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1. Introduction

A distance mean function measures the average distance of points from the elements of a given set of
points (focal set) in the space. The level sets of a distance mean function are called generalized conics.
The most important discrete examples are polyellipses (polyellipsoids) as level sets of a function
measuring the arithmetic mean of distances from finitely many focal points (constant distance sum)
and polynomial lemniscates as level sets of a function measuring the geometric mean of distances
from finitely many focal points (constant distance product). In case of infinite focal points the average
distance is typically given by integration over the focal set. Using partitions and integral sums, the
level sets (generalized conics) are Hausdorff limits of polyellipsoids Section 4 [1].

1.1. Some general observations

The general form of the functions we are interested in is

x 7→ fD(x) :=
1

µ(D)

∫
D
u ◦ d(x, y) dµy, (1)

where d measures the distance between the points, D ⊂ Rn is a compact subset with a finite positive
measure with respect to µ, u : R → R is a strictly monotone increasing convex function satisfying the
initial condition u(0) = 0. In what follows we suppose that the distance function comes from a norm.
The convexity of the integrand implies that the distance mean function is a convex and, consequently,
a continuous function. Using the increasing slope property of convex functions, we have that

lim inf
t→∞

u(t)

t
> 0 (2)

and the distance mean function inherits a growth property of the form

lim inf
∥x∥→∞

fD(x)

∥x∥
> 0. (3)

The growth property (3) implies that the sublevel sets of the form CD := {x | fD(x) ≤ c} ⊂ Rn

are bounded because the existence of a sequence xn ∈ CD such that limn→∞ ∥xn∥ = ∞ gives a
contradiction:

lim
n→∞

fD(xn)

∥xn∥
≤ lim

n→∞

c

∥xn∥
= 0.

Theorem 1. [2, 3] The sublevel sets of a distance mean function are convex and compact.

Weierstrass theorem states that if all the level sets of a continuous function defined on a non-empty
closed set in Rn are bounded, then it has a global minimizer.

Theorem 2. [2, 3] The distance mean function has a global minimizer.
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1.2. The problem of unicity

The general problem of unicity means to characterize the subsets in the space that are uniquely de-
termined by the average distance measuring. The following theorem shows that the iteration of the
averaging process determines the sublevel sets of a distance mean function under the choice u(t) = t
in formula (1). The result is a generalization of [2, Theorem 9].

Theorem 3. [3] Let u(t) = t and let CD be a sublevel set of fD. If fC∗ = fCD
, where C∗ is a

compact set such that µ(CD) = µ(C∗) then CD is equal to C∗ except on a set of measure zero with
respect to µ.

We present some applications under a more special choice of the ingredients (1). In all the follow-
ing sections we choose u(t) = t and d = d1, the taxicab distance. In sections 2 and 3 we let µ be the
Lebesgue measure, while µ is the counting measure in section 4.

2. Bisection of bodies by coordinate hyperplanes

Suppose that distance measuring and integration are taken with respect to the taxicab distance

d1(x, y) =

n∑
i=1

|xi − yi| (4)

and the Lebesgue measure µn, respectively. Let K be a compact subset of measure one2 in Rn and
consider the taxicab distance mean function

fK(x) =

∫
K
d1(x, y) dy =

n∑
i=1

∫
K
|xi − yi| dy. (5)

Since the derivative of the integrand at xi is ±1 depending on yi < xi or xi < yi, we can conclude
that the value 1 occurs as many times as many points y ∈ K is on the left hand side of x with respect
to the i-th coordinate:

K <i x
i := {y ∈ K | yi < xi}.

In a similar way, −1 occurs as many times as many points y ∈ K is on the right hand side of x with
respect to the i-th coordinate:

xi <i K := {y ∈ K | xi < yi}.
Since the set

K =i x
i := {y ∈ K | yi = xi} (i = 1, . . . , n)

is of measure zero we have that

DifK(x) = µn(K ≤i x
i)− µn(x

i ≤i K) (i = 1, . . . , n). (6)

Theorem 4. [2] The point x ∈ Rn is a minimizer of fK if and only if each coordinate hyperplane at
x divides K in two parts of equal measure.

2It is a technical condition to avoid the denominator µn(K).
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How to bisect a set in two parts of equal measure? Formula (6) shows that

|DifK(x)−DifK(y)| = 2µn

(
min{xi, yi} <i K <i max{xi, yi}

)
and the compactness of K implies that fK has a Lipschitzian gradient. Therefore the gradient descent
method can be used to find the minimizer bisecting the measure of the integration domain K in the
sense that each coordinate hyperplane passing through the minimizer divides the set into two parts of
equal measure. Let us present the gradient descent method in terms of a stochastic algorithm [4, 3]:
let Pk be a sequence of K-valued independent uniformly distributed random variables and consider
the recursion

Xk+1 = Xk − tk+1Qk+1, (7)

where X0 ∈ K is a (random) starting point,

Qk+1 :=
(
sgn (X1

k − P 1
k+1), . . . , sgn (Xn

k − Pn
k+1)

)
(8)

and the step size is a decreasing sequence of positive real numbers tk satisfying conditions

∞∑
k=1

tk = ∞ and
∞∑
k=1

t2k < ∞. (9)

Assuming that K is of measure one, we have the conditional probability

P (Qk+1 = (1, . . . , 1)|Xk) = µn

(
(K < X1

k) ∩ . . . ∩ (K < Xn
k )
)

(10)

because Qk+1 = (1, . . . , 1) means that Xk is greater than Pk+1 with respect to the coordinatewise
partial ordering x ≺ y ⇔ x1 < y1, . . . , xn < yn and Pk+1 is a uniformly distributed K-valued
random variable. In a similar way we have the conditional probability

P (Qk+1 = (1,−1, 1, . . . , 1)|Xk) = (11)

µn

(
(K < X1

k) ∩ (X2
k < K) ∩ (K < X3

k) ∩ . . . ∩ (K < Xn
k )
)
, . . .

and so on. A direct computation shows that E(Qk+1|Xk) = grad fK(Xk).

Remark 1. To illustrate the process let us consider the case of dimension two. The lines parallel to the
coordinate axis at Xk divide the plane into four quadrants. Since we have a sequence of independent,
uniformly distributed random variables, the value of Pk+1 is most likely to fall in the quadrant con-
taining the part of K of the highest measure. Using formula (6), it follows that the gradient of fK at
Xk is pointed in the same quadrant represented by the value of the stochastic vector Qk+1. Therefore
the step of the highest probability is taken into the opposite direction of the gradient in the sense that
the corresponding quadrants are opposite to each other.

Definition 1. A nonempty compact set is called a body if it is the closure of its interior.

Theorem 5. [4, 3] Let K ⊂ Rn be a connected compact body. The sequence of random variables Xk

converges almost surely to the unique global minimizer x∗ of the function fK .
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2.1. Implementation and examples

We show an implementation of the above procedure in the Maple software for polygons in the plane.
For this we first need to know how to choose a random point uniformly in a polygon. The standard
way to do this is the following:

1. Triangulate the polygon with the help of non-intersecting diagonals.

2. Compute the areas of the triangles and then the area of the whole polygon.

3. Choose a random number x uniformly from the interval [0, A], where A denotes the area of the
polygon.

4. If Ai denotes the area of the triangle Ti in the triangulation, then find the smallest positive
integer k that satisfies

x ≤
k∑

i=1

Ai.

5. Then choose a random point uniformly in the triangle Tk. This can be done by choosing two
independent random numbers u and v with uniform distribution in the [0, 1] interval. If the
vertices of Tk are denoted by Pk, Qk, and Rk, and u+v ≤ 1, then choose the point Pk+u(Qk−
Pk)+v(Rk−Pk). If u+v > 1, then choose the point Pk+(1−u)(Qk−Pk)+(1−v)(Rk−Pk)
of the triangle.

Several algorithms exist for polygon triangulation. The most widely used algorithm is based on par-
titioning the polygon into monotone pieces first and then triangulating the monotone pieces [5, 6].
Another favorable algorithm is the ear-clipping method based on the two ears theorem [7]. Both of
them are built in the computational geometry package of Maple. Using this, the following procedure
in Maple produces n random points with uniform distribution in the polygon P given by listing the
vertices along the boundary.

> r a n d o m p o i n t s i n p o l y g o n := p roc ( P , n )
l o c a l L , T , t r i a n g l e a r e a s , areasum , i , k , x , t f , u , v , Px , Py ;
L : = [ ] ;
T := Computa t iona lGeomet ry : − P o l y g o n T r i a n g u l a t i o n ( P ) ;
t r i a n g l e a r e a s : = [ ] ;
f o r i from 1 t o nops ( T ) do

geomet ry : − p o i n t (A, P [ T [ i ] [ 1 ] ] [ 1 ] , P [ T [ i ] [ 1 ] ] [ 2 ] ) ;
geomet ry : − p o i n t (B , P [ T [ i ] [ 2 ] ] [ 1 ] , P [ T [ i ] [ 2 ] ] [ 2 ] ) ;
geomet ry : − p o i n t (C , P [ T [ i ] [ 3 ] ] [ 1 ] , P [ T [ i ] [ 3 ] ] [ 2 ] ) ;
geomet ry : − t r i a n g l e ( t , [ A, B , C ] ) ;
t r i a n g l e a r e a s : = [ op ( t r i a n g l e a r e a s ) , geomet ry : − a r e a ( t ) ] ;

end do ;
areasum := add ( e v a l f ( t r i a n g l e a r e a s [ i ] ) , i = 1 . . nops ( t r i a n g l e a r e a s ) ) ;
f o r j from 1 t o n do

x := RandomTools : − G e n e r a t e ( f l o a t ( r a n g e = 0 . . areasum , method= un i fo rm ) ) ;
k : = 0 ;
t f := t r u e ;
w h i l e t f do

k := k +1;
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i f x<=add ( e v a l f ( t r i a n g l e a r e a s [ i ] ) , i = 1 . . k ) t h e n
t f := f a l s e ;

end i f ;
end do ;
u := RandomTools : − G e n e r a t e ( f l o a t ( r a n g e = 0 . . 1 , method= un i fo rm ) ) ;
v := RandomTools : − G e n e r a t e ( f l o a t ( r a n g e = 0 . . 1 , method= un i fo rm ) ) ;
i f 1<u+v t h e n

u :=1 − u ;
v :=1 − v ;

end i f ;
Px := P [ T [ k ] [ 1 ] ] [ 1 ] + u *( P [ T [ k ] [ 2 ] ] [ 1 ] − P [ T [ k ] [ 1 ] ] [ 1 ] )

+v *( P [ T [ k ] [ 3 ] ] [ 1 ] − P [ T [ k ] [ 1 ] ] [ 1 ] ) ;
Py := P [ T [ k ] [ 1 ] ] [ 2 ] + u *( P [ T [ k ] [ 2 ] ] [ 2 ] − P [ T [ k ] [ 1 ] ] [ 2 ] )

+v *( P [ T [ k ] [ 3 ] ] [ 2 ] − P [ T [ k ] [ 1 ] ] [ 2 ] ) ;
L : = [ op ( L ) , [ Px , Py ] ] ;

end do ;
r e t u r n ( L )
end p roc ;

Figure 1. The sequence of points Xk generated by the above procedure for k = 1, 2, . . . 50. Darker points
present elements Xk with higher indices k. Notice how these sequences of points converge to the minimizer of
the taxicab distance mean function (5).

Then the stochastic algorithm for finding the minimizer of the taxicab distance mean function (5)
of a polygon can be implemented in Maple as follows, see Figure 1. The step size sequence is given
by tk = 1/k.
> m i n i m i z e r := p roc ( polygon , n )
l o c a l P , X, k ,Q;
P := r a n d o m p o i n t s i n p o l y g o n ( polygon , n ) ;
X:= P [ 1 ] ;
f o r k from 1 t o nops ( P) −1 do

Q: = [ signum (X[1] − P [ k + 1 ] [ 1 ] ) , signum (X[2] − P [ k + 1 ] [ 2 ] ) ] ;
X: = [X[ 1 ] − 1 / k*Q[ 1 ] ,X[ 2 ] − 1 / k*Q [ 2 ] ] ;

end do ;
r e t u r n (X)
end p roc ;
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Figure 2. X-rays of compact planar bodies.

3. Applications in geometric tomography

The unweighted function (5) is strongly related to the parallel X-rays as follows: by the Cavaliéri
principle, formula

DifK(x) = µn(K ≤i x
i)− µn(x

i ≤i K) (i = 1, . . . , n)

of the first partial derivatives implies that

DiDifK(x) =a.e. 2XiK(xi) (i = 1, . . . , n), (12)

where XiK(xi) := µn−1(x
i =i K) is the (n− 1)-dimensional Lebesgue measure of the set

xi =i K := {y ∈ K | yi = xi}. (13)

The functions
XiK(t) := µn−1(t =i K) (t ∈ R and i = 1, . . . , n)

are called the coordinate X-rays of K, see Figure 2. In terms of the coordinate X-rays

fK(x) =

∫
K
d1(x, y) dy =

n∑
i=1

∫
K
|xi − yi| dy =

n∑
i=1

∞∫
−∞

|xi − t|XiK(t) dt. (14)

Theorem 6. [2] fK = fL iff the coordinate X-rays of K and L coincide almost everywhere.

Since the coordinate X-rays determine both the measure and the taxicab distance mean function
of the sets, we can formulate the following result as a consequence of Theorem 3.

Corollary 1. [2, 3] The sublevel sets of a taxicab distance mean function are determined by their
X-rays parallel to the coordinate hyperplanes among compact sets.
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Example 1. Circles are determined by their X-rays in the coordinate directions among compact sets in
the plane. They are level sets of the taxicab distance mean function fB associated to the circumscribed
square: if B := conv {(0, 0), (1, 0), (1, 1), (0, 1)}, then we have that

fB(x) =
(
x1 − (1/2)

)2
+
(
x2 − (1/2)

)2
+ (1/2)

for any interior point (x1, x2) ∈ B. The general problem of unicity for convex bodies can be found
in Gardner’s basic monograph [8]: characterize those convex bodies that can be determined by two
X-rays.

The taxicab distance mean function fK accumulates the coordinate X-ray information. Instead
of the X-rays we can investigate a convex function independently of the convexity of the integration
domain. Techniques and results based on fK are typically working in higher dimensional spaces as
well.

3.1. Reconstruction of planar sets by their coordinate X-rays

[2, 9, 10] In what follows we restrict ourselves to the coordinate plane R2. Let K ⊂ R2 be a compact
subset. The coordinate X-rays of K enable us to construct an axis-parallel bounding box containing K.
Since fK is also given by the coordinate X-rays, the reconstruction is based on the best approximation
of fK by the distance mean functions of a special class of sets. They are constituted by unions of
subrectangles of the bounding box under a given resolution: fLn → fK . Taking K∗ as the limit set
of a convergent subsequence in Ln, we have to provide the continuity of the mapping L 7→ fL for
a convergent reconstruction process. The continuity implies that the taxicab distance mean functions
of K∗ and K coincide. So do their coordinate X-rays (almost everywhere). In general X-rays can
have deviant behavior under the Hausdorff convergence of the sets [11]. The taxicab distance mean
functions are more regular objects in some sense. This makes them to be a natural starting point of the
reconstruction.

Let K be a compact subset in the plane. The outer parallel body Kε is the union of closed Eu-
clidean disks centered at the points of K with radius ε > 0. The Hausdorff distance between the
compact subsets K and L is given by the formula

δ(K,L) := inf{ε > 0 |K ⊂ Lε and L ⊂ Kε}.

Definition 2. [2] The Hausdorff convergence Ln → K is called regular if and only if

lim
n→∞

µ2(Ln) = µ2(K).

It is X-regular if and only if limn→∞ µ2(In) = µ2(K), where In := ∩∞
i=nLi.

It can be easily seen that under the hypothesis of the Hausdorff convergence, the regularity is
equivalent to the convergence in the symmetric difference metric (or Lebesgue metric). In general
they are not equivalent metrics as the following theorem shows.



C. Vincze and Á. Nagy / On Taxicab Distance Mean Functions and their Geometric Applications 153

Theorem 7. [12] The sequence Ln converges in Hausdorff distance to K if and only if

lim
n→∞

µ2((Ln)ε △Kε) = 0 for each ε > 0,

where Kε is the parallel body of K with radius ε.

Theorem 8. [2, 10] If Ln → K with respect to the Hausdorff metric then

lim sup
n→∞

fLn(x) ≤ fK(x).

If the Hausdorff convergence Ln → K is regular then limn→∞ fLn(x) = fK(x) and the convergence
fLn → fK is uniform over any compact subset in R2. If the Hausdorff convergence Ln → K is
X-regular then it is regular and the coordinate X-rays converge to the coordinate X-rays of the limit
set almost everywhere:

lim
n→∞

X1Ln(t) =a.e. X1K(t), lim
n→∞

X2Ln(t) =a.e. X2K(t).

We have the following examples:

(i) If each Ln is obtained from a compact set L via finitely many Steiner symmetrizations and
Euclidean isometries then the Hausdorff convergence Ln → K is regular [12, Lemma 3.2].

(ii) Any outer Hausdorff approximation K ⊂ Ln → K is X-regular [2, Lemma 1, Remark 2].

(iii) Let f : K → D1 ⊂ C be a homeomorphism, where D1 denotes the unit disk of the plane
centered at the origin. If the mapping f is differentiable (in complex sense) at each inner point
of K then, by Mergelyan’s theorem, f can be approximated uniformly on K by polynomials:
Pn → f . Therefore we have an approximation of K by polynomial lemniscate domains of
the form |Pn(z)| ≤ cn in the sense that the maximal connected components L∗

n ⊂ K of the
lemniscate domains tends to K with respect to the Hausdorff metric. If K has a boundary of
measure zero then the Hausdorff convergece is X-regular [2, Section 5].

(iv) If Ln is a sequence of compact connected hv-convex sets tending to the limit K with respect to
the Hausdorff metric, then the convergence is regular [10, Section 3].

(v) The Hausdorff convergence of compact convex subsets Ln to K with non-empty interior is
X-regular [3, Section 4.1].

In the sense of the last example, the Hausdorff convergence in the class of compact convex sets
(with nonempty interior) implies the X-regularity and, by Theorem 8, the reconstruction can be based
on direct comparisons of X-rays; see Gardner and Kiderlen [13] (four directions, compact convex pla-
nar bodies). Indeed, if the sequence Ln is constructed by the approximation of the X-rays of K, then
the X-regularity implies that the X-rays of Ln tend to the X-rays of the accumulation points which also
equal to the X-rays of K (almost everywhere). Example (iv) shows that the Hausdorff convergence
in the class of compact connected hv-convex sets implies the regularity and the reconstruction can be
based on direct comparisons of the taxicab distance mean functions.
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Theorem 9. [10] Let Mhv
B denote the set of non-empty compact connected hv-convex sets contained

in the axis parallel bounding box B ⊂ R2 and let K ∈ Mhv
B . For any ε > 0 there exists σ > 0 such

that whenever ∫
B
|fL(x)− fK(x)| dx < σ

holds for L ∈ Mhv
B , then there exists K∗, satisfying δ(L,K∗) < ε and fK = fK∗ . Therefore K and

K∗ have the same coordinate X-rays almost everywhere.

3.2. An algorithm for the reconstruction

[9] Let n ∈ N be a natural number and suppose that the coordinate X-rays X1K, X2K of a non-empty
compact connected hv-convex planar body K ⊂ R2 are given. The Cartesian product of the supports
of the coordinate X-rays gives a box

B = supp (X1K)× supp (X2K) = [a, b]× [c, d] (15)

containing K. The function fK associated to K is defined by the formula

fK(x) =

∞∫
−∞

|x1 − t|X1K(t) dt+

∞∫
−∞

|x2 − t|X2K(t) dt. (16)

Let
t1i = a+ i

b− a

n
and t2j = d− j

d− c

n
(i, j = 0, . . . , n)

be equally spaced points. The control grid Gn
K := {yij ∈ BK | i, j = 1, . . . , n} consists of the centers

of the subrectangles
Bn

ij = [t1i−1, t
1
i ]× [t2j , t

2
j−1], (17)

where i, j = 1, . . . , n. The feasible set Hn contains an element L if and only if it is a compact
connected hv-convex set which can be written as union of elements of the collection (17) and

fL(yij) ≥ fK(yij) for any i, j = 1, . . . , n. (18)

For the output we choose Ln ∈ Hn that minimizes
n∑

i,j=1

fLn(yij)− fK(yij)

n2
, (19)

see Figures 3, 4 and 5. The procedure can be formulated in terms of a linear 0 - 1 programming
because any element L in the feasible set can be represented as a 0−1 interval matrix by the variables
xkl and xkl = 1 − xkl, where xkl = 1 if Bn

kl ⊂ L and xkl = 0 otherwise (k, l = 1, . . . , n). The
linearization of the constraints is based on [14, chapters 11 and 12]. The applications of the greedy
or the antigreedy algorithmic paradigms are also possible [9, sections 7 and 8]. They are based on
deleting the subrectangle which causes the extremal (the greatest or the least) average descent of fLn

at the control points. In general the antigreedy version increases the number of the possible outputs
for making some voting processes more effective. The algorithm is adapted to finitely many and/or
noisy measurements of the coordinate X-rays as well [11].
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Figure 3. The set we are looking for.

Figure 4. The coordinate X-rays.

Figure 5. The optimal solution under low resolution (left) and a greedy version under high resolution (right).
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4. Reconstruction by the least average values

To illustrate the process let us consider the discrete version [15] of the presented tomographic tools. It
is a special case of the general theory with counting measure in the integral formulas. Let F = {xi ∈
Rn | i = 1, . . . ,m} be a finite set of different points in the coordinate space and consider the taxicab
distance sum function

f(x) :=
m∑
i=1

d1(x, xi) =
m∑
i=1

n∑
j=1

|xj − xji |. (20)

Introducing the one-sided partial derivatives

D+
j f(x) := lim

ε→0+

f(x1, . . . , xj + ε, . . . , xn)− f(x)

ε
,

D−
j f(x) := lim

ε→0−

f(x1, . . . , xj + ε, . . . , xn)− f(x)

ε

we have the following collection of formulas:

D+
j f(x) =

∣∣F ≤j x
j
∣∣− ∣∣F >j x

j
∣∣ , D−

j f(x) =
∣∣F <j x

j
∣∣− ∣∣F ≥j x

j
∣∣ ,

where

F >j t := {xi ∈ F | xji > t}, F =j t := {xi ∈ F | xji = t}, F <j t := {xi ∈ F | xji < t},

F ≥j t := {xi ∈ F | xji ≥ t}, F ≤j t := {xi ∈ F | xji ≤ t},

D+
j f(x)−D−

j f(x)

2
=

∣∣F =j x
j
∣∣ (j = 1, . . . , n).

The cardinality
∣∣F =j x

j
∣∣ is the number of the points in the intersection of F with the hyperplane

x + Hj , where Hj := {x ∈ Rn | xj = 0}. The (n − 1)-dimensional X-ray function parallel to the
coordinate hyperplane Hj is defined as

Xj : R → R, Xj(t) := |F =j t| (j = 1, . . . , n). (21)

X-rays take the zero value except at finitely many t ∈ R. In terms of X-rays

f(x) =
m∑
i=1

d1(x, xi) =
m∑
i=1

n∑
j=1

|xj − xji | =
n∑

j=1

∑
t∈R

Xj(t)|xj − t| (x ∈ Rn). (22)

Therefore the taxicab distance sum function accumulates the coordinate X-ray information.
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4.1. The least average value principle for the reconstruction of planar lattice sets by
coordinate X-rays

Let G be the intersection of the integer lattice Z×Z and the rectangular picture region [1, n]× [1,m],
where m,n ∈ Z are integers. Then we can write

G = {1, 2, . . . , n} × {1, 2, . . . ,m} ⊂ R2.

For each j ∈ {1, 2, . . . n} let l1,j denote the vertical line intersecting the horizontal axis at the point
(j, 0), and for each i ∈ {1, 2, . . .m} let l2,i denote the horizontal line intersecting the vertical axis at
the point (0,m− i+1). The problem is to reconstruct the unknown lattice set F ⊂ G, if the numbers

p1,j = |l1,j ∩ F | , j ∈ {1, 2, . . . n} ,

and
p2,i = |l2,i ∩ F | , i ∈ {1, 2, . . .m}

are given. These are the numbers of elements of F contained by each horizontal and vertical lattice
line respectively, i.e. p1,j = X1(j) and p2,i = X2(m − i + 1). The characteristic function of F can
be presented by the binary matrix A = (aij) of size m× n, where

aij =

{
1, if (j,m− i+ 1) ∈ F,

0, otherwise,

hence the above problem is equivalent to the following.

Problem 1. Given two integral vectors R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn), find a binary
matrix A = (aij) of size m× n such that

ri =

n∑
j=1

aij , i ∈ {1, 2, . . .m} ,

and

sj =

m∑
i=1

aij , j ∈ {1, 2, . . . n} .

Certainly the above problem may have a solution only if 0 ≤ ri ≤ n, 0 ≤ sj ≤ m for all i ∈
{1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}, and

m∑
i=1

ri =
n∑

j=1

sj .

If this property holds, then the integral vectors R and S are called compatible. In the rest of the paper
we assume that the integral vectors R and S are compatible in Problem 1. This problem was first
solved independently by Ryser [16, 17] and Gale [18]. Ryser’s approach is based on the construction
of a maximal matrix3 and shifting certain ones to the right within rows to attain the correct column
3It is a matrix (aij) such that aij = 1 whenever j ≤ ri, otherwise aij = 0.
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sums. Gale’s approach is based on network flows. This method was later improved by Anstee [19]
and Batenburg [20]. The advantage of the network flow method is that it can be easily applied for any
pair of lattice directions, and even under the possible restriction, that we accept only those solutions,
where a given set of entries are equal to zero and another given set of entries are equal to one. Before
discussing the details of the network flow approach we introduce the basic concepts of flows in a
network.

Let E and V be two finite sets, and φ : E → V × V a function. Then the triple (E, V, φ) is called
a directed graph, where E is the set of edges, and V is the set of vertices. If φ(e) = (vi, vj) for some
edge e ∈ E and ordered pair of vetrices (vi, vj) ∈ V × V , then we say vi is connected to vj by the
edge e. The vertex vi is called the initial vertex, and vj is called the terminal vertex of the edge e. The
directed path connecting the vertex v0 to the vertex vk in a directed graph (E, V, φ) is a sequence

(v0, e1, v1, e2, v2, e3, v3, . . . vk−1, ek, vk) ,

where v0, v1, . . . vk are pairwise different vertices, and e1, e2, . . . , ek are pairwise different edges,
such that φ(ei) = (vi−1, vi) for all i = 1, 2, . . . k. The undirected path connecting the vertex v0 to the
vertex vk in a directed graph (E, V, φ) is similar to the directed path except, that now any of φ(ei) =
(vi−1, vi) or φ(ei) = (vi, vi−1) is possible for all i = 1, 2, . . . k. An edge ei of an undirected path is
called forward edge if φ(ei) = (vi−1, vi), and it’s called backward edge if φ(ei) = (vi, vi−1). We say
that the length of a directed or undirected path is k if it consists of k edges. There are different efficient
methods to find the shortest directed/undirected path connecting a vertex to another, for example with
the help of breadth-first search.

A network is a directed graph (E, V, φ) together with a non-negative capacity function U : E → R
and two special vertices s and t, such that there’s no edge with terminal vertex s and there’s no edge
with initial vertex t. Then the vertex s is called source, while the vertex t is called sink. The capacity of
any edge e ∈ E is denoted by U(e). A flow on the network (E, V, φ, U, s, t) is a function Y : E → R
which satisfies the following two conditions:

• 0 ≤ Y (e) ≤ U(e) for any edge e,

• for any vertex v ∈ V , except the source and the sink, it’s true that the sum of the flow values on
all the edges with terminal vertex v is equal to the sum of the flow values on all the edges with
initial vertex v.

The later is called the flow conservation property. The value of the flow on any edge e ∈ E is denoted
by Y (e). We say that the edge e is saturated if Y (e) = U(e). The size of a flow Y is the sum of the
flow values on all the edges with the source s being the initial vertex. The flow conservation property
ensures that the size of the flow also equals to the sum of the flow values on all the edges with the sink
t being the terminal vertex.

Now we discuss how a network is constructed for Problem 1, and how a flow of maximal size on
the network helps to determine a solution of Problem 1. Let’s define the network (E, V, φ, U, s, t) in
the following way:

• a vertex vi is assigned to each horizontal line l2,i,
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• a vertex wj is assigned to each vertical line l1,j ,

• each vertex vi is connected to every vertex wj ,

• the source s is connected to every vertex vi,

• every vertex wj is connected to the sink t.

Hence the vertex set is
V = (s, t, v1, v2, . . . , vm, w1, w2, . . . wn),

the edge set is

E = {eij | i ∈ {1, 2, . . .m} , j ∈ {1, 2, . . . n}} ∪ {esi | i ∈ {1, 2, . . .m}} ∪ {ejt | j ∈ {1, 2, . . . n}} ,

where
φ(eij) = (vi, wj), φ(esi) = (s, vi), φ(ejt) = (wj , t).

Then the capacity function is defined as

• U(eij) = 1, for all i ∈ {1, 2, . . .m} and j ∈ {1, 2, . . . n},

• U(esi) = ri, for all i ∈ {1, 2, . . .m},

• U(ejt) = sj , for all j ∈ {1, 2, . . . n}.

If Y is an integer flow (i.e. flow with integer values), then the flow values Y (eij) are all equal to 0
or 1, since the capacities of the edges eij are all equal to 1. Thus, having an integer flow Y , we can
construct the binary matrix A = (aij) of size m× n as

aij = Y (eij), for all i ∈ {1, 2, . . .m} , j ∈ {1, 2, . . . n} .

Actually, there’s a one-to-one correspondence between integer flows on the network and binary ma-
trices of size m× n. The flow conservation property shows that the binary matrix A corresponding to
the integer flow Y has row sums equal to Y (esi) and column sums equal to Y (ejt), where Y (esi) ≤ ri
and Y (ejt) ≤ sj . Furthermore it’s easy to see that no flow can have size larger than

m∑
i=1

U(esi) =
n∑

j=1

U(ejt),

and whenever the size equals to the above number, then all the edges esi and ejt are saturated. Now
our task is to find a flow Y ∗ of maximal size on the network. All the capacities of the network are
integer numbers, and it can be proved that the maximal flow on such network also has integer values.
Hence we have the following theorem.

Theorem 10. Problem 1 has a solution if and only if the size of the maximal flow Y ∗ on the network
(E, V, φ, U, s, t) is equal to

m∑
i=1

ri =

n∑
j=1

sj .
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Then the binary matrix A = (aij) of size m× n with

aij = Y (eij), for all i ∈ {1, 2, . . .m} , j ∈ {1, 2, . . . n}

is a solution of Problem 1.

The construction of the maximal flow has two stages. In the first stage we construct an initial flow,
and in the second stage we increase the size of the flow by changing the flow values along so called
flow-augmenting paths. A flow-augmenting path for the flow Y on the network (E, V, φ, U, s, t) is an
undirected path connecting the source s to the sink t, such that the forward edges are all unsaturated
and the values of the flow Y on the backward edges are strictly positive. If all the capacities are integer
numbers and Y is an integer flow, then it’s easy to see that increasing the flow values by 1 along the
forward edges and decreasing the flow values by 1 along the backward edges results a new flow Ŷ
with larger size. It’s possible to prove that a flow on a network is maximal if and only if there exists
no flow-augmenting path. Hence starting with an initial flow, such as the zero flow, we can find a
maximal flow by searching for flow-augmenting paths and increasing the size of the flow as long as
such path exists. The process is accelerated much, if we always choose a shortest flow-augmenting
path, which can be efficiently found with help of breadth-first search.

The construction of the network associated to Problem 1 implies that any flow-augmenting path
consists of at least 3 edges. This shows that if we choose the zero flow as initial flow at the first stage,
then we first try to increase the flow values along flow-augmenting paths of 3 edges by 1 as long as
possible without exceeding the capacities. This means for the matrix A that we first let A be the zero
matrix, and try to switch entries of A to 1 as long as possible without exceeding the corresponding row
and column sums. How further (i.e. longer) flow-augmenting paths can be found and what they imply
on the matrix will be discussed in section 4.3. Now we mention that it’s also an important question
which ordering of the entries of A is considered when we try to switch them to 1. It turns out that
putting different preferences on the entries has a large effect on the number of further flow-augmenting
paths required later to attain the maximal flow.

The preference on the entries of A can be based directly on the row sums or column sums, but since
the distance mean function has a nice connection to the coordinate X-rays, we can choose preferences
upon the values of discrete version of the distance mean function, which is called taxicab distance sum
function defined by formula (22). The value of the taxicab distance sum function corresponding to the
unknown set F at any point x = (x1, x2) ∈ R2 can be computed as

f(x) =

n∑
j=1

X1(j)|x1 − j|+
m∑
i=1

X2(i)|x2 − i|

=

n∑
j=1

sj · |x1 − j|+
m∑
i=1

rm−i+1 · |x2 − i|

=

n∑
j=1

sj · |x1 − j|+
m∑
i=1

ri · |x2 − (m− i+ 1)|.

(23)

The least average value principle means that points of the set G, or equivalently entries of the matrix
A, with lowest taxicab distance sum values are preferred first. This implies the following steps:
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1. Create the preference list L of entries of A by sorting the entries into increasing order with
respect to taxicab distance sum values at the corresponding points of G.

2. Try to switch the entry of A that corresponds to the first element of the preference list. This is
possible unless the prescribed row sum or column sum corresponding to that element is zero.
Then we say that the first element of the preference list is visited.

3. After having a preference list with some visited elements, look for the first unvisited element
of the list and try to switch the corresponding element of A. This is possible if none of the
prescribed row sums and column sums are exceeded by the switch. We repeat this as long as
the preference list has unvisited elements.

Two accelerating methods can be applied here. The first one is that once we attain a row where the row
sum of A equals to the prescribed row sum, then we set all the unvisited entries of A in that row to be
visited without switching them to 1. These entries of A remain equal to zero until all elements of the
preference list are visited. A similar step can be applied for columns as well. The second accelerating
technique is that once we attain a row where the difference of the prescribed row sum and the actual
row sum of A equals to the number of unvisited entries in that row, then we switch these unvisited
entries of A to 1 in those columns, where the prescribed column sum is not exceeded by the switch.
Then we also set all the unvisited entries of A in that row to be visited. A similar step can be applied
for columns as well. Certainly applying these accelerating methods has a computational cost, but in
change it reduces the number of further necessary switches along flow-augmenting paths.

4.2. Example.

Now we present an example of Problem 1, and starting with the zero matrix A, we show how entries of
A are replaced by ones based on the preference list determined by the taxicab distance sum values. We
also use the two accelerating method described above. Let m = n = 5 and hence G = {1, 2, 3, 4, 5}×
{1, 2, 3, 4, 5}. Furthermore, let the row sums and column sums be

(r1, r2, r3, r4, r5) = (3, 1, 4, 4, 2) and (s1, s2, s3, s4, s5) = (4, 3, 1, 4, 2)

respectively. The matrix A initially equals to the zero matrix. The matrix

M :=



54 48 48 50 60

46 40 40 42 52

40 34 34 36 46

42 36 36 38 48

52 46 46 48 58


shows the values of the taxicab distance sum function f at the points of the set G, where

mkl = f(l,m− k + 1) =

n∑
j=1

sj · |l − j|+
m∑
i=1

ri · |k − i|
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for all k, l ∈ {1, 2, 3, 4, 5}. The lowest taxicab distance sum function value is 34. The first element
of the preference list L is the entry with the lowest taxicab distance sum function value. There are
two such entries: (3, 2) and (3, 3). We choose, for example, the former one and switch a32 to 1 in the
matrix A. Then we say that the entry (3, 2) is visited, and the next unvisited element of the preference
list is (3, 3). We switch a33 to 1.



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


−→



0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0


−→



0 0 0 0 0

0 0 0 0 0

0 1 1 0 0

0 0 0 0 0

0 0 0 0 0


We see that the 3rd column sum of A equals to s3 = 1, thus we say that all entries in the 3rd column
are visited, but we don’t change them. Then we see that the difference of r4 and the 4th row sum of A
equals to the number of unvisited entries in the 4th row, thus we switch all the unvisited entries to 1 in
the 4th row and say that they are visited.



0 0 0 0 0

0 0 0 0 0

0 1 1 0 0

0 0 0 0 0

0 0 0 0 0


−→



0 0 0 0 0

0 0 0 0 0

0 1 1 0 0

0 0 0 0 0

0 0 0 0 0


−→



0 0 0 0 0

0 0 0 0 0

0 1 1 0 0

1 1 0 1 1

0 0 0 0 0


The next two unvisited elements of the preference list (i.e. unvisited elements with lowest taxicab
distance sum function value) are (3, 4) and then (2, 2) where we switch the matrix to 1, and we call
these entries visited.



0 0 0 0 0

0 0 0 0 0

0 1 1 0 0

1 1 0 1 1

0 0 0 0 0


−→



0 0 0 0 0

0 0 0 0 0

0 1 1 1 0

1 1 0 1 1

0 0 0 0 0


−→



0 0 0 0 0

0 1 0 0 0

0 1 1 1 0

1 1 0 1 1

0 0 0 0 0


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We see that the 2nd row sum of A equals to r2 = 1 and the 2nd column sum of A equals to s2 = 3,
thus we say that all entries in the 2nd row and 2nd column are visited, but we don’t change them.

0 0 0 0 0

0 1 0 0 0

0 1 1 1 0

1 1 0 1 1

0 0 0 0 0


−→



0 0 0 0 0

0 1 0 0 0

0 1 1 1 0

1 1 0 1 1

0 0 0 0 0


−→



0 0 0 0 0

0 1 0 0 0

0 1 1 1 0

1 1 0 1 1

0 0 0 0 0


Now the difference of r1 and the 1st row sum of A equals to the number of unvisited entries in the 1st
row, thus we switch all the unvisited entries to 1 in the 1st row and say that they are visited.

0 0 0 0 0

0 1 0 0 0

0 1 1 1 0

1 1 0 1 1

0 0 0 0 0


−→



1 0 0 1 1

0 1 0 0 0

0 1 1 1 0

1 1 0 1 1

0 0 0 0 0


At this point we see that the 5th column sum of A equals to the column sum s5, while in the 1st,
and 4th columns the differences of the prescribed column sums s1, s4 and the actual column sums of
A equal to the number of unvisited entries in the corresponding columns. Thus, we first say that all
entries in the 5th column are visited, but we don’t change them. Then we switch the unvisited entries
a31 and a51 of the 1st column to 1 and the unvisited entry a54 of the 4th column to 1.

1 0 0 1 1

0 1 0 0 0

0 1 1 1 0

1 1 0 1 1

0 0 0 0 0


−→



1 0 0 1 1

0 1 0 0 0

0 1 1 1 0

1 1 0 1 1

0 0 0 0 0


−→



1 0 0 1 1

0 1 0 0 0

1 1 1 1 0

1 1 0 1 1

1 0 0 1 0


Finally all elements of the preference list are visited. The final matrix A has row sums (3, 1, 4, 4, 2) =
(r1, r2, r3, r4, r5) and has column sums (4, 3, 1, 4, 2) = (s1, s2, s3, s4, s5), hence no further augmen-
tation is required. In other examples, especially for larger matrices, it’s possible that further augmen-
tation is required as some of prescribed row sums and column sums are not attained yet. Anyway, the
least average value principle transforms the coordinate X-rays into some geometric information by the
values of the taxicab distance sum function. They are working as probability-like quantities whenever
the subsequent step of the algorithm is not determined by the X-rays.
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4.3. Switching chains

Here we discuss how to find a flow-augmenting path for a flow Y in the network (E, V, φ, U, s, t)
constructed for Problem 1, if Y is not maximal, but there exists no flow augmenting path of length
3. Then there exists at least one unsaturated edge esi (connecting the source s to the vertex vi) and at
least one unsaturated edge ejt (connecting the vertex wj to the sink t). However the edge eij must be
saturated for any such pair of unsaturated edges esi and ejt, because there’s no flow augmenting path
of length 3. This means that the i-th row sum is less than ri and the j-th column sum is less than sj ,
while aij = 1 in the binary matrix A corresponding to Y . Finding a (shortest) flow-augmenting path
containing the edges esi and ejt is equivalent to finding a (shortest) switching chain, i.e. sequence of
pair of indexes (i0, j0), (i1, j1), . . . (il, jl) that satisfies the following conditions:

• l is an odd number,

• i0 = i and j0 = j,

• 1 ≤ ik ≤ m and 1 ≤ jk ≤ n for all k ∈ {0, 1, . . . , l},

• ik = ik+1 and jk ̸= jk+1 for all even numbers k ∈ {0, 1, . . . , l − 1},

• jk = jk+1 and ik ̸= ik+1 for all odd numbers k ∈ {1, 2, . . . , l − 1},

• jl = j0 and il ̸= i0,

• aikjk = 1 for all even numbers k ∈ {1, 2, . . . , l},

• aikjk = 0 for all odd numbers k ∈ {1, 2, . . . , l},

see Figure 6. We can find a shortest flow-augmenting path, and hence a shortest switching chain
with the above properties by assigning labels to the entries of A based on a breadth-first search in the
associated network. This means that we first assign the label 0 to the entry aij . If we assume that the
highest label assigned to any element of A is the even number k, then we look for unlabeled entries
equal to 0 in rows containing entries with label k. If we find such an entry, then we assign the label
k+1 to it. If we assume that the highest label assigned to any element of A is the odd number k, then
we look for unlabeled entries equal to 1 in columns containing entries with label k. If we find such
an entry, then we assign the label k + 1 to it. We repeat these steps as long as possible or the column
of aij contains an entry with the highest non-zero label. Otherwise there’s no switching chain that

Figure 6. A switching chain of 10 elements.
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satisfies the above conditions. Let ailjl = 0 be an entry with the highest label l in the column of aij .
Then there must be at least one entry, ail−1jl−1

= 1, with label l − 1 in the row of ailjl . The column
of ail−1jl−1

must contain at least one entry, ail−2jl−2
= 0, with label l − 2. This can be continued

until we find an entry ai1,j1 = 0 with label 1 in the column of ai2,j2 and in the row of aij . Thus
(i, j) = (i0, j0), (i1, j1), . . . (il, jl) is a shortest switching chain that satisfies the above conditions.

It’s easy to see, that by interchanging zeros and ones in a switching chain doesn’t change the row
sums and column sums of the matrix A. Hence, if the i-th row sum of A is less than the prescribed
row sum ri and the j-th column sum of A is less than the prescribed column sum sj , but there exists a
switching chain containing the entry aij = 1, then interchanging the zeros and ones in the switching
chain makes aij = 0, and we can switch this to aij = 1 to increase the i-th row sum and j-th column
sum of A by 1. Note that the switch leaves other row sums and column sums unchanged. It’s a
well-known result in the theory of network flows, that a flow is maximal if and only if there exists no
flow-augmenting path. This ensures that, if the tomographic problem has a solution, then a switching
chain exists. Therefore, starting with any initial matrix we can find a solution with the help of finitely
many switches. The existence of the switching chain can be proved directly with the help of Mirsky’s
theorem on integer matrices [21] as the last section shows.

5. The existence of the switching chain

Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be a pair of compatible integral vectors and let
A(R,S) denote the set of all 0 − 1 matrices of size m × n with row sums equal to R and column
sums equal to S. We would like show that if both A(R,S) and A(R + δ, S + ε) are non-empty for
some integral vectors δ = (δ1, δ2, . . . , δm) and ε = (ε1, ε2, . . . , εn) such that R + δ and S + ε are
compatible too, then having a binary matrix A ∈ A(R,S) it’s either possible to switch a zero entry of
A to 1 without exceeding the row sums in R+ δ and column sums in S + ε, or there exist at least one
switching chain in A. The proof is based on the following theorem.

Theorem 11. Mirsky [21] Let 0 ≤ r′i ≤ r′′i , 0 ≤ s′j ≤ s′′j and cij ≥ 0 be integers (i = 1, 2, . . . ,m),
(j = 1, 2, . . . , n). Then there exists an integral matrix A = (aij) of size m× n such that

r′i ≤
n∑

j=1

aij ≤ r′′i (i = 1, 2, . . . ,m)

s′j ≤
m∑
i=1

aij ≤ s′′j (j = 1, 2, . . . , n)

0 ≤ aij ≤ cij (1 ≤ i ≤ m, 1 ≤ j ≤ n)

if and only if, for all I ⊂ {1, 2, . . . ,m}, J ⊂ {1, 2, . . . , n},

∑
i∈I

∑
j∈J

cij ≥ max

∑
i∈I

r′i −
∑
j /∈J

s′′j ,
∑
j∈J

s′j −
∑
i/∈I

r′′i

 .
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Corollary 2. The set A(R,S) is non-empty with compatible integral vectors R = (r1, r2, . . . , rm)
and S = (s1, s2, . . . , sn) if and only if for all I ⊂ {1, 2, . . . ,m}, J ⊂ {1, 2, . . . , n},

|I| · |J | ≥
∑
i∈I

ri −
∑
j /∈J

sj =
∑
j∈J

sj −
∑
i/∈I

ri. (24)

Proof:
Let’s choose r′i = r′′i = ri, s′i = s′′i = si, and cij = 1 for all i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}.
Then, by Mirsky’s theorem, the set A(R,S) is non-empty if and only if for all I ⊂ {1, 2, . . . ,m}, and
J ⊂ {1, 2, . . . , n},

|I| · |J | ≥ max

∑
i∈I

ri −
∑
j /∈J

sj ,
∑
j∈J

sj −
∑
i/∈I

ri

 .

On the other hand∑
i∈I

ri −
∑
j /∈J

sj =
∑
i∈I

ri +
∑
i/∈I

ri −
∑
i/∈I

ri −
∑
j /∈J

sj =

m∑
i=1

ri −
∑
i/∈I

ri −
∑
j /∈J

sj =

n∑
j=1

sj −
∑
i/∈I

ri −
∑
j /∈J

sj =∑
j∈J

sj +
∑
j /∈J

sj −
∑
i/∈I

ri −
∑
j /∈J

sj =
∑
j∈J

sj −
∑
i/∈I

ri

and we are done. □

Given the compatible integral vectors R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) let δ =
(δ1, δ2, . . . , δm) and ε = (ε1, ε2, . . . , εn) be a pair of integral vectors with δi ∈ [0, n − ri] for all i ∈
{1, 2, . . . ,m} and εj ∈ [0,m− sj ] for all j ∈ {1, 2, . . . , n}. Then we define the sets I0 = {i | δi > 0}
and J0 = {j | sj > 0}. Let’s assume that I0 and J0 are nonempty.

Theorem 12. If the sets A(R,S) and A(R + δ, S + ε) are non-empty, then there are indices i′ ∈ I0
and j′ ∈ J0 and there is a matrix A = (aij) in A(R,S), such that ai′j′ = 0.

Proof:
Let’s choose arbitrary elements i0 ∈ I0 and j0 ∈ J0. By Mirsky’s theorem and Corollary 2, there
exists a matrix A ∈ A(R,S) with ai0j0 = 0 if and only if for all subsets I ⊂ {1, 2, . . . ,m}, J ⊂
{1, 2, . . . , n}, ∑

i∈I

∑
j∈J

cij ≥
∑
i∈I

ri −
∑
j /∈J

sj =
∑
j∈J

sj −
∑
i/∈I

ri,

where

cij =

{
0 if i = i0 and j = j0

1 otherwise
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This means that, if we assume that there’s no matrix A ∈ A(R,S) with ai0j0 = 0, then there are
subsets I ⊂ {1, 2, . . . ,m}, J ⊂ {1, 2, . . . , n}, such that∑

i∈I

∑
j∈J

cij <
∑
i∈I

ri −
∑
j /∈J

sj =
∑
j∈J

sj −
∑
i/∈I

ri. (25)

It’s not possible that i0 /∈ I or j0 /∈ J , since otherwise inequality (25) means

|I| · |J | <
∑
i∈I

ri −
∑
j /∈J

sj =
∑
j∈J

sj −
∑
i/∈I

ri,

which implies, that A(R,S) is empty. Thus inequality (25) has the following form

|I| · |J | − 1 <
∑
i∈I

ri −
∑
j /∈J

sj =
∑
j∈J

sj −
∑
i/∈I

ri.

This inequality is equivalent to the equation

|I| · |J | =
∑
i∈I

ri −
∑
j /∈J

sj =
∑
j∈J

sj −
∑
i/∈I

ri, (26)

because A(R,S) is non-empty and inequality (24) holds. It’s not possible that I0 ⊂ I , since otherwise∑
j∈J εj > 0 and

∑
i/∈I δi = 0, and hence equation (26) leads to

|I| · |J | =
∑
j∈J

sj −
∑
i/∈I

ri <
∑
j∈J

sj + εj −
∑
i/∈I

ri =
∑
j∈J

sj + εj −
∑
i/∈I

ri + δi,

which implies, that A(R+ δ, S + ε) is empty. Similarly, it’s not possible that J0 ⊂ J , since otherwise∑
i∈I δi > 0 and

∑
j /∈J εj = 0, and hence equation (26) leads to

|I| · |J | =
∑
i∈I

ri −
∑
j /∈J

sj <
∑
i∈I

ri + δi −
∑
j /∈J

sj =
∑
i∈I

ri + δi −
∑
j /∈J

sj + εj ,

which implies, that A(R + δ, S + ε) is empty. Thus there are elements i1 ∈ I0 \ I and j1 ∈ J0 \ J .
On the other hand if A = (aij) is any matrix A ∈ A(R,S), then∑

i/∈I

∑
j /∈J

aij =
∑
i/∈I

ri −
∑
i/∈I

∑
j∈J

aij =
∑
i/∈I

ri −
∑
j∈J

sj +
∑
i∈I

∑
j∈J

aij =∑
i/∈I

ri −
∑
j∈J

sj + |I| · |J | − |I| · |J |+
∑
i∈I

∑
j∈J

aij .

Hence ∑
i/∈I

∑
j /∈J

aij +

|I| · |J | −
∑
i∈I

∑
j∈J

aij

 = |I| · |J | −

∑
j∈J

sj −
∑
i/∈I

ri

 .
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This gives, by equality (26), that

∑
i/∈I

∑
j /∈J

aij +

|I| · |J | −
∑
i∈I

∑
j∈J

aij

 = 0

and here
|I| · |J | −

∑
i∈I

∑
j∈J

aij ≥ 0,

thus ∑
i/∈I

∑
j /∈J

aij = 0.

This is possible only if aij = 0 for all i /∈ I and j /∈ J , including i1 ∈ I0 \ I and j1 ∈ J0 \ J , which
gives ai1j1 = 0. Thus finally we can conclude the following.

If i0 ∈ I0 and j0 ∈ J0 and there’s no matrix A ∈ A(R,S) with ai0j0 = 0, then there are indices
i1 ∈ I0 and j1 ∈ J0, such that ai1j1 = 0 for any matrix A ∈ A(R,S). Hence (i′, j′) = (i0, j0) or
(i′, j′) = (i1, j1) makes the statement true. □

Consider now two compatible integral vectors R and S. Assume that none of the row sums of a
binary matrix A = (aij) are larger than the corresponding row sums in R, and none of the column
sums of A are larger than the corresponding column sums in S. Let I0 denote the set of all those
indexes i, where the i-th row sum of A is strictly less than the prescribed row sum ri, and let J0 denote
the set of all those indexes j, where the j-th column sum of A is strictly less than the prescribed
column sum sj . If aij = 1 for all pair of indexes (i, j) ∈ I0× J0, then we can’t switch any of the zero
entries of A to 1 without exceeding the prescribed row and column sums. By Theorem 12, there must
be another binary matrix Ã = (ãij) with the same row sums and column sums as A, and with ãi′j′ = 0
for some i′ ∈ I0 and j′ ∈ J0 provided that the set A(R,S) is nonempty. Ryser showed in [16] that
if two matrices have the same row and column sums, then they can be transformed into each other
with the help of finitely many switches in so-called switching components, i.e. switching chains of 4
elements. The entries of A and Ã are different in the intersection of i′-th row and j′-th column, hence
(i′, j′) must be contained in one of the switching components that transform A to Ã. Merging all these
switching components results in a switching chain containing (i′, j′). Thus Theorem 12 ensures the
existence of the switching chain.
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imation of closed convex plane curves by polyellipses. Annales Mathematicae et Informaticae, 2018.
49:181–197. doi:10.33039/ami.2018.11.002.

[2] Vincze C, Nagy A. On the theory of generalized conics with applications in geometric tomography. J. of
Approx. Theory, 2012. 164:371–390. doi:10.1016/j.jat.2011.11.004.
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