
ar
X

iv
:2

20
3.

07
94

1v
4

 [
cs

.C
C

]
 1

1
O

ct
 2

02
3

Fundamenta Informaticae 189(3-4) : 241–259 (2022) 241

Available at IOS Press through:

https://doi.org/10.3233/FI-222160

Reachability in Simple Neural Networks

Marco Sälzer*, Martin Lange

School of Electr. Eng. and Computer Science

University of Kassel, Germany

{marco.saelzer, martin.lange}@uni-kassel.de

Abstract. We investigate the complexity of the reachability problem for (deep) neural networks:

does it compute valid output given some valid input? It was recently claimed that the problem

is NP-complete for general neural networks and specifications over the input/output dimension

given by conjunctions of linear inequalities. We recapitulate the proof and repair some flaws

in the original upper and lower bound proofs. Motivated by the general result, we show that

NP-hardness already holds for restricted classes of simple specifications and neural networks.

Allowing for a single hidden layer and an output dimension of one as well as neural networks

with just one negative, zero and one positive weight or bias is sufficient to ensure NP-hardness.

Additionally, we give a thorough discussion and outlook of possible extensions for this direction

of research on neural network verification.

Keywords: machine learning, computational complexity, formal specification and verification

1. Introduction

Deep learning has proved to be very successful for highly challenging or even otherwise intractable

tasks in a broad range of applications such as image recognition [1] or natural language processing [2]

but also safety-critical applications like autonomous driving [3], medical applications [4], or financial

matters [5]. These naturally come with safety concerns and the need for certification methods. Recent

such methods can be divided into (I) Adversarial Attack and Defense, (II) Testing, and (III) Formal

Verification. A comprehensive survery about all three categories is given in [6].

*Address for correspondence: School of Electr. Eng. and Computer Science, University of Kassel, Germany

http://arxiv.org/abs/2203.07941v4

242 M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN

The former two cannot guarantee the absence of errors. Formal verification of neural networks

(NN) is a relatively new area of research which ensures completeness of the certification procedure.

Recent work on sound and complete verification algorithms for NN is mostly concerned with efficient

solutions to their reachability problem REACH [7–10]: given an NN and symbolic specifications of

valid inputs and outputs, decide whether there is some valid input such that the corresponding output

is valid, too. This corresponds to the understanding of reachability in classical software verification:

valid sets of inputs and outputs are specified and the question is whether there is a valid input that leads

to a valid output. Put differently, the question is whether the set of valid outputs is reachable from the

set of valid inputs. The difference to classical reachability problems in discrete state-based programs

is that there reachability is a matter of lengths of a connection. In NN this is given by the number of

layers, and it is rather the width of the continuous state space which may cause unreachability.

Solving REACH is interesting for practical purposes. An efficient algorithm can be used to ensure

that no input from some specified set of inputs is misclassified or that some undesired class of outputs

is never reached. In applications like autonomous-driving, where classifiers based on neural networks

are used to make critical decisions, such safeguards are indispensable.

However, all known algorithms for REACH show the same drawback: a lack of scalability to

networks of large size which, unfortunately, are typically featured in real-world scenarios. This is not

a big surprise as the problem is NP-complete. This result was proposed by Katz et al. [7] for NN with

ReLU and identity activations, and later also by Ruan et al. mentioned in [11] and done in [12]. While

there is no reason to doubt the NP-completeness claim, the proofs are not stringent and contain flaws.

The argument for the upper bound in [7] claims inclusion in NP via the standard guess-and-verify

approach: guess some valid inputs, pass them through the NN and check whether the resulting num-

bers are valid outputs. This is flawed, though: it misses the fact that the guessed witnesses need to be

polynomially bounded in size, i.e. in the size of the NN and the input and output specifications. No

argument is given in [7] for a bound on the representation of such values, let alone a polynomial one.1

In fact, guessing values in R is not even effective without a bound on the size of their representation,

hence this approach does not even show recursive enumerability of the reachability problem. On the

other hand, obtaining a polynomial bound on the values to be guessed is closely linked to the question

whether such values can be approximated up to some precision, for which no argument is given in [7]

either.

The arguments for the lower bound by a reduction from 3SAT in [7] and [12] rely on a discretisation

of real values to model Boolean values. This does not work for the signum function σ used by Ruan et

al. as it is not congruent for sums: e.g. σ(−3) = σ(−1) but σ(2+(−3)) 6= σ(2+(−1)), showing that

one cannot simply interpret any negative number as the Boolean value false etc. As a consequence,

completeness of the construction fails as there are (real) solutions to REACH which do not correspond

to (discrete) satisfying 3SAT assignments. Katz et al. seem to be aware of this in [7] and use a slightly

more elaborate discretisation in their reduction, but unfortunately it still suffers from similar problems.

These problems are repaired in [13].

We start our investigations into the complexity of REACH by fixing these issues in Section 3. We

provide a different argument for membership in NP which shows that the need for nondeterminism

is not to be sought in the input values but in the use of nodes with sophisticated activation functions

1A follow-up paper by Katz et al. contains an extended version of the original article [13] without this flaw being corrected.

M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN 243

like ReLU. Somehow surprisingly, we obtain the missing polynomial bound for the witnesses used by

Katz et al. as a corollary of our observations. Moreover, we show that NP membership is preserved

if we allow the use of arbitrary piecewise linear activation functions. We also address the issue of

discretisation of real values in the lower bound proof, fixing the construction given by Katz et al. in [7]

and presenting an alternative fix compared to [13]. We do not address the one by Ruan et al. from [11]

any further, as this does not provide further insights or new results.

We then observe that the reduction from 3SAT constructs a very specific class of neural networks.

NN from this class have a fixed number of layers but scaling input and output dimension as well as

layer size. This raises the question whether, in comparison to these networks, reducing the number of

layers or fixing dimensionality leads to a class of networks for which REACH is efficiently solvable.

In Section 4 we show that the answer to this is mostly negative: NP-hardness of REACH holds for

NN with just one layer and an output dimension of one. While this provides minimal requirements

on the structure of NN for REACH to be NP-hard, we also give minimal criteria on the weights and

biases in NN for NP-hardness to hold. Thus, the computational difficulty of REACH in the sense of

NP-completeness is quite robust. The requirements on the structure or parameters of an NN that are

needed for NP-hardness to occur are easily met in practical applications.

We conclude in Section 5 with references to possible future work which focuses on further research

regarding computational complexity and decidability issues on the reachability problems of NN or

deep learning models in a broader sense.

This article is a revised and expanded version of [14], with the following noteworthy differences:

proofs and explanations, especially in Section 4, are enriched with helpful explanations and descrip-

tions, the NP membership of REACH is shown for neural networks with arbitrary, piecewise linear

activation functions (see Section 3.1), we provide a direct proof for the polynomial bound missing

in the arguments of [7] (see Corollary 3.4), it is shown that NP-hardness holds for neural networks

using ReLU activations only (see Corollary 3.11) and a thorough outlook on possible further steps is

provided (see Section 5).

2. Preliminaries

A neural network (NN) N can be seen as a layered graph, representing a function of type Rn → Rm.

The first layer l = 0 is called the input layer and consists of n nodes. The i-th node computes the

output y0i = xi where xi is the i-th input to the overall network. Thus, the output of the input layer

(y00, . . . , y0(n−1)) is identical to the input ofN . A layer 1 ≤ l ≤ L−2 is called hidden and consists of

k nodes. Note that k must not be uniform across the hidden layers of N . Then, the i-th node of layer

l computes the output yli = σli(
∑

j c
(l−1)
ji y(l−1)j + bli) where j iterates over the output dimensions

of the previous layer, c
(l−1)
ji are rational constants which are called weights, bli is a rational constant

which is called bias and σli is some (typically non-linear) function called activation. The outputs of

all nodes of layer l combined gives the output (yl0, . . . , yl(k−1)) of the hidden layer. The last layer

l = L−1 is called the output layer and consists of m nodes. The i-th node computes an output y(L−1)i

in the same way as a node in a hidden layer. The output of the output layer (y(L−1)0, . . . , y(L−1)(m−1))
is considered as the output of the network N . We denote the output of N given x by N(x).

244 M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN

We consider neural networks using piecewise linear activations in this work. A function f : R →
R is called piecewise linear (PWL) if there are a0, b0 ∈ Q such that f(x) = a0x + b0 or there are

m ∈ N,m ≥ 2 linear functions aix+ bi with ai, bi ∈ Q and m− 1 breakpoints tj ∈ R such that

f(x) =







a0x+ b0 if x < t0,

aix+ bi if ti ≤ x < ti+1

am−1x+ bm−1 if tm−1 ≤ x.

We denote the i-th linear part of f by f i. The ReLU function, commonly used as an activation in all

hidden layers, is defined as x 7→ max(0, x) or x 7→ 0 if x < 0 and x 7→ x otherwise. The second def-

inition makes clear that ReLU is a PWL function. Obviously, the same holds for the identity function.

In order to make our results about lower bounds as strong as possible, we focus on neural networks

using ReLU (and identity as a shortcut) activations only. Nodes with ReLU (identity) activation are

called ReLU (identity) nodes. Given some input to the NN, we say that a ReLU node is active, resp.

inactive if the input for its activation function is greater or equal, resp. less than 0.

We make use of two ways to represent NN in this work. The first one is visualizing an NN as a

directed graph with weighted edges. An example is given in Figure 1. The second one is referring to

a NN N by its computed function fN . Obviously, this second way is ambiguous as there are infinitely

many NN that compute fN . To keep things easy, we assume that it is clear in the respective situation

which NN is referred to.

−1

0.3

0.5

3

−0.4

0.98

1

−0.745

−4.1

2.63

1

1.3

−0.456

1

1

−2.7

0.24

−3.21

0.58

0.32

−1

2.1

0.52

−2

−0.12
x1

x2

y

Figure 1. Schema of a neural network with five layers, input dimension of two and output dimension of one.

Filled nodes are ReLU nodes, empty nodes are identity nodes. An edge between two nodes u and v with label

w denotes that the output of u is weighted with w in the computation of v. No edge between u and v implies

w = 0. The bias of a node is depicted by a value above or below the node. If there is no such value then the

bias is zero.

Our main interest lies in the validity of specifications over the output values of NN given spec-

ifications over their input values. A specification ϕ for a given set of variables X is defined by the

following grammar:

ϕ ::= ϕ ∧ ϕ | t ≤ b t ::= c · x | t+ t

where b, c are rational constants and x ∈ X is a variable. We use t ≥ b and t = b as syntactic

sugar for −t ≤ −b and t ≤ b ∧ −t ≤ −b. Furthermore, we use ⊤ for x + (−x) = 0 and ⊥ for

M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN 245

x+ (−x) = 1 where x is some variable. We call a specification ϕ simple if for all t ≤ b it holds that

t = c · x for some rational constant c and variable x. A specification ϕ(x0, . . . , xn−1) is true under

x = (r0, . . . , rn−1) ∈ Rn if each inequality in ϕ is satisfied in real arithmetic with each xi set to

ri. We write ϕ(x) for the application of x to the variables of ϕ. If there are less variables in ϕ than

dimensions in x we ignore the additional values of x. If we consider a specification ϕ in context of

a neural network N we call it an input, respectively output specification and assume that the set of

variables occurring in ϕ is a subset of the input respectively output variables of N .

The decision problem REACH is defined as follows: given a neural network N with PWL acti-

vations, input specification ϕin(x0, . . . , xn−1) and output specification ϕout(y0, . . . , ym−1), is there

x ∈ Rn such that ϕin(x) and ϕout(N(x)) are true?

3. REACH is NP-complete

3.1. Membership in NP

The argument used by Katz et al. to show membership of REACH in NP can be summarized as follows:

nondeterministically guess an input vector x as a witness, compute the output N(x) of the network

and check that ϕin(x) ∧ ϕout(N(x)) holds. It is indisputable that the computation and check of this

procedure are polynomial in the size ofN , ϕin, ϕout and the size of x. However, for inclusion in NP we

also need the size of x to be polynomially bounded in the size of the instance given as (N,ϕin, ϕout),
which is not provided in [7]. We first present an alternative proof for REACH ∈ NP, circumventing the

missing argument of a polynomial bound for the size of satisfying inputs, by establishing a connection

between NN with PWL activations and an extended notion of linear programs. Note that this subsumes

the claim of Katz et al., as ReLU and identity are PWL activations. Furthermore, this proof directly

implies the polynomial bound in question, which we will see at the end of this section.

Definition 3.1. A PWL-linear program over a set X = {x0, . . . , xn−1} of variables is a set Φ of (in-

)equalities of the form bj +
∑m

i=1 cji · xji ≤ xj and f(bj +
∑m

i=1 cji · xji) = xj where xji, xj ∈ X,

cji, bj ∈ Q and f is a PWL function. We call the second kind a PWL-equality. A solution to Φ is a

vector x ∈ Rn which satisfies all (in-)equalities when each variable xi ∈ X is replaced by x(i). A

PWL-equality f(bj+
∑m

i=1 cji ·xji) = xj , where f has m linear parts alx+ bl and m−1 breakpoints

tl, is satisfied by x with tl ≤ bj +
∑m

i=1 cji · xji < tl+1 if al(bj +
∑m

i=1 cji · xji) + bl = xj . The

problem of solving a PWL-linear program is: given Φ, decide whether there is a solution to it.

It is well-known that regular linear programming can be done in polynomial time [15]. We use

this to show that solving PWL-linear programs can be done in nondeterministic polynomial time.

Lemma 3.2. The problem of solving a PWL-linear program is in NP.

Proof:

Suppose a PWL-linear program Φ with l PWL-equalities is given. First, note that there is a maximum

number k of linear parts a PWL function f occurring in Φ consists of. Then, the existence of a solution

can be decided as follows. Guess, for each PWL-equality χh of the form fh(bj +
∑m

i=1 cji ·xji) = xj

246 M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN

where fh has k′ ≤ k parts, some wh ∈ {0, . . . , k′− 1}, leading to the witness w = (w0, . . . , wl−1). It

is not hard to see that its size is polynomially bounded by the size of Φ. Next, let the linear program Φw

result from Φ by replacing each χh by the (in-)equalities bj+
∑m

i=1 cji ·xji ≥ twh
, bj+

∑m
i=1 cji ·xji ≤

twh+1 + zh and awh
(bj +

∑m
i=1 cji · xji) + bwh

= xj where zh is a fresh variable.

The following is straightforward: (I) Φw is linear in the size of Φ. (II) An optimal solution for the

minimization of z = (z1, . . . , zl) over the constraints given by Φw where all zi are strictly negative is

a witness for a solution of Φ. (III) If Φ has a solution, then there is w ∈ {0, . . . k − 1}l such that Φw

has a solution. This can be created as follows. Let x be a solution to Φ. For each PWL-equality χh as

above, let wh = j if the active linear part is the j-th. Then x is also a solution for Φw. Thus, PWL-

linear programs can be solved in nondeterministic polynomial time by guessing w, constructing the

linear program Φw, finding the optimal solution minimizing z and checking if all zi are negative. ⊓⊔

Using the definition of a PWL-linear program and the corresponding lemma at hand, we are set to

prove NP-membership of REACH.

Theorem 3.3. REACH is in NP.

Proof:

Let I = (N,ϕin, ϕout). We construct a PWL-linear program ΦI of size linear in |N | + |ϕin| + |ϕout|
solvable if and only if there is a solution for I . The PWL-linear program ΦI contains the following

(in-)equalities:

• ϕin and ϕout (with each conjunct seen as one (in-)equality) and

• for each node vli computing the function f(
∑

j c
(l−1)
ji y(l−1)j+bli) it contains the PWL-equality

f(
∑

j c
(l−1)
ji y(l−1)j + bli) = yli.

The claim on the size of ΦI should be clear. Moreover, note that a solution x to I can be extended

to an assignment x′ of real values at every node of N , including values y for the output nodes of N

s.t., in particular N(x) = y. Then x
′ is a solution to ΦI . Likewise, a solution to ΦI can be turned

into a solution to I by projection to the input variables. Hence, REACH polynomially reduces to the

problem of solving PWL-linear programs which, by Lemma 3.2 is in NP. ⊓⊔

Taking a look at our translation from REACH to PWL-linear programs, one could think that The-

orem 3.3 can also be proven by translating REACH instances into mixed-integer linear programs

(MILP) [16]. Roughly speaking, an MILP is a LP with additional integer variables. Deciding feasabil-

ity of MILP is known to be NP-complete [17]. Translating REACH instance into MILP works sim-

ilarly as described in the proof of Theorem 3.3 up to the point of PWL nodes. For example, con-

sider a node vj computing the function ReLU(bj +
∑m

i=1 cji · xji). First, we add the (in-)equalities

bj +
∑m

i=1 cji · xji = yj − sj, yj ≥ 0 and sj ≥ 0 to our MILP. Second, we add the inequalities

yj ≤M+
j (1− zj) and sj ≤M−

j zj where zj is an integer variable and M+
j ,M

−
j are sufficiently large

positive constants such that −M−
j ≤ bj +

∑m
i=1 cji · xji ≤ M+

j holds. This ensures that zj = 0 cor-

responds to vj being active and zj = 1 corresponds to vj being inactive. For general PWL activation

M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN 247

functions the idea is the same, making use of switch variables like zj and bounds like M−,M+ in a

more elaborate fashion. However, this translation requires that suitable bounds exist for each node,

which in general is only guaranteed if each input dimension is bounded by the input specification.

As stated in the beginning, our proof implies the polynomial bound missing in the claim of Katz

et al. We recall the missing argument in [7]: it is not obvious, that there is an input x for each positive

REACH instance, witnessing the validity I , which is polynomial bounded by the size of I . Taking a

look at the proof of Lemma 3.2, we see that the solution of a PWL-linear program Φ is determined by

the solution of a regular linear program Φw linear in the size of Φ. Furthermore, from the definition

of neural networks and specifications follows that all coefficients occurring in Φw are rational. Then,

we can use a standard result about linear programs: if a linear program L with rational coefficients

has an optimal solution then it has an optimal one of size polynomially bounded by L (for example,

see Theorem 4.4 in [18]). Thus, our proof of Lemma 3.2 implies that each PWL-linear program,

resulting from the translation of a REACH instance, has a solution of polynomial size and, thus, using

the arguments of the proof of Theorem 3.3, we retrieve the missing bound.

Corollary 3.4. Let I = (N,ϕin, ϕout) be a REACH instance. If I is a positive instance of REACH,

then there is an input x satisfying ϕin such that N(x) satisfies ϕout and the size of x is polynomially

bounded by the size of I .

Additionally, it is interesting to point out the role of witnesses for positive instances of the REACH

problem: the arguments leading to the result of Theorem 3.3 above show that an assignment to the

PWL nodes determining their active linear part serves as a witness. This immediately yields a poly-

nomial fragment of REACH.

Corollary 3.5. REACH for NN with a bounded number of nodes with PWL activation is decidable in

polynomial time.

3.2. NP-hardness

A natural candidate for a lower bound proof for REACH is a polynomial reduction from 3SAT, as

attempted by Katz et al. [7] and Ruan et al. [11]. The underlying idea is to encode the structure of a

3SAT formula in a neural network and the existence of a satisfying assignment for this formula in the

corresponding input- and output-specifications. To ease the definition of the NN resulting from this

reduction Katz et al. introduced the notion of gadgets.

Definition 3.6. Let ε ∈ R be a small constant and n ∈ N. We call NN, which compute one of the

following functions, gadgets:

not(x) = id(1− x)

or (x1, x2, x3) = id(1−ReLU (1− x1 − x2 − x3))

andn(x1, . . . , xn) = id(x1 + · · · + xn)

bool ε(x) = id(ReLU (ε− x) + ReLU (x+ ε− 1))

248 M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN

−1
1

not

−1

−1

−1

1

−1

or

1

ε

ε − 1

−1

1

1

1

boolε
...

andn

1

1

Figure 2. Gadgets used in the reduction from 3SAT to REACH. A non-weighted outgoing edge of a gadget is

connected to a weighted incoming edge of another gadget in the actual construction or is considered an output

of the overall neural network.

The obvious candidates for these gadgets are visualized in Figure 2. The name of the first three

gadgets gives a direct indication of their intended properties.

Lemma 3.7. Let n ∈ N be a natural number and all ri ∈ {0, 1}. It holds that

1. not(1) = 0 and not(0) = 1,

2. or (0, 0, 0) = 0,

3. or (r1, r2, r3) = 1 if and only if at least one ri is equal to 1,

4. andn(r1, . . . , rn) = n if and only if all ri are equal to 1.

Proof:

These are straightforward implications of the functions computed by the respective gadgets. ⊓⊔

To understand how the reduction works, we take the 3SAT instance ψ = (X0∨X1∨X2)∧(¬X0∨
X1 ∨ ¬X2) ∧ (¬X1 ∨ X2 ∨ X3) with four propositional variables and three clauses as an example.

Furthermore, for the moment we assume that NN can take values from {0, 1} as inputs only. Then,

the resulting network Nψ : R4 → R computes

and3(or (x0, x1, x2), or (not(x0), x1,not(x2)), or (not(x1), x2, x3))

and is visualized in Figure 3. Note that Nψ includes redundant identity nodes matching included not-

gadgets in order to ensure a layerwise structure. The function computed byNψ is described as follows.

Each of the three or -gadgets together with their connected not -gadgets and id-nodes represents one of

the clauses in ψ. From case (3) in Lemma 3.7 we obtain that, if an or -gadget outputs 1, then its current

input, viewed as an assignment to the propositional variables in ψ, satisfies the corresponding clause.

The and3-gadget simply sums up all of its inputs and, with case (4) of Lemma 3.7, we get that y is

M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN 249

equal to 3 iff each or -gadget outputs one. Therefore, with the output specification ϕout(y) := y = 3
and trivial input specification ϕin = ⊤, we get a reduction from 3SAT to REACH, provided that input

values are externally restricted to {0, 1}.

x0

x1

x2

x3

y

−1
1

−1
1

−1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

Figure 3. NN resulting from the reduction of the 3SAT-formula (X0 ∨ X1 ∨ X2) ∧ (¬X0 ∨ X1 ∨ ¬X2) ∧
(¬X1 ∨X2 ∨X3) under the assumption that NN are defined over {0, 1} only.

But NN are defined for all real-valued inputs, so we need further adjustments to make the reduction

complete. First, note that it is impossible to write an input specification ϕin(x) which is satisfied by

x iff x ∈ {0, 1}n because {0, 1}n is not a hyperrectangle in Rn and conjunctions of inequalities only

specify hyperrectangles. This is where we make use of bool ε-gadgets. Katz et al. claim the following:

if x ∈ [0; 1] then we have z ∈ [0; ε] iff x ∈ [0; ε] or x ∈ [1− ε; 1]. Thus, by connecting a bool ε-gadget

to each input xi in Nψ including adding further identity nodes for ensuring a layerwise structure and

using the simple specifications ϕin :=
∧3
i=0 xi ≥ 0 ∧ xi ≤ 1 and ϕout :=

∧3
i=0 zi ≥ 0∧ zi ≤ ε ∧ y ≥

3(1 − ε) ∧ y ≤ 3 we would get a correct translation of ψ. Note that the constraint on y is no longer

y = 3 as the valid inputs to Nψ , determined by the bool ε-gadgets and their output constraints, are not

exactly 0 or exactly 1.

However, the claim about bool ε-gadgets is wrong. Consider a bool ε-gadget with very small ε such

that it is safe to assume ε < 2ε < 1 − ε. Then, for x = 2ε we have z = 0, which contradicts the

claim. In fact, it can be shown that for each ε ≤ 1
2 and each input x ∈ [0; 1] the output z is an element

of [0; ε]. Clearly, this is not the intended property of these gadgets. But with some adjustments to the

bool ε-gadgets we can make the reduction work.

Lemma 3.8. Let bool (x) = id
(
ReLU

(
1
2 − x

)
+ ReLU

(
x− 1

2

)
− 1

2

)
be a gadget. It holds that

bool (x) = 0 if and only if x = 0 or x = 1.

Proof:

Note that the function bool (x) is equivalent to

bool (x) =

{

−x if x < 1
2

x− 1 otherwise.

250 M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN

From this we immediately get that bool (x) = 0 if x = 0 or x = 1, and bool (x) 6= 0 for all other

values of x. ⊓⊔

Remember that id and ReLU are PWL functions. Now, replacing all bool ε-gadgets with bool -

gadgets in the construction and using the simple specifications ϕin = ⊤ and ϕout =
∧n−1
i=0 zi = 0∧y =

m for a 3SAT-instance with n propositional variables and m clauses, we get a correct reduction from

3SAT to REACH.

Theorem 3.9. REACH is NP-hard.

One could argue that a network N resulting from the reduction of 3SAT is not a typical feed-

forward neural network. The reason is that it is common to use the same activation function across

all layers , which is not the case for NN resulting from this reduction as they include both ReLU- and

identity nodes in hidden layers. However, we can modify the reduction with the help of the following

lemma.

Lemma 3.10. Let N be a NN and v be an identity node in N computing
∑k

i=1 cixi + b and which

is connected with weights c′1, . . . , c
′
l to nodes in a following layer of N . We can replace v with two

ReLU nodes v′ and v′′ such that the resulting network N ′ computes the same function as N .

Proof:

Let N and v be as stated above. Then, v′ computes ReLU (
∑k

i=1 cixi + b) and v′′ computes the

function ReLU (
∑k

i=1 −cixi − b). Furthermore, v′ is connected with weights c′1, . . . , c
′
l to the same

nodes as v and v′′ with weights −c′1, . . . ,−c
′
l. It is straightforward that the resulting network N ′ still

computes the same function. ⊓⊔

We can use Lemma 3.10 to adjust the gadgets of Figure 2, resulting in gadgets using ReLU-activations

only, leading to an even stronger lower bound.

Corollary 3.11. REACH is NP-hard if restricted to instances with networks using ReLU activations

only.

4. NP-hardness holds in very restricted cases already

Neural networks and specifications resulting from the reduction of 3SAT to REACH presented in the

previous section are already quite restricted; the NN possess only a small, fixed number of layers and

output size of one and the specifications are simple. In this section we strengthen the NP-hardness

result by constructing even simpler classes of instances for which REACH is NP-hard already. Our

main focus is on simplifying the structure of the NN rather than the specifications. However, when

trying to simplify the networks, it is tempting to increase complexity in the specifications. To avoid

this, we aim for keeping the specifications simple.

Section 4.1 studies the possibility to make the NN structurally as simple as possible; Sect. 4.2

shows that requirements on weights and biases can be relaxed whilst retaining NP-hardness.

M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN 251

4.1. Neural Networks of a simple structure

We consider NN with just one hidden layer of ReLU nodes and an output dimension of one. In the

same way as in the previous section, we can establish a reduction from 3SAT.

Theorem 4.1. REACH is NP-hard for NN with output dimension one, a single hidden layer and simple

specifications.

Proof:

Let ψ be a 3SAT formula with n propositional variables Xi and m clauses lj . We slightly modify the

construction of a network N in the proof of Theorem 3.9. First, we remove the last identity node of

all bool -gadgets in N and directly connect the two outputs of their ReLU nodes to the andn-gadget,

weighted with 1. Additionally, we merge not-gadgets and or -gadgets in N . Consider an or -gadget

corresponding to some clause lj . The merged gadget has three inputs xj0 , xj1 , xj2 and computes

ReLU
(
1−

∑2
k=0 fj(xjk)

)
where fj(xjk) = xjk if Xjk occurs positively in lj and fj(xjk) = 1− xij

if it occurs negatively. It is straightforward to see that the output of such a gadget is 0 if at least

one positively (resp. negatively) weighted input is 0, resp. 1, and that the output is 1 if all positively

weighted inputs are 1 and all negatively weighted inputs are 0. These merged gadgets are connected

with weight −1 to the andn-gadget. Once done for all bool -, not- and or -gadgets, the resulting

network N ′ computes the function

id

(
∑n−1

i=0 ReLU
(
1
2 − xi

)
+ ReLU

(
xi −

1
2

)
−

∑m−1
i=0 ReLU

(
1−

∑2
j=0 fi(xij)

))

.

Note thatN ′ has input dimension n, a single hidden layer of 2n+mReLU nodes and output dimension

1 which we refer to by y.

Now take the simple specifications ϕin =
∧n−1
i=0 xi ≥ 0 ∧ xi ≤ 1 and ϕout = y = n

2 . We argue

that the following holds for a solution to (N ′, ϕin, ϕout): (I) all xi are either 0 or 1, and (II) the output

of each merged or -gadget is 0. To show (I), we assume the opposite, i.e. there is a solution with

xk ∈ (0; 1) for some k. This implies that
∑n−1

i=0 ReLU
(
0, 12 − xi

)
+ReLU

(
0, xi −

1
2

)
< n

2 as for all

xi ∈ [0; 1] we have ReLU
(
0, 12 − xi

)
+ ReLU

(
0, xi −

1
2

)
≤ 1

2 , and for xk we have ReLU
(
0, 12 −

xk
)
+ReLU

(
0, xk−

1
2

)
< 1

2 . Furthermore, we must have −
∑m−1

i=0 ReLU
(
0, 1−

∑2
j=0 f(xij)

)
≤ 0.

Therefore, this cannot be a solution for (N ′, ϕin, ϕout) as it does not satisfy y = n
2 .

To show (II), assume there is a solution such that one merged or -gadget outputs a value different

from 0. Then, −
∑m−1

i=0 ReLU
(
0, 1−

∑2
j=0 f(xij)

)
< 0 which in combination with (I) yields y < n

2 .

Again, this is a contradiction.

Putting (I) and (II) together, a solution for (N ′, ϕin, ϕout) implies the existence of a model for ψ.

For the opposite direction assume that ψ has a model I . Then, a solution for (N ′, ϕin, ϕout) is given

by xi = 1 if I(Xi) is true and xi = 0 otherwise. ⊓⊔

We can use Lemma 3.10 to argue that the same holds for pure ReLU-networks. The idea here is that

replacing identity- with ReLU nodes does increase the layer sizes of a NN but not the depth of it.

In the previous section, especially in the arguments of Corollary 3.5, we pointed out that the

occurrence of ReLU nodes is crucial for the NP-hardness of REACH. Thus, it is tempting to assume

that any major restriction to these nodes leads to efficiently solvable classes.

252 M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN

Theorem 4.2. REACH is NP-hard for NN where all ReLU nodes have at most one non-zero weighted

input and simple specifications.

Proof:

We prove NP-hardness via a reduction from 3SAT. Let ψ be a 3SAT formula with n propositional

variables Xi and m clauses lj . The reduction works in the same way as in the proof of Theorem 3.9,

but we use plain identity-nodes instead of or -gadgets and we do not include an andn-gadget. The

resulting network Nψ : Rn → Rm+1 computes the function

(

id

(
∑3

i=1 f1(x1i)
)

, . . . , id
(
∑3

i=1 fm(xmi)
)

, id (
∑n

i=1 bool (xi))
)

,

where fj(x) is either id(x) or not(x), determined by the j-th clause of ψ. Furthermore, the input

specification remains ϕin = ⊤ and we set the output specification to ϕout =
∧m
j=1 yj ≥ 1 ∧ z = 0,

where yj is the output of the j-th identity-node corresponding to the j-th clause of ψ and z is the

output corresponding to the sum of all bool -gadgets. First, note that the only ReLU nodes occurring in

Nψ are inside the bool -gadgets, which according to Lemma 3.8 have only one non-zero input. Second,

note that the specifications ϕin and ϕout are simple. Now, if z = 0 then the value of an output yj is

equivalent to the number of inputs equal to 1. The remaining argument for the correctness of this

reduction is the same as in the original NP-hardness proof. ⊓⊔

This result does not hold for the case of pure ReLU networks as the resulting networks include

identity-nodes. Additionally, we cannot make use of Lemma 3.10 here as it would result in NN

including ReLU nodes with at least three inputs. However, we can derive a slightly weaker result for

the pure ReLU case by modifying the reduction again.

Theorem 4.3. REACH is NP-hard for NN without identity-nodes and where all nodes have at most

two non-zero weighted inputs and simple specifications.

Proof:

The proof works similar to the original NP-hardness argument but we use adjusted or -gadgets. Such a

modified gadget or ′ : R3 → R computes the function or ′(x1, x2, x3) = ReLU (1−ReLU (ReLU (1−
x1 − x2) − x3)). It is not hard to see that an or ′-gadget fullfills the same property as an or -gadget,

namely that for xi ∈ {0, 1} its output is 1 if at least one xi is 1 otherwise its 0. Furthermore, we can

see that this function can be represented by a gadget where all ReLU nodes have two non-zero inputs

only. The remaining identity-nodes in other gadgets can safely be eliminated using Lemma 3.10. ⊓⊔

4.2. Neural Networks with simple parameters

One could argue that the NP-hardness results of Sections 3 and 4.1 are only of limited relevance as

the constructed NN use very specific combinations of weights and biases, namely −1, 0, 12 and 1,

which may be unlikely to occur in this exact combination in real-world applications. To conquer such

concerns, we show that REACH is already NP-hard in cases where only very weak assumptions are

made on the set of occurring weights and biases.

M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN 253

For P ⊆ Q let NN (P) be the class of NN which only use weights and biases from P . Our main

goal is to show that NP-hardness already occurs when P contains three values: 0, some positive and

some negative value. We make use of the same techniques as in Section 3 and start with defining

further but similar gadgets.

Definition 4.4. Let c, d ∈ Q>0. We call NN, which compute one of the following functions, gadgets:

disc(x) = id (d− cReLU (−cx)− cReLU (dx))

eq0(x1, x2) = id(−cx1 − cx2)

norm(x) = id (−c id (d− cReLU (−cx)))

norm(x) = id (−cReLU (−c id(−cx)))

or<1(x1, x2, x3) = id
(
[d · c4]− cReLU

(
[d · c4] +

∑3
i=1 −cxi

))

or≥1(x1, x2, x3) = id
(
[d · c4]− cReLU

(
[d · c2] +

∑3
i=1 −cxi

))

andn(x1, . . . , xn) = id(dx1 + · · ·+ dxn)

where [d · cn] with even n is an abbreviation for −c · id(−c · id(· · · (−c · id
︸ ︷︷ ︸

n

(d)) · · ·)).

The natural candidates for these gadgets are visualized in Figure 4. Similar to the gadgets defined in

Section 3 each of the above ones fullfills a specific purpose.

...

and

−c

d

−c

−c

disc

d
−c

−c

eq0

−c

norm

−c
d

−c −c

norm

−c −c

d

d

−c

or<1

−c
−c

−c

−c

−c
d

−c

−c
d

−c−c

−c

or≥1

−c
−c

−c

−c

−c

−c

−c
d

−c−c

−c−c
d

Figure 4. Gadgets used to show that REACH is NP-hard if restricted to NN from NN ({−c, 0, d}). A non-

weighted outgoing edge of a gadget is connected to a weighted incoming one of another gadget in the actual

construction or are considered as outputs of the overall neural networks.

Lemma 4.5. Let c, d ∈ Q>0. The following statements hold:

1. disc(r) = 0 if and only if r = − d
c2

or r = 1
c
.

254 M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN

2. eq0(r1, r2) = 0 if and only if r1 = −r2.

3. norm(− d
c2
) = 0 and norm(1

c
) = −dc.

4. norm(d
c2
) = −dc and norm(−1

c
) = 0.

5. or<1(0, 0, 0) = dc4 − dc5 and or≥1(0, 0, 0) = dc4 − dc3

6. If all ri ∈ {−dc, 0} and c < 1 then or<1(r1, r2, r3) = dc4 if at least one ri = −dc.

7. If all ri ∈ {−dc, 0} and c ≥ 1 then or≥1(r1, r2, r3) = dc4 if at least one ri = −dc.

Proof:

We start with (1) and make a case distinction. If r ≤ 0 then disc(r) = d + c2r. It is easy to see that

this becomes zero if and only if r = − d
c2

. The next case is r = 0 which leads to disc(0) = d. And

for the last case r > 0 we get that disc(r) = d− cdr. Again, it is easy to see that this becomes zero if

and only if r = 1
c
.

The remaining properties are straightforward implications of the function computed by the respec-

tive gadgets. ⊓⊔

From cases (6) and (7) of Lemma 4.5 we can see that the properties of or≥1 and or<1 are the same,

the only difference is that or≥1 fullfills it for the case that c ≥ 1 and or<1 fullfills it in the c < 1 case.

Let ψ be some 3SAT-formula. We construct a network Nψ,c,d, using the gadgets above, which is

later used in a reduction from 3SAT to REACH restricted to NN using only −c, 0 and d as weights or

bias.

Definition 4.6. Let ψ be a 3SAT-formula with n propositional variables Xi and m clauses, c, d ∈
Q>0 and i ∈ {1, . . . , n}. The network Nψ,c,d computes a function R2n → R2n+1 with two input

dimensions xi and xi per propositional variable Xi. We describe the structure of Nψ,c,d by defining

the function computed for each output dimension:

zi = id(−c id(−c id(−c id(−c id(−c disc(xi))))))

ei = id(−c id(−c id(−c id(−c id(−c id(−c eq0(xi, xi)))))))

y =

{

andm
(
or≥1(id(fi1

1
), id(fi1

2
), id(fi1

3
), . . . , or≥1(id(fim

1
), id(fim

2
), id(fim

3
))
)

, if c ≥ 1

andm
(
or<1(id(fi1

1
), id(fi1

2
), id(fi1

3
), . . . , or<1(id(fim

1
), id(fim

2
), id(fim

3
))
)

, otherwise,

where f
i
j

k

= norm(xi) if the variable Xi is at the k-th position in the j-th clause and occurs positively

and f
i
j

k

= norm(xi) if it occurs negatively.

Note that the redundant identity nodes ensure a layerwise structure and that each such network Nψ,c,d

has eight layers. Moreover, from the definition of the gadgets and the construction above follows that

Nψ,c,d ∈ NN ({−c, 0, d}).

With this definition at hand, we are suited to prove our main statement of this section. To keep

the proof clear and w.l.o.g., we do not distinguish or≥1- and or<1-gadgets and simply call them

or -gadgets.

M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN 255

Theorem 4.7. Let c, d ∈ Q>0. REACH restricted to neural networks from NN ({−c, 0, d}) and simple

specifications is NP-hard.

Proof:

We prove the result above via reduction from 3SAT. Take a 3SAT-formula ψ with n propositional

variables Xi and m clauses lj and consider an REACH-instance (Nψ,c,d, ϕin, ϕout) with Nψ,c,d defined

above, ϕin = ⊤ and ϕout =
∧n
i=1 zi = 0 ∧ ei = 0 ∧ y = m · d2c4. Obviously, these specifications are

simple and clearly (Nψ,c,d, ϕin, ϕout) can be constructed in polynomial time in the size of ψ.

For the correctness of the construction we start with assuming that ψ has a model I . We claim

that a solution for (Nψ,c,d, ϕin, ϕout) is given by xi =
1
c

if I(Xi) is true, xi = − d
c2

otherwise, and

xi = −xi. Note that ϕin is trivially satisfied by this assignment. So apply these inputs to Nψ,c,d.

According to cases (1) and (2) of Lemma 4.5, all outputs zi and ei are 0. Thus, it is left to argue that

y = m · d2c4. Consider one of the or -gadgets occurring in Nψ,c,d, corresponding to a clause lj . Its

inputs are given by the norm- and norm-gadgets connected to the inputs xi, resp. xi corresponding to

the Xi occurring in lj . According to cases (3) and (4) of Lemma 4.5, these inputs are either 0 or −dc.
If lj is satisfied by I then there is at least one input to the or -gadget that is equal to −dc. From the

fact that ψ is satisfied by I and the cases (6) and (7) of Lemma 4.5 we get that each or -gadget outputs

dc4. Therefore, the output y of Nψ,c,d is m · d2c4. This means that ϕout is valid as well.

Consider now the converse direction. A solution for (Nψ,c,d, ϕin, ϕout) must yield that all xi are 1
c

or − d
c2

and xi = xi as all zi and ei have to equal 0. Therefore the output of each norm- and norm

in Nψ,c,d is either −dc or 0. This implies that all m or -gadgets have to output dc4 as y must equal

m · d2c4. According to cases (5), (6) and (7) of Lemma 4.5, each or -gadget has at least one input that

is −dc which in turn means that there is at least one indirectly connected xi or xi that is 1
c

resp. d
c2

.

Thus, ψ is satisfied by setting Xi true if xi =
1
c

and false if xi = − d
c2

. ⊓⊔

If d = c and we allow for arbitrary specifications, we can show that 0 as a value for weights or

biases is not required to keep the lower bound of REACH.

Theorem 4.8. Let c ∈ Q>0. REACH is NP-hard restricted to neural networks from NN ({−c, c}) and

arbitrary specifications.

Proof:

This is done in the same way as the proof of Theorem 4.7 with some slight modifications to the

resulting NN and specifications. We only sketch this reduction by describing the differences compared

to the instances (Nψ,c,c, ϕin, ϕout) resulting from the reduction used in Theorem 4.7. Our goal is

to eliminate all zero weights and bias in Nψ,c,c while ensuring that the modified network N ′
ψ,c,c ∈

NN ({−c, c}) has the same functional properties. Therefore, we split the argument into two parts:

first, we argue how to eliminate zero weights, and second, we argue how to eliminate zero bias.

To get rid of zero weights, we add for each xi the conjunct xi = −xi to the input specification.

As a side effect, this makes the usage of eq0-gadgets obsolete, though we do not include them and

the following chain of id-nodes and we do not include
∧n−1
i=0 ei = 0 in the output specification as

well. Now, consider the weights between the input and the first hidden layer of N ′
ψ,c,c. If the inputs

256 M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN

xi and xi were originally weighted with zero in some node in the first hidden layer of Nψ,c,c, we set

the weights corresponding to xi and xi to be c in N ′
ψ,c,c. In combination with the input constraint

xi = −xi this is equal to weighting xi and xi with zero. If xi (xi) was weighted with c in Nψ,c,c, we

set the weight of xi (xi) to be −c and if it was weighted with −c, we set the weight of its counterpart

to be c in N ′
ψ,c,c. This leads to the case that all non-zero inputs of a node in the first hidden layer are

doubled compared to the same inputs in Nψ,c,c. Consider now the weights between two layers l and

l + 1 with l > 0 of Nψ,c,c. For each node in l we add an additional node in the layer l of N ′
ψ,c,c with

the same input weights. If the output of a node in layer l was originally weighted with zero in Nψ,c,c

then we weight it with c and the corresponding output of its copy with −c in N ′
ψ,c,c. If the output

was originally weighted with weight c (−c) in Nψ,c,c then we weight the output of the copy node

with c (−c) N ′
ψ,c,c, too. As before, this doubles the input values at the nodes in layer l + 1 of N ′

ψ,c,c

compared to Nψ,c,c, which means that in comparison to Nψ,c,c the output value of N ′
ψ,c,c is multiplied

by 27. Thus, we have to change the output constraint of y to be y = 27(m · c6).

To get rid of zero bias, we add the inputs xbias,1, xbias,1, . . . , xbias,7, xbias,7 to N ′
ψ,c,c and the con-

straints xbias,i = −
∑i−1

j=0
1

2j+1cj
and xbias,i = −xbias,i to the input specification. Next, we set the bias

of all nodes which originally had a zero bias to be c. For xbias,i with i > 1 we add a chain of i − 1
identity nodes each with bias c and interconnected with weight c and connect this chain with weight

c to xbias,i and −c to xbias,i. All other incoming weights of this chain are assumed to be zero which is

realized using the same techniques as described in the previous paragraph. Now, if a node in the first

hidden layer of Nψ,c,c has a zero bias in Nψ,c,c, we give weight c to the input xbias,1 and −c to xbias,1

in N ′
ψ,c,c. If the input specification holds then the bias of the node plus these inputs sum up to zero. If

a node in some layer l ∈ {2, . . . , 7} has a zero bias in Nψ,c,c, we give weight c to the output of the last

node of the chain corresponding to xbias,l and its copy, resulting from the zero weight elimination of

the previous paragraph. Again, if the input specification holds, the bias value of this node is nullified.

In summary, we get the specifications ϕ′
in =

∧n
i=1 xi = xi ∧

∧7
i=1 xbias,i = −

∑i−1
j=0

1
2j+1cj

∧

xbias,i = −xbias,i and ϕ′
out =

∧n
i=1 zi = 0∧ y = 27(m · c6). Note that ϕ′

in is no longer simple and that

N ′
ψ,c,c ∈ NN ({−c, c}). ⊓⊔

5. Conclusion and outlook

We investigated the computational complexity of the reachability problem for NN with PWL acti-

vations, including the common activation function ReLU, and input/output specifications given by

conjunctions of linear inequalities over the respective input/output dimensions. We revised the origi-

nal proof of its NP-completeness, fixing flaws in both the upper and lower bound, and showed that the

parameter driving NP-hardness is the number of PWL nodes. Furthermore, we showed that REACH

is difficult for very restricted classes of small neural networks already, respectively two parameters of

different signum and 0 occurring as weights and biases suffice for NP-hardness. This indicates that

finding non-trivial classes of NN and specifications with practical relevance and polynomial REACH

is unlikely.

Additionally, modern uses of deep learning techniques limit the practical applicability of findings

about REACH even more. There are two reasons for this. On the one hand, the deep learning frame-

M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN 257

work circumvents far more techniques and models than our considered NN model. On the other hand,

usual deep learning applications are concerned with data of very high complexity and dimensional-

ity so that simple linear specifications as they are considered here are hardly expressive enough for

formalising meaningful properties of the input data and possibly also the output values.

The former concern is tackled by extending the analysis to similar reachability problems of differ-

ent models, like Convolutional Neural Networks (CNN) [19] or Graph Neural Networks (GNN) [20].

The former incorporates different kinds of layers like convolutional layers or pooling layers. However,

in the classical sense, these are just layers consisting of nodes with PWL activations like ReLU, which

makes it straightforward to argue that reachability for CNN is NP-complete, too. The case of GNN

is more challenging as these are neural network based models which compute functions over graphs.

First results on this matter are provided in [21], showing that there are computational limits for the

possibility of formal verifying reachability properties of common GNN models.

The latter concern is best understood by example. Consider the problem REACH in the context

of an image classification task like classifying whether an x-ray picture shows a broken or healthy

bone. It immediately becomes clear that our current definition of specifications is not suited to express

properties like “the picture shows a bone with a hairline fracture”. But expressing such properties is

obviously desired for tasks like this, in order to rule out misclassification of severely damaged bones.

Thus, we need specifications of higher expressibility which directly leads to the question whether

the upper complexity bound, namely the membership to NP, holds for the reachability problem with

specifications extended in a particular way. Starting from our current definition of specifications, a

natural extension is allowing for full boolean logic with linear inequalities as propositions, which

means adding disjunction and negation operators to our current definition. It is not hard to see that

adding disjunction does not change the upper bound. The idea is that we guess for each occurring

disjunction which disjunct is satisfied and include this guess in the witness for the NP membership.

Obviously, this part of the witness is polynomially bounded by the number of disjunctions in the spec-

ifications and therefore by the size of the specifications. As soon as we allow for disjunctions, adding

the negation operator does not harm the upper bound either. We can bring each such specification

into a normal form (for example conjunctive normal form) where all negations are directly in front of

propositions like ¬(x ≤ 2) which we interpret as x > 2. We provided an argument how to handle

strict inequalities in the proof of Lemma 3.2. In summary, full boolean expessibility in the specifica-

tions does not change the upper bound for the reachability problem. The obvious next step is adding

existential and universal quantifiers to the specifications. Allowing for pure existential quantification

in the specifications just leads to an equivalent reformulation of the reachability problem itself. Cur-

rently, REACH is formulated such that it existentially quantifies over the free variables in the input and

output specifications. Using existential quantifiers, a possible reformulation leads to a normal form of

specifications like ϕ = ∃x1.∃x2.x1−x2 ≥ 3∧N(x1, x2) ≥ 0 where N is the considered NN and the

question is whether ϕ is satisfiable. It is not hard to see that such a reformulation does not harm the

membership in NP. Such specifications with pure universal quantification are not more difficult then,

either, because of ∀x.ψ ≡ ¬∃x.¬ψ. Hence, we simply get that reachability with purely universal

specifications is Co-NP-complete. It remains to be seen whether specifications of certain quantifier

alternation depth will yield NN-reachability problems that are complete for the corresponding classes

in the polynomial hierarchy [22].

258 M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN

References

[1] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks.

Commun. ACM, 2017. 60(6):84–90. doi:10.1145/3065386.

[2] Hinton G, Deng L, Yu D, Dahl GE, Mohamed Ar, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath

TN, et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of

Four Research Groups. IEEE Signal Process. Mag., 2012. 29(6):82–97. doi:10.1109/MSP.2012.2205597.

[3] Grigorescu SM, Trasnea B, Cocias TT, Macesanu G. A survey of deep learning techniques for autonomous

driving. J. Field Robotics, 2020. 37(3):362–386. doi:10.1002/rob.21918.

[4] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken

B, Sánchez CI. A survey on deep learning in medical image analysis. Medical Image Anal., 2017. 42:60–

88. doi:10.1016/j.media.2017.07.005.

[5] Dixon M, Klabjan D, Bang JH. Classification-based financial markets prediction using deep neural net-

works. Algorithmic Finance, 2017. 6(3-4):67–77. doi:10.3233/AF-170176.

[6] Huang X, Kroening D, Ruan W, Sharp J, Sun Y, Thamo E, Wu M, Yi X. A survey of safety and trustwor-

thiness of deep neural networks: Verification, testing, adversarial attack and defence, and interpretability.

Comput. Sci. Rev., 2020. 37:100270. doi:10.1016/j.cosrev.2020.100270.

[7] Katz G, Barrett CW, Dill DL, Julian K, Kochenderfer MJ. Reluplex: An Efficient SMT Solver for Ver-

ifying Deep Neural Networks. In: Majumdar R, Kuncak V (eds.), Computer Aided Verification - 29th

International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I, volume

10426 of Lecture Notes in Computer Science. Springer, 2017 pp. 97–117. doi:10.1007/978-3-319-63387-

9 5.

[8] Ehlers R. Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks. In: D’Souza D,

Kumar KN (eds.), Automated Technology for Verification and Analysis - 15th International Symposium,

ATVA 2017, Pune, India, October 3-6, 2017, Proceedings, volume 10482 of Lecture Notes in Computer

Science. Springer, 2017 pp. 269–286. doi:10.1007/978-3-319-68167-2 19.

[9] Narodytska N, Kasiviswanathan SP, Ryzhyk L, Sagiv M, Walsh T. Verifying Properties of Binarized

Deep Neural Networks. In: McIlraith SA, Weinberger KQ (eds.), Proceedings of the Thirty-Second

AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial

Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence

(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. AAAI Press, 2018 pp. 6615–6624. URL

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16898.

[10] Bunel R, Turkaslan I, Torr PHS, Kohli P, Mudigonda PK. A Unified View of Piecewise Linear Neural

Network Verification. In: Bengio S, Wallach HM, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R

(eds.), Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information

Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. 2018 pp. 4795–4804.

URL https://proceedings.neurips.cc/paper/2018/hash/be53d253d6bc3258a8160556dda

3e9b2-Abstract.html.

[11] Ruan W, Huang X, Kwiatkowska M. Reachability Analysis of Deep Neural Networks with Provable

Guarantees. In: Lang J (ed.), Proceedings of the Twenty-Seventh International Joint Conference on Ar-

tificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. ijcai.org, 2018 pp. 2651–2659.

doi:10.24963/ijcai.2018/368.

M. Sälzer and M. Lange / Reach. Is NP-Complete Even for the Simplest NN 259

[12] Ruan W, Huang X, Kwiatkowska M. Reachability Analysis of Deep Neural Networks with Provable

Guarantees. CoRR, 2018. abs/1805.02242. 1805.02242, URL http://arxiv.org/abs/1805.02242.

[13] Katz G, Barrett CW, Dill DL, Julian K, Kochenderfer MJ. Reluplex: a calculus for reasoning about deep

neural networks. Form Methods Syst Des, 2021. doi:10.1007/s10703-021-00363-7.

[14] Sälzer M, Lange M. Reachability is NP-Complete Even for the Simplest Neural Networks. In: Reachabil-

ity Problems - 15th International Conference, RP 2021, Liverpool, UK, October 25-27, 2021, Proceedings,

volume 13035 of Lecture Notes in Computer Science. Springer, 2021 pp. 149–164. doi:10.1007/978-3-

030-89716-1 10.

[15] Karmarkar N. A new polynomial-time algorithm for linear programming. Comb., 1984. 4(4):373–396.

doi:10.1007/BF02579150.

[16] Akintunde M, Lomuscio A, Maganti L, Pirovano E. Reachability Analysis for Neural Agent-Environment

Systems. In: Thielscher M, Toni F, Wolter F (eds.), Principles of Knowledge Representation and Rea-

soning: Proceedings of the Sixteenth International Conference, KR 2018, Tempe, Arizona, 30 Octo-

ber - 2 November 2018. AAAI Press, 2018 pp. 184–193. URL https://aaai.org/ocs/index.php/

KR/KR18/paper/view/17991.

[17] Karp RM. Reducibility Among Combinatorial Problems. In: Miller RE, Thatcher JW (eds.), Proceedings

of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM

Thomas J. Watson Research Center, Yorktown Heights, New York, USA, The IBM Research Symposia

Series. Plenum Press, New York, 1972 pp. 85–103. doi:10.1007/978-1-4684-2001-2 9.

[18] Korte B, Vygen J. Combinatorial Optimization. Springer Berlin, Heidelberg, 2006. ISBN 978-3-540-

29297-5. doi:10.1007/3-540-29297-7.

[19] Khan A, Sohail A, Zahoora U, Qureshi AS. A survey of the recent architectures of deep convolutional

neural networks. Artif. Intell. Rev., 2020. 53(8):5455–5516. doi:10.1007/s10462-020-09825-6.

[20] Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS. A Comprehensive Survey on Graph Neural Networks.

IEEE Trans. Neural Networks Learn. Syst., 2021. 32(1):4–24. doi:10.1109/TNNLS.2020.2978386.

[21] Sälzer M, Lange M. Fundamental Limits in Formal Verification of Message-Passing Neural

Networks. In: The Eleventh International Conference on Learning Representations. 2023 URL

https://openreview.net/forum?id=WlbG820mRH-.

[22] Stockmeyer LJ. The polynomial-time hierarchy. Theor. Comp. Sci., 1976. 3(1):1–22.

This figure "image001.png" is available in "png"
 format from:

http://arxiv.org/ps/2203.07941v4

http://arxiv.org/ps/2203.07941v4

