assume the 4-connectivity of the solution.

New Convex Filling Operations. As we search for a digital convex solution, the first filling opera-
tion is Kernel← convZ2(Kernel) where convZ2 denotes the operator providing the set of the integer

Figure 18. Initialization of Kernel, Out, NW, NE, SE and SW for two different instances. On the left,
the different possible positions of the feet. A position of the feet being chosen (in black), the other points with
x = 0 or x = m − 1 or y = 0 or y = n − 1 are added to Out (in red). The undetermined points are colored
in grey. On the right, we proceed to the filling operation Kernel ← convZ2(Kernel). It provides directly a
partition of the undetermined points in four subsets NW, NE, SE and SW.
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points in the continuous convex hull of the set. By definition, a set S is digital convex if and only if
we have convZ2(S) = S. As the convex hull of the kernel contains the feet, it provides directly a
partition of the undetermined points in four borders NW, NE, SE and SW (see Fig. 18). While this
partition requires to use the connectivity and complex filling operations for reconstructing HV-convex
polyominoes, it is direct for digital convex sets. The initial computation of the four sets NW, NE, SE
and SW takes O(mn) operations.

Each time that a new point is added to the kernel, we update the kernel with
Kernel ← convZ2(Kernel) to maintain a convex solution. The number of nodes is bounded by
2(m+ n). Computing the new convex hull takes at most O(log(m+ n)) (it is an insertion in the list
of the nodes) and adding the lattice points in convZ2(Kernel) takes again O(log(m + n)) per point
namely a total time of O(mn log(m + n)) (more efficient data structures can be found in [24]). By
repeating this operation at most mn time, the total time taken by this filling operation is bounded by
O(m2n2 log(m+ n)).

Each time that a new point x is added to the set Out of the excluded points, we test whether
there exist undetermined points y such that x is in the convex hull of the union {y} ∩ Out. If x
is in {y} ∩ Out, then y is excluded and added to Out. For each point x and each suspected point
y ∈ Undetermined, the computation of the convex hull of {y} ∩ Out takes at most O(log(m + n))
time. Testing whether x is in this convex hull takes a constant time by just testing whether x is in the
triangle of vertices y and the two adjacent vertices in the convex hull. Repeating this process for at
most mn points x takes O(m2n2 log(m+ n)) time.

Regular Filling Operations. We describe the classical filling operations on a row but similar filling
operations are executed on the columns. The row y = j is decomposed into five horizontal segments
with their x-coordinates in the intervals [0 · · · a], ]a · · · b[, [b · · · c], ]c · · · d[ and [d · · ·m − 1] (some
of them can be empty). The two segments with points of x-coordinates in [0 · · · a] and [d · · ·m − 1]
contain the left and right excluded points. The central segment [b · · · c] contains the kernel points while
the two intermediate intervals ]a · · · b[ and ]c · · · d[ are the x coordinates of the undetermined points.

Then the regular filling operations are done by updating the values of a, b, c and d in the following
way :

• if a < c− hj − 1 then a← c− hj − 1

• if b > d− hj then b← d− hj ,

• if c < a+ hj then c← a+ hj ,

• if d > b+ hj then d← b+ hj

These four filling operations reduce the set of the undetermined points.

End of the Filling Step. The filling step ends in three cases:

1. A contradiction is found by adding an excluded point to the kernel or conversely by adding a
kernel point to the excluded points. Then the reconstruction procedure fails. It shows that the
considered position of the feet does not provide any solution.
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2. The set of the undetermined points becomes empty. Then for the considered position of the feet,
a unique solution has been found and the reconstruction procedure ends with a unique solution.

3. No new undetermined point can be determined. It is the unique case where the reconstruction
procedure requires to proceed to the aggregation step.

4.3. Aggregation step

We proceed to the aggregation step in the case where it remains undetermined points after the filling
step. The aggregation step for the HV-convex polyominoes uses the switching components. The
aggregation step of DAGTomo2 does not use it. It uses the same strategy as the aggregation step of
DAGTomo1 by reducing the computation of a solution to the research of path in Directed Acyclic
Graph.

The Four Undetermined Borders. The goal of the convex aggregation is to finalize the compu-
tation of a solution of DTC∩F (h, v). This solution can be described by the convex polygonal lines
joining the West and East feet to the South and North feet. The vertices of the polygonal line go-
ing from the West to the North feet might either be some vertices of the convex hull of the kernel
or some undetermined points in the NW border. This set of potential vertices is denoted NW′ with
NW′ = NW∩NWV where NWV is the set of the north west vertices of the convex hull of the kernel
i.e the vertices between the North and the West feet. The set NWV and thus also NW′ contain the
upper point of the West foot and the leftmost point of the North foot.

Figure 19. The four borders. After the filling step, the convex hull of the kernel is colored in yellow. The
set of the potential vertices NE′, NW′, SE′ and SW′ contain the undetermined points of each border and the
vertices of the convex hull of the kernel (the example shown above is not realistic since the filling operations
would complete the kernel but this non-realistic example provides a better understanding of these sets). The
points of these four sets are represented by blue, orange, pink and green dots. Notice that two sets of potential
vertices share a point when a feet contains a unique point.
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We define in the same manner the set of the potential vertices for the North East, South West and
South East borders as NE′ = NE ∩ NEV, SW′ = SW ∩ SWV, and SE′ = SE ∩ SEV where NEV,
SWV and SEV are the vertices of the convex hull of the kernel on each border. Each set of potential
vertices contains the extreme points of the feet (Fig. 19).

The Central Fully Determined Strips. We consider here the reconstruction of fat digital convex
sets. It requires that the feet are in relative positions leading to a fat solution. In this case, the four
undetermined borders are in a special configuration. According to the analysis of the configurations of
the switching components presented in figure 10[16], the borders containing the undetermined points
are restricted to only four regions corresponding vertically and horizontally as drawn in Fig. 20. We
denote Hstrip the horizontal central strip containing the West and East feet and whose points are
fully determined. The points in this strip belong either to the kernel or have been excluded but no one
is undetermined. In the same way, we denote Vstrip the central vertical strip containing the South
and North feet and whose points are fully determined. These two strips define a cross and the four
undetermined borders are around it.

Figure 20. The region to fix. In the case of feet in a fat position, the four undetermined borders belong to
four regions on different sides of the horizontal strip Hstrip represented in brown and the vertical strip Vstrip
represented in blue. The problem of reconstruction can be reduced to the computation of the polygonal lines
cutting the four undetermined regions represented in white.
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The DAG. We introduce the Directed Acyclic Graph Γ(h, v) built from the h and v X-rays and from
the four sets of potential vertices NW′, NE′, SW′, and SE′ as follows.

• The nodes of Γ(h, v) are octagons defined with four (non degenerated) segments sNW, sNE,
sSW, sSE satisfying some constraints (Fig. 22). The role of each segment sNW, sNE, sSW, sSE is
to become an edge of the final solution. The octagons q = sNW, sNE, sSW, sSE that we describe
here with their segments and constraints are the central piece of the algorithm DAGTomo2.

1. The vertices of the segments sNW, sNE, sSW, sSE belong respectively to the sets of poten-
tial vertices NW′, NE′, SW′, SW′ that we introduced in the previous paragraphs.

2. The support line of each segment s must be on one side of the kernel and not separate it
into two parts. Otherwise, the segment s can not be an edge of a convex set containing the
kernel.

3. The octagon (here the convex hull of the four segments) does not contain any excluded
point.

Figure 21. Some segments and their associated rows and columns. In image 1, we see the NW border with
potential vertices in orange and the horizontal and vertical fully determined strips Hstrip and Vstrip colored in
grey. In image 2, the segments a, b, and c are not valid because the support lines of a and c separate the kernel
while b includes an excluded point. In image 3, we have three valid segments sNW. In the images 4, 5, 6 the
rows of rows(d), rows(e) and rows(f) and the columns of columns(d), columns(e) and columns(f) are
colored in blue. Notice that since d has a vertex in the horizontal strip Hstrip, its set of columns is extended
until the West foot.
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Figure 22. An octagon/node of Γ(h, v). The octagon q is defined by its four non degenerated seg-
ments sNW, sNE, sSW, sSE whose vertices are chosen respectively in NW′, NE′, SW′ and SE′ (the or-
ange/blue/green/pink dots). The main conditions for the octagon q to be a node are that the rows
NorthRows(q), SouthRows(q) and the columns WestColumn(q), RightColumn(q) are non empty and
that for each one of the rows and columns in these sets, the number of integer points between the segments fits
with the prescribed coordinates of the X-rays. On this example, it can be noticed that columns columns(sNE)
of the NE edge is not restricted to the columns crossed by the segment. They go until the West foot because
both right vertices of sNE and sSE are in the horizontal strip Hstrip (colored in grey).

4. The next condition guarantees that the X-ray of the solution fits with the prescribed X-rays
h and v. We first associate to each segment sNW, sNE, sSW, sSE the set of consecutive
rows and columns that it involves. For a segment s, these two sets are denoted rows(s)
and columns(s). The sets rows(s) and columns(s) first contain the consecutive integer
rows and columns crossed by s (Fig. 21). If the segment sNW = xy has one vertex x in
the horizontal strip Hstrip, then we can extend the known polygonal line until the West
foot since this left upper hull of the solution is already known until the West foot. It
leads us to complete columns(sNW) with its left columns. We proceed in the same way
with the vertical strip. If the segment sNW = xy has one vertex y in the vertical strip
Vstrip, then we complete rows(sNW) with the rows above it. By symmetry and rotations,
we extend in the same manner the six other sets rows(sNE), columns(sNE), rows(sSE),
columns(sSE), rows(sSW), columns(sSW).
Once the rows and columns associated to each segment are defined, we can go to the oc-
tagon. Each octagon is determined by its four segments sNW, sNE, sSW, sSE whose role is
to become four edges of the convex hull of a solution. Then the octagon q fully character-
izes the points of the solution in the rows in NorthRows(q) = rows(sNW)∩ rows(sNE)
and SouthRows(q) = rows(sSW)∩rows(sSE) and in the columns in WestColumn(q) =
columns(sNW) ∩ columns(sSW), and RightColumn(q) = columns(sNE)∩
columns(sSE) (these rows and columns are colored in blue in Fig. 22). Now we give a
condition on the octagon q to be a node: the four sets of rows NorthRows(q),
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SouthRows(q) and columns WestColumn(q), RightColumn(q) must be non empty
and for each of these rows and columns, the number of integer points between each pair
of segments must be equal to the prescribed coordinate of the input X-ray.

• We consider two nodes. There is an edge from the node q to the node q′ if they have three
common segments and the two segments which differ define a convex turn. To be more precise,
they must satisfy the following conditions:

– The two nodes q and q′ have three segments in common. Let us assume for instance that
we have the two nodes q = sNW, sNE, sSW, sSE and q′ = s′NW, sNE, sSW, sSE. The three
segments sNE, sSW, sSE are in common and the two segments sNW and s′NW are different.

– The two different segments sNW and s′NW are consecutive (the right vertex of sNW is the
left vertex of s′NW).

– The turn at the common vertex is convex (in the sense that the union of the convex hulls
of the two octagons q = sNW, sNE, sSW, sSE and q′ = sNW, sNE, sSW, s′SE is convex).

Start and End nodes. We introduce now two special sets of octagons Start and End (Fig. 23).

Figure 23. Start and End octagons. On the left, an octagon is in Start if the four segments sNW, sNE, sSW
and sSE have a vertex in the horizontal strip (colored in dark grey) and another vertex outside. On the right,
an octagon is in End if the four segments sNW, sNE, sSW and sSE have a vertex in the vertical strip (colored
in dark grey) and another vertex outside. Notice that the octagon in Start is degenerated because the south
segments have a common vertex. This degenerated case might arise when a foot contains a unique point.

• Start is the set of nodes/octagons with the property that the four segments sNW, sNE, sSW and
sSE have one vertex in the horizontal strip Hstrip and the other vertex outside.

• End is the set of nodes/octagons such that the four segments sNW, sNE, sSW and sSE have one
vertex in the vertical strip Vstrip and the other vertex outside.
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Notice the special configurations of the rows NorthRows(q), SouthRows(q) and columns
WestColumn(q), RightColumn(q) for octagons in Start and End. For an octagon in Start, the
determined rows and columns do a H while for the an octagon, they do an I (with large bars below
and above the vertical segment). If we now consider a continuous transformation of an octagon q
going from Start to End, its rows NorthRows(q), SouthRows(q) and columns WestColumn(q),
RightColumn(q) sweep the whole intermediate rows and columns. It is the strategy followed by the
algorithm DAGTomo2 in order to guarantee that the X-rays of a solution correspond to the prescribed
X-rays.

Reduction. We reduce the problem of convex aggregation for solving DTC∩F (h, v) to the research
of a path going from Start to End in the graph Γ(h, v).

Proposition 4.1. The problem DTC∩F (h, v) with some considered positions of the feet South, West,
North and East admits a solution if and only if after the filling step, there exists a path from Start to
End in the graph Γ(h, v).

Proof:
We prove Proposition 4.1 by showing first that if DTC∩F (h, v) admits a solution, then there is a path
from Start to End in the graph Γ(h, v) and secondly by stating that the existence of a path from Start
to End provides a solution of DTC∩F (h, v).

We first assume first that DTC∩F (h, v) admits a solution S with the considered position of the
feet. The filling step provides the set of the undetermined points. According to [16], the undetermined
points are organized in four borders NW, NE, SE and SW separated by a vertical strip Vstrip and
a horizontal strip Hstrip of fully determined rows and columns. Then the undetermined part of the
solution S can be decomposed in a sequence of octagons qi for 0 ≤ i ≤ k as drawn in Fig. 24.
Different sequences of consecutive octagons can be obtained. It depends on the order chosen to move
the segments. Each one provides a path from Start to End.

Conversely, we assume that we have a path of consecutive octagons (qi)1≤i≤k in Γ(h, v) with its
extreme octagons q0 in Start and qk in End. We define the set O as the union of two sets. The first
one contains the integer points in the octagons of the path. The second one is the kernel. Then we
have O =

⋃
0≤i≤k qi ∪Kernel. We now show that O is digital convex and has the prescribed X-rays.

The kernel is digital convex since one of the filling operations is Kernel← convZ2(Kernel). The
set

⋃
0≤i≤k qi is also digital convex. It follows from the condition of having a convex turn between

consecutive octagons in the graph Γ(h, v). We notice also that except in the horizontal and verti-
cal strips Hstrip and Vstrip, the convex hull of the kernel is included in the union of the octagons⋃

0≤i≤k qi. In other words, the union of the octagons is a convex layer around the kernel outside from
Hstrip and Vstrip.

The unique points where we could have a non-convexity are the vertices of the convex hull of the
kernel where the octagons q0 and qk are branched. The condition that the support lines of the segments
of q0 and qk do not separate the kernel guarantees that the junction is convex. Then the set O is digital
convex.
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Figure 24. From a solution to a path in Γ(h, v).

We prove now that the horizontal and vertical X-rays of O are equal to the prescribed X-rays h and
v. It is straightforward for the rows and columns of the two central strips Hstrip and Vstrip since there
is no undetermined point in this region. For the remaining rows and columns, each octagon qi guar-
antees the X-rays for the rows NorthRows(qi), SouthRows(qi) and columns WestColumn(qi),
RightColumn(qi). It remains to notice that by going from q0 to qk, these guaranteed rows and
columns cover all the raws and columns which are not in the already determined strips Hstrip and
Vstrip. □
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DAGTomo2 Aggregation Algorithm. The DAGTomo2 aggregation algorithm is based on Proposition
4.1 reducing the aggregation problem to the research of a path from Start to End in the graph Γ(h, v).
The strategy is simple:

1. Compute the octagons in Start.

2. Compute the octagons which can be reached from Start with a Depth first search (each time a
new octagon is reached, the algorithm records its previous neighbor so that at the end we can
backtrack the path).

The algorithm admits two variants which depend on which part of the graph Γ(h, v) is precom-
puted and stored. In any case, the algorithm requires to store a set of octagons reached from Start.
The size of this set is O(m4n4). In the variant that we consider, the vertices of the graph Γ(h, v)
are precomputed but not the edges. The relations between the vertices are computed on the fly. The
precomputation of the vertices of Γ(h, v) is done by considering all the potential octagons. We have
O(m4n4) quadruplets of segments sNW, sNE, sSE, sSW. Testing whether a quadruplet of segments
defines a valid octagon requires to test two criterion:

1. Test whether the segments do not include an excluded point. It takes O(m+n) time by consid-
ering only the extreme excluded points.

2. Compare the X-rays of the octagon for the rows and columns that it fully determines with the
input X-rays h and v. This comparison takes O(m+ n).

Then the construction of the set of vertices of Γ(h, v) takes O((m+ n)m4n4).
Given an octagon q, the computation of its neighbors q′ is done on the fly in the following way:

The neighbors of an octagon are obtained by moving only one of its vertices. The number of new
vertices is O(mn). It makes O(mn) potential neighbors q′ for which we test the convexity of the
union q ∪ q′ and whether q′ is a vertex of Γ(h, v). It takes a constant time.

4.4. Analysis

We now analyze the worst-case time complexity of the algorithm DAGTomo2. The number of feet
positions being bounded by O(m2n2), the algorithm executes at most O(m2n2) reconstruction pro-
cedures.

The reconstruction procedure starts with the filling step. The total time of the new filling operations
related to the digital convexity is O(m2n2 log(m + n)). The total time of the other filling operations
is O(mn). It provides a bound O(m2n2 log(m+ n)) for the filling step.

The reconstruction procedure ends with the aggregation step. The time complexity of the Depth
first search for a given graph is O(|V | + |E|) where |V | is the total number of vertices and |E| the
total number of edges of the graph Γ(h, v). The complexity of the algorithm is not affected by the
computation on the fly of the edges since it is done in constant time. As we have |V | = O(m4n4)
and at most O(mn) neighbors per vertex, we have |V | = O(m5n5). By repeating the reconstruction
procedure at most m2n2 times, the complexity of DAGTomo2 is O(m7n7). It proves Theorem 1.4.
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Perspectives

We have shown that the DAG strategy used in the algorithms DAGTomo2 and DAGTomo2 allows us to
solve DTC(v) and DTC∩F (h, v) in polynomial time. It is a step beyond the previously known results.
Can it be used to fully solve the challenging problem DTC(h, v) or at least some other configurations
of the feet than the fat configuration f) of Fig. 12? The complexity of the reconstruction of digital
convex lattice sets from a pair of X-rays remains an open question but there is still hope that new
results can be derived from the ideas presented in this paper or from other breakthroughs.
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In: Baudrier É, Naegel B, Krähenbühl A, Tajine M (eds.), Discrete Geometry and Mathematical Morphol-
ogy - Second International Joint Conference, DGMM 2022, Strasbourg, France, October 24-27, 2022,
Proceedings, volume 13493 of Lecture Notes in Computer Science. Springer, 2022 pp. 153–166. doi:
10.1007/978-3-031-19897-7\ 13.

[16] Gerard Y. Regular switching components. Theororetical Computer Science, 2019. 777:338–355. doi:
10.1016/j.tcs.2019.01.010.

[17] Dulio P, Frosini A. Characterization of hv-Convex Sequences. J. Math. Imaging Vis., 2022. 64(7):771–
785. doi:10.1007/s10851-022-01093-z.

[18] Dulio P, Frosini A. On Some Geometric Aspects of the Class of hv-Convex Switching Components. In:
Lindblad J, Malmberg F, Sladoje N (eds.), Discrete Geometry and Mathematical Morphology - First Inter-
national Joint Conference, DGMM 2021, Uppsala, Sweden, May 24-27, 2021, Proceedings, volume 12708
of Lecture Notes in Computer Science. Springer, 2021 pp. 299–311. doi:10.1007/978-3-030-76657-3\ 21.

[19] Dulio P, Frosini A, Rinaldi S, Tarsissi L, Vuillon L. Further steps on the reconstruction of con-
vex polyominoes from orthogonal projections. J. Comb. Optim., 2022. 44(4):2423–2442. doi:
10.1007/s10878-021-00751-z.

[20] Frosini A, Vuillon L. Tomographic reconstruction of 2-convex polyominoes using dual Horn clauses.
Theor. Comput. Sci., 2019. 777:329–337. doi:10.1016/j.tcs.2019.01.001.

[21] Brunetti S, Daurat A. Reconstruction of convex lattice sets from tomographic projections in quartic time.
Theor. Comput. Sci., 2008. 406(1-2):55–62. doi:10.1016/j.tcs.2008.06.003.

[22] Brunetti S, Daurat A, Kuba A. Fast Filling Operations Used in the Reconstruction of Convex Lattice
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