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1. Introduction

Logical modeling is a well established mathematical approach to biology, offering a simple, intuitive
way to understand complex systems. Biological networks can be represented as graphs and experi-
mental data integrated in them to yield a system-level view of key regulators, dynamical patterns, and
response to various changes. There are many successful applications of logical modeling such as the
identification of drug targets and treatments [1], modeling of regulatory networks [2], of signaling
pathways [3], of cell growth and apoptosis [4], applications in immunology [5], and many others. A
logical model is discrete (often Boolean), with its dynamics defined as the result of the interplay of the
influences among its variables. Such influences are modeled as directed edges between the variables,
sometimes with the annotation of the activation/inhibition nature of the interaction, see [6] for a review
on Boolean modeling in systems biology.

Constructing large-scale models has been made possible in recent years by the availability of data
respositories such as KEGG [7], OmniPath [8], InnateDB [9], SIGNOR [10] and DrugBank [11].
Using such resources has made it possible to build models consisting of thousands of variables and
interactions [12, 13]. Integrating such large scale data into logical or Boolean models is problematic
because of the need to identify the update functions for each variable of the model. These functions
specify the precise conditions under which a variable changes its status, e.g., between active and in-
active, depending on the status of its predecessors/regulators in the network. The difficulty is that the
data is almost never enough to identify the precise nature of these functions. Instead, the modeler
often postulates the type of update functions in the network (propositional formulas ([14]), threshold
conditions ([15]), multi-valued functions ([16])) The specifics of how to choose each update function
are based on previous literature and to some extent, to the choice of the modeler, subject to experi-
mentation with various options.

The approach we take in this paper is motivated by the concept of controlling a network: choose
a user intervention in the network (e.g., through fixing some variables to some constants), so that
the model converges to a certain desired attractor. Network controllability has found interesting ap-
plications in biology, e.g., in drug repurposing [12, 13]. However, tracking the effect of the user
interventions throughout the network is difficult when the variables of the model are under conflict-
ing influences, with some regulators pushing for their activation, while others for their inhibition.
The computational complexity of this problem has been investigated in [17, 18]. We propose in this
paper a notion of strong regulatory graphs where the update of a node’s status is determined to be
active/inactive only if its predecessors concur in their influences. Otherwise it is set to be ambiguous,
meaning that it could be both active and inactive, depending on the precise (numerical) setup of its
predecessors and of their influences, which is in practice very difficult to determine. This leads to an
intricate interplay between ambiguous, negative and positive influences in our framework. Interesting
questions about the spread of ambiguity in the network can be asked, e.g., in terms of the existence
of phenotype attractors. We introduce in this paper a simple mathematical formalization of the con-
cept of strong regulation. We discuss the phenotype attractor problem for strong regulatory graphs:
whether attractors exist in which some of the variables are constant (they follow a given active/inactive
phenotype), while the others can be arbitrary, even ambiguous.
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2. Strong regulatory graphs (SRG)

The model proposed here builds on the regulatory graphs structure [19, 20, 21, 16] and adds to them
the concept of strong regulation. Choosing how to update the status of a node is obvious if its active
regulators concur in their influences: if they all exert an activation regulation on the node, then it gets
activated (denoted as 1), and if all exert an inhibition regulation on it, then it gets inhibited (denoted as
−1). A node under conflicting regulation, with some active regulators trying to activate it and others to
inhibit it, is less clear how to update. The typical approach is to postulate an update function, Boolean
or multi-valued, that sets its status to active or inactive, based on a specific schema of the status of
its predecessors. The main difficulty of these approaches is that the experimental data and the level
of detail in the model are rarely sufficient to specify such detailed update functions. Our proposal
instead is that under such conflicting the status of the node should simply be recognized as being
ambiguous (denoted as 0). This means that the node may potentially be active or inactive, but the
level of detail in the model is not enough to specify it with confidence either way. The ambiguity of a
node may well cascade down through the system, in that the regulation it exerts on its successor in the
regulatory graph may be active or not. Still, an ambiguous regulation may well be resolved by another
active regulation on the same node. This opens the possibility to reason about the dynamic interplay
between activation, inhibition, and ambiguity, where the semantics of activation and inhibition is in
its strongest possible form to mean that the node has been unanimously activated/inhibited. We define
the structure of the strong regulatory graphs in Definition 2.1 and their dynamics in Definition 2.2.

For a graph G = (V,E), we consider the set of vertices to be ordered. In this way, when we write
a vector x ∈ {−1, 0, 1}|V |, xv will denote the component of x corresponding to v ∈ V , without risk
of ambiguity.

Definition 2.1. A strong regulatory graph (SRG) is an edge-labeled graph G = (V,E) where V =
{v1, v2, . . . , vn} is the finite set of vertices and E ⊆ V × V is the set of directed edges. The labeling
of the edges is done through the partition {E+, E−} of E. We say that (u, v) ∈ E+ is an activating
edge and that (u, v) ∈ E− is an inhibiting edge.

A state of the SRG is x ∈ {−1, 0, 1}|V | whose intended meaning is that xv = −1 if v is inactive
in state x, xv = 1 if v is active in state x, and xv = 0 if v is ambiguous in state x. For an edge
(u, v) ∈ E+, we say that u is an activator of v in state x if xu = 1. We say that it is a potential
activator of v in x if xu = 0. Similarly, for an edge (u, v) ∈ E−, we say that u is an inhibitor of v in
state x if xu = 1. We say that it is a potential inhibitor of v in x if xu = 0.

The dynamics of a strong regulatory graph G = (V,E) is defined through a state-transition system.
The state is given by the −1/0/1 activation status of all nodes in the graph. The set of states is thus
{−1, 0, 1}|V |. Given a state, a transition will indicate the change in the activation status of the nodes
in the graph. The states can be updated in a synchronous or in an asynchronous way. For simplicity,
we only discuss in this paper the synchronous activation update and the dynamics of strong regulatory
graph in terms of deterministic state-transition systems. The asynchronous update strategy leads to a
similar discussion.

In defining the update rule for the status of a node, we follow our proposal for the concept of
strong regulation, where a node is activated/inhibited if all its regulators concur in their influences on
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the node. In case of conflicting influences, the status of the node is set to ‘ambiguous’. The influence of
a regulator whose status is ambiguous is quite subtle, depending on the status of the other regulators
and of the node itself. We discuss the intuition of the update rule below and then give it a formal
definition.

If there are no potentially active inhibitors and no potentially active activators, then the vertex
should preserve its activation status. A node v should be set to ‘active’ in two situations:

• v was active and none of its inhibitors were potentially active, i.e., active or ambiguous (in this
case, the node remains active, absent any potential or active inhibition regulation), or

• at least one activator of v was active and none of its inhibitors were potentially active (in this
case, the regulation on the node is un-ambiguous towards activation).

Similarly, a node v should be set to ‘inactive’ after an application of the update rule in two situations:

• v was inactive and none of its activators were potentially active, i.e., active or ambiguous, or

• at least one inhibitor of v was active and none of its activators were potentially active.

If the node is under conflicting influences, its status should be set to ‘ambiguous’. Here are four cases
when this should happen:

• at least one activator and at least one inhibitor of v were potentially active; this reflects a node
under potentially conflicting regulation;

• v was active and one of its inhibitors was ambiguous (regardless of the status of its activators);
this reflects the ambiguity of whether there is an inhibitory influence on v or not, which may
either leave the node active, or switch to inactive;

• v was inactive and one of its activators was ambiguous (regardless of the status of its inhibitors);
this reflects the ambiguity of whether there is an activating influence on v or not, which may
either leave the node inactive, or switch it to active;

• v was ambiguous and none of its regulators is active (i.e., they are either inactive or ambigu-
ous); this reflects the situation where the status of v cannot be clarified because the status of its
regulators is either inactive or ambiguous.

For a vertex v ∈ V and a state x ∈ {−1, 0, 1}|V |, we define the set Reg+(x, v) of activators of v
in state x and its set Reg−(x, v) of inhibitors as follows:

Reg+(x, v) = {xu | (u, v) ∈ E+, xu ∈ {0, 1}};
Reg−(x, v) = {xu | (u, v) ∈ E−, xu ∈ {0, 1}}.

The set Reg+(x, v) contains 1 if v has at least one active activator in state x and it contains 0 if v has
at least one ambiguous activator in state x. Similarly, the set Reg−(x, v) contains 1 if v has at least
one active inhibitor in state x and it contains 0 if v has at least one ambiguous inhibitor in state x.
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We also define the reflexive extension of Reg to include the status of the vertex itself. The reflexive
extension captures a sort of “inertia” of the dynamics (defined below) where a node may preserve its
status in the absence of active regulators.

Reg+(x, v) = Reg+(x, v) ∪ {xv | xv ∈ {0, 1}};
Reg−(x, v) = Reg−(x, v) ∪ {−xv | xv ∈ {−1, 0}}.

Note that an inactive node v, i.e. xv = −1, contributes 1 to Reg−(x, v), consistent with our suggestion
of “inertia”: absent any active regulation on node v, it will remain inactive.

Definition 2.2. Let G = (V,E) be a strong regulatory graph. Its dynamics is given by the map
fG : {−1, 0, 1}|V | → {−1, 0, 1}|V | defined as

fG(x)v =


1, if 1 ∈ Reg+(x, v) and Reg−(x, v) = ∅;
−1, if 1 ∈ Reg−(x, v) and Reg+(x, v) = ∅;
0, otherwise,

for all v ∈ V . The dynamics of a strong regulatory graph can also be seen as a state-transition system
with the set of states being {−1, 0, 1}|V | and the transitions defined through the map fG.

(a) (b)

Figure 1. Two simple regulatory graphs [16]. The vertices are shown with rectangles, the activation edges
with pointed arrows and the inhibition edges with blunt arrows.

Example 2.3. We discuss two regulatory graphs introduced in [16] and shown in Figure 1. The set of
vertices is V = {u, v, w}, the activation edges are shown with pointed arrows and the inhibition edges
with blunt arrows.

For the graph in Figure 1(a), consider the state x = (−1, 1, 1). Then:

• Reg+(x, u) = {1}, since (w, u) is an activation edge and xw = 1;

• Reg−(x, u) = {1}, since (v, u) is an inhibition edge and xv = 1;

• Reg+(x, u) = {1} and Reg−(x, u) = {1}, since xu = −1;

• Reg+(x, v) = ∅, since the only incoming activation edge into v is (u, v) but xu = −1;
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• Reg−(x, v) = ∅, since there are no incoming inhibition edges into v;

• Reg+(x, v) = {1} and Reg−(x, v) = ∅, since xv = 1;

• Reg+(x,w) = Reg−(x,w) = ∅, since there are no incoming edges into w;

• Reg+(x, w) = {1} and Reg−(x,w) = ∅, since xw = 1.

This means that x → (0, 1, 1). This corresponds well to our intuition for the meaning of the strong
regulatory graphs: u is under conflicting regulation and it becomes set to ambiguous, v and w are
under no active regulation and they preserve their status. Denote y = (0, 1, 1). Then:

• Reg+(y, u) = {1}, since (w, u) is an activation edge and yw = 1;

• Reg−(y, u) = {1}, since (v, u) is an inhibition edge and yv = 1;

• Reg+(y, u) = {0, 1} and Reg−(y, u) = {0, 1}, since yu = 0;

• Reg+(y, v) = {0}, since (u, v) is an activation edge and yu = 0;

• Reg−(y, v) = ∅, since there are no incoming inhibition edges into v;

• Reg+(y, v) = {0, 1} and Reg−(y, v) = ∅, since yv = 1;

• Reg+(y, w) = Reg−(y, w) = ∅, since there are no incoming edges into w;

• Reg+(y, w) = {1} and Reg−(y, w) = ∅, since yw = 1.

Consequently, y → y. The intuition for the update on u and w remains the same. For v, there is
a potential activation regulation coming from the ambiguous status of its activator u, but since v is
active in y, it will remain so in the next state.

For the graph in Figure 1(b), the following are valid state transitions:

• (−1, 1,−1) → (1, 1,−1) → (1, 1,−1),

• (1,−1,−1) → (1, 1,−1),

• (−1,−1, 1) → (−1,−1, 1) and

• (1,−1, 1) → (−1, 1, 1) → (0, 1, 1) → (0, 1, 1).

The state transition graphs for these two examples are in Figure 2.

The following observation shows that a vertex preserves its activation status, in the absence of
potentially active predecessors.

Lemma 2.4. Let G = (V,E) be a strong regulatory graph and v ∈ V . For any state x with
Reg+(x, v) = Reg−(x, v) = ∅, we have fG(x)v = xv.
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(a)

(b)

Figure 2. The state transition graphs of the regulatory graphs in Example 2.3 and Figure 1.

Proof:
If xv = −1, then Reg−(x, v) = {1} and so, fG(x)v = −1. If xv = 1, then Reg+(x, v) = {1} and so,
fG(x)v = 1. If xv = 0, then Reg−(x, v) = Reg+(x, v) = {0} and so, fG(x)v = 0. ⊓⊔
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We clarify now the conditions under which a vertex v is updated to an ‘ambiguous’ state. Fol-
lowing Lemma 2.4, we only focus on the case when v is under some (potential) regulators, i.e., when
either Reg+(x, v) ̸= ∅, or Reg−(x, v) ̸= ∅, as otherwise v maintains its status unchanged. The
theorem shows that our definition covers exactly the intuition offered just before Definition 2.1.

Theorem 2.5. Let G = (V,E) be an SRG and v ∈ V in state x, with Reg+(x, v) ∪ Reg−(x, v) ̸= ∅.
We have fG(x)v = 0 if and only if

(i) Reg+(x, v) ̸= ∅ and Reg−(x, v) ̸= ∅, or

(ii) Reg+(x, v) = {0} and Reg−(x, v) = ∅, or

(iii) Reg−(x, v) = {0} and Reg+(x, v) = ∅.

Proof:
fG(x)v = 0 ⇔ fG(x)v ̸= 1 ∧ fG(x)v ̸= −1

⇔ (1 ̸∈ Reg+(x, v) ∨ Reg−(x, v) ̸= ∅) ∧ (1 ̸∈ Reg−(x, v) ∨ Reg+(x, v) ̸= ∅)
⇔ (1 ̸∈ Reg+(x, v) ∧ 1 ̸∈ Reg−(x, v)) (1)

∨ (1 ̸∈ Reg+(x, v) ∧ Reg+(x, v) ̸= ∅) (2)

∨ (Reg−(x, v) ̸= ∅ ∧ 1 ̸∈ Reg−(x, v)) (3)

∨ (Reg−(x, v) ̸= ∅ ∧ Reg+(x, v) ̸= ∅) (4)

Because of (4) and the hypothesis that Reg+(x, v) ∪ Reg−(x, v) ̸= ∅, we can consider in (1), (2)
and in (3) that one of the sets Reg+(x, v) and Reg−(x, v) is non-empty, while the other is empty.

In (2), we observe that 1 ̸∈ Reg+(x, v) is equivalent to xv ̸= 1 ∧ 1 ̸∈ Reg+(x, v), which together
with Reg+(x, v) ̸= ∅ is equivalent with xv ̸= 1 ∧ Reg+(x, v) = {0}. As we noted above, we
can add to the conjunction also the term Reg−(x, v) = ∅ since Reg+(x, v) ̸= ∅. This gives us the
clause xv ̸= 1 ∧ Reg+(x, v) = {0} ∧ Reg−(x, v) = ∅. Under the hypothesis of the theorem that
Reg+(x, v) ∪ Reg−(x, v) ̸= ∅, this clause is equivalent with

Reg+(x, v) = {0} ∧ Reg−(x, v) = ∅. (2’)

Using a symmetric argument, we can conclude that (3) can be replaced in the disjunction with

Reg−(x, v) = {0} ∧ Reg+(x, v) = ∅. (3’)

Clause (1) is equivalent with xv = 0 ∧ 1 ̸∈ Reg+(x, v) ∧ 1 ̸∈ Reg−(x, v). Since Reg+(x, v),
Reg−(x, v) ⊆ {0, 1} and, as noted above, we can assume that one is empty, while the other is not, it
follows that clause (1) can be replaced with(

xv = 0 ∧ Reg+(x, v) = {0} ∧ Reg−(x, v) = ∅
)
∨(

xv = 0 ∧ Reg−(x, v) = {0} ∧ Reg+(x, v) = ∅
)
.
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This is equivalent with (
xv = 0 ∧ Reg+(x, v) = {0} ∧ Reg−(x, v) = ∅

)
∨(

xv = 0 ∧ Reg−(x, v) = {0} ∧ Reg+(x, v) = ∅
)
.

(1’)

These two conditions are absorbed within the disjunction under the clauses (2’) and (3’). This proves
the claim of the theorem. ⊓⊔

The following result is a simple consequence of Definition 2.2 and Theorem 2.5 and it offers more
insight into the dynamics of strong regulatory graphs.

Lemma 2.6. Let G = (V,E) be a strong regulatory graph, v ∈ V and x a state of G. Then

(i) fG(x)v = xv, if xv = 1 and Reg−(x, v) = ∅, or xv = −1 and Reg+(x, v) = ∅, or xv = 0 and
1 ̸∈ Reg+(x, v) ∪ Reg−(x, v);

(ii) fG(x)v = 1, if 1 ∈ Reg+(x, v) and Reg−(x, v) = ∅;

(iii) fG(x)v = −1, if 1 ∈ Reg−(x, v) and Reg+(x, v) = ∅;

(iv) fG(x)v = 0, if Reg+(x, v) ̸= ∅ and Reg−(x, v) ̸= ∅.

3. Phenotype attractors

We are interested in attractors that are defined through a fixed configuration (also called phenotype in
[22]) on some (possibly not all) of their variables. In other words, we are interested in minimal cycles
of the state transition systems, where some of the variables of the models are constant. This is similar
to the concept of a target set in the partial controlability of complex networks [23]. The notion of
phenotype was introduced for Boolean networks in [22] and discussed in connection with the control
of Boolean networks in [24].

Definition 3.1. Let G = (V,E) be a strong regulatory graph. We define a trap set of its state transition
graph in the usual way as a set S of vertices such that fG(S) ⊆ S. A trap set is also called an invariant
in dynamical system theory. An attractor is defined as a (non-empty) minimal trap set under set
inclusion.

A target T is a set of vertices T ⊆ V . A T -phenotype is a function αT : T → {−1, 1} that gives an
active/inactive status assignment of the vertices in T . An αT -phenotype attractor AαT is an attractor
of the state transition graph that has the phenotype αT on T , i.e., for any x ∈ AαT , xt = αT (t), for
all t ∈ T .

The phenotype problem is to decide whether for a given phenotype αT , there exists an αT -
phenotype attractor. We prove that the problem can be solved in polynomial time. Even more, we
give a simple characterization of phenotype attractors.
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We say that u is an inhibition-predecessor of v if (u, v) ∈ E−. We say that u is an inhibition-
ancestor of v if there are vertices w1, w2, . . . , wn, n ≥ 1 with (wi, wi+1) ∈ E− for all 1 ≤ i ≤ n− 1,
w1 = u and wn = v.

Similarly, we say that u is an activation-predecessor of v if (u, v) ∈ E+. We say that u is an
activation-ancestor of v if there are vertices w1, w2, . . . , wn, n ≥ 1 with (wi, wi+1) ∈ E+ for all
1 ≤ i ≤ n− 1, w1 = u and wn = v.

Theorem 3.2. Let G(V,E) be a strong regulatory graph, let T ⊆ V be a target set and let αT : T →
{−1, 1} be a phenotype on T . There exists an αT -attractor if and only if the following two conditions
hold:

(i) for all v∈ T with αT (v)= 1 and for all u∈ T inhibition-predecessors of v, we have αT (u)= −1;

(ii) for all v ∈ T with αT (v)= −1 and for all u ∈ T activation-ancestors of v, we have αT (u)= −1.

Proof:
Assume first that there is an αT -attractor AαT . This means that for all x ∈ AαT and for all t ∈ T ,
xt = αT (t). Consider v ∈ T . If αT (v) = 1, then for all x ∈ AαT , Reg−(x, v) = ∅, i.e., its inhibition
predecessors v ∈ T have αT (v) = −1. If αT (v) = −1, then for all x ∈ AαT , Reg+(x, v) = ∅, i.e., its
activation predecessors v have αT (v) = −1. This argument can be iterated throughout all activation
predecessors, yielding the second claim.

Consider now a phenotype αT satisfying properties (i) and (ii). We can construct an αT -attractor
AαT in the following way. We visit the graph going against the edges, starting from the target set T ,
and marking them with −1 or 1 as we visit them. Let S be the set of nodes still to be explored. We start
the exploration with S = T , whose marking is already set through αT . Take all vertices in S marked
with 1, consider all their inhibition predecessors, mark them with −1 and add them to S. Because of
property (i), none of them was marked with 1 and so, this marking will not contradict any previously
set marking. Take all vertices in S marked with −1, consider all their activation predecessors and
mark them with −1. Because of property (ii), none of them was marked with 1 and so, this marking
will not contradict any previously set marking. Iterate through this step until set S stops growing. To
construct an αT -attractor, consider a state x1 ∈ {−1, 0, 1}|V | defined on S through the markings set
above, and taking an arbitrary choice from {−1, 0, 1} for the vertices in V \ S. We then consider the
transitions x1 → x2 → x3 → · · · . Obviously, there will eventually be a repetition of states xi = xj ,
i < j in this sequence. The αT -attractor is {xi, xi+1, . . . , xj−1}. ⊓⊔

The following is a reformulation of Theorem 3.2. A vertex t is an active target if t ∈ T and
αT (t) = 1. Similarly, A vertex t is an inactive target if t ∈ T and αT (t) = −1. An activation path is
a path in a strong regulatory graph made of activation edges only.

Theorem 3.3. Let T ⊆ V be a target set. For phenotype αT : T → {−1, 1} there is an αT -attractor
if and only if

(a) there is no activation path from an active target to an inactive target and

(b) there is no activation path plus a final inhibition edge between two active targets.
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4. Application to a regulatory cancer network

We discuss in this section a strong regulatory graph model of some of the key elements of the RTK
(receptor tyrosine kinase) signaling through the MAPK- (mitogen - activated protein kinase) and the
PI3K/AKT- (lipid kinase phoshoinositide-3-kinase) pathways. Our goal is to demonstrate that the
strong regulatory graphs are expressive enough to capture some interesting properties of a biological
model. The MAPK signaling pathway communicates signals from outside the cell to the nucleus of the
cell, it is involved in cell growth and proliferation, it is often mutated in cancer and a popular target of
cancer treatments [25, 26, 27]. It interplays with the PI3K/AKT signaling pathway, a master regulator
of the cell, whose activation contributes to the development of tumors and resistance to anticancer
therapies [28, 29]. We consider here a portion of the Boolean network model of [14]. The model is
illustrated in Figure 3, with the key regulators shown as vertices, with pointed arrows for the activation
edges and blunt arrows for the inhibition edges. The model includes FOXO3, a protein known for its
role in inducing cell death, often inhibited in tumors, and AKT, with a role in cell survival and often
activated in tumors. Following [14], the activation of RTK depends on the presence of growth factors,
not included in the model, and so its state is set to be constant RTK = −1. We consider the (−1, 1)
state of (FOXO3, AKT) as an indicator of uncontrolled proliferation, that of (1,−1) an indicator
of non-proliferation, and that of (−1,−1) an indicator of moderate proliferation. (Because of the
inactivation edge from AKT to FOXO3, an (1, 1)-attractor is not possible.) These are of course over-
simplifications of a much more complex interplay of interactions. We show that the strong regulatory
graph model has the same variety of outcomes as the Boolean network of [15], while adopting the
strong update rule proposed in Definition 2.2.

Figure 3. The MAPK-PI3K/AKT signaling pathways.
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In our discussion of the dynamics of the model, we write the variables in the order (RTK, RAS,
PI3K, MAPK, PIP3, FOXO3, AKT). The model has several phenotype attractors associated with all
three possibilities of the (FOXO3, AKT) phenotype described above. Indeed, here are examples of
(−1,−1)-, (1,−1)-, and (−1, 1)-attractors:

• for x1 = (−1,−1,−1, 1,−1,−1,−1), x1 → x1;

• for x2 = (−1,−1,−1,−1,−1,1,−1), x2 → x2;

• for x3 = (−1, 1, 1, 1, 1,−1,1), x3 → x3.

A mutation on PI3K, making it constant active, gives proliferation as the only stable set, consistent
with the biological observations in [28] and with the behavior of the Boolean network model of [15]:
for x4 = (−1,−1,1, 1, 1,−1,1) we have x4 → x4. Also consistent with the Boolean network model
of [15] is the observation that setting PI3K to inactive (corresponding to the idea of targeting it with
drug inhibitors), allows all proliferation outcomes to be possible:

• (−1,−1,−1,−1, 1,1,−1) → (−1,−1,−1, 1, 1,1,1) → (−1,−1,−1, 1, 1,−1,1) → (−1,
−1,−1, 1, 1,−1,1), with the final vertex being a singleton attractor;

• (−1,−1,−1,−1,−1,1,−1) is a singleton attractor;

• (−1,−1,−1, 1,−1,1,−1) → (−1,−1,−1, 1,−1,−1,−1), with the final vertex being a sin-
gleton attractor.

The state transition graph of the model (with RTK = −1) has 729 nodes and 35 attractors. The
graph is in Figure 4, with the basins of attractors made visible (but not the labels).

Figure 4. The basins of attractors of the state transition graph of the MAPK-PI3K/AKT model.
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5. Discussion

Our main motivation in this article was to offer a solution to the gap in the current modeling of
large network models. Current network models span between structural modeling approaches (well-
supported by interaction data, scalable, but not dynamical) and detailed logical models (dynamical,
but problematic to scale up because the data is typically not detailed enough to specify the update
functions of each variable). We introduced the concept of strong regulatory graph, a form of logical
network model where the active/inactive status of a vertex is set only if its regulators agree in their
influences; otherwise, the status of the vertex is set to ambiguous. Ambiguity here means that the node
may potentially be active or inactive, depending on the state configuration of its predecessors, a level
of detail that is left out of logical models. The ambiguity may have a cascading influence over the
successors of the node, but it may also cancel out through the clarifications brought by other active
vertices in the network. We discussed an update rule that defines the interplay between active, inactive,
and ambiguous regulators. We also discussed the phenotype attractor problem and showed that it is
easy to decide whether an attractor of a given phenotype exists in a strong regulatory graph.

It is straightforward to see that for any strong regulatory graph there is a Boolean network that
can simulate it. The state transition rule is indeed based on simple logical tests, and so easily imple-
mentable through Boolean functions. Also, the range of values {−1, 0, 1} can easily be implemented
using two Boolean variables for each vertex of the strong regulatory graph. This observation connects
the strong regulatory graphs to the rich literature on the control of Boolean networks.

We discussed only the synchronous version of the strong regulatory graphs, where all vertices are
updated simultaneously. Conceptually, the asynchronous version is similar, and it can be discussed
through both deterministic, as well as non-deterministic state-transition systems, whose properties
should be interesting to characterize in a further study. Also left for another study is the study of
controllability of strong regulatory graphs. Its targeted version can be easily defined in terms of
reaching a phenotype attractor from any state with some minimal interventions in the state transition
system.
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