arXiv:2108.13968v6 [cs.FL] 11 Oct 2023

Fundamenta Informaticae 189(3-4) : 199-240(2022)
Available at 10S Press through:
https://doi.org/10.3233/FI1-222159

Absent Subsequences in Words

Maria Kosche, Tore Kof3*, Florin Manea, Stefan Siemer
Institute for Computer Science
Georg-August University Gottingen, Germany

{maria.kosche,tore.koss,florin.manea,stefan.siemer} @cs.uni-goettingen.de

1.

Abstract. An absent factor of a string w is a string v which does not occur as a contiguous sub-
string (a.k.a. factor) inside w. We extend this well-studied notion and define absent subsequences:
a string u is an absent subsequence of a string w if u does not occur as subsequence (a.k.a. scat-
tered factor) inside w. Of particular interest to us are minimal absent subsequences, i.e., absent
subsequences whose every subsequence is not absent, and shortest absent subsequences, i.e., ab-
sent subsequences of minimal length. We show a series of combinatorial and algorithmic results
regarding these two notions. For instance: we give combinatorial characterisations of the sets of
minimal and, respectively, shortest absent subsequences in a word, as well as compact represen-
tations of these sets; we show how we can test efficiently if a string is a shortest or minimal absent
subsequence in a word, and we give efficient algorithms computing the lexicographically small-
est absent subsequence of each kind; also, we show how a data structure for answering shortest
absent subsequence-queries for the factors of a given string can be efficiently computed.

Keywords: Absent subsequence Arch-factorization Stringology Subsequence Subsequence- Uni-
versality.

Introduction

199

A word u is a subsequence (also called scattered factor or subword) of a string w if there exist (possibly
empty) strings vy, ...,vp41 and uq,...,up such that u = uy ... up and w = vyug ... veupvey1. In
other words, u can be obtained from w by removing some of its letters.

*Address for correspondence: Institute for Computer Science, Georg-August University Gottingen, Germany

200 M. Kosche et al. | Absent Subsequences in Words

The study of the relationship between words and their subsequences has been a central topic in
combinatorics on words and string algorithms, as well as in language and automata theory (see, e.g.,
the chapter Subwords in [1, Chapter 6] for an overview of the fundamental aspects of this topic). Sub-
sequences appear in many areas of theoretical computer science, such as logic of automata theory [2,
314,150 16k 7, 181 9L [10]], combinatorics on words [[11} 12, 13} 14} 15} [16} [17]], as well as algorithms [[18,
191120, 211 22]]. From a practical point of view, subsequences are generally used to model corrupted or
lossy representations of an original string, and appear, for instance, in applications related to formal
verification, see [2}[10] and the references therein, or in bioinformatics-related problems, see [23]].

In most investigations related to subsequences, comparing the sets of subsequences of two dif-
ferent strings is usually a central task. In particular, Imre Simon defined and studied (see [1, 8 [9])
the relation ~j (now called the Simon’s Congruence) between strings having exactly the same set
of subsequences of length at most k (see, e.g., [5] as well as the surveys [24, 25] and the references
therein for the theory developed around ~, and its applications). In particular, ~, is a well-studied
relation in the area of string algorithms. The problems of deciding whether two given strings are
~-equivalent, for a given k, and to find the largest k£ such that two given strings are ~-equivalent
(and their applications) were heavily investigated in the literature, see, e.g., [26, 27} 28] [29] 30, [31]]
and the references therein. Last year, optimal solutions were given for both these problems [32, 33]].
Two concepts seemed to play an important role in all these investigations: on the one hand, the notion
of distinguishing word, i.e., the shortest subsequence present in one string and absent from the other.
On the other hand, the notion of universality index of a string [32] [34], i.e., the largest k& such that
the string contains as subsequences all possible strings of length at most k; that is, the length of the
shortest subsequence absent from that string, minus 1.

Motivated by these two concepts and the role they play, we study in this paper the set of absent
subsequences of a string w, i.e., the set of strings which are not subsequences of w. As such, our inves-
tigation is also strongly related to the study of missing factors (or missing words, MAWS) in strings,
where the focus is on the set of strings which are not substrings (or factors) of w. The literature on the
respective topic ranges from many very practical applications of this concept [35,136} 137,138,139, 140] to
deep theoretical results of combinatorial [41}, 142} 43| 144 |45] 46| 47] or algorithmic nature 48] 49,35}
504151452, 153]]. Absent subsequences are also related to the well-studied notion of patterns avoided by
permutations, see for instance [54], with the main difference being that a permutation is essentially a
word whose letters are pairwise distinct.

Moreover, absent subsequences of a string (denoted by w in the following) seem to naturally oc-
cur in many practical scenarios, potentially relevant in the context of reachability and avoidability
problems.

On the one hand, assume that w is some string (or stream) we observe, which may represent e.g.
the trace of some computation or, in a totally different framework, the DNA-sequence describing some
gene. In this framework, absent subsequences correspond to sequences of letters avoided by the string
w. As such, they can be an avoided sequence of events in the observed trace or an avoided scattered
sequence of nucleotides in the given gene. Understanding the set of absent subsequences of the re-
spective string, and in particular its extremal elements with respect to some ordering, as well as being
able to quickly retrieve its elements and process them efficiently seems useful to us.

M. Kosche et al. | Absent Subsequences in Words 201

On the other hand, when considering problems whose input is a set of strings, one could be in-
terested in the case when the respective input can be compactly represented as the set of absent sub-
sequences (potentially with some additional combinatorial properties, which make this set finite) of
a given string. Clearly, one would then be interested in processing the given string and representing
its set of absent subsequences by some compact data structure which further would allow querying it
efficiently.

In this context, our paper is focused on two particular classes of absent subsequences: minimal
absent subsequences (MAS for short), i.e., absent subsequences whose every subsequence is not ab-
sent, and shortest absent subsequences (SAS for short), i.e., absent subsequences of minimal length.
In [Section 3| we show a series of novel combinatorial results: we give precise characterizations of
the set of minimal absent subsequences and shortest absent subsequences occurring in a word, as well
as examples of words w having an exponential number (w.r.t. the length of w) of minimal absent
subsequences and shortest absent subsequences, respectively. We also identify, for a given number k,
a class of words having a maximal number of SAS, among all words whose SAS have length k.

We continue with a series of algorithmic results in We first show a series of simple
algorithms, useful to test efficiently if a string is a shortest or minimal absent subsequence in a word.
Motivated by the existence of words with exponentially large sets of minimal absent subsequences and
shortest absent subsequences, our main contributions show, in and 4.2] how to construct
compact representations of these sets. These representations are fundamental to obtaining efficient
algorithms querying the set of SAS and MAS of a word, and searching for such absent subsequences
with certain properties or efficiently enumerating them. These results are based on the combinatorial
characterizations of the respective sets combined with an involved machinery of data structures, which
we introduce gradually for the sake of readability. In|Section 4.1 we show another main result of our
paper, where, for a given word w, we construct in linear time a data structure for efficiently answering
queries asking for the shortest absent subsequences in the factors of w (note that the same problem
was recently approached in the case of missing factors [49]]).

The techniques used to obtain these results are a combination of combinatorics on words results
with efficient data structures and algorithmic techniques.

2. Basic definitions

Let N be the set of natural numbers, including 0. For m,n € N, welet [m : n] = {m,m+1,...,n}.
An alphabet ¥ is a nonempty finite set of symbols called letters. A string (also called word) is a
finite sequence of letters from X, thus an element of the free monoid ¥*. For the rest of the paper, we
assume that the strings we work with are over an alphabet ¥ = {1,2,...,0}.

Let 1t = ¥* \ {e}, where ¢ is the empty string. The length of a string w € X* is denoted
by |w|. The i™ letter of w € X* is denoted by wl[i], for i € [1 : |w|]. For m,n € N, we let
wm : n| = wmlwim + 1]...wn|, lwl, = [{i € [1 : |w|] | w[i] = a}|. A string u = wim : n|
is a factor of w, and we have w = xuy for some x,y € ¥*. If x = ¢ (resp. y = ¢), uw is called a
prefix (resp. suffix) of w. Let alph(w) = {z € ¥ | |w|, > 0} be the smallest subset S C X such that
w € S*. We can now introduce the notion of subsequence.

202 M. Kosche et al. | Absent Subsequences in Words

Definition 2.1. We call u a subsequence of length k& of w, where |w| = n, if there exist positions
1 <ip <ig <...<i <n,suchthatu = wlijJwlig] - - - w[ig].

We recall the notion of k-universality of a string as presented in [32]].

Definition 2.2. We call a word w k-universal if any string v of length |v| < k over alph(w) appears
as a subsequence of w. For a word w, we define its universality index ¢(w) to be the largest integer k
such that w is k-universal.

If «(w) = k, then w is {-universal for all ¢ < k. Note that the universality index of a word w is
always defined w.r.t. the alphabet of the word w. For instance, w = 01210 is 1-universal (as it contains
all words of length 1 over {0, 1,2} but would not be 1-universal if we consider an extended alphabet
{0,1,2,3}. The fact that the universality index is computed w.r.t. the alphabet of w also means that
every word is at least 1-universal. Note that in our results we either investigate the properties of a
given word w or we show algorithms working on some input word w. In this context, the universality
of the factors of w and other words we construct is defined w.r.t. alph(w). See [32,[34] for a detailed
discussion on this.

We recall the arch factorisation, introduced by Hebrard [28)]].

Definition 2.3. For w € ¥*, with ¥ = alph(w), the arch factorisation of w is defined as w =
ary (1) - -ary(¢(w)) r(w) where for all ¢ € [1 : «(w)] the last letter of ar,, (i) occurs exactly once in
ar, (i), each arch ary,(7) is 1-universal, and alph(r(w)) € X. The words ar,,(7) are called arches of
w, r(w) is called the rest.

Let m(w) = ary,(1)[| ary(1)|] - - - ary (k)[| ary (k)|] be the word containing the unique last letters
of each arch.

Note that every word has a unique arch factorisation and by definition each arch ar,, (i) from a
word w is 1-universal. By an abuse of notation, we can write i € ar,,(¢) if 7 is a natural number such
that |ar, (1) ---ar, (£ — 1)] < i < |ar,(1)---ary (£)], i.e., i is a position of w contained in the ¢
arch of w.

The main concepts discussed in this paper are the following.

Definition 2.4. A word v is an absent subsequence of w if v is not a subsequence of w. An absent
subsequence v of w is a minimal absent subsequence (for short, MAS) of w if every proper subse-
quence of v is a subsequence of w. We will denote the set of all MAS of w by MAS(w). An absent
subsequence v of w is a shortest absent subsequence (for short, SAS) of w if |v| < |v/| for any other
absent subsequence v’ of w. We will denote the set of all SAS of w by SAS(w).

Note that any SAS of w has length ¢(w) + 1 and v is an MAS of w if and only if v is absent and
every subsequence of v of length |v| — 1 is a subsequence of w.

3. Combinatorial properties of SAS and MAS

We begin with a presentation of several combinatorial properties of the MAS and SAS. Let us first
take a closer look at MAS.

M. Kosche et al. | Absent Subsequences in Words 203

(%) U3 Um Um—+1
—_—— —_——
w - ,% —
1. 12 Im—2. tm—1. im
Z.1 +1 Z.m—2 +1 im—l +1

Figure 1. Illustration of positions and intervals inside word w

If v = v[1]---v[m + 1] is an MAS of w then v[1]-- - v[m] is a subsequence of w. Hence, we
can go left-to-right through w and greedily choose positions 1 < i3 < ... < i, < n = |w| such
that v[1] - - - v[m] = w[i1] - - - w[iy,] and iy is the leftmost occurrence of w(ig] in wlig—1 + 1 : n] (as
described in|Algorithm 4]in|Section 4). Because v itself is absent, v[m + 1] cannot occur in the suffix
of w starting at i,, + 1. Furthermore, we know that v[1] - - - v[m — 1]Jv[m + 1] is a subsequence of w.
Hence, v[m+1] occurs in the suffix of w starting at 4,,,—1 +1. We deduce v[m+1] € alph(w[iy,—1+1 :
im]) \ alph(w[i,, + 1 : n]). This argument is illustrated in and can be applied inductively
to deduce v[k] € alph(wl[ig_o + 1 : ix_1]) \ alph(w[ig_1 + 1 : ix, — 1]) for all k # 1. The choice
of v[1] € alph(w) is arbitrary. More details are given in the proof to the following theorem. For
notational reasons we introduce ig = 0 and ¢,,+1 = n + 1.

Theorem 3.1. Let v,w € ¥*, |v| = m + 1 and |w| = n, then v is an MAS of w if and only if there
are positions 0 = 79 < i1 < ... < iy < tm4+1 = N + 1 such that all of the following conditions are
satisfied.

(i) v =wlir] - - wlim]v[m + 1]

Gi) o[1] ¢ alph(w[l : iy — 1))
(i) v[k] ¢ alph(w[ir_1 + 1 :ix — 1)) forall k € [2 : m + 1]
(iv) v[k] € alph(w[igx—o + 1 :ix_1]) forall k € [2: m + 1]

Proof:

Let v be an MAS of w of length |v| = m + 1. By definition, v[1 : m] is a subsequence of w, hence
we can choose positions i1, . . . i,, such that v[¢] = w[iy], for all £ € [1 : m]. We do this greedily, that
is, we choose i to be the leftmost occurrence of v[1] in w, iz be the leftmost occurrence of v[2] in
w(i1+1 : n] and so on. In the end, v[m 1] cannot occur in wi,, +1 : n], because v is no subsequence
of w. Now, the positions ¢y, ..., %y, and %,,41 = n + 1 clearly satisfy [conditions (1)|to|[(ii1)}

We show first that & = m + 1 satisfies [condition (iv)} v[1 : m — 1Ju[m + 1] is a subsequence of w,
hence v[m + 1] occurs in w[in,—1 + 1 : n]. Bycondition (iii)| v[m + 1] does not occur in w[i,, + 1 : n]
hence is true for K = m + 1. Now let 2 < ¢ < m + 1, we make two observations:

1. v[l : m + 1] is absent in w(iy_; + 1 : n] because v is absent in w,

2. v[f +1:m+ 1] is a subsequence of w[ig—1 + 1 : n] because v is a MAS of w.

204 M. Kosche et al. | Absent Subsequences in Words

Combining both observations yields that v[¢ : m+1] is a subsequence of w[iy—_o+1 : n] if and only
if v[¢] occurs in wlig_o + 1 : ip_1]. Since v is an MAS of w, v[l : £ — 2]v[¢ : m + 1] is a subsequence
of w, hence v[¢ : m + 1] is a subsequence of w[iy_2 + 1 : n] and so v[¢] € alph(w[ip—2 + 1 : ip_1]).

Now let ¢g = 0, %41 = n+ 1 and ¢y, ..., %), be positions of w satisfying to [(iv)]
From [condition ()} we have that v = wli1]- - wlim|v[m + 1]. We claim that v is an MAS of w.
Firstly, we divide w into w = wj - - - wy, r(w) where wy, = wlig—1+1: i) and r(w) = wliy, + 1 : n).
By v[m + 1] doesn’t occur in r(w), hence v is absent in w.

For the minimality, we notice that by v[k] occurs in wy_1. Therefore, if we choose
an arbitrary ¢ < m + 1 and delete v[¢], we have v[l : £ — 1] = wli1] - - - w[ig_1] is a subsequence of
wy -~ wy—1, and v[f + 1 : m + 1] is a subsequence of wy - - - wyy,, hence v[1 : £ — 1jv[f + 1 : m + 1]
is a subsequence of w. The conclusion follows. a

[Properties (1)|to|(i11)] (the latter for & < m only) are satisfied if we choose the positions i1, . .., iy,
greedily, as described in the beginning of this section.

By we have no restriction on the first letter of an MAS and indeed we can find an
MAS starting with an arbitrary letter.

Remark 3.2. For every = € alph(w), z!*l=*! is an MAS of w, hence, for every choice of z &
alph(w), we can find an MAS v starting with .

Using we can now determine the whole set of MAS of a word w. This will be
formalized later in For now, we just give an example.

Example 3.3. Let w = 0011 € {0,1}* and we want to construct v, an MAS of w. We start by

choosing v[1] = 0. Then i; = 1 and bymv € alph(w[l : 1]) = {0}, so i = 2 (by
fitem (iiD)). Again by fitem (iv)] we have v[3] € alph(w[2 : 2]) = {0}. The letter v[3] does not occur in

wlia + 1 : n, hence, i3 = n + 1, and v = 0% is an MAS of w. If we let v[1] = 1, we have i; = 3. By
we have v[2] € alph(w[1 : 3]) = {0, 1}. If we choose v[2] = 1, we obtain v = 1® with an

argument analogous to the first case. So let us choose v[2] = 0. Then is = n + 1, and v = 10 is an
MAS of w. claims MAS(w) = {03,10, 13} and indeed 10 is the only absent sequence
of length 2, and every word of length > 3 is either not absent (001, 011 and 0011) or contains 10, 03
or 13 as a subsequence.

From this example also follows that not every MAS is an SAS. The converse is necessarily
true. So, for any SAS v of w we have |v| = «(w) + 1, and we can find positions 1 < i1 < iy <
- < iyw) < n satisfying The following theorem claims that every arch of w (see

contains exactly one of these positions.
Theorem 3.4. Let w = ar,,(1) - - - ary, (¢(w)) r(w) as in|Definition 2.3 Then, v is an SAS of w if and

)r
only if there are positions ig = 0, iy € ary(¢) forall 1 < ¢ < u(w), and i,(,)41 = n + 1 satistying

Mheorem 3.11

M. Kosche et al. | Absent Subsequences in Words 205

Proof:

Let v be an SAS of w. Every SAS is an MAS, so we can choose positions i1, . . . %,(,) as in
We claim that every arch of w contains exactly one of these positions. Because the number
of these positions equals the number of arches, it suffices to show that every arch contains at least one
ig. Assume there is an arch ar,, (k) not containing any of the is. Because, by conditions (ii)| and |(iii)|
of we choose positions greedily and every arch is 1-universal this is only possible if v is
a subsequence of ar,,(1) - - - ar,,(k — 1). This is a contradiction because v is absent from w.

For the converse implication, we have a word v = w[i1] - - - w[i,(y|v[t(w) + 1] which satisfies

Theorem 3.1] Hence v is an MAS of length |v| = ¢(w) + 1 and thus an SAS. O

A way to efficiently enumerate all SAS in a word will be given later in Here, we
only give an example based on a less efficient, but more intuitive, strategy of identifying the SAS of a
word.

Example 3.5. Let w = 012121012 with «(w) = 2, and the arch factorisation of w is w = 012 -
1210 - 12. We construct v, an SAS of w. By [Theorem 3.4 we have [v| = ((w) + 1 = 3 and by
lcondition (iv)|of [Theorem 3.1|the letter v[3] does not occur in alph(wliz : n]) D alph(r(w)), so v[3]
is not contained in alph(r(w)). Hence, v[3] = 0 and its rightmost position in ar,,(2) is on position 7.
Therefore, v[2] should not appear before position 7 in ar,,(2) (as v[1] appears in ar,, (1) for sure). So,
v[2] ¢ alph(w[4 : 6]) = {1,2} and v[2] = 0. Ultimately, the rightmost occurrence of v[2] in ar,,(1)
is on position 1, and we can arbitrarily choose v[1] € alph(ar,(1)) = {0,1,2}. We conclude that
SAS(w) = {000, 100, 200}.

To better understand the properties of SAS and MAS, we analyse some particular words. For the
rest of this section, assume that o > 4 is a large even natural constant.

Firstly we let vy = 1-2---candvg = 0 -0 — 1---1. Then, for £ € N, we define the words
Aoy, = (v1-v2)F, Agpy1 = Aog-v1, and By, = vf. Each of these words has universality index ¢(Ay) =
t(By) = k and every arch has minimal length |ar, (7)| = |arp, (i)| = |X| forall k € Nand i € [1 :
k]. Furthermore the SAS of By, are exactly the monotonically decreasing sequences of length &k + 1,
whereas no SAS of Ay, has a strictly monotonically increasing or decreasing factor of length 3. We
will devote the rest of this chapter to an analysis of the sets SAS(w) and MAS(w) for w being either
Ay, or By. It turns out that By, has a small (that is polynomial in |By|) amount of SAS but the amount
of MAS is exponential (in | By |) whereas every MAS of Ay, is an SAS and Ay, has the maximal amount
of SAS among all words w with universality index ¢(w) = k. We start with the following result.

Proposition 3.6. The word By, has a polynomial number of SAS and exponentially (in the length of
the word) more MAS than SAS.

Proof:

Recall our assumption that ¢ > 4 is a large even constant, and let & = (20 + 2)m where m is a
natural number. Let v be an SAS of Bj. From it follows that v[i] > v[i + 1], for all
i € [1: |v]]. So, v is a decreasing sequence of numbers from {1,...,c0}, of length & + 1. Let us
count these sequences. We first count the number of sequences whose elements are contained in a

206 M. Kosche et al. | Absent Subsequences in Words

fixed set T C {1,...,0} of size |T'| = ¢. For each T there are exactly (t’fl) such sequences (as
we essentially need to choose, for each value except the smallest one, of the ¢ values, the rightmost
element of the sequence which takes that certain value and k + 1 is necessarily reserved for the
smallest value). Moreover, we can choose the ¢ values taken by the numbers in the sequence in (‘t’)
ways. So, the number of decreasing sequences of numbers from {1,...,0}, of length k + 1, is

Sk41 = 74 ((‘;) . (tlfl)) .Since t —1 < o < & we have (tfl) < (l:) and therefore

<2 (()- () <5 (9 (7)) -2

Applying Chebyshev’s sum inequality we obtain that the following holds:

Sky1 < %' (Z(€20k>t> : <Z t;) .

=1 t=1
Thus,
G < 1 (2ok)7Ht —1 7r72 -4 (e20k)
ML= (2ok) — 1 6 — o

As o is assumed to be constant, it follows that Sy is bounded by a polynomial from above. We can
also prove a lower bound for Si.1. We have that:

sz ((-(5)) =5 (07 ()

-5(8) =n ()
. Sen = WL s oy

(k/o) =1 ~
A family of words from MAS(By,), which are not in SAS(By,), are the words

v = (HTe[lzm}(a sy 1 U)) o,

where I1,.¢[1., is used to denote concatenation of the terms and, for all r, u, is a decreasing sequence
of length 20 of numbers from {1,...,0} not ending in o, that is u; is not the constant sequence
consisting in 20 occurrences of the letter o.

We will show that v is a MAS of By, = v} by showing that it satisfies since the u,
are decreasing and v is strictly increasing, the only factor of length 2 of v which is a subsequence of
vy is 1- 0. Hence when searching for positions 41, iz, . . . i, satisfyingfitem ({)] positions ¢; and i;1
can be found inside the same arch of By, if and only if v[j : j + 1] = 1- 0. So, for 1 < ¢ < m the

(Jur|+2)¢
1

prefix I1,.cj1.q (0 -uy-1-0)of vis asubsequence of the prefix v of By but absent from any

M. Kosche et al. | Absent Subsequences in Words 207

shorter prefix of By. Since By = vf = v§20+2)m = v§'“f'+2)m, v is absent from Bj, and its prefix
of length |v| — 1 is a subsequence of By. Furthermore, as every letter of X occurs exactly once in
v1, there is only one possibility to choose indices i1, %2, . . . , 4}, 1 satisfyingjitem (1) of [Theorem 3.1}
which is, 1 = o and consecutive positions 7;,%,,1 are uniquely chosen from consecutive arches of
By, unless v[j] = 1 and v[j + 1] = o in which case i; and 7;,1 are uniquely chosen from the same

arch. We will show that these indices satisfy [items (iD)|to[(iv)] of [Theorem 3.1]as well. Firstly v[1] = o

does not occur in Bg[l : iy — 1] =1-2---0 — 1. Secondly recall that v[j] > v[j — 1] if and only if
v[j — 1] = 1 and v[j] = o, thus

S\ [oli]olf =10l ifofi] <ofj —1]
{2,3,...,0 — 1}, if v[j] > v[j —1].

For the last item of [Theorem 3.1| note that if v[j — 1] < wv[j — 2] then either v[j] < v[j — 1] or
v[j] = o > w;l|u;|] = v]j — 2]. Otherwise, if v[j — 1] > v[j — 2], then v[j] = o. Thus

v[j] ¢ alph(By[ij—1 +1:4; — 1]) = {

S\[olj 1+ 1cofi -2, ifo[j -1 <olj—2]

v[j] € alph(Bk[ij,Q +1: ij—l]) = {{273’ o), ifv[j — 1] > v[j — 2].

Based on the results shown above about SAS and the assumption that ¢ > 4, the size S’ of the
family of words v as defined above fulfils:

, 20 —1\7 ! "
S' > (S — 1)™ > -1 >4,
o

Given that m is not a constant, but a parameter which grows proportional to | By|, the statement of
the theorem follows. O

Based on[Theorems 3.T]and[3.4] it follows that the SAS of By, correspond to decreasing sequences
of length k£ + 1 of numbers from {1,...,0}. A family of words included in MAS(By,), which is
disjoint from SAS(By), consists of the words v = (Il;—1 (0 - u; - 1 - 0)) o, where u; is a decreasing
sequence of length 20 of numbers from {1,...,0}, for all <. By counting arguments, we obtain the
result stated above. However, there are words whose sets of MAS and SAS coincide.

Proposition 3.7. MAS(Ay) = SAS(Ag).

Proof:

Assume that there exist an MAS v of Ay which is not an SAS (i.e., |[v| = m is strictly greater than
k + 1). We go left-to-right through Ay and greedily choose positions i1 < ... < i, < ko such that
v[l]---v[m| = Agli1] - - - Ag[im] and 4; is the leftmost occurrence of A[i;] in Aglij—1 + 1 : ko]. Let
a; = Aglij) for j € [1:m]. Asm —1 > k, there exists an arch ar 4, (¢) of Aj, which contains at least
two positions iy and ¢4, and all archs ary4, (¢') with £/ < ¢ contain exactly one such position. We
can assume without loss of generality that ¢ is odd (the even case is identical). If £ > 1 then it is easy
to see that ay_1; < ay (otherwise a, would be in the same arch as ay_1) and ay < a4 (as agyq is to
the right of a, in an odd arch). So, ay_1 < agy1. It follows that when removing v[¢] from v, we obtain
a word which is not a subsequence of Ay. If £ = 1 we get the same conclusion, trivially. This is a
contradiction to the fact that v is an MAS. So our assumption was wrong, and v must be an SAS. 0O

208 M. Kosche et al. | Absent Subsequences in Words

We can actually show a slightly stronger property: any word which has no proper SAS is a per-
mutation of Ay for a suitable k. For the rest of this chapter 7 always denotes a morphism of >*
that acts as a permutation on the letters of X, that is, 7 is a bijection of X into itself and satisfies
m(uwv) = mw(u)w(v) for all u,v € ¥*. For simplicity we call 7 a permutation (of). In contrast we
denote any permutation of integers, e.g. positions of a word, by #. For illustration let 7 and 6 both
denote the permutation that maps 1 to 2 and vice versa, then 7(1322) = 2311 and 6(1322) = 3122.

The first observation follows directly.

Lemma 3.8. If 7 is a permutation of ¥ and w € ¥* then 7(v) is an SAS of 7(w) if and only if v is
an SAS of w. Hence | SAS(w)| = | SAS(w(w))].

Proposition 3.9. Let w € ¥*, then | SAS(w)| = | MAS(w)| if and only if there is a permutation 7
such that m(w) = A, (y)-

Proof:
The if-part is immediate: |SAS(w)| = |SAS(w(w))| = | MAS(7(w))| = | MAS(w)| by [Proposi-|

For the converse let w € ¥* satisfying | SAS(w)| = | MAS(w)|. Firstly assume there is a € X
such that [w|, > t(w). Then a!®la*1 is an MAS of w but not an SAS of w, a contradiction. So every
letter occurs exactly «(w) times in w and therefore exactly once in each arch ar,,(¢). Hence there
is a permutation 7 such that 7 (ar,,(1)) = v;. Now assume there is an integer ¢ < ¢(w) such that
m(ary (1) ary (2) - - -ary, (£)) # Ay Let k be minimal with this property. By definition of = we have
k > 1 and w.l.o.g we can assume k to be even. Then 7(ar,,(k)) # v2 = o --- 21, that is we can find
two positions i < j € ar, (k) such that w(wli]) < m(w[j]). We claim that u = w[i]*w[;](W)~F+2
is an MAS but not an SAS of w. We start by checking if u; = w[i]* w[j]**)*+2 and uy =
wli]Fw(j](®)=*+1 are subsequences of w. We have 7(ary(k — 1)) = v; = 12---¢ and w(wli]) <
7(w[j]) hence w(i]w[j] occurs in ar,, (k—1). Then w(i]*~1w[j] is a subsequence of ary, (1) - - - ary, (k—
1) and w[;]*®)~F+1 is a subsequence of ary, (k) - - - ary (¢(w)). Similarly w(i]*w[j] is a subsequence
of ary(1)---ary(k) and w[j]"®) =% is a subsequence of ar,(k 4 1)---ar,(c(w)). So ui,uy are
subsequences of w and w is an MAS of w. We have |u| = «(w) + 2 and so u is not an SAS of w, a
contradiction. Hence 7(ary,(1)- - - ary, (£)) = Ag holds for all £ < ¢(w) and therefore 7(w) = A,(,). O

In particular, one can show that the number of SAS in the words Ay, is exponential in the length of
the word. The main idea is to observe that an SAS in Ay, is a sequence i1, ..., it of numbers from
{1,...,0},such thatigy_q > igo forall £ € [1: [k/2]]and igy < igp4q forall £ € [1: |k/2]]. We
then can estimate the number of such sequences of numbers and obtain the following result.

Proposition 3.10. The word Ay, has an exponential (in | Ax|) number of SAS.

Proof:
Again, recall our assumption that ¢ is a large even constant. An SAS in Ay, is a sequence i1, ...,k 11
of numbers from {1,...,0}, such that ioy_1 > iy forall £ € [1 : [k/2]] and i9y < igpyq for all

e [1:[k/2]]. Let S; be the number of strings of length ¢ < k ending with letter ¢ € ¥, which can
be a prefix of such a sequence (i.e., of an SAS of Ay).

M. Kosche et al. | Absent Subsequences in Words 209

The first observations are the following:

» Forevent > 2 we have that Sy ; =)] Si—1,5, and, therefore, Sy 1 = Zie[l:a] Si—1,i. The

j€lico
sequence St s, St.o—1, 5,02, - ., 51 1S increasing.
 For odd t > 3 we have that S;; = Zje[lﬂ St—1,j, 50 St g = Zz’e[l:a] Si—1,. The sequence
Si1,5t2, - St,o—1, St,o 1s increasing.

Clearly, S1; = 1foralli € ¥.

We claim that for all £ we have that Zie[l:a} Sti > (%)t . We will prove this by induction.
This clearly holds for ¢ = 1. Assume that it holds for ¢ < ¢ and we show that it holds for ¢ = ¢+ 1.
First, assume that ¢+1 is odd. By the induction hypothesis, we have that S;41,, = Zie[l:a] Sqi >

-1
()" Moreover, Sg1,1 = Diept1) Sai = Sa1 = Xicfiio] Sa-1,i = (5)" .
Now, we have that:

Z Sq+1,i: Z (Sq+1,j+Sq+1,a+1—j) = Z Z Sq,g+ Z Sq,g)

i€[l:0] j€[l:0/2] j€[l:0/2] \g€[l:]] g€[lio—j+1]

and, therefore,

Y Sgri= > [Sqrt D Segt D Seg

i€[1:0] j€l:0/2] gE[2:4] g€[lio—j+1]

Now, as Sy o, Sq,0-1,5¢,6—2, - - -, 9g,1 18 increasing, we get that:

Z Sqt1i = Z Sq1 + Z Sqg + Z Sq.g

i€[1l:0] j€[l:0/2] g€lo—j+2:0] g€[l:o—j+1]

Therefore:

Z Sq+1,i > Z Sg1+ Z Sq,g :% Sg1+ Z Sa,g

i€[l:0] j€[l:0/2] g€(l:o] g€(l:o]

We can now apply the induction hypothesis, and obtain that

q—1 o\4 o\ at+1
2 Sz (57 +3)) -5
An analogous argument works for the case when ¢ + 1 is even.
This concludes our induction proof.
Therefore, the number of strings of length k£ which can be a prefix of a SAS of Ay, is at least (%) F
We note that this is not a tight bound, and a more careful analysis should definitely improve it.

So | SAS(Ag)| > (%)]C which, given that o is a constant, proves our statement: | SAS(Ay)| >

(%)\Akl/o. O

The following few results formalise an additional insightful observation about the word Ay, and its
set of SAS. We will need the following initial remarks and lemmas.

210 M. Kosche et al. | Absent Subsequences in Words

Lemma 3.11. Let w, wy,ws € ¥* such that w = wyws, t(we) > 1, and r(w;) = &.
Then v[1] - - - v[e(w) 4 1] is an SAS of w if and only if v[1] - - - v[¢(w;1) + 1] is an SAS of w; and
v[e(wy) + 1] - - - v[e(w) + 1] is an SAS of ws.

Proof:

Note first that the arches of w coincide with the arches of w; and ws. If v € SAS(w) and we greedily
choose positions for v[1] - - - v[¢(w1)] in w1, we find the same positions as if we greedily choose them
inw. As r(wi) = g, v[1]---v[e(wy) + 1] is an SAS of w;. Furthermore, let ¢ be the position of
v[e(wr) + 1] in ary, (1). Now v[e(wi) + 2] occurs in ar,, (1)[1 : ¢] because it occurs in ary, (1) and if
it occurs to the right of ¢ then, by v is not an SAS of w. Hence we can find positions for
v[e(wr) 4+ 1] and v[e(w1) + 2] in wo satisfying[Theorem 3.1] For the remaining letters of v we can find
positions in wy satisfying [Theorem 3.1| because ws is a suffix of w and we can find these positions in
w. Hence v[e(wy) + 1 : ¢(w) + 1] is an SAS of ws.

The other implication is trivial. a

Generally, we apply|[Lemma 3.11|for wy = ary,(1) - - - ary, (£), we = ary, (€+1) - - - ary, (¢(w))r(w),
for some ¢ < (w).
We continue with recalling the so-called rearrangement inequality.

Lemma 3.12. If a1,...,a, and by, ..., b, are both increasing (respectively, decreasing) sequences
of natural numbers and 6 is a permutation of {1,2,...n}, then 31" | aibpy1—i < Y7 aibyy <

D i aibi.

The following lemma is immediate.

Lemma 3.13. If v’ is a subsequence of w and ((w) = ¢(w'), then SAS(w) C SAS(w’).

Before we begin to show the main observation on the word Ay, please recall vy = 12---0, vo =
o(c —1)---1and Ay = wiwy - - - wWi_swk_1 Wk, Where wy = vy if £ is odd and wy = vy otherwise.
We note SAS(v1) = {ij € X2 | i > j} and SAS(v2) = {ij € X2 | i < j}. Thatis we have i SAS
of v starting with 7 and o + 1 — i SAS of v ending on i. For vy these values are switched: we have
o+ 1 — 14 SAS starting with ¢ and ¢ SAS of v ending on 4.

Proposition 3.14. | SAS(Ay)| > | SAS(w)| holds for all w € ¥* with ¢(w) = k.

Proof:
By it suffices to show that[Proposition 3.14]holds for words w, such that every arch of w
contains every letter exactly once and r(w) = €. So, in this proof, all words we use have each letter of
the alphabet exactly once in each arch. This means for any 1-universal word v there is a permutation
7 such that 7(v) = ve.

We will show [Proposition 3.14|in the following way: if ¢(w) = 1 then there is a permutation 7 of
Y such that 7(w) = v; = Aj, hence | SAS(w)| = |SAS(A;)|. For general ¢(w) > 2 we let w; =
ary (1) ary(2) - - - ary (e(w) — £) (with ¢(wg) = ¢(w) — ¢) and show that there exists a permutation 7
of ¥ such that | SAS(w)| < | SAS(m(w¢)Ayg)| for every word w and integer 2 < ¢ < (w). Inductively
this shows [Proposition 3.14}

M. Kosche et al. | Absent Subsequences in Words 211

Firstly let f;(w) = |X* N SAS(w)|, gi(w) = [iX* N SAS(w)| and h; j(w) = [iX*j N SAS(w)|.
That is, f;, g;, h; ; denote the respective number of SAS of w which end on i, start with 7, and start
with 7 and end with j respectively. Then, for any factorisation w = wujus satisfying we
have | SAS(w)| = | SAS(uruz2)| = > ,cx fi(u1)gi(u2). For w € ¥* and v1, v2, Ay, as above, we have
filwovr) = ZjZi fj(w) and g;(v2Ay) = ZjZi 9;(Ay) because hj;(v1) = hyj(v2) = 1if j > 7 and
0 otherwise. Furthermore f;(w) = fr)(m(w)), gi(w) = gry(m(w)) and h; j(w) = hz (i) x() (7 (w))
by when using this observation, we will refer to it using (*).

We start by showing that the proposition holds for ¢ = 2. Let «(w) = k > 2, 7w be a permutation
of ¥ such that w(ar,,(k — 1)) = v; and v' = 7(ar,,(k)) then

| SAS(w)| = [SAS(m(w))| = ISAS((wa)v10"))|

_Zflﬂ- Ul gz Z.fz 'Ul gT(’L()

€Y i€EX

<3 filr(wa)on)gi(v2) = [SAS(m(uwz)orvs)| (by[Cemma 3.12)
€D

= [SAS(m(w2)A2)|,

where 7 denotes the permutation which maps v’ to v,. Please note that g;(ve) = |[{ij | i,j € 3,7 >
it and fi(m(w2)v1) = 3 ;5 fi(m(w2)) are decreasing (as sequences w.r.t. 4).

Now, we assume we have that for every w € ¥* and ¢ < «(w) we can find a permutation 7 of ¥

such that | SAS(w)| < | SAS(w(w¢)As)|. We show that the result holds for ¢ + 1 as well; that is, we
show that | SAS(w)| < | SAS(7” (we41)A¢41)| for some permutation 7”. Indeed, we have:

| SAS(w)| < [SAS(m(we)Ag)| = [SAS(m(wera)m(ary («(w) — £)) Ar)]

=3 fulwlwen)) | S by ar (u(w) - e)))gjw))

€D JEX

= filw(wen)) | Y hegiyr() (v2) gj(Az)> (by (*))

i€EX >
<3 fitrtwe) | 3 by ()5 An) (by Cemma 3.12)
€Y jeES

i€ jeES

= Zf'r(WT w€+1 (Z hr(z U2 gj AZ)) (by)

> filr(w(wen))(th(vz)gj(/ltz))

T(1)EX Jjex
= Z fi(r(m(wesr))) (Z hi,j(UQ)gj(Aé))
€D JED

= | SAS(7(m(wer1))7' (Apy1))| = | SAS(r" (wey1) Arsa)],

212 M. Kosche et al. | Absent Subsequences in Words

where 7 is a permutation mapping ar,, (¢(w) — £) to vy, 7’ is the permutation which maps i to o +1—4
(and therefore also maps v to vy) and 7’/ = (7’)_1 o 7 o w. The second inequality in the reasoning

above follows from|Lemma 3.12|because g;(Ay) and h; ;(v2) both are monotonically increasing as
sequences in j. This concludes our proof. a

In the conclusion of this section, we make the following remarks. [Propositions 3.6 and [3.10]
motivate our investigation for compact representations of the sets of SAS and MAS of words. These
sets can be exponentially large, and we would still like to have efficient (i.e., polynomial) ways of
representing them, allowing us to explore and efficiently search these sets.

4. Algorithms

The results we present from now on are of algorithmic nature. The computational model we use to
describe our results is the standard unit-cost RAM with logarithmic word size: for an input of size n,
each memory word can hold log n bits. Arithmetic and bitwise operations with numbers in [1 : n] are,
thus, assumed to take O(1) time. Numbers larger than n, with £ bits, are represented in O(¢/logn)
memory words, and working with them takes time proportional to the number of memory words on
which they are represented. In all the problems, we assume that we are given a word w, with |w| = n,
over an alphabet ¥ = {1,2,...,0}, with |X| = 0 < n. That is, we assume that the processed words
are sequences of integers (called letters or symbols, each fitting in O(1) memory words). On the one
hand, note that we no longer assume that ¢ is a constant, as in the combinatorial results of the previous
section. On the other hand, assuming that o € O(n) is a common assumption in string algorithms:
the input alphabet is said to be an integer alphabet, see also the discussion in, e.g., [S5]]. For its use in
the particular case of algorithms related to subsequences see, for instance, [33}[34]].

In all the problems, we assume that we are given a word w of length n over an integer alphabet
¥ ={1,2,...,0}, with |X| = 0 < n. As the problems considered here are trivial for unary alphabets,
we also assume o > 2.

We start with some preliminaries and simple initial results. The decomposition of word w into its
arches can be done with a greedy approach. The following theorem is well known and a proof can be
seen for example in [32]]. It shows that the universality index and the decomposition into arches can
be obtained in linear time.

Theorem 4.1. Given a word w, of length n, we can compute the universality index ¢(w), the arch
factorisation ar,, (1) - - - ary, (¢(w)) r(w) of w, as well as the set 3\ alph(r(w)) of letters which do not
occur in r(w) in linear time O(n).

Proof:
One can compute greedily the decomposition of w into arches w = ar,,(1) - - - ary, (k) r(w) in linear
time as follows.

* ary (1) is the shortest prefix of w with alph(ar,, (1)) = X, or ar,,(1) = w if there is no such
prefix;

M. Kosche et al. | Absent Subsequences in Words 213

e if ar,(1)---ary,(i) = w[l : ¢], forsome i € [1 : k] and ¢ € [1 : n|, we compute ar,, (i + 1) as
the shortest prefix of w(t + 1 : n] with alph(ar,, (i + 1)) = X, or ar,, (i + 1) = w[t + 1 : n] if
there is no such prefix.

The concrete computation can be also seen in [Algorithm 1] Note that the complexity is linear
because the re-initialization of C' is amortized by the steps in which the elements of C' were incre-
mented.

Algorithm 1: computeArchFactorisation(w, %)

Input: Word w with |w| = n, alphabet ¥ = alph(w) with |X| = ¢

Output: Variables nq,...,ny containing the last position of the respective arch
1 define array C' of length o with elements initially set to 0;

/* Array C is used for marking letters as already encountered */
2 define counter h < o;

/* Counter h is used to check if all letters of the alphabet have been

encountered */

3 define arch counter k + 1;
4 fori=1tondo

5 if Cw[i]] == 0 then

6 h<+ h-—1;

7 Clwli]] + 1;

8 if h == 0 then

9 ng < 1;

10 k+—k+1;

11 h < o;

12 reset array C by initialising all elements with 0 again;

13 return ni to ng;

Further, we can simply define a binary array f indexed by Y, whose components are initially set
to 0. We then go through r(w), and set f[a] = 1 if and only if a appears in r(w). Clearly, the set of
letters which does not occur in r(w) (that is, ¥ \ alph(r(w))) is the set of letters a with f[a] = 0. A
list with these letters can be computed in O(c) time. We now only have to note that this processing
takes at most O(n) time. This concludes our proof. O

Remark 4.2. For a word w with length n, further helpful notations are next,, (a,), which denotes the
next occurrence of letter @ in the word w[i : n], and last,,(a, 7), which denotes the last occurrence of
letter a in the word w1 : ¢]. Both these values can be computed by simply traversing w from position
i to the right or left, respectively. The runtime of computing next,,(a,) is proportional to the length
of the shortest factor w[i : j] of w such that w[j] = a as we only traverse the positions from word w
once from ¢ towards the right until we meet the first letter a. The runtime of last,, (a, ¢) is proportional
to the length of the shortest factor w[j : 7| of w such that w[j] = a as we only traverse the positions
from word w once from ¢ towards the left until we meet the first letter a.

214 M. Kosche et al. | Absent Subsequences in Words

Proof:
See|Line 2|and [Algorithm 3|

Algorithm 2: next,,(a, i)

Input: Word w with |w| = n, letter a, position ¢
Result: Position of next occurence from letter a starting from position 7 in word w
1 ifi <1lor¢ > nthen
2 ‘ return oo;
3 forj=1tondo
4 if w[j] == a then
5 ‘ return j;
6 return oo;

Algorithm 3: last,,(a, i)
Input: Word w with |w| = n, letter a, position ¢
Result: Position of last occurence from letter a starting from position ¢ in word w
1 if 7 < 1ori > n then
2 ‘ return oo;
3forj=1itoldo
4 if w[j] == a then
5 ‘ return j;

6 return oo;

O

Based on these notations, we can define the function isSubseq(w, u) which checks if a word u is
a subsequence of a word w. This can be done by utilizing a greedy approach as discussed in[Section 3]
and depicted in While this approach is standard and relatively straightforward, it is
important to note it before proceeding with our algorithms. The idea is the following. We consider the
letters of u one by one, and try to identify the shortest prefix w(1 : ¢;] of w which contains u[1 : j] as
a subsequence. To compute the shortest prefix w(1 : 4;41] of w which contains u[1 : j+ 1], we simply
search for the first occurrence of u[j + 1] in w after position ;. The runtime of the algorithm isSubseq

Algorithm 4: isSubseq(w,u)

Input: Word w with |w| = n, word u with |u| = m to be tested
1 pos + 0;
2 fori=1tomdo
3 pos < nexty, (ufi], pos + 1);
4 return pos == oo ? false : true;

M. Kosche et al. | Absent Subsequences in Words 215

is clearly linear in the worst case. When w is a subsequence of w, then w1 : pos] is the shortest prefix
of w which contains u, and the runtime of the algorithm is O(pos).

A further helpful notation is llo(w) = min{last,(a,n) | a € X}, the position of the leftmost of
the last occurrences of the letters of X in w. The following lemma is not hard to show.

Lemma 4.3. Given a word w of length n, we can compute llo(w) in O(n) time.

Proof:

See This is clearly correct and runs in linear time.

Algorithm 5: llo(w, ¥)
Input: Word w with |w| = n, alphabet ¥ = alph(w) with |X| = ¢
Output: Leftmost position in word w of all last occurences of the letters in X
1 define array C' of length o with elements initially set to 0;
/* Array C is used for marking letters as already encountered */
2 define counter h <+ o;
3 fori=ntoldo
4 if Clwli]] == 0 then
5 Clwl[i]] « 1;
6 h<+< h—1;
7 if h == 0 then
8
9

‘ return ¢;
return oo;

O

Based on these notions, we can already present our first results, regarding the basic algorithmic
properties of SAS and MAS. Firstly, we can easily compute an SAS (and, therefore, an MAS) in a
given word.

Lemma 4.4. Given a word w of length n with «(w) = k, its arch decomposition (i.e., the last position
of each arch), and the set X \ alph(r(w)) (i.e., as a list of letters), we can retrieve in O(k) time an
SAS (and, therefore, an MAS) of w.

Proof:

By the word m(w) = ar,(1)[| ary(1)|] - - - ary (k)[| ary (k)|] contains the unique last
letters of each arch. By appending a letter not contained in r(w) to m(w), we achieve a word that is an
SAS satisfying the properties from [Theorem 3.4 |Algorithm 6[shows how to construct m(w) in O(k)
time. To extend m(w) to an SAS, we have to append to the existing word a letter that is not contained
in r(w), which can be done O(1) if that set is given as a list. o

The following theorem shows that we can efficiently test if a given word « is an SAS or MAS of
a given word w.

216 M. Kosche et al. | Absent Subsequences in Words

Algorithm 6: getSAS(w)

Input: Word with its arch factorization w = ar,,(1) - - - ar,, (k) r(w) with jw| = n
1 define empty word sas;
2 fori=1to kdo
3 add the last letter of arch ar,, (i) to the end of sas:
4 sas = sas - ary, (1)[| ary (7)|];
5
6

add a letter of the alphabet that does not occur in r(w) to the end of sas
return sas;

Theorem 4.5. Given a word w of length n and a word u of length m, we can test in O(n) time whether
u is an SAS or MAS of w.

Proof:
We recall that by definition a word w is an SAS of a word w if and only if |v| = ¢(w)+1 and v is absent.
It is therefore sufficient to check the length of an SAS candidate and whether it is a subsequence of w

or not. In{Algorithm 7|we can now see this implemented with a runtime in O(n).

Algorithm 7: isSSAS(w,u)
Input: Word with its arch factorization w = ar,(1) - - - ary, (k) r(w), word u (over the same
alphabet as w) to be tested
1 if |u| = £+ 1 and !isSubseq(w, u) then

2 ‘ return true;
3 else
4 ‘ return false;

To decide if u is an MAS, we can check whether u is indeed an absent subsequence and every
subsequence of u of length m — 1 is also a subsequence of w. In other words, u is turned into a sub-
sequence of w by removing any of its letters. It is important to note at this point that the subsequences
of length m — 1 of u have the form u[1 : iJu[i + 2 : m] for some i < m — 1.

Based on this observation, we first compute using[Algorithm §]the shortest prefixes of w containing
w[l @ 1),ul[l : 2],...,u[l : m] and the shortest suffixes of w containing u[m : ml],ufm — 1 :
m],...,u[l : m]. With the knowledge over these prefixes and suffixes, we can quickly decide for

a position ¢ of w, if u[l : 4 — 1Ju[i + 1 : m] is a subsequence or an absent subsequence of w. For
this, we check if the shortest prefix of w containing u[l : i — 1] is overlapping with the shortest
suffix containing u[i + 1 : m]. If they are overlapping, we obtained from u an absent subsequence
u[l : 4 — 1Jufi + 1 : m] by removing the letter u[i|, meaning that u is not an MAS.

If, for all positions ¢ € [1 : m], the shortest prefix containing u[1 : ¢ — 1] and the shortest suffix
containing u[i + 1 : m] are not overlapping, then w is clearly an MAS: all its subsequences of length
m — 1 are also subsequences of w, while u is absent. Checking whether this property holds takes
linear time. is an implementation in pseudocode of the strategy presented in the proof.

O

M. Kosche et al. | Absent Subsequences in Words 217

Algorithm 8: isSMAS(w,u)
Input: Word with its arch factorization w = ar,,(1) - - - ar, (k) r(w) with jw| = n, word u
(over the same alphabet as w) to be tested with |u| = m

1 if |u| < k + 1 then return false;
2 if isSubseq(w,u) then return false;

3 iSMAS <« true;
4 define array L of size m;
5 define array R of size m;

/* we want to fill the arrays L and R so that L[i] holds the end
position of the shortest prefix of w containing the subsequence
u[l:i], and R[] holds the start position of the shortest suffix of
w containing the subsequence wufi: m] */

6 L[1] < nexty,(u[1],1);

7 for i = 2 to m do

8 | L[i] < nexty(ufi], L[i — 1] 4 1);
9 R[m] < last,,(u[m],n);

10 for i =m — 1to 1do

1| R[]+ lasty (uli], R[i + 1] — 1);
12 if lisSubseq(u[l : m — 1]) or !isSubseq(u[2 : m]) then
13 ‘ return false;

14 fori =1tom — 2do

15 | if L[i]| >=R][i + 2] then

16 | return false;

17 return isMAS;

4.1. A compact representation of the SAS of a word

We now introduce a series of data structures which are fundamental for the efficient implementation
of the main algorithms presented in this paper.

For a word w of length n with arch factorization w = ar,(1)---ar, (k) r(w), we define two
k x o arrays firstInArch[-][-] and lastInArch[-][-] by the following relations. For ¢ € [1 : k| and
a € 3, firstInArch[/][a] is the leftmost position of ar,,(¢) where a occurs and lastInArch[¢][a] is the
rightmost position of ar,,(¢) where a occurs. These two arrays are very intuitive: they simply store
for each letter of the alphabet its first and last occurrence inside the arch. To avoid confusions, for all
¢ and a, the values stored in firstInArch[/][a] and lastInArch[¢][a] are positions of w (so, between 1
and |w|), they are not defined as positions of ar, ().

Example 4.6. For w = 12213.113312.21, with arches ar,,(1) = 12213 and ar,,(2) = 113312 and
rest r(w) = 21, we have the following.

218 M. Kosche et al. | Absent Subsequences in Words

firstInArch[-][1] firstInArch[-][2] firstInArch[-][3]
firstInArch(1][] 1 2 5
firstInArch[2][-] 6 11 8

lastInArch[-][1] lastInArch[-][2] lastInArch[-][3]
lastInArch([1][] 4 3 5
lastInArch[2][] 10 11 9

Lemma 4.7. For a word w of length n, we can compute firstInArch[-][] and lastInArch[-][-] in O(n)
time.

Proof:

As illustrated by we can traverse the word w from left to right, and similar to the com-
putation of the arch factorisation, we keep track of the first encounters of each letter in each arch.
The entries for the lastInArch[-] array will then be updated continuously until the end of an arch is
reached.

Algorithm 9: firstInArchy,(a,) and lastInArchy,(a, 7)

Input: Word with its arch factorization w = ar,,(1) - - - ar,, (k) r(w) with |w| = n, alphabet

S with || = ¢

Result: Arrays firstInArch und lastInArch for word w
1 define array firstInArch[l : k][1 : o];
2 define array lastInArch[1 : k][1 : o];
3 define array C of size o;
4 current position posW < 1;
5 fori =1to k do
6
7
8
9

reset all elements of C to O;
foreach letter a in ar,,(i) do
if Cla] == 0 then

Cla] + 1;
10 firstInArch[i][a] = posW;
11 lastInArch[i][a] = posW;
12 else
13 | lastInArchl[i][a] = posW;
14 posW <« posW + 1,

15 return firstInArch and lastInArch;

Note that|Algorithm 9|can be easily combined with|Algorithm I{to compute the arch factorisation

and the arrays firstInArch[-] and lastInArch[-] while traversing the word w once from right to left.
O

M. Kosche et al. | Absent Subsequences in Words 219

We continue with the array minArch[-] with n-elements, where, for ¢ € [1 : n], minArch[i] = j if
and only if j = min{g | alph(w[i : g])= X}. If {g | alph(w]i : g]) = £} = 0, then minArch[i] = cc.
Intuitively, minArch[i] is the end point of the shortest 1-universal factor (i.e., arch) of w starting at i.

Example 4.8. Consider the word w = 12213.113312.21 with the arches ar,,(1) = 12213 and
ar,(2) = 113312 and the rest r(w) = 21. We have minArch[j] = 5 for j € [1 : 3], minArch[j] = 11
for j € [4: 9], and minArch[j] = oo for j € [10 : 13].

The array minArch[-] can be computed efficiently.
Lemma 4.9. For a word w of length n, we can compute minArch[-] in O(n) time.

Proof:
The algorithm starts with a preprocessing phase in which we define an array count|-] of size |%| and
initialize its components with 0. We also initialize all elements of the the array minArch[-] with co.
In the main phase of our algorithm, we use a 2 pointers strategy. We start with both p; and p» on
the first position of w. Then, the algorithm consists in an outer loop which has two inner loops. The
outer loop is executed while ps < n. We describe in the following one iteration of the outer loop. We
start by executing the first inner loop where, in each iteration, we increment repeatedly ps by 1 (i.e.,
advance it one position to the right in the word w), until the factor w[p; : ps| contains all letters of
the alphabet (i.e., it is 1-universal). If p» becomes n + 1, we simply stop the execution of this loop.
Then, the second inner loop is executed only if po < n. In each iteration of this loop, while the factor
w[p1 : po] contains all the letters of the alphabet, we set minArch[p;] < p2, and we advance p; one
position towards the right. This second loop stops as soon as w[p; : p2] does not contain all the letters
of the alphabet anymore. Then, we continue to the next iteration of the outer loop with the current
values of p; and ps as computed in this iteration, but only if ps < n.

The pseudo-code of this algorithm is described in[Algorithm 10|

The correctness can be shown as follows.

Firstly, it is clear that at the beginning of the execution of an iteration of the outer loop w|p; :
p2 — 1] is not 1-universal. Thus, the same property holds for all of the prefixes and suffixes of w|p; :
p2 — 1]. Now, let a be the value of p; at this point (at the beginning of the execution of an iteration
of the outer loop). Then, in the first inner loop we identify the smallest value of b = ps such that
wla : b] = w[p1 : pe] is 1-universal, and it is correct to set minArch[a] + b. In the second inner
loop we increment p; to identify all the suffixes w[p; : b] of w which are 1-universal. None of these
strings has a proper prefix which is also 1-universal, as this would imply that minArchla] < b, a
contradiction. So, for all the values p; visited in this loop it is correct to set minArch[p;] <+ b.
Finally, once we have found the largest p; such that w[p; : b] is 1-universal, we increment p; and po
(i.e., p2 becomes b + 1) and restart from line 5. This is correct as: minArch[j] is correctly set for
J < p1 and w[py : p2 — 1] is not 1-universal, so the same reasoning as above applies.

Now assume that there exists a position ¢ with j = min{g | alph(wli : g]) = X} and we did not
set minArch[i] = j. This means that when p, was set to be j during the execution of our algorithm,
we had p; > 4. In order for this to hold, our algorithm should have already set minArch[i] = j' < j.
As shown above, this means that w[i : j'] is 1-universal, a contradiction with the definition of j.

220 M. Kosche et al. | Absent Subsequences in Words

Algorithm 10: minArch(w)
Input: Word w with |w| = n, alphabet ¥ with |X| = ¢
Output: Array minArch for word w

1 define array count of length ¢ with elements initially set to 0;
2 define array minArch of length n with elements initially set to co;
3alph< 0,p1 < 1,p2 + 1;

4 while p» < n do

5 while alph # o and ps # n + 1 do

6 count[w|[ps]] < count[w[ps]] + 1;
7 if count[w[ps]] == 1 then

8 alph < alph +1;

9 if alph < o then

w| || memet

11 if po ==n + 1 then
12 ‘ return minArch;

13 while alph == o do

14 minArch[pi] < po;

15 count[w[p;]] < count[w[p;]] — 1;
16 if count[w[p1]] == 0 then

17 ‘ alph « alph —1;

18 p1pi+ 1L

19 p2 < p2+ 15

20 return minArch;

Further, we note that if the algorithm returns minArch in line 12, then it can only do so because po
was incremented in line 10 (so alph < ¢). This means, that no new arch was found starting on p; and
ending on a position < n. Therefore, minArch is correctly filled in. There is another possibility for
the algorithm to end: we set po = n + 1 in line 19, and the outer while-loop is not executed anymore.
As explained above, we have that minArch[j] is correctly set for j < p;, and there is no 1-universal
word contained in w[p; : n] (so minArch[j] is also correctly set for j > p1).

Now, let us discuss the complexity of the algorithm. The algorithm includes a preprocessing phase,
which takes O(n) time.

Each of the pointers p; and po visits each position of w exactly once, and in each step of the
algorithm we increment one of these pointers. This incrementation is based on the result returned by
a check whether w[p; : p2] contains all the letters of the alphabet or not. This check can be done in
constant time by maintaining an array which counts how many copies of each letter of the alphabet
exist in the factor w(p; : p2| and, based on it, a counter keeping track of | alph(w[p; : p2)]|.

So, overall, the complexity of this algorithm is linear. a

M. Kosche et al. | Absent Subsequences in Words 221

A very important consequence of is that we can define a tree-structure of the arches
(i.e., the 1-universal factors occurring in a word). Recall that we have defined llo(w) = min{last,,(a,
n) | a € ¥}. That is, llo(w) is the position of the leftmost of the last occurrences of the letters of ¥ in
w, and can be computed in linear time by It is immediate to see that the letter w[llo(w)]
does not occur in r(w).

Definition 4.10. Let w be a word of length n over X.. The arch-tree of w, denoted by A, is a rooted
labelled tree defined as follows:

* The set of nodes of the tree is {¢ | 0 < i < n + 1}, where the node n + 1 is the root of the tree
Ay The root node n + 1 is labelled with the letter w(llo(w)], the node i is labelled with the
letter w]i], for all ¢ € [1 : n], and the node 0 is labelled with 1.

* Fori € [1:n — 1], we have two cases:

— if minArch[i 4+ 1] = j then node i is a child of node j.
— if minArch[i 4+ 1] = oo then node i is a child of the root n + 1.

¢ Node n is a child of node n + 1.

Example 4.11. For the word w = 12213.113312.21, the root 14 of A has the children 9, 10, 11, 12, 13
and is labelled with 3, the node 11 has the children 3, 4, 5, 6, 7, 8, and the node 5 has the children 0, 1, 2.
So, the root 14 and the nodes 11 and 5 are internal nodes, while all other nodes are leaves.

Theorem 4.12. For a word w of length n, we can construct .4,, in O(n) time.

Proof:

This is a straightforward consequence of O

Constructed in a straightforward way based on[Lemma 4.9] the arch-tree .A,, encodes all the arches
occurring in w. Now, we can identify an SAS in w[i : n] by simply listing (in the order from i — 1
upwards to n + 1) the labels of the nodes met on the path from ¢ — 1 to n + 1, without that of node
1 — 1.

For a word w and each ¢ € [0 : n — 1], we define depth(7) as the number of edges on the shortest
path from i to the root of A,,. In this case, for i € [0 : n], we have that w[i + 1 : n] has universality
index depth(i) — 1.

Example 4.13. For the word w = 12213.113312.21 (same as in[Example 4.11), an SAS in w5 : 13]
contains the letters w[11] = 2 and the label 3 of 14, so 23 (corresponding to the path 4 — 11 — 14).
An SAS in w[2 : 13] contains, in order, the letters w[5] = 3, w[11] = 2 and the label 3 of 14, so 323
(corresponding to the path 1 — 5 — 11 — 14). We also have depth(4) = 2, so ¢«(w[5 : 13]) = 1,
while depth(1) = 3 and ¢(w[2 : 13]) = 2.

Enhancing the construction of A,, from [Theorem 4.12] with level ancestor data structures [56]]
for this tree, we can now efficiently process internal SAS queries for a given word w, i.e., we can
efficiently retrieve a compact representation of an SAS for each factor of w.

222 M. Kosche et al. | Absent Subsequences in Words

Theorem 4.14. For a word w of length n we can construct in O(n) time data structures allowing us

3

to answer in O(1) time queries sasRange(i, j): “return a representation of an SAS of wli : j|”.

Proof:
We start with the preprocessing phase, in which we construct the data structures allowing us to answer
the queries efficiently.

We first construct the tree A,, for the word w. For each node ¢ of A,,, we compute depth(z). This
can be done in linear time in a standard way.

Then we construct a solution for the Level Ancestor Problem for the rooted tree A,,. This is
defined as follows (see [56]). For a rooted tree 7', LAp(u,d) = v where v is an ancestor of u
and depth(v) = d, if such a node exists, or 1 otherwise. The Level Ancestor Problem can now be
formulated.

* Preprocessing: A rooted tree T with N vertices. (T'= A, inour case and N =n + 1)

* Querying: For a node u in the rooted tree T, query level Ancestory(u, d) returns LAp(u, d), if
it exists, and false otherwise.

A simple and elegant solution for this problem which has O(N') preprocessing time and O(1) time for
query-answering can be found in, e.g., [S6] (see also [S7] for a more involved discussion). So, for the
tree A,, we can compute in O(n) time data structures allowing us to answer level Ancestor 4,, queries
in O(1) time.

This is the entire preprocessing we need in order to be able to answer sasRange-queries in constant
time.

We will now explain how an sasRange-query is answered.

Let us assume we have to answer sasRange(i, j), i.e., to return a representation of an SAS of
wli : j]. The compact representation of an SAS of wi : j] will consist in two nodes of the tree A,,
and in the following we explain both how to compute these two nodes, and what is their semantics
(i.e., how an SAS can be retrieved from them).

Assume that depth(i — 1) = x and depth(j) = y. We retrieve the ancestor ¢ of the node i — 1
which is at distance = — y from this node. So ¢ is the ancestor of depth y of node ¢ — 1, and can be
retrieved as level Ancestor 4, (i — 1,y). We check whether ¢ > j (i.e., w[i : j] is a prefix of wli : t]).
If t > 7, then we set ¢’ to be the successor of ¢ on the path to 7 — 1. If t < j, we set t’ = .

The answer to sasRange(i, 7) is the pair of nodes (i — 1, ¢'). This answer can be clearly computed
in constant time after the preprocessing we have performed.

We claim that this pair of nodes is a compact representation of an SAS of w[i : j], and such an
SAS can be obtained as follows: we go in the tree A,, from the node ¢ — 1 on the path towards node ¢’
and output, in order, the labels of the nodes we meet (except the label of node ¢ — 1). Then we output
the label of the parent node of ¢'. This is an SAS of w[i : j].

Let us now explain why the above claim holds.
We recall the following basic fact: if u and v are words, then ¢(u)+¢(v) < t(uv) < o(u)+e(v)+1.
That is, t(u) € {¢(uv) — ¢(v), t(uv) — e(v) — 1}.

M. Kosche et al. | Absent Subsequences in Words 223

Now, from the fact that depth(i — 1) = = and depth(j) = y we get that «(w[i : n]) = x — 1 and
t(w[j 4+ 1 :n]) =y — 1. Therefore, from the fact recalled above (with w = w[i : j]and v = w[j + 1 :
n]), wehavethat (x —1)— (y—1)—1=z—y—1<i(wli:j]) < (x—1)—(y—1) = x —y. Thus,
we compute w[i : t], the shortest factor of w starting on position ¢ which is z — y universal; clearly,
t = level Ancestor 4, (i—1, y). Now, there are two possibilities. In the first case, ¢(wl[i : j]) = x—y—1
and j < t. Then, for ¢ the successor of ¢ on the path to i — 1, we have that w[i : t'] is the shortest
(x —y — 1)-universal prefix of wl[i : j] and w]t] is a letter which does not appear in w[t’ +1 : j]. In the
second case, ¢(w[i : j]) = x —y and j > t. Note that we also have that ¢(w]i : t]) = x —y, so j cannot
be the parent of ¢ (otherwise, we would have ¢(w[i : j]) = z — y + 1). Then, in this case, we can take
t' = t and we have that w(i : ¢'] = w[i : t] is the shortest (x — y)-universal prefix of w[i : j] and, if
we take t” to be the parent of ¢’ (that is, the parent of t), then w[t"] is a letter which does not appear
inw[t 4+ 1 : j] (which is a strict prefix of the shortest 1-universal factor w([t + 1 : t"] of w starting on
position ¢ + 1). Note again that, in this case, since ¢(w[i : j]) = x —yand t(w[i : "]) =2z —y + 1,
we have that j < t”.

In both cases, the label of the nodes found on the path from node ¢ — 1 towards node ', without
the label of i — 1, form the subsequence m(wli : 5]), from Definition 2.3] To this subsequence we add
either wlt] (if ¢ # t') or w[t"] (otherwise), and obtain an absent subsequence of length ¢(wl[i : j]) + 1
of wi : j]. This concludes our proof. O

In order to obtain compact representations of all the SAS and MAS of a word w, we need to define
a series of additional arrays.

For a word w of length n, we define the array dist[-] with n-elements, where, for i € [1 : n],
dist[¢] = min{|u| | w is an absent subsequence of minimal length of w[i : n], starting with w[i]}.
The intuition behind the array dist[-], and the way we will use it, is the following. Assume that
w has k arches ar,,(1),...,ar,(k), and ¢ € ar,(¢). Then there exists an SAS of w, denoted by
wli1] ... wligs1], which contains position ¢ only if dist[i] = k+ 1 — (¢ — 1) = k — £ + 2. Indeed, an
SAS contains one position of every arch, so if i is in that SAS, then it should be its £*" position, and
there should be a word w starting on position ¢, with |u| = k — £ + 2, such that u is not a subsequence
of w[i : n]. Nevertheless, for all positions j of ar,,(¢) it holds that dist[j] > k — ¢ + 2.

Example 4.15. For the word w = 12213.113312.21, we have dist[{] = 2 for i € [9 : 13] (as
exemplified by the word wli]3), dist[i] = 3 for i € [3 : 8] (as exemplified by the word w[i]23), and
dist[¢] = 4 fori € [1 : 2] (as exemplified by the word w|i]323). Note that the single shortest absent
sequence in this word is 323.

Lemma 4.16. For a word w of length n, we can construct dist[-] in O(n) time.

Proof:

It is clear that dist[n] = 2. So, from now on, we show how to compute dist[i] for i < n. It is
not hard to see that an absent subsequence of minimal length of wli : n], starting with w[i], can be
obtained by concatenating w[i] to an SAS of w[i + 1 : n]. The latter can be computed, e.g., using
sasRange[i + 1 : n], and its length is depth(). We can thus conclude that, dist[i] = depth(i) + 1.
So, as A, can be computed in linear time, and the depth of the nodes of this tree can also be computed
in linear time, the conclusion follows. O

224 M. Kosche et al. | Absent Subsequences in Words

Next, we introduce two additional arrays sortedLast|[-|[-] and Leq][-][-] which are crucial in our
representation of the shortest absent subsequences of a word. Let w be a word of length n, with
arch factorization w = ar,(1)---ar,(k)r(w). For each ¢ € [1 : k — 1], we define Ly to be
the set {lastInArch[f][a] | @ € ¥} of the rightmost positions of any letter a € ¥ in the ¢** arch
of w. Next we filter out all those positions from L, which cannot be the first letter of an SAS of
ary(l 4+ 1) - - -ary, (k) r(w) and store the remaining positions in the set L}, = Ly \ {lastInArch[¢][a] |
dist(firstInArch[¢ + 1][a]) > k — £ + 1}. Finally, we define the array sortedLast[¢][-], with | L;| ele-
ments, which contains the elements of L/, sorted in ascending order. For ¢ = k, we proceed in the same
way, except that in the second step we filter out all positions which correspond to letters occurring in
r(w). We define Ly to be the set {lastInArch[k][a] | @« € X} and L), = L, \ {lastInArch[k][a] |
a € alph(r(w))}. Then, once more, we define the array sortedLast[k|[-], with | L},| elements, which
contains the elements of L sorted in ascending order.

Moreover, we define for each ¢ an array with | ar,(¢)| elements Leq[¢][:] where Leq[¢][i] =
max({t | sortedLast[l][t] < i} U {—o00}). For simplicity, we assume that Leq[¢|[-] is indexed by
the positions of ar,,(¢) (i.e., if ar,,(¢) = w[z : y] then Leq[¢][-] is indexed by the numbers from z
to ¥).

The intuition behind these arrays is the following. Assume that i is a position in ar,,(¢). Then,
by the greedy strategy described in the proofs of and[3.4] i can be contained in an SAS
only if i = firstInArch[¢][w[i]]. Moreover, we need to have that dist[i] = k — ¢ + 2, as explained
when the intuition behind the array dist[-] was described. That is, lastInArch[l — 1][w[i]] needs to be
in Lj,_,. Finally, an SAS going through i can only continue with a letter a of the arch ¢ + 1 such that
dist[firstInArch[¢ + 1][a]] = k — ¢ + 1, which, moreover, occurs last time in the arch £ on a position
< i (otherwise, the SAS would have two letters in arch ¢, a contradiction). So, a is exactly one of the
letters on the positions given by the elements of sortedLast[¢][1 : Leq[¢][i]].

Example 4.17. For w = 12213.113312.21 we have ar,,(1) = 12213, ar,,(2) = 113312, and L; =
{3,4,5}. From this set, we eliminate positions lastInArch[1][1] = 4 and lastInArch[1][3] = 5, since
dist[firstInArch[2][1]] = dist[6] = 3 > 2 — 1 + 1 and dist]firstInArch[2][3]] = dist[8] = 3 >
2 -1+ 1. So L] = {3}. Thus, sortedLast[1][-] has only one element, namely 3. Accordingly,
Leq[1][i] = —oo fori € [1 : 2] and Leq[1][3] = 1 (corresponding to the element sortedLast[1][1] = 3
of the array sortedLast[1][-]); moreover, Leq[1][4] = Leq[1][5] = 1. We have Ly = {9,10,11}. From
this set, we once more eliminate two positions lastInArch[2][1] = 10 and lastInArch[2][2] = 11,
because 1,2 € alph(r(w)). So L), = {9}. Thus, sortedLast[2][-] has only one element, namely
9. Accordingly, Leq[2][i] = —oo for i € [6 : 8] and Leq[2][9] = Leq[2][10] = Leq[2][11] = 1
(corresponding to the element sortedLast[2][1] = 9 of the array sortedLast[2][-]).

Based on the arrays sortedLast[¢][-], for ¢ < k, we define the corresponding arrays lexSmall[¢][']
with, respectively, |Lj| elements, where lexSmall[¢][¢] = ¢ if and only if w[t] = min{w([j] | j €
sortedLast[/][1 : i]}. In other words, w[lexSmall[¢][i]] is the lexicographically smallest letter occur-
ring on the positions of w corresponding to the first i elements of sortedLast[¢][-]. Finally, we collect
in a list startSAS the elements firstInArch[1][a], for a € ¥, such that dist[firstInArch[1][a]] = k+1.
We assume startSAS is ordered such that firstInArch[1][a] comes before firstInArch[1][8] in this list

M. Kosche et al. | Absent Subsequences in Words 225

if a is lexicographically smaller than b. Moreover, let init be the element of startSAS such that
w[init] is lexicographically smaller than w]j], for all j € startSAS \{init}; thatis init is the first
element in startSAS.

Lemma 4.18. For a word w of length n, we can construct sortedLast[-][-], Leq[-][-], lexSmall[-][-],
and the list startSAS in O(n) time.

Proof:
By [Theorem 4.1 we produce the arch factorisation of w in linear time: w = ar,,(1) - - - ar, (k)r(w).
By |[Lemmas 4.7/ and 4.16, we compute in linear time the arrays lastInArch[-][-] and firstInArch[-][]

as well as the array dist[-] and the set of letters alph(r(w)) (represented in a way which allows to test
membership to this set in O(1) time, such as, for instance, the array f from the proof of .

Then, we can obtain also in linear time the lists Ly, and L/, for all 4, in a direct way: we simply
iterate through all the arches, and for each arch ar,, (¢) we iterate through the letters a of X, and collect
in Lj those positions lastInArch[¢][a] which fulfil the requirements in the definition of this set (which
can be clearly tested now in O(1) time).

Note that, when computed in this way, Lj is not sorted. We can, however, sort in linear time
O(n) the set Up <L) in increasing order by counting sort (as all values in these sets are between
1 and n), and obtain an array S of positions of w. We then produce the arrays sortedLast[¢][-] in
order, for ¢ from 1 to k, by selecting from S the subarray containing positions which are contained
in the arch ar,,(¢). This is done as follows: we traverse S left to right with a pointer p. After we
have produced all the arrays sortedLast[i][-] for i < ¢, p points to the leftmost element ¢ of S such
that ¢ > |ary,(1)---ar,(¢ — 1)|. We then copy in sortedLast[i][-] all the elements ¢’ of S which
occur to the right of p and fulfil ¢ < |ar, (1) ---ar,(¢)|. We then move p to the element of .S found
immediately to the right of the last copied element. Clearly, this process takes linear time.

Computing each array Leq[/][-] is done in a relatively similar way. Intuitively, it is also similar
to the merging of the sequence of positions of ar,,(¢) (considered in increasing order) to the array
sortedLast[¢][-]. We traverse the arch ar,,(¢) left to right, keeping track of the largest element of the
sorted array sortedLast[¢][-] which we have met so far in this traversal. When we are at position 4
in the arch and sortedLast[¢][;] is the largest element of the sorted array sortedLast[¢][-] which we
have met when considering the positions up to ¢ — 1, we check if ¢ = sortedLast[¢][j + 1]. If yes,
we set Leq[/][i] = j + 1 and sortedLast[(][j 4 1] becomes the largest element of sortedLast[¢][-]
seen so far; otherwise we set Leq[¢][i] = j. Clearly, the computation of a single array Leq|[¢][-] can be
implemented in O(| ar,,(¢)|) time, so computing all these arrays takes linear time.

Finally, lexSmall[][-] can be computed in O(|L}|) time, for each £ < k, by a simple left to right
traversal of the array sortedLast[¢][-]. So, the overall time needed to compute these arrays is linear.
The same holds for the computation of startSAS. Clearly, this list can be constructed in O(o) time
by simply inserting in it the elements firstInArch[1][a], for a € ¥, such that dist[firstInArch[1][a]] =
k + 1, while going through the letters @ € ¥ in lexicographical order.

This concludes the proof of our statement. a

We now formalize the intuition that firstInArch|[1][-], sortedLast[-][-], and Leq[-][-] are a compact
representation of all the SAS of a given word w.

226 M. Kosche et al. | Absent Subsequences in Words

Theorem 4.19. Given a word w of length n with k arches ar,,(1),...,ar,(k), as well as the arrays
firstInArch[-][-], sortedLast[-][-], Leq[-][-], lexSmall[-][:], the set startSAS, and the position init of
w, which can all be computed in linear time, we can perform the following tasks:

1. We can check in O(k) time if a word u of length k + 1 is an SAS of w.
2. We can compute in O(k) time the lexicographically smallest SAS of w.

3. We can efficiently enumerate (i.e., with polynomial delay) all the SAS of w.

Proof:
Following [Definition 2.3| let w = ar,,(1) - - - ary, (k)r(w).

We observe that the arrays firstInArch|-][-], sortedLast[-][-], Leq[-][-], and the set startSAS induce
a tree structure 7, for w, called the SAS-tree of w, and defined inductively as follows:

* The root of T, is e, while all the nodes of 7T, of depth 1 to k are positions of w. The nodes of
depth k£ + 1 of 7, are letters of > and the children of each node are totally ordered.

* The children of e are the positions of the list startSAS. These are the only nodes of depth
1. Moreover, the children of e are ordered in the same order as the corresponding positions of
startSAS.

 For/ € [1 : k—1], we define the nodes of depth /+1 as follows. The children of a node ¢ of depth
¢ are the nodes firstInArch[¢ + 1][w[j]] where j € sortedLast[¢][1 : Leq[¢][]]. The children of
node ¢ are ordered such that the node corresponding to firstInArch[¢ + 1][w[j]] comes before
firstInArch[¢ + 1][w[j]] if and only if j comes before j” in sortedLast[¢][1 : Leq[¢][7]].

e For ¢ = k, we define the nodes of depth k + 1 (the leaves) as follows. The children of a node
i from level k are the letters of {w[j] | j € sortedLast[¢][1 : Leq[¢][]] }. The children of i are
ordered such that the node corresponding to letter w[j] comes before the node corresponding to
node wj'] if and only if j comes before ;' in sortedLast[¢][1 : Leq[][i].

¢ T, contains no other nodes than the ones defined above.

We claim that the paths in the tree from e to the leaves correspond exactly to the set of SAS of w.

Let us show first that each SAS wu corresponds to a path in the tree 7,, from e to a leaf. From
the definition of SAS(w), we have that |u| = k + 1. Firstly, it is clear from the definition of dist][:]
and startSAS, that each SAS starts with a position in startSAS. Then, for i € [2 : k|, assume
that the letter u[i — 1] occurs on position j € ar, (i — 1) of w, and j is a node of the tree. Then,
lastInArch[i—1][u[i]] < j (or next,, (u[i],) would also be in ar,, (i—1)), so lastInArch[i—1][u[i]] €
sortedLast[i — 1][1 : Leq[¢ — 1][j]]. Thus firstInArch[é][u[i]] is a child of j. Applying this inductive
argument, we get that u[l : k] is a path in 7, from e to a node of depth k. Assume now that the
letter u[k] occurs on position j € ar,, (k) of w, so, as we have seen, j is a node of the tree. Then,
lastInArch[k][u[k + 1]] < j and u[k + 1] € X \ alph(r(w)). Thus, u[k + 1] € {w[t] | t €
sortedLast[k][1 : Leq[k][7]]}. This means that u[k + 1] is a child of j.

M. Kosche et al. | Absent Subsequences in Words 227

To show that each path of the tree from e to the leaves encodes an SAS of w is based on the
following inductive argument. Firstly, as an induction base, we consider paths containing only two
nodes, namely e, 41; if i; € startSAS, then u[1] = wli1] is a word of length 1, whose first occurrence
in w is on position p = i; of w such that dist[p] = k£ + 1. Now, we define the induction hypothesis.
Consider ¢ > 1 and let us assume that if we have a path e, i, i2,...,49; in Ty, then iy € ary(¢),
dist[ig] = k — €+ 2, and u[l : €] = wli1] - - wlig] is a subsequence of w such that the shortest factor
of w which contains u[1 : ¢] is w[1 : i7]. Now, in the induction step, we need to show that the same
property holds for a path starting with the root e and containing ¢ + 1 other nodes. So, basically,
we consider a path e, 41,149, ... 49,741 in Ty,. At this point we note that, in order to extend a path
®. 71,%2,...,1¢ with a node 041, we need to pick 7,41 to be a child of iy, and the path e 41, ...,
fulfils the induction hypothesis. Therefore, iy € ar,(¢), dist[i/] = k — ¢+ 2, and u[l : ¢] =
wliy] - - - wlig] is a subsequence of w such that the shortest factor of w which contains u[l : ¢] is
w[l : ig]. Moreover, as said, isy1 is a child of the node i,, which means that there exists some
j such that iy = firstInArch[¢ + 1][w[j]] where j € sortedLast[¢][1 : Leq[¢][i¢]]. Therefore,
we get that ip.1 € ar,(¢ + 1) and dist[igy1] = k& — £ + 1, Moreover, we also obtain that u[l :
{4 1] = wli] - - - wliglw[igs1] is a subsequence of w such that the shortest factor of w which contains
u[l : £+ 1] is w[l : 4p41] (as ig4q is the first position after i, where w[izy1] occurs. This proves the
induction step.

In conclusion, we can apply this inductive argument for ¢ = k, so if we have a path e, 41,49, ..., %
in Ty, then ij, € ary,(k), dist[ix] = 2, and u[l : k] = wli1] - - - w[ig] is a subsequence of w such that
the shortest factor of w which contains u[1 : k] is w[1 : i;]. Now, this path can only be extended by a
child of 5. The children of i, are the letters a of {w][j] | j € sortedLast[k][1 : Leq[k][ix]]}. It is thus
clear that u[1 : k]a is an absent factor of w of length & + 1, thus an SAS.

Based on this observation, we can prove the statement of the theorem. Note that we do not need to
construct this (potentially very large) tree: it is compactly represented by the data structures enumer-
ated in the statement.

For (1) we simply have to check whether u is encoded by a path in 7,,. As we do not actually
construct this tree, we use the following approach. First we compare m = |u|to k+ 1. If m # k + 1,
then u is not an SAS of w. If m = k + 1, we continue as follows. For ¢ from 1 to m — 1, we
check if dist[firstInArch[é|[u]i]]] = k — i + 2 and firstInArch[é][u[i]] > lastInArch[i][u[i 4+ 1]] (i.e.,
if u[l : k] is a path in the tree). Then, if all these checks returned true, we check if ulk + 1] is in
{w[j] | j € sortedLast[k][1 : Leq[k][t]]}, where ¢ = firstInArch[k][u[k]]. If this final check returns
true, then u is an SAS of w. Otherwise, u is not an SAS.

The correctness follows from the properties of 7T,,.

For (2), we compute an SAS w of length k + 1. We define u[1] = w[init]. For i from 2 to k + 1,
we define the 7" letter of u as follows:

uli] = w[lexSmall[s — 1][|L;_4|] |, where |L}_,| is the size of lexSmall[i — 1][-].

Clearly, this algorithm is derived from the argument showing how the paths of 7, correspond
to the SAS of w. When constructing an SAS we can nondeterministically choose a path in 7,,. To

228 M. Kosche et al. | Absent Subsequences in Words

construct the lexicographically smallest SAS, we make the choices in the construction of the SAS
in a deterministic way. Our algorithm clearly produces an SAS of w. Moreover, at each step, when
we have multiple choices to extend the word u by a letter, we greedily choose this letter to be the
lexicographically smallest from the possible choices, which clearly leads to the construction of the
lexicographically smallest SAS of w.

For (3), we actually need to traverse the tree 7, and output the absent subsequences encoded by
the paths that lead from e to a leaf, with polynomial delay. If 7, would be explicitly constructed,
this would be done using a standard depth-first traversal of the tree 7,,, implemented in a recursive
manner: each time a leaf is reached, we need to output the word whose letters correspond to the nodes
stored in the recursive-calls stack, ending with the letter corresponding to the leaf. In our case, 7Ty,
is not stored explicitly. However, this is not a problem. We still do a recursive depth-first search in
the tree 7T, starting in its root . Each time we call the depth-first search for a node, we first produce
the ordered list of its children (this can be clearly done in polynomial time, using the definition of the
tree), and then we recursively call the depth-first search for each node in this list. When the list is fully
processed, we end the respective call. When we call the depth-first search procedure for a leaf (in
the following, we will call this a leaf-call, for simplicity), we output the word of length k£ + 1 which
corresponds to the contents of the recursive-calls stack, or, in other words, to the path leading from
the root to that leaf (and this encodes, indeed, to a SAS).

To compute this algorithm’s time complexity, we need to make some observations. Firstly, we
note that in each recursive call of the depth-first search, we do at most o steps, in order to produce
the ordered list of children of that node. Then, we do a recursive call for each of them. That is, we
use O(co) time to produce the children list, and then do O(c) new calls. Secondly, let us analyse
what happens between two consecutive leaf-calls of the search. In the first leaf-call, we first output
the word corresponding to the content of the stack (this takes O(k) time) and then return. Once this
leaf-call is ended, a series of other previous calls from the recursive-call stack might also end (the ones
corresponding to final nodes in list of childrens); clearly, there are at most k& such recursive calls that
could end. Then, a call is reached, which was made for a node whose list of children was not yet fully
processed. A new call is now initiated, for the first unexplored node of that list, and this leads to a new
sequence of at most k recursive-calls ending with a leaf-call. So, to do the processing between two
consecutive leaf-calls, we need at most O(ko) time. So: our algorithm simulates a depth-first search
of the tree 7T,, and outputs all its paths with constant delay. By our argument that there is a one-to-one
correspondence between the paths of 7, and the words from SAS(w), the correctness of the algorithm
is clear. Moreover, as the time between two words are output is upper bounded by O(ko), our claim
follows. ad

The main point of the previous theorem is to define a compact representation of the words of the
set SAS(w). The fact that this set can be, in fact, represented as a tree of depth O(k) and branching
factor O(o) allows us to immediately show that a series of algorithmic tasks can be performed effi-
ciently. However, we do not claim that the solution proposed above for the enumeration of the words
in SAS(w) is optimal. It remains an open problem to define faster enumeration algorithms for the
elements of this set.

M. Kosche et al. | Absent Subsequences in Words 229

4.2. A compact representation of the MAS of a word

Similar to the previous section we construct a data structure to store, for given w € 3.*, all the elements
of MAS(w). Since |4.1|does not hold for MAS this data structure is larger than the one for SAS. We
start by defining an array sameNext[-] of size n holds, for each given position 4, the first position of
wli] in the word w[i + 1 : n]. We formally define this by sameNext[i] = next(w[i], i + 1) = min{j |
wlj] = wli],j > i}, while we assume sameNext[i] = oo if w(i] ¢ alph(w[i + 1 : n]).

The array samePrev|-] of size n holds, for a given position i, the last position of w/[i] in the word

w[l : ¢ — 1]. We formally define this with samePrev[i| = last(w[i],i — 1) = max{j | w[j] =
wli],j < i}, while we assume samePrev[i] = —oo if w[i| ¢ alph(w[l : ¢ — 1]). Using [Line 2]

(Algorithm 3) to compute sameNext[-] (samePrev][-]) is not efficient. Nevertheless we can compute
both arrays in linear time.

Lemma 4.20. Given a word w with length |{w| = n, we can compute in O(n) time the arrays
sameNext[-] and samePrev][-].

Proof:

The word w needs to be traversed only once from left to right and once from right to left while
maintaining an array of size || with the last seen occurrence of each character. Since |X| < n, the
results follow immediately. a

The following theorem is based on well-known search algorithms on (directed acyclic) graphs, see
e.g. [S8].

Theorem 4.21. For a word w, we can construct in O(n?c) time data structures allowing us to effi-
ciently perform the following tasks:

1. We can check in O(m) time if a word u of length m is an MAS of w.
2. We can compute in polynomial time the longest MAS of w.
3. We can check in polynomial time for a given length ¢ if there exists an MAS of length ¢ of w.
4. We can efficiently enumerate (with polynomial delay) all the MAS of w.
Proof:
For a word w, the compact representation of MAS(w) is based on We define a directed

acyclic graph D,, with the nodes {(i,7) | 0 < j < ¢ < n}U{(0,0), f}. The edges (represented as
arrows A — B between nodes A and B) are defined as follows:

* We have an edge (0,0) — (¢,0), if there exists a € ¥ such that i = firstInArch[1][a]. This
edge is labelled with a.

e Forl < j <i < k < n we have an edge (i,7) — (k, i), if there exists a € ¥ such that
k = nexty(a,i+ 1) and a € alph(w[j + 1 : ¢]). This edge is labelled with a.

» We have an edge (i,j) — f, if there exists b € alph(w[j + 1 : i]) and b ¢ alph(w[i + 1 : n]).
This edge is labelled with b.

230 M. Kosche et al. | Absent Subsequences in Words

We claim that the words in MAS(w) correspond exactly to the paths in the graph D,, from (0, 0)
to f.

Let v be an MAS of w, with |v| = m. By|Theorem 3.1} there exist positions 0 = ip < i1 < ... <
im < tm+1 = 1+ 1 such that all of the following conditions are satisfied:

(i) v=wli1] - wliy]v[m + 1]

(i) o[1] ¢ alph(w[l : iy — 1))
(iii) v[k] ¢ alph(wligx—1 +1: 4 —1]) forall k € [2: m + 1]
(iv) v[k] € alph(w[igx—o + 1 :ix_1]) forall k € [2:m + 1]

It immediately follows that i; = firstInArch[1][v[1]]. So, there is an edge (0,0) — (i1,0). Then,
clearly, for all m > ¢ > 2, iy = next,(v[¢],i¢—1 + 1). Moreover, v[¢] € alph(w[ig—2 + 1 : ir_1]).
Thus, there is an edge (i¢_1,%¢—2) — (ig,i¢—1). Similarly, there is an edge from (i, ¢, —1) to f.

For the reverse implication, we consider a path in the graph D,, from (0,0) to f, namely (0, 0),
(71,0), (i2,71), -+, (4m,im—1), f- We claim that the word v = w[i1] - - - Wiy,)b is an MAS of w, for
some b such that b ¢ alphw(i,, +1 : n]and b € alph(w[im—1 +1 : i]). It is immediate that v fulfils
the four conditions in the statement of [Theorem 3.11

Before solving tasks (1 — 4), we note that D,, can be constructed in O(n?c) time, in a straight-
forward manner. We store this graph by having for each of its nodes a list of incoming edges (note, at
this point, that all these edges have the same label). Using trivially, we can produce in O(n?0)
an oracle data structure which contains the answers to any query next,,(a,), foralla € ¥ and i <n
(note that a more efficient computation of such a data structure is described in[Corollary 4.22)). Firstly,
we define an edge (0,0) — (4, 0) for all ¢ such that ¢ = firstInArch[1][a] for some a € 3. Then,
forall i < nand a € X, we retrieve k& = next,,(a,i + 1) and, then, for all j < i, we check if
a € alph(w[j + 1 : i]) (by simply using our next,,-data structure to see if next,,(a,j + 1) < 4); if
a € alph(w[j + 1 : 7]), we have an edge from (4, j) to (k,) labelled with a. Finally, for all j < i and
b € ¥, we have an edge (i, j) — f labelled with b, if b € alph(w[j + 1 : 7]) (i.e., next, (b, j +1) <)
and b ¢ alph(w[i + 1 : n]) (i.e., nexty, (b, + 1) < n does not hold).

Once D,, constructed, the correspondence between the words of MAS(w) and the paths from
(0,0) to f in this graph gives us a way to solve all the problems mentioned in the statement of the
theorem efficiently. For (2), we simply need to identify the longest such path in D,,, which can be
solved in polynomial time in the size of the graph, by a folklore algorithm (see, e.g., [58]). Then,
for (3) we need to check if there exists such a path of length ¢; this can also be done trivially in
polynomial time in the size of D,,, by maintaining, for h = 1 to /, the set of nodes at distance h from
(0.0). Finally, for (4), we need to enumerate efficiently all paths in the graph D,, from (0,0) to f.
This can be implemented in polynomial time, see [39] and the references therein.

We only explain how (1) is performed. Firstly, we can store D,, asa (n + 1) x (n + 1) X o three
dimensional array D[-][-][], where D[i][j][a] = k, for i,j € [0 : n] and a € ¥, if and only if there
exists an edge from (7, j) to (k,7), and w[k] = a. In a sense, in this way we can see the graph D,
as a DAG whose edges are labelled with letters of . Now, to solve (1), we need to check whether

M. Kosche et al. | Absent Subsequences in Words 231

there exists a path in D,, from (0, 0) to f, labelled with the word u. This can be clearly done in O(m)
time. ad

Note that the main point of the theorem above is to introduce the graph D,, as a compact repre-
sentation of MAS(w), and to show the correspondence between the strings in MAS(w) and the paths
from (0, 0) to f in this graph. Once this correspondence established, we were only interested in estab-
lishing that the tasks (2 — 4) can be solved in polynomial time, and this follows directly from general
results regarding directed acyclic graphs. We expect that obtaining more efficient algorithms for the
respective problems for the tasks (2—4) from the theorem above would require a deeper understanding
of the structure of D,,, and leave this as an open problem.

The last result of this paper shows how to preprocess a word w in order to be able to answer
efficiently queries of the following form: for a given wu, that is a subsequence of w, which is the
shortest string we can append to u in order to obtain an MAS of w?

Corollary 4.22. For a word w of length n, we can construct in O(no) time data structures allowing
us to answer masExt(u) queries: for a subsequence u of w, decide whether there exists an MAS uv
of w, and, if yes, construct such an MAS uv of minimal length. The time needed to answer a query is

O(fvl + [ul).

Proof:

Before we begin to show this theorem, we recall an important data structure allowing us to answer
range maximum queries. Let A be an array with n elements from a well-ordered set. We define
range maximum queries RMQ 4 for the array of A: RMQ 4(,7) = argmax{A[t] | t € [i : j]}, for
i,j € [1 : n]. Thatis, RMQ4(i,7) is the position of the largest element in the subarray A[i : j];
if there are multiple positions containing this largest element, RMQ 4 (7, j) is the leftmost of them.
(When it is clear from the context, we drop the subscript A).

We will use the following result from [60]].

Lemma 4.23. Let A be an array with n integer elements. One can preprocess A in O(n) time and
produce data structures allowing to answer in constant time range maximum queries RMQ 4 (i, 7), for
any i,j € [1:n].

We now start the actual proof of our theorem and first describe the preprocessing phase.

We first use [Lemma 4.20]to compute the arrays sameNext and samePrev.

We define an n x o matrix X [-][-], where X[i][a] = nexty(a,7+ 1), foralli € [0 : n — 1] and
a € ¥. This matrix can be computed in O(no) time as follows. We go with ¢ from 1 to n, and we set
X[j][wl[i]] = i for all j € [samePrev[i] : ¢ — 1] N [1 : n]. Clearly we can compute an array of size n
which contains, for all 7 € [1 : n], the interval [samePrev][i] : ¢ — 1] N [1 : n] in linear time.

We define an n x o matrix Y [-][-], where Y[i|[a] = lasty(a,i — 1), forall i € [2 : n + 1] and
a € ¥. This matrix can be computed in O(no) time trivially, as it equals to the matrix X computed
for the mirror image of the word w.

We also preprocess the array sameNext|[-] as in so that we can answer in constant
time RMQ,, 1.eNext-queries.

232 M. Kosche et al. | Absent Subsequences in Words

To answer a query masExt(u), we proceed as follows. If |u| = 0, we choose a letter a not
occurring in r(w) and simply return m(w)a (where m(w) denotes the concatenation of the last letters
of the arches of w) (see the proof of [Lemma 4.4), which is clearly an SAS of w. If |u| > 0, we run
and[I2] and return the word v computed by the latter.

The correctness of the approach above is explained in the following. For the rest of this proof,
assume thus that |u| > 0 and that u is a subsequence of w.

First, we run [Algorithm T1] which decides whether u can be the prefix of an MAS of w or not.
This is an extended and modified version of in which we also check the conditions from
Note again that we apply this algorithm under the assumption that is a subsequence
of w.

Algorithm 11: isMASPrefix(w,u)
Input: Word w with |w| = n, word u with |u| = m to be tested
1 jo < 0;71 < X[0][u[1]];7 < 2; flag<— true;
2 while : < m and flag == true do
3| o X[irl[ufil);
4 | gz Ygluld];
5 if j3 ¢ [jo + 1 : j1] then
6 ‘ flag < false;
7 else
8
9

| Jo < jiigr < Jzi i+ L
return flag == true ? (jo,j1) : T3

If returns T, then u cannot be the prefix of an MAS of w, as it does not fulfil the
conditions of [Theorem 3.1l

If [Algorithm 11| returns a pair (jo, j1), with jo < j1, then u can be extended to an MAS of w,
wll : jo| is the shortest prefix of w which contains u[1 : m — 1] and w[1 : j1] is the shortest prefix

of w which contains u[1 : m|. In particular, u[m — 1] = w[jo] and u[m| = w|j1]. We continue with
the identification of the shortest string v which we can append to u, based on so that uv
becomes an MAS of w. We achieve this by [Algorithm 12]

The idea of the algorithm is the following. In order to extend u to a MAS of w, by
we need to find a position j between ip + 1 and 41, such that sameNext[j] > ¢; (note that such a
j always exists, as sameNext[i1] > i1). Once j is found, we can safely extend u with w[j], and
repeat the procedure, with g and ¢; updated so that they point to the positions of w where the last
two letters of the extended u occur. To obtain the shortest word v which extends u to a MAS our
algorithm proceeds in a greedy manner, by choosing j such that sameNext[j] is the largest in the
subarray sameNext[ig + 1 : 41]. We will show that this is correct.

So, let us prove that our algorithm works correctly. Firstly, by the remarks we have already made,
it is not hard to note that the string v returned by has the property that uv fulfils the
requirements from so uv is an MAS. Now, for the correctness of the greedy part of the
algorithm, we need to show that there is no other strictly shorter string = such that uz is an MAS.

M. Kosche et al. | Absent Subsequences in Words 233

Algorithm 12: masExtend(w, jg, j1)

Input: Word w with |w| = n, two positions jo < j; of w
1 ig + jo;i1 + j1;1 < 1; flag<— true;
2 while flag == true do

3 ig < RMQsameNext(iO + 1, il);

4 if sameNext[iz] > n then

5 ‘ v[i] <= wlig]; flag < false;

6 else

7 ‘ v[i] <= wlig]; i < i1;41 < sameNext[ia]; i < i + 1;
8 return v;

Assume, for the sake of the contradiction, that there exists a string such that |x| < |v| and ux is
an MAS. Let us choose = such that ux is an MAS, whose length is minimal among all MAS which
start with u, and, among all such MAS of minimal length, it shares the longest prefix with uv.

As |u| > 0 and w itself is not an MAS we have that, |uv| = h > |ux| = £ > 2. Let u; = wv
and up = ux. Let 0 = 49 < i1 < ... < i1 be positions of w such that w[i;] = w[j] for
j € [1: h— 1], as identified greedily by [Algorithm 4] Let 0 = gy < g1 < ... < g1 be positions
of w such that w[g;] = us[j] for j € [1 : £ — 1], as identified by First, let us note
that there exists f < ¢ — 1 such that g # is. Otherwise, ua[l : £ — 1] would be a prefix of
uy, and we would have a position j in [g¢—1 : g¢] such that sameNext[j] = oo. So our algorithm
would have also returned a word of length ¢ instead of v, a contradiction. Hence, we can choose
the smallest f such that gy # iy, and we know that f < ¢ — 1. By the way we choose iy in
our algorithm, we have that g; < iy. Let d be minimum such that gs.4 > if; clearly, d > 1.
We can then replace the sequence of positions where the letters of x appear in w by the sequence
g < ... < gr1 < ip < gfed < ... < ge—1 and we note that these positions also fulfil the
requirements of [Theorem 3.1} The word uw(g1] - - - wlgy—1]wlifJw[gya]...w[ge—1]x[(] is therefore an
MAS, which is either shorter than uz, or has the same length as ux but shares a longer prefix with uv.
This is a contradiction with the choice of z.

So, our assumption was false, and it follows that the greedy approach used by
produces a word v of minimal length such that uv is an MAS. Moreover, the complexity of answering
a query is O(|u| + |v]). O

It is worth noting that the lexicographically smallest MAS of a word w is al®la*! where a is the
lexicographically smallest letter of > which occurs in w.

Acknowledgements:

This is an extended version of the conference paper [61]. We thank the anonymous referees, both of
the conference and the journal version of this work, for their valuable comments and suggestions. Last
but not least, we thank Tina Ringleb and Maximilian Winkler for carefully proof-reading this paper.

234 M. Kosche et al. | Absent Subsequences in Words
References
[1] Sakarovitch J, Simon I. Subwords. In: Lothaire M (ed.), Combinatorics on Words, chapter 6, pp. 105—
142. Cambridge University Press, 1997.
[2] Halfon S, Schnoebelen P, Zetzsche G. Decidability, complexity, and expressiveness of first-order logic
over the subword ordering. In: Proc. LICS 2017. 2017 pp. 1-12. doi:10.48550/arXiv.1701.07470.
[3] Karandikar P, Kufleitner M, Schnoebelen P. On the index of Simon’s congruence for piecewise testability.
Inf. Process. Lett., 2015. 115(4):515-519. doi:10.1016/].ipl.2014.11.008.
[4] Karandikar P, Schnoebelen P. The Height of Piecewise-Testable Languages with Applications in Logical
Complexity. In: Proc. CSL 2016, volume 62 of LIPIcs. 2016 pp. 37:1-37:22.
[5] Karandikar P, Schnoebelen P. The height of piecewise-testable languages and the complexity of the logic
of subwords. Log. Methods Comput. Sci., 2019. 15(2). doi:10.23638/LMCS-15(2:6)2019.
[6] Kuske D. The Subtrace Order and Counting First-Order Logic. In: Proc. CSR 2020, volume 12159 of
Lecture Notes in Computer Science. 2020 pp. 289-302. doi:10.1007/978-3-030-50026-9_21.
[7] Kuske D, Zetzsche G. Languages Ordered by the Subword Order. In: Proc. FOSSACS 2019, volume
11425 of Lecture Notes in Computer Science. 2019 pp. 348-364. doi:10.1007/978-3-030-17127-8_20.
[8] Simon I. Hierarchies of events with dot-depth one - Ph.D. thesis. University of Waterloo, 1972.
[9] Simon I. Piecewise testable events. In: Autom. Theor. Form. Lang., 2nd GI Conf., volume 33 of LNCS.
1975 pp. 214-222.

[10] Zetzsche G. The Complexity of Downward Closure Comparisons. In: Proc. ICALP 2016, volume 55 of
LIPIcs. 2016 pp. 123:1-123:14. doi:10.48550/arXiv.1605.03149.

[11] Freydenberger DD, Gawrychowski P, Karhumiki J, Manea F, Rytter W. Testing k-binomial equivalence.
In: Multidisciplinary Creativity, a collection of papers dedicated to G. Pdun 65th birthday. 2015 pp.
239-248. Available in CoRR. doi:10.48550/arXiv.1509.00622.

[12] Lejeune M, Leroy J, Rigo M. Computing the k-binomial Complexity of the Thue-Morse Word.
In: Proc. DLT 2019, volume 11647 of Lecture Notes in Computer Science. 2019 pp. 278-291.
doi:10.1016/j.jcta.2020.105284.

[13] Leroy J, Rigo M, Stipulanti M. Generalized Pascal triangle for binomial coefficients of words. Electron.
J. Combin., 2017. 24(1.44):36 pp. doi:10.1016/j.aam.2016.04.006.

[14] Mateescu A, Salomaa A, Yu S. Subword Histories and Parikh Matrices. J. Comput. Syst. Sci., 2004.
68(1):1-21. doi:10.1016/j.jcss.2003.04.001.

[15] Rigo M, Salimov P. Another generalization of abelian equivalence: Binomial complexity of infinite
words. Theor. Comput. Sci., 2015. 601:47-57. doi:10.1016/j.tcs.2015.07.025.

[16] Salomaa A. Connections Between Subwords and Certain Matrix Mappings. Theoret. Comput. Sci., 2005.
340(2):188-203. doi:10.1016/j.tcs.2005.03.024.

[17] Seki S. Absoluteness of subword inequality is undecidable. Theor. Comput. Sci., 2012. 418:116-120.
doi:10.1016/j.tcs.2011.10.017.

[18] Baeza-Yates RA. Searching Subsequences. Theor. Comput. Sci., 1991. 78(2):363-376.

[19] Bringmann K, Chaudhury BR. Sketching, Streaming, and Fine-Grained Complexity of (Weighted) LCS.

In: Proc. FSTTCS 2018, volume 122 of LIPIcs. 2018 pp. 40:1-40:16. doi:10.48550/arXiv.1810.01238.

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

M. Kosche et al. | Absent Subsequences in Words 235

Bringmann K, Kiinnemann M. Multivariate Fine-Grained Complexity of Longest Common Subsequence.
In: Proc. SODA 2018. 2018 pp. 1216—-1235. doi:10.1137/1.9781611975031.79.

Maier D. The Complexity of Some Problems on Subsequences and Supersequences. J. ACM, 1978.
25(2):322-336. doi:10.1145/322063.322075.

Wagner RA, Fischer MJ. The String-to-String Correction Problem. J. ACM, 1974. 21(1):168-173.

Sankoff D, Kruskal J. Time Warps, String Edits, and Macromolecules The Theory and Practice of
Sequence Comparison. Cambridge University Press, 2000 (reprinted). Originally published in 1983.
ISBN-10:1575862174, 13: 978-1575862170.

Pin J. The Consequences of Imre Simon’s Work in the Theory of Automata, Languages, and Semigroups.
In: Proc. LATIN 2004, volume 2976 of Lecture Notes in Computer Science. 2004 p. 5. doi:10.1007/978-
3-540-24698-5_4.

Pin J. The influence of Imre Simon’s work in the theory of automata, languages and semigroups. Semi-
group Forum, 2019. 98:1-8. doi:10.1007/300233-019-09999-8.

Crochemore M, Melichar B, Tronicek Z. Directed acyclic subsequence graph - Overview. J. Discrete
Algorithms, 2003. 1(3-4):255-280. doi:10.1016/S1570-8667(03)00029-7.

Fleischer L, Kufleitner M. Testing Simon’s congruence. In: Proc. MFCS 2018, volume 117 of LIPIcs.
2018 pp. 62:1-62:13. doi:10.48550/arXiv.1804.10459.

Hebrard JJ. An algorithm for distinguishing efficiently bit-strings by their subsequences. Theoretical
computer science, 1991. 82(1):35-49. doi:10.1016/0304-3975(91)90170-7.

Garel E. Minimal Separators of Two Words. In: Proc. CPM 1993, volume 684 of Lecture Notes in
Computer Science. 1993 pp. 35-53. doi:10.1007/BFb0029795.

Simon I. Words distinguished by their subwords (extended Abstract). In: Proc. WORDS 2003, volume 27
of TUCS General Publication. 2003 pp. 6—13.

Tronicek Z. Common Subsequence Automaton. In: Proc. CIAA 2002 (Revised Papers), volume 2608 of
Lecture Notes in Computer Science. 2002 pp. 270-275. doi:10.1007/3-540-44977-9_28.

Barker L, Fleischmann P, Harwardt K, Manea F, Nowotka D. Scattered Factor-Universality of Words.
In: Jonoska N, Savchuk D (eds.), Proc. DLT 2020, volume 12086 of Lecture Notes in Computer Science.
2020 pp. 14-28. doi:10.1007/978-3-030-48516-0_2.

Gawrychowski P, Kosche M, Kol T, Manea F, Siemer S. Efficiently Testing Simon’s Congruence.
In: Bldser M, Monmege B (eds.), 38th International Symposium on Theoretical Aspects of Com-
puter Science, STACS 2021, March 16-19, 2021, Saarbriicken, Germany (Virtual Conference), vol-
ume 187 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021 pp. 34:1-34:18. doi:
10.4230/LIPIcs.STACS.2021.34.

Day JD, Fleischmann P, Kosche M, KoB3 T, Manea F, Siemer S. The Edit Distance to k-Subsequence
Universality. In: Bldser M, Monmege B (eds.), 38th International Symposium on Theoretical Aspects
of Computer Science, STACS 2021, March 16-19, 2021, Saarbriicken, Germany (Virtual Conference),
volume 187 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021 pp. 25:1-25:19. doi:
10.4230/LIPIcs.STACS.2021.25.

Barton C, Heliou A, Mouchard L, Pissis SP. Linear-time computation of minimal absent words using
suffix array. BMC bioinformatics, 2014. 15(1):1-10. doi:10.1186/s12859-014-0388-9.

236

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

M. Kosche et al. | Absent Subsequences in Words

Chairungsee S, Crochemore M. Using minimal absent words to build phylogeny. Theoretical Computer
Science, 2012. 450:109-116. doi:10.1016/j.tcs.2012.04.031.

Charalampopoulos P, Crochemore M, Fici G, Mercag R, Pissis SP. Alignment-free sequence comparison
using absent words. Information and Computation, 2018. 262:57—-68. doi:10.1016/}.ic.2018.06.002.

Crochemore M, Mignosi F, Restivo A, Salemi S. Data compression using antidictionaries. Proceedings
of the IEEE, 2000. 88(11):1756-1768. doi:10.1109/5.892711.

Pratas D, Silva JM. Persistent minimal sequences of SARS-CoV-2. Bioinformatics, 2020.
doi:10.1093/bioinformatics/btaa686.

Silva RM, Pratas D, Castro L, Pinho AJ, Ferreira PJ. Three minimal sequences found in Ebola
virus genomes and absent from human DNA. Bioinformatics, 2015. 31(15):2421-2425. doi:10.1093/
bioinformatics/btv189.

Bernardini G, Marchetti-Spaccamela A, Pissis S, Stougie L, Sweering M. Constructing Strings Avoiding
Forbidden Substrings. fo appear, Proc. CPM 2021, 2021. doi:10.4230/LIPIcs.CPM.2021.9.

Crochemore M, Mignosi F, Restivo A. Automata and forbidden words. Information Processing Letters,
1998. 67(3):111-117. doi:10.1016/S0020-0190(98)00104-5.

Fici G, Gawrychowski P. Minimal absent words in rooted and unrooted trees. In: International Sympo-
sium on String Processing and Information Retrieval. Springer, 2019 pp. 152-161. doi:10.1007/978-3-
030-32686-9_11.

Fici G, Mignosi F, Restivo A, Sciortino M. Word assembly through minimal forbidden words. Theoretical
Computer Science, 2006. 359(1-3):214-230. doi:10.1016/j.tcs.2006.03.006.

Fici G, Restivo A, Rizzo L. Minimal forbidden factors of circular words. Theoretical Computer Science,
2019. 792:144-153. doi:10.1016/j.tcs.2018.05.037.

Nakashima Y, Inenaga S, Bannai H, Takeda M. Minimal Unique Substrings and Minimal Absent Words
in a Sliding Window. In: SOFSEM 2020: Theory and Practice of Computer Science: 46th International
Conference on Current Trends in Theory and Practice of Informatics, SOFSEM 2020, Limassol, Cyprus,
January 20-24, 2020, Proceedings, volume 12011. Springer Nature, 2020 p. 148. doi:10.1007/978-3-
030-38919-2_13.

Mignosi F, Restivo A, Sciortino M. Words and forbidden factors. Theoretical Computer Science, 2002.
273(1-2):99-117. doi:10.1016/S0304-3975(00)00436-9.

Ayad LA, Badkobeh G, Fici G, Héliou A, Pissis SP. Constructing antidictionaries in output-sensitive
space. In: 2019 Data Compression Conference (DCC). IEEE, 2019 pp. 538-547. doi:10.48550/
arXiv.1902.04785.

Badkobeh G, Charalampopoulos P, Pissis S. Internal Shortest Absent Word Queries. to appear, Proc.
CPM 2021,2021. doi:10.48550/arXiv.2106.01763.

Barton C, Héliou A, Mouchard L, Pissis SP. Parallelising the computation of minimal absent words.
In: Parallel Processing and Applied Mathematics, pp. 243-253. Springer, 2016. doi:10.1007/978-3-319-
32152-323.

Charalampopoulos P, Crochemore M, Pissis SP. On extended special factors of a word. In: In-
ternational Symposium on String Processing and Information Retrieval. Springer, 2018 pp. 131-138.
doi:10.1007/978-3-030-00479-8_11.

[52]

[53]

[54]

[55]

[56]

[57]

(58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

M. Kosche et al. | Absent Subsequences in Words 237

Crochemore M, Héliou A, Kucherov G, Mouchard L, Pissis SP, Ramusat Y. Absent words in a
sliding window with applications. Information and Computation, 2020. 270:104461. doi:10.1016/
j1c.2019.104461.

Fujishige Y, Tsujimaru Y, Inenaga S, Bannai H, Takeda M. Computing DAWGs and minimal absent
words in linear time for integer alphabets. In: 41st International Symposium on Mathematical Foun-
dations of Computer Science (MFCS 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPICS.MFCS.2016.38.

Kitaev S. Patterns in Permutations and Words. Monographs in Theoretical Computer Science. An EATCS
Series. Springer, 2011. ISBN 978-3-642-17332-5. doi:10.1007/978-3-642-17333-2.

Crochemore M, Hancart C, Lecroq T. Algorithms on strings. Cambridge University Press, 2007. ISBN
978-0-521-84899-2.

Bender MA, Farach-Colton M. The Level Ancestor Problem simplified. Theor. Comput. Sci., 2004.
321(1):5-12. doi:10.1016/j.tcs.2003.05.002.

Ben-Amram AM. The Euler Path to Static Level-Ancestors. CoRR, 2009. abs/0909.1030. 0909.1030,
URL http://arxiv.org/abs/0909.1030.

Sedgewick R, Wayne K. Algorithms, 4th Edition. Addison-Wesley, 2011. ISBN 978-0-321-57351-3.

Wasa K. Enumeration of Enumeration Algorithms. CoRR, 2016. abs/1605.05102. |1605.05102, URL
http://arxiv.org/abs/1605.05102.

Bender MA, Farach-Colton M. The LCA Problem Revisited. In: Gonnet GH, Panario D, Viola A (eds.),
LATIN 2000: Theoretical Informatics, 4th Latin American Symposium, Punta del Este, Uruguay, April
10-14, 2000, Proceedings, volume 1776 of Lecture Notes in Computer Science. Springer, 2000 pp. 88-94.
doi:10.1007/10719839\ 9.

Kosche M, KoB3 T, Manea F, Siemer S. Absent Subsequences in Words. In: Bell PC, Totzke P, Potapov I
(eds.), Reachability Problems - 15th International Conference, RP 2021, Liverpool, UK, October 25-27,
2021, Proceedings, volume 13035 of Lecture Notes in Computer Science. Springer, 2021 pp. 115-131.
doi:10.1007/978-3-030-89716-1_8. URL https://doi.org/10.1007/978-3-030-89716-1_8.

Garcia SP, Pinho AJ, Rodrigues JM, Bastos CA, Ferreira PJ. Minimal absent words in prokaryotic and
eukaryotic genomes. PLoS One, 2011. 6(1):e16065.

Ota T, Morita H. On the adaptive antidictionary code using minimal forbidden words with constant
lengths. In: 2010 International Symposium On Information Theory & Its Applications. IEEE, 2010 pp.
72-77. doi:10.1109/ISITA.2010.5649621.

Droubay X, Justin J, Pirillo G. Episturmian words and some constructions of de Luca and Rauzy. Theor.
Comput. Sci., 2001. 255(1-2):539-553.

de Luca A, Glen A, Zamboni LQ. Rich, Sturmian, and trapezoidal words. Theor. Comput. Sci., 2008.
407(1-3):569-573. doi:10.1016/j.tcs.2008.06.009.

Ayad LAK, Barton C, Pissis SP. A faster and more accurate heuristic for cyclic edit distance computation.
Pattern Recognit. Lett., 2017. 88:81-87. doi:10.1016/j.patrec.2017.01.018.

Glaister I, Shallit J. A Lower Bound Technique for the Size of Nondeterministic Finite Automata. Infor-
mation Processing Letters, 1996. 59(2):75-717.

0909.1030
http://arxiv.org/abs/0909.1030
1605.05102
http://arxiv.org/abs/1605.05102
https://doi.org/10.1007/978-3-030-89716-1_8

238

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

[82]
[83]

[84]

[85]

[86]

M. Kosche et al. | Absent Subsequences in Words

Bernardini G, Chen H, Loukides G, Pisanti N, Pissis SP, Stougie L, Sweering M. String Sanitization
Under Edit Distance. In: Ggrtz IL, Weimann O (eds.), Proc. CPM 2020, volume 161 of LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2020 pp. 7:1-7:14. doi:10.48550/arXiv.2007.08179.

Larsen KG, van Walderveen F. Near-Optimal Range Reporting Structures for Categorical Data. In:
Khanna S (ed.), Proc. SODA 2013. SIAM, 2013 pp. 265-276. doi:10.1137/1.9781611973105.20.

Nekrich Y. Efficient range searching for categorical and plain data. ACM Trans. Database Syst., 2014.
39(1):9:1-9:21. doi:10.1145/2543924.

Chan TM, Patrascu M. Counting Inversions, Offline Orthogonal Range Counting, and Related Problems.
In: Charikar M (ed.), Proc. SODA 2010. SIAM, 2010 pp. 161-173. doi:10.1137/1.9781611973075.15.

Schieber B. Computing a Minimum-Weight k-Link Path in Graphs with the Concave Monge Property.
In: Proc. SODA 1995. ACM/SIAM, 1995 pp. 405-411.

Aggarwal A, Schieber B, Tokuyama T. Finding a Minimum-Weight k-Link Path Graphs with the Concae
Monge Property and Applications. Discret. Comput. Geom., 1994. 12:263-280.

Bein WW, Larmore LL, Park JK. The d-Edge Shortest-Path Problem for a Monge Graph. Technical
Report, 1992. SAND-92-1724C:1-10.

Allauzen C, Mohri M. Linear-Space Computation of the Edit-Distance between a String and a Finite
Automaton. CoRR, 2009. abs/0904.4686. 0904 .4686, URL http://arxiv.org/abs/0904.4686.

Benedikt M, Puppis G, Riveros C. Bounded repairability of word languages. J. Comput. Syst. Sci., 2013.
79(8):1302-1321. doi:10.1016/j.jcss.2013.06.001.

Benedikt M, Puppis G, Riveros C. Regular Repair of Specifications. In: Proc. LICS 2011. IEEE Com-
puter Society, 2011 pp. 335-344. doi:10.1109/LICS.2011.43.

Pighizzini G. How Hard Is Computing the Edit Distance? Inf. Comput., 2001. 165(1):1-13. doi:10.1006/
inc0.2000.2914.

Chatterjee K, Henzinger TA, Ibsen-Jensen R, Otop J. Edit Distance for Pushdown Automata. In:
Proc. ICALP 2015, volume 9135 of Lecture Notes in Computer Science. Springer, 2015 pp. 121-133.
doi:10.1007/978-3-662-47666-6_10.

Wagner RA. Order-n Correction for Regular Languages. Commun. ACM, 1974. 17(5):265-268.
doi:10.1145/360980.360995.

Kosolobov D. Computing runs on a general alphabet. Inf. Process. Lett., 2016. 116(3):241-244.
doi:10.1016/j.ipl.2015.11.016

Hamming RW. Error detecting and error correcting codes. Bell Syst. Tech. J., 1950. 29(2):147-160.

Kosolobov D. Finding the leftmost critical factorization on unordered alphabet. Theor. Comput. Sci.,
2016. 636:56-65.

Gawrychowski P, Kociumaka T, Rytter W, Walen T. Faster Longest Common Extension Queries in
Strings over General Alphabets. In: Proc. CPM 2016,, volume 54 of LIPIcs. 2016 pp. 5:1-5:13.
doi:10.48550/arXiv.1602.00447.

Kosche M, Ko} T, Manea F, Siemer S. Absent Subsequences in Words. CoRR, 2021. to appear.
doi:10.48550/arXiv.2108.13968.

Backurs A, Indyk P. Edit Distance Cannot Be Computed in Strongly Subquadratic Time (Unless SETH
is False). SIAM J. Comput., 2018. 47(3):1087-1097. doi:10.1137/15M1053128.

0904.4686
http://arxiv.org/abs/0904.4686

[87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

M. Kosche et al. | Absent Subsequences in Words 239

Masek WJ, Paterson M. A Faster Algorithm Computing String Edit Distances. J. Comput. Syst. Sci.,
1980. 20(1):18-31.

Levenshtein VI. Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. -
Dokl., 1966. 10(8):707-710.

Bringmann K, Grandoni F, Saha B, Williams VV. Truly Sub-cubic Algorithms for Language Edit Dis-
tance and RNA-Folding via Fast Bounded-Difference Min-Plus Product. In: Proc. FOCS 2016. 2016 pp.
375-384. doi:10.1109/FOCS.2016.48.

Jayaram R, Saha B. Approximating Language Edit Distance Beyond Fast Matrix Multiplication: Ultra-
linear Grammars Are Where Parsing Becomes Hard! In: Proc. ICALP 2017, volume 80 of LIPIcs. 2017
pp. 19:1-19:15. doi:10.4230/LIPIcs.ICALP.2017.19.

Cheon H, Han Y. Computing the Shortest String and the Edit-Distance for Parsing Expression Lan-
guages. In: Proc. DLT 2020, volume 12086 of Lecture Notes in Computer Science. 2020 pp. 43-54.
doi:10.1007/978-3-030-48516-0_4.

Cheon H, Han Y, Ko S, Salomaa K. The Relative Edit-Distance Between Two Input-Driven Lan-
guages. In: Proc. DLT 2019, volume 11647 of Lecture Notes in Computer Science. 2019 pp. 127-139.
doi:10.1007/978-3-030-24886-4_9.

Han Y, Ko S, Salomaa K. The Edit-Distance between a Regular Language and a Context-Free Language.
Int. J. Found. Comput. Sci., 2013. 24(7):1067-1082. doi:10.1142/S0129054113400315.

Hirschberg DS. A Linear Space Algorithm for Computing Maximal Common Subsequences. Commun.
ACM, 1975. 18(6):341-343.

Dobkin DP, Lipton RJ. On the Complexity of Computations under Varying Sets of Primitives. J. Comput.
Syst. Sci., 1979. 18(1):86-91.

Gabow HN, Tarjan RE. A Linear-Time Algorithm for a Special Case of Disjoint Set Union. In: Proc.
15th STOC. 1983 pp. 246-251.

Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to Algorithms, 3rd Edition. MIT
Press, 2009. ISBN 978-0-262-03384-8. URL http://mitpress.mit.edu/books/introduction-
algorithms.

Imai H, Asano T. Dynamic Segment Intersection Search with Applications. In: Proc. FOCS 1984. 1984
pp- 393-402.

Ehlers T, Manea F, Mercas R, Nowotka D. k-Abelian pattern matching. J. Discrete Algorithms, 2015.
34:37-48. doi:10.1016/j.jda.2015.05.004. URL https://doi.org/10.1016/j.jda.2015.05.004.

Willard DE. Log-Logarithmic Worst-Case Range Queries are Possible in Space Theta(N). Inf. Process.
Lett., 1983. 17(2):81-84. doi:10.1016/0020-0190(83)90075-3. URL https://doi.org/10.1016/
0020-0190(83)90075-3.

Aggarwal A, Klawe MM, Moran S, Shor PW, Wilber RE. Geometric Applications of a Matrix-Searching
Algorithm. Algorithmica, 1987. 2:195-208.

Babenko MA, Gawrychowski P, Kociumaka T, Starikovskaya TA. Wavelet Trees Meet Suffix Trees. In:
Proc. SODA 2015. 2015 pp. 572-591. doi:10.1137/1.9781611973730.39

JaJa J, Mortensen CW, Shi Q. Space-Efficient and Fast Algorithms for Multidimensional Dominance
Reporting and Counting. In: Proc. ISAAC 2004, volume 3341 of Lecture Notes in Computer Science.
2004 pp. 558-568. doi:10.1007/978-3-540-30551-4_49.

http://mitpress.mit.edu/books/introduction-
algorithms
https://doi.org/10.1016/j.jda.2015.05.004
https://doi.org/10.1016/0020-0190(83)90075-3
https://doi.org/10.1016/0020-0190(83)90075-3

240

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]
[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]
[121]

[122]

[123]

M. Kosche et al. | Absent Subsequences in Words

Aggarwal A, Klawe MM. Applications of generalized matrix searching to geometric algorithms. Discrete
Applied Mathematics, 1990. 27(1-2):3-23.

Patrascu M. Lower bounds for 2-dimensional range counting. In: Proc. STOC 2007. 2007 pp. 40—46.
doi:10.1145/1250790.1250797.

Elzinga CH, Rahmann S, Wang H. Algorithms for subsequence combinatorics. Theor. Comput. Sci.,
2008. 409(3):394-404. doi:10.1016/j.tcs.2008.08.035.

Holub §, Saari K. On Highly Palindromic Words. Descrete Applied Mathematics, 2009. 157:953-959.
doi:10.1016/j.dam.2008.03.039.

Dress AW, Erdos P. Reconstructing Words from Subwords in Linear Time. Annals of Combinatorics,
2004. 8(4):457-462. doi:10.1007/s00026-004-0232-4.

Berstel J, Karhuméki J. Combinatorics on Words — A Tutorial. BEATCS: Bulletin of the European
Association for Theoretical Computer Science, 2003. 79.

Mantch J. Characterization of a Word by its Subwords. In: Developments in Language Theory. 1999
pp- 210-219.

Rozenberg G, Salomaa A (eds.). Handbook of Formal Languages (3 volumes). Springer, 1997.

Fazekas SZ, Manea F, Mercas R, Shikishima-Tsuji K. The Pseudopalindromic Completion of Regular
Languages. Information and Compution, 2014. 239:222-236. doi:10.1016/j.ic.2014.09.001.

Kari L, Mahalingam K. Watson-Crick Palindromes in DNA Computing. Natural Computing, 2010.
9(2):297-316. doi:10.1007/s11047-009-9131-2.

Chen HZQ, Kitaev S, Miitze T, Sun BY. On universal partial words. Electronic Notes in Discrete
Mathematics, 2017. 61:231-237. doi:10.1016/j.endm.2017.06.043.

Rampersad N, Shallit J, Xu Z. The Computational Complexity of Universality Problems for Pre-
fixes, Suffixes, Factors, and Subwords of Regular Languages. Fundam. Inf., 2012. 116(1-4):223-236.
doi:10.3233/FI-2012-680.

Krotzsch M, Masopust T, Thomazo M. Complexity of universality and related problems for partially
ordered NFAs. Inf. Comput., 2017. 255:177-192. doi:10.1016/].ic.2017.06.004.

Holzer M, Kutrib M. Descriptional and computational complexity of finite automata - A survey. Inf.
Comput., 2011. 209(3):456-470. doi:10.1016/j.ic.2010.11.013.

Goeckner B, Groothuis C, Hettle C, Kell B, Kirkpatrick P, Kirsch R, Solava RW. Universal partial words
over non-binary alphabets. Theor. Comput. Sci, 2018. 713:56-65. doi:10.1016/j.tcs.2017.12.022.

de Bruijn NG. A combinatorial problem. Koninklijke Nederlandse Akademie v. Wetenschappen, 1946.
49:758-764.

Martin MH. A problem in arrangements. Bull. Amer. Math. Soc., 1934. 40(12):859-864.

Gawrychowski P, Lange M, Rampersad N, Shallit JO, Szykula M. Existential Length Universality. In:
Proc. STACS 2020, volume 154 of LIPIcs. 2020 pp. 16:1-16:14. doi:10.4230/LIPIcs.STACS.2020.16.

Day JD, Fleischmann P, Manea F, Nowotka D. k-Spectra of Weakly-c-Balanced Words. In: Proc. DLT
2019, volume 11647 of Lecture Notes in Computer Science. 2019 pp. 265-277. doi:10.1007/978-3-030-
24886-4_20.

van Emde Boas P. Preserving Order in a Forest in Less Than Logarithmic Time and Linear Space. Inf.
Process. Lett., 1977. 6(3):80-82. doi:10.1016/0020-0190(77)90031-X.

	Introduction
	Basic definitions
	Combinatorial properties of SAS and MAS
	Algorithms
	A compact representation of the SAS of a word
	A compact representation of the MAS of a word

