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Abstract. Colored Petri nets offer a compact and user friendly representation of the traditional
Place/Transition (P/T) nets and colored nets with finite color ranges can be unfolded into the
underlying P/T nets, however, at the expense of an exponential explosion in size. We present
two novel techniques based on static analysis in order to reduce the size of unfolded colored
nets. The first method identifies colors that behave equivalently and groups them into equivalence
classes, potentially reducing the number of used colors. The second method overapproximates
the sets of colors that can appear in places and excludes colors that can never be present in a given
place. Both methods are complementary and the combined approach allows us to significantly
reduce the size of multiple colored Petri nets from the Model Checking Contest benchmark. We
compare the performance of our unfolder with state-of-the-art techniques implemented in the
tools MCC, Spike and ITS-Tools, and while our approach is competitive w.r.t. unfolding time, it
also outperforms the existing approaches both in the size of unfolded nets as well as in the number
of answered model checking queries from the 2021 Model Checking Contest.

1. Introduction

Petri nets [1], also known as P/T nets, are a powerful modelling formalism supported by a rich family
of verification techniques [2]. However, P/T nets often become too large and incomprehensible for
humans to read. Therefore, colored Petri nets (CPN) [3] were introduced to allow for high level
modelling of distributed systems. In CPNs, each place is assigned a color domain and each token
in that place has a color from its domain. Arcs have expressions that define what colored tokens to
consume or produce, and transitions have guard expressions that restrict transition enabledness.
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A CPN can be translated into an equivalent P/T net, provided that every color domain is finite,
through a process called unfolding. This allows us to use efficient verification tools already developed
for P/T nets. When unfolding a CPN, each place is unfolded into a new place for each color that
a token can take in that place; a naive approach is to create a new place for each color in the color
domain of the place. Transitions are unfolded such that each binding of variables to colors, satisfying
the guard, is unfolded into a new transition copy in the unfolded net. The size of an unfolded net can be
exponentially larger than the colored net and the unfolding process therefore requires optimizations in
order to finish in realistic time and memory. Several types of improvements were proposed that analyse
transition guards and arc expressions [4, 5, 6]. However, even with these optimizations, there still exist
CPNs that cannot be unfolded using the existing tools. As an example, the largest instances of the nets
FamilyReunion [7, 8] and DrinkVendingMachine [9, 10] from the Model Checking Contest [11] have
not yet been unfolded in the competition setup.

We propose two novel methods for statically analysing a CPN to reduce the size of the unfolded
P/T net. The first method called color quotienting uses the fact that sometimes tokens with different
colors can be indistinguishable in the sense that they generate bisimilar behaviour. If such colors exist
in the net, we can create equivalence classes that represent the colors with similar behaviour. As such,
we can reduce the amount of colors that we need to consider when unfolding. The second method
called color approximation overapproximates which colors can possibly be present in any given place
such that we only unfold places for the colors that can exist. This method also allows for invalidating
bindings that are dependent on unreachable colors, thus reducing the amount of transitions that are
unfolded.

Our two methods are implemented in the model checker TAPAAL [12, 13] and an extensive ex-
perimental evaluation shows convincing performance compared to the state-of-the-art tools for CPN
unfolding.

Related work. Heiner et al. [5] analyse the arc and guard expressions to reduce the amount of bind-
ings by collecting patterns. The pattern analysis is implemented in the tool Snoopy [14] and our color
approximation method further extends this method. In [6] the same authors present a technique for rep-
resenting the patterns as Interval Decision Diagrams. This technique is used in the tools Snoopy [14],
MARCIE [15] and Spike [16] and performs better compared to [5]; it also allows to unfold a superset
of colored nets compared to the format adopted by the Model Checking Contest benchmark [11].

In [4] Dal-Zilio describes a method (part of the unfolder MCC) called stable places. A stable place
is a place that never changes from the initial marking, i.e. every time a token is consumed from this
place an equivalent token of the same color is added to the place. This method is especially efficient on
the net BART from the Model Checking Contest [11], however, it does not detect places that deviate
even a little from the initial marking. Our color approximation method includes a more general form
of the stable places. In the unfolder MCC [4], a component analysis is introduced and it detects if a
net consists of a number of copies of the same component. MCC is used in the TINA toolchain [17]
and to our knowledge in the latest release of the LoLA tool [18]. GreatSPN [19] is another tool for
unfolding CPNs, however, in [4] it is demonstrated that MCC is able to greatly outperform GreatSPN
and as such we omit GreatSPN from later experiments.
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ITS-Tools [20] has an integrated unfolding engine. The tool uses a technique of variable sym-
metry identification, in which it is analyzed whether variables x and y are permutable in a binding.
Furthermore, they use stable places during the binding and they apply analysis to choose the binding
order of parameters to simplify false guards as soon as possible. After unfolding, ITS-Tools ap-
plies further post-unfolding reductions that remove orphan places/transitions and behaviourally equiv-
alent transitions [21]. Our implementation includes a variant of the symmetric variables reduction
as well. In [22] Thierry-Mieg et al. present a technique for automatic detection of symmetries in
high level Petri nets used to construct symbolic reachability graphs in the GreatSPN tool. This detec-
tion of symmetries is reminiscent of the color quotienting method presented in this paper, although
our color quotienting method is used for unfolding the colored Petri net instead of symbolic model
checking.

In [23] Klostergaard presents a simple unfolding method implemented in TAPAAL [12, 13], which
is the base of our implementation. The implementation is efficient but there are several nets which it
cannot unfold. Both unfolding methods introduced in this paper are advanced static analyses tech-
niques and we observe that the above mentioned techniques, except symmetric variables and compo-
nent analysis, are captured by color approximation and/or color quotienting.

This paper is an extended version of the conference paper [24] with full proofs, complete defini-
tions and additional examples and last but not least a substantial reimplementation of the methods in
the tool TAPAAL with improved experimential results compared to [24].

2. Preliminaries

Let N>0 be the set of positive integers and N0 the set of nonnegative integers. A Labeled Transition
System (LTS) is a triple (Q,Act,−→) where Q is a set of states, Act is a finite, nonempty set of actions,
and −→⊆ Q×Act×Q is the transition relation. We write s a−→ if there is s′ ∈ Q such that s a−→ s′ and
s ̸ a−→ if there is no such s′. A binary relation R over the set of states of an LTS is a bisimulation iff for
every (s1, s2) ∈ R and a ∈ Act it holds that if s1

a−→ s′1 then there is a transition s2
a−→ s′2 such that

(s′1, s
′
2) ∈ R, and if s2

a−→ s′2 then there is a transition s1
a−→ s′1 such that (s′1, s

′
2) ∈ R. Two states s

and s′ are bisimilar, written s ∼ s′, iff there is a bisimulation R such that (s, s′) ∈ R.
A finite multiset over some nonempty set A is a collection of elements from A where each element

occurs in the multiset a finite amount of times; a multiset S over a set A can be identified with a
function S : A −→ N0 where S(a) is the number of occurrences of element a ∈ A in the multiset S.
We shall represent multisets by a formal sum

∑
a∈A S(a)′(a) such that e.g. 1′(x) + 2′(y) stands for

a multiset containing one element x and two elements y. We assume the standard multiset operations
of membership (∈), inclusion (⊆), equality (=), union (⊎), subtraction (\) and by |S| we denote the
cardinality of S (including the repetition of elements). By S(A) we denote the set of all multisets over
the set A.

Finally, we also define the function set as a way of reducing multisets of colors to sets of colors
given by set(S) def

= {a | a ∈ S} where set(S) is the set of all colors with at least one occurrence
in S.
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2.1. Colored Petri nets

Colored Petri nets (CPN) are an extension of traditional P/T nets introduced by Kurt Jensen [3] in
1981. In CPNs, places are associated with color domains where colors represent the values of tokens.
Arc expressions describe what colors to consume and add to places depending on a given binding
(assignment of variables to colors). Transitions may contain guards restricting which bindings are
valid. There exist several different definitions of CPNs from the powerful version defined in [25] that
includes the ML language for describing arcs expressions and guards to less powerful ones such as the
one used in the Model Checking Contest [11]. We shall first give an abstract definition of a CPN.

Definition 2.1. A colored Petri net is a tuple N = (P , T ,C,B, C ,G,W ,WI ,M0) where

1. P is a finite set of places,

2. T is a finite set of transitions such that P ∩ T = ∅,

3. C is a nonempty set of colors,

4. B is a nonempty set of bindings,

5. C : P −→ 2C \ ∅ is a place color type function,

6. G : T × B −→ {true, false} is a guard evaluation function,

7. W : ((P×T )∪(T×P ))×B −→ S(C) is an arc evaluation function such that set(W ((p, t), b))⊆
C(p) and set(W ((t, p), b)) ⊆ C(p) for all p ∈ P , t ∈ T and b ∈ B,

8. WI : P × T −→ N>0 ∪ {∞} is an inhibitor arc weight function, and

9. M0 is the initial marking where a marking M is a function M :P −→ S(C) such that set(M(p))⊆
C(p) for all p ∈ P .

In this definition, we assume an abstract set of bindings B, representing the concrete configurations
a net can be in. For example, colored Petri nets often use variables on the arcs and in the guards, and
these variables can be assigned concrete colors. Such a variable assignment is then referred to as a
binding. Notice that G and W are semantic functions which are in different variants of CPN defined
by a concrete syntax. These functions take as an argument a binding and for this binding return either
whether the guard is true or false, or in case of W the function returns the multiset of tokens that
should be consumed/produced when a transition is fired.

The set of all markings on a CPN N is denoted by M(N ). In order to avoid the use of partial
functions, we allow W ((p, t), b) = W ((t, p), b) = ∅ and WI(p, t) = ∞, meaning that if the arc
evaluation function returns the empty multiset then the arc has no effect on transition firing and if the
inhibitor arc function returns infinity then it never inhibits the connected transition.

Let N = (P , T ,C,B, C ,G,W ,WI ,M0) be a fixed CPN for the rest of this section. Let B(t)
def
=

{b ∈ B | G(t, b) = true} be the set of all bindings that satisfy the guard of transition t ∈ T . Let
ℓ : T −→ Act be a transition labeling function. The semantics of a CPN N is defined as an LTS
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L(N ) = (M(N ), Act,−→) where M(N ) is the set of states defined as all markings on N , Act is the
set of actions, and M

a−→M ′ iff there exists t ∈ T where ℓ(t) = a and there is b ∈ B(t) such that

W ((p, t), b) ⊆M(p) and WI(p, t) > |M(p)| for all p ∈ P, and

M ′(p) = (M(p) \W ((p, t), b)) ⊎W ((t, p), b) for all p ∈ P.

We denote the firing of a transition t ∈ T in marking M reaching M ′ as M t−→M ′. Let −→=
⋃

t∈T
t−→

and let −→∗ be the reflexive and transitive closure of −→.

Remark 2.2. To reason about model checking of CPNs, we need to have a finite representation of
colored nets that can be passed as an input to an algorithm. One way to enforce such a representation is
to assume that all color domains are finite and the semantic functions C, G, W and WI are effectively
computable.

Finally, let us define the notion of postset and preset of p ∈ P as p• = {t ∈ T | ∃b ∈
B. W ((p, t), b) ̸= ∅} and •p = {t ∈ T | ∃b ∈ B. W ((t, p), b) ̸= ∅}. Similarly, for a transition t ∈ T
we define t• = {p ∈ P | ∃b ∈ B. W ((t, p), b) ̸= ∅} and •t = {p ∈ P | ∃b ∈ B. W ((p, t), b) ̸= ∅}.
We also define the preset of inhibitor arcs as ◦t = {p ∈ P |WI(p, t) ̸=∞}.

2.2. P/T nets

A Place/Transition (P/T) net is a CPN N = (P , T ,C,B, C ,G,W ,WI ,M0) with one color C = {•}
and only one binding B = {bϵ} such that every guard evaluates to true i.e. G(t, bϵ) = true for all t ∈ T
and every arc evaluates to a multiset over {•} i.e. W ((p, t), bϵ) ∈ S({•}) and W ((t, p), bϵ) ∈ S({•})
for all p ∈ P and t ∈ T .

2.3. Integer colored Petri nets

An integer CPN (as used for example in the Model Checking Contest [11]) is a CPN

N = (P , T ,C,B, C ,G,W ,WI ,M0)

where all colors are integer products i.e. C =
⋃

k≥1(N0)k. We use interval ranges to describe sets of
colors such that a tuple of ranges ([a1, b1], ..., [ak, bk]) where ai, bi ∈ N0 for i, 1 ≤ i ≤ k, describes the
set of colors {(c1, ..., ck) | ai ≤ ci ≤ bi for all 1 ≤ i ≤ k}. If the interval upper-bound is smaller than
the lower-bound, the interval range denotes the empty set and by [a] we denote the singleton interval
[a, a]. As an example, consider the place color type of some place p as C(p) = J([1, 2], [6, 7])K
describing the set of colors {(1, 6), (1, 7), (2, 6), (2, 7)}. For notational convenience, we sometimes
omit the semantic paranthesis and simply write ([1, 2], [6, 7]) instead of J([1, 2], [6, 7])K.

We use the set of variables V = {x1, ..., xn} to represent colors. Variables can be present on arcs
and in guards. A binding b : V −→ C assigns colors to variables. We write b ≡ ⟨x1 = c1, ..., xn = cn⟩
for a binding where b(xi) = ci for all i, 1 ≤ i ≤ n. We now introduce the syntax of arc/guard
expressions and its intuitive semantics by an example.
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1′(x− 1, y)
1′(x)

1′(y) t

x < 1

[A]

[B]

[AB]2′(0)

3′(2)

2′(5)

Declarations:
color set A = ([0, 2])
color set B = ([4, 5])
color set AB = A×B
variable x : A
variable y : B

p1

p2

p3

p1 : (2
′(0) + 3′(2)) + p2 : 2

′(5)
t−→ p1 : (1

′(0) + 3′(2)) + p2 : 1
′(5) + p3 : (1

′((2, 5)))

(a) Integer CPN and transition firing under the binding ⟨x = 0, y = 5⟩

p1(0) p1(1) p1(2)

p3(sum)

p2(4) p2(5)

p3((0, 4)) p3((0, 5))p3((1, 4)) p3((1, 5))

p3((2, 4)) p3((2, 5))

t(⟨x = 0, y = 4⟩) t(⟨x = 0, y = 5⟩)

(b) Unfolding of CPN from Figure 1a

Figure 1: A CPN and its Unfolding to a P/T net

Figure 1a shows an integer CPN where places (circles) are associated with ranges. The initial
marking contains five tokens (two of color 0 and three of color 2) in p1 and two tokens of color 5 in
place p2. There is a guard on transition t (rectangle) that compares x with the integer 1 and restricts
the valid bindings. We can see that the arc from t to p3 creates a product of the integers x and y,
where the value of x is decremented by one. We assume that all ranges are cyclic, meaning that the
predecessor of 0 in the color set A is 2. Figure 1a also shows an example of transition firing. Markings
are written as formal sums showing how many tokens of what colors are in the different places. The
transition t can fire only once, as the inhibitor arc (for unlabelled inhibitor arcs we assume the default
weight 1) from place p3 to transition t inhibits the second transition firing.

We shall now present the formal syntax of arc expressions and guards. In integer CPNs, each arc
(P × T ) ∪ (T × P ) excluding inhibitor arcs is assigned an arc expression α given by the syntax:

α ::= n′(τ1, ..., τk) | α1 ± α2 | n · α
τ ::= c | x | x± s
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where c ∈ C, x ∈ V , s ∈ N>0, n ∈ N>0 and ± ::= + | −. The α expressions allow us to make
tuples consisting of τ expressions that can be combined using multiset union (+) and subtraction (−),
or multiplied by n (creating n copies of the tuple). The expressions of type τ are called simple arc
expressions. The semantics of arc expressions is straightforward and demonstrated by the following
example.

Example 2.3. Let a be an arc annotated by the arc expression 1′(x − 1) + 1′(y + 1) + 1′(z) and
let b1 = ⟨x = 3, y = 3, z = 1⟩ and b2 = ⟨x = 1, y = 2, z = 2⟩ be bindings with integer range
([1, 3]) over the variables x, y and z. The CPN semantics of the arc a is defined as the multiset
where W (a, b1) = 1′(2) + 2′(1) since the colors are cyclic in nature such that 3 + 1 = 1 and
W (a, b2) = 2′(3) + 1′(2) because 1− 1 = 3.

Guards in integer CPNs are expressed by the following syntax:

γ ::= true | false | ¬γ | γ1 ∧ γ2 | γ1 ∨ γ2 | α1 = α2 | α1 ̸= α2 | τ1 ▷◁ τ2

where ▷◁ ::=< | ≤ | > | ≥ | = | ̸= and where α1 and α2 are arc expressions and τ1 and τ2 are
simple arc expressions. The semantics of guards (their evaluation to true or false in a given binding)
is also straightforward and demonstrated by an example.

Example 2.4. Let g = (x > 2 ∧ y = 2) ∨ z + 2 = 3 be a guard on a transition t and let b1 = ⟨x =
3, y = 3, z = 1⟩ and b2 = ⟨x = 1, y = 2, z = 2⟩ be bindings with range ([1, 3]) over the variables
x, y and z. Then G(t, b1) = true and G(t, b2) = false.

The Model Checking Contest [11] further includes color types called dots and cyclic enumera-
tions which are excluded from these definitions as these can be trivially translated to tuples of integer
ranges. The color type dot, {•}, is represented by the color domain ([1]) and a cyclic enumeration
with elements {e1, e2, ..., en} is encoded as the integer range ([1, n]) corresponding to the indices of
the cyclic enumeration. Furthermore, the contest uses the .all expression, which creates one of each
color in the color domain. For example if A = ([0, 2]) then A.all = 1′(1) + 1′(2) + 1′(3).

All examples in this paper are expressed in integer CPN syntax.

2.4. Unfolding of CPNs

CPNs with finite color domains can be unfolded into an equivalent P/T net [26]. Each place p is
unfolded into |C(p)| places, a transition is made for each legal binding and we translate the multiset
of colors on the arc to a multiset over •. We now provide a formal definition of unfolding in our
syntax, following the approach from [23, 27] that also consider inhibitor arcs.

For each place connected to an inhibitor arc, we create a fresh summation place that contains the
sum of tokens across the rest of the unfolded places. The summation places are created to ensure that
inhibitor arcs work correctly after unfolding.

Definition 2.5. (Unfolding)
Let N = (P , T ,C,B, C ,G,W ,WI ,M0) be a colored Petri net. The unfolded P/T net N u =
(P u, T u,Cu,Bu, Cu, Gu,W u,W u

I ,M
u
0 ) is given by
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1. P u = {p(c) | p ∈ P ∧ c ∈ C(p)} ∪ {p(sum) | t ∈ T, p ∈ ◦t},

2. T u =
⋃

t∈T
⋃

b∈B(t) t(b),

3. Cu = {•},

4. Bu = {bϵ},

5. Cu(p(c)) = {•} for all p(c) ∈ P u,

6. Gu(t(b), bϵ) = true for all t(b) ∈ T u,

7. W u((p(c), t(b)), bϵ) = W ((p, t), b)(c)′(•) and W u((t(b), p(c)), bϵ) =
W ((t, p), b)(c)′(•) for all p(c) ∈ P u and t(b) ∈ T u, and
W u((p(sum), t(b)), bϵ) = |W ((p, t), b)|′(•) and W u((t(b), p(sum)), bϵ) =
|W ((t, p), b)|′(•) for all p(sum) ∈ P u and t(b) ∈ T u,

8. W u
I (p(sum), t(b)) = WI(p, t) for all p(sum) ∈ P u and t(b) ∈ T u, and

9. Mu
0 (p(c)) = M0(p)(c)

′(•) for all p(c) ∈ P u and
Mu

0 (p(sum)) = |M0(p)|′(•) for all p(sum) ∈ P u

where p(sum) denotes the sum of all tokens regardless of the color for the place p.

Consider the CPN in Figure 1a. The unfolded version of this can be seen in Figure 1b. We notice
that each place of the CPN is unfolded to a fresh new place for every color in the color type of the
place as well as a sum place for p3. Additionally, the transition is unfolded to a new transition for
each legal binding.

The theorem showing that the unfolded net is bisimilar to the original CPN was proved in [23, 27];
we only added a small optimization on the summation places.

Theorem 2.6. ([23, 27])
Given a colored Petri net N = (P , T ,C,B, C ,G,W ,WI ,M0) and the unfolded P/T net N u =
(P u, T u,Cu,Bu, Cu, Gu,W u,W u

I ,M
u
0 ), it holds that M0 ∼Mu

0 with the labeling function ℓ(t(b)) =
t for all t(b) ∈ T u.

3. Color quotienting

Unfolding a CPN without any further analysis will often lead to many unnecessary places and transi-
tions. We shall now present our first technique that allows to group equivalently behaving colors into
equivalence classes in order to reduce the number of colors and hence also to reduce the size of the
unfolded net.

As an example consider the CPN in Figure 2a, the unfolded version of this net adds five places
for both p1 and p2. However, we see that in p1 all colors greater than or equal to 3 behave exactly
the same throughout the net and can thus be represented by a single color. We can thus quotient the
CPN by partitioning the color domain of each place into a number of equivalence classes of colors
such that the colors behaving equivalently are represented by the same equivalence class. Using this
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approach, we can construct a bisimilar CPN seen in Figure 2b where the color 3 now represents all
colors greater than or equal to 3.

Such a reduction in the number of colors is possible to include already during the design of a
CPN model, however, the models may look less intuitive for human modeller or the nets can be auto-
generated and hence contain redundant/equivalent colors as observed in the benchmark of CPN models
from the annual Model Checking Contest benchmark [11].

p1 [A]

1′(x) 1′(x)

p2 [A]

t1

x < 3

A.all
1′(x)

t2 Declarations:
Color set A = ([1, 5])
variable x : A

x ≤ 1

(a) Example CPN

p1 [A]

1′(x) 1′(x)

p2 [A]

t1

x < 3

1′(1)

1′(2)

3′(3)

1′(x)

t2 Declarations:
Color set A = ([1, 3])
variable x : A

Color 1 represents ([1])
Color 2 represents ([2])
Color 3 represents ([3, 5])

x ≤ 1

(b) Quotiented net from Figure 2a

M1 = p1 : 1
′(1) t1−→

M2 = p1 : 1
′(2)

M ′
1 = p2 : 1

′(1)

M ′
2 = p2 : 1

′(2)
t1−→

M1
δ≡M2 M ′

1 ̸
δ≡M ′

2

δ(p1) = {([1, 2]), ([3, 5])}, δ(p2) = {([1]), ([2, 5])}

(c) Example of an unstable partition δ and markings showing why it is unstable

δ′(p1) = {([1]), ([2]), ([3, 5])}, δ′(p2) = {([1]), ([2, 5])}

(d) Example of stable partition δ′

Figure 2: Quotienting example

We thus introduce color partition on places where all colors with similar behaviour in a given
place are grouped into an equivalence class, denoted by θ. For the rest of this section, let us assume a
fixed CPN N = (P , T ,C,B, C ,G,W ,WI ,M0). A partition δ is a function δ : P −→ 22

C \ ∅ that for
a place p returns the equivalence classes of C(p) such that (

⋃
θ∈δ(p) θ) = C(p) and θ1 ∩ θ2 = ∅ for all

θ1, θ2 ∈ δ(p) where θ1 ̸= θ2.

Definition 3.1. Given a partition δ and markings M and M ′, we write M(p)
δ≡M ′(p) for a p ∈ P iff

for all θ ∈ δ(p) it holds that
∑

c∈θ M(p)(c) =
∑

c∈θ M
′(p)(c). We write M

δ≡M ′ iff M(p)
δ≡M ′(p)

for all p ∈ P . A partition δ is stable if the relation
δ≡ on markings induced by δ is a bisimulation.
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Consider the CPN in Figure 2a. The partition shown in the Figure 2c is not stable as demonstrated

by the transition firing from M1 and M2 to M ′
1 resp. M ′

2 where M1
δ≡ M2 but M ′

1 ̸
δ≡ M ′

2. Figure 2d
shows an example of a stable partition (here we describe the partition with integer ranges in the same
manner as in integer CPNs).

We now show how a CPN can be quotiented using a stable partition. First, we define the notion of
binding equivalence under a partition.

Definition 3.2. Given a partition δ, a transition t ∈ T and bindings b, b′ ∈ B(t), we write b
δ,t
≡ b′ iff

for all p ∈ •t and for all θ ∈ δ(p) it holds that∑
c∈θ W ((p, t), b)(c) =

∑
c∈θ W ((p, t), b′)(c)

and for all p ∈ t• and for all θ ∈ δ(p) it holds that∑
c∈θ W ((t, p), b)(c) =

∑
c∈θ W ((t, p), b′)(c).

We can now define classes of equivalent bindings given a partition δ which are bindings that have

the same behaviour for a given transition, formally Bδ(t)
def
={[b]t | b∈B(t)} where [b]t= {b′ | b′

δ,t
≡ b}.

For a given stable partition, we now construct a quotiented CPN where the set of colors are the
equivalence classes of the stable partition and the set of bindings are the equivalence classes of bind-
ings. As such, we rewrite the arc and guard evaluation functions to instead consider an equivalence
class of bindings, which is possible since each binding in the equivalence class behaves equivalently.

Definition 3.3. Let N = (P , T ,C,B, C ,G,W ,WI ,M0) be a CPN and δ a stable partition of N .
The quotiented CPN N δ = (P, T,Cδ,Bδ, Cδ, Gδ,W δ,W δ

I ,M
δ
0 ) is defined by

1. Cδ =
⋃

p∈P δ(p)

2. Bδ =
⊎

t∈T Bδ(t).

3. Gδ(t, [b]t) = G(t, b) for all t ∈ T and [b]t ∈ B(t),

4. Cδ(p) = δ(p) for all p ∈ P ,

5. W δ((p, t), [b]t) = S where S(θ) =
∑

c∈θ W ((p, t), b)(c) for all θ ∈ δ(p) and
W δ((t, p), [b]t) = S where S(θ) =

∑
c∈θ W ((t, p), b)(c) for all θ ∈ δ(p)

for all p ∈ P , t ∈ T and [b]t ∈ Bδ,

6. W δ
I (p, t) = WI(p, t) for all p ∈ P and t ∈ T , and

7. M δ
0 (p) = S where S(θ) =

∑
c∈θ M0(p)(c) for all p ∈ P and θ ∈ δ(p).

We can now present our main correctness theorem, stating that the original and quotiented colored
nets are bisimilar.
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Theorem 3.4. Let N = (P , T ,C,B, C ,G,W ,WI ,M0) be a CPN, δ a stable partition and N δ =
(P δ, T δ,Cδ,Bδ, Cδ, Gδ,W δ,W δ

I ,M
δ
0 ) the quotiented CPN. Then M0 ∼M δ

0 .

Proof:
We show that R = {(M,M δ) |

∑
c∈θ M(p)(c) = M δ(p)(θ) for all p ∈ P and all θ ∈ δ(p)} is a

bisimulation relation. We first notice that (M0,M
δ
0 ) ∈ R by Item 7 in Definition 3.3.

Assume that (M,M δ) ∈ R and t ∈ T such that M t−→ M ′ under binding b ∈ B(t), we want to
show that M δ t−→M δ′ under binding [b]t ∈ B(t) such that (M ′,M δ′) ∈ R. As such, we need to prove
the following:

(a) W δ((p, t), [b]t) ⊆M δ(p) for all p ∈ P

(b) W δ
I (p, t) > |M δ(p)| for all p ∈ P

(c) (M ′,M δ′) ∈ R where M δ′(p) = (M δ(p) \W δ((p, t), [b]t)) ⊎W δ((t, p), [b]t)

for all p ∈ P .

(a) We start by showing W δ((p, t), [b]t) ⊆ M δ(p) for all p ∈ P . First, because (M,M δ) ∈ R,
we know that ∑

c∈θ M(p)(c) = M δ(p)(θ) for all p ∈ P and all θ ∈ δ(p). (1)

Since W ((p, t), b) ⊆M(p) we know for all c ∈ C(p) that W ((p, t), b))(c) ≤M(p)(c) which implies
that ∑

c∈θ W ((p, t), b))(c) ≤
∑

c∈θ M(p)(c) (2)

for all θ ∈ δ(p). We now show that W δ((p, t), [b]t) ⊆ M δ(p) for all p ∈ P i.e. W δ((p, t), [b]t)(θ) ≤
M δ(p)(θ) for all θ ∈ δ(p):

W δ((p, t), [b]t)(θ) = substitute by Def. 3.3 Item 5∑
c∈θ W ((p, t), b))(c) ≤ by Equation (2)∑
c∈θ M(p)(c) = by Equation (1)

M δ(p)(θ) .

(b) Next we show W δ
I ((p, t) > |M δ(p)|. We know that

WI(p, t) > |M(p)| (3)

by definition of CPN semantics since M
t−→M ′. We then observe that for all p ∈ P , it holds

W δ
I (p, t) = substitute by Def. 3.3 Item 6

WI(p, t) > by Equation (3)
|M(p)| = multiset definition∑

c∈C(p)M(p)(c) = since (
⋃

θ∈δ(p) θ) = C(p)∑
θ∈δ(p)

∑
c∈θ M(p)(c) = by Equation (1)∑

θ∈δ(p)M
δ(p)(θ) = multiset definition

|M δ(p)| .
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(c) Lastly, we show that (M ′,M δ′) ∈ R. Assume p ∈ P , b ∈ B(t) and equivalence class [b]t. We
know that M ′(p) = (M(p) \W ((p, t), b))⊎W ((t, p), b) and M δ′(p) = (M δ(p) \W δ((p, t), [b]t))⊎
W δ((t, p), [b]t) and we need to show that

∑
c∈θ M

′(p)(c) = M δ′(p)(θ) for all θ ∈ δ(p):∑
c∈θ M

′(p)(c) = by def. of CPN semantics∑
c∈θ(M(p) \W ((p, t), b) ⊎W ((t, p), b))(c) =

substitute by multiset definitions
and by enabledness of t∑

c∈θ M(p)(c)−
∑

c∈θ W ((p, t), b)(c)

+
∑

c∈θ W ((t, p), b)(c)
= substitute by Def. 3.3 Item 5∑

c∈θ M(p)(c)−W δ((p, t), [b]t)(θ)

+W δ((t, p), [b]t)(θ)
= since (M,M δ) ∈ R

M δ(p)(θ)−W δ((p, t), [b]t)(θ)

+W δ((t, p), [b]t)(θ)
= by definition of CPN semantics

M δ′(p)(θ) .

We then have to show that the same is the case for the opposite direction such that assume
(M,M δ) ∈ R and t ∈ T such that M δ t−→ M δ′, we want to show that M t−→ M ′ for some b ∈ B(t)
such that (M ′,M δ′) ∈ R. As such, we want to show that:

(d) W ((p, t), b) ⊆M(p) for all p ∈ P

(e) WI(p, t) > |M(p)| for all p ∈ P

(f) (M ′,M δ′) ∈ R where M ′(p) = (M(p) \W ((p, t), b)) ⊎W ((t, p), b)

for all p ∈ P .

We first notice that (e) and (f) can be showed by the same argumentation as (b) and (c). For the
case (d), we show that W ((p, t), b) ⊆M(p) for all p ∈ P . From (a) we know that W δ((p, t), [b]t) ⊆
M δ(p) which implies

∑
c∈θ W ((p, t), b))(c) ≤

∑
c∈θ M(p)(c) for all θ ∈ δ(p) and p ∈ P .

Hence observe that there exists a marking M1 such that
∑

c∈θ M1(p)(c) = M δ(p)(θ) and where∑
c∈θ W ((p, t), b)(c) ≤

∑
c∈θ M1(p)(c) for all θ ∈ δ(p) and p ∈ P . Clearly t is enabled in M1 since

W ((p, t), b) ⊆ M1(p) for all p ∈ P by the multiset definition of ⊆ and we know that the inhibitor
arcs do not inhibit the transition by (e).

We then want to show that M1
δ≡ M , i.e.

∑
c∈θ M1(p)(c) =

∑
c∈θ M(p)(c) for all θ ∈ δ(p) and

p ∈ P . Since (M,M δ) ∈ R we know that
∑

c∈θ M(p)(c) = M δ(p)(θ) =
∑

c∈θ M1(p)(c) for all

θ ∈ δ(p) and p ∈ P and thus M1
δ≡M . Since δ is stable we know that t is enabled in M .

Thus we know that the opposite direction also holds meaning that R is a bisimulation. ⊓⊔

3.1. Computing stable partitions

Our main challenge is how to efficiently compute a stable partition in order to apply the quotienting
technique. To do so, we first define a partition refinement.
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Definition 3.5. Given two partitions δ and δ′ we write δ ≥ δ′ if for all p ∈ P and all θ′ ∈ δ′(p) there
exists θ ∈ δ(p) such that θ′ ⊆ θ. Additionally, we write δ > δ′ if δ ≥ δ′ and δ′ ̸= δ.

Note that for any finite CPN as assumed in Remark 2.2, the refinement relation > is well-founded
as for any δ > δ′ the partition δ′ has strictly more equivalence classes for at least one place p ∈ P .
We now define also the union of two partitions as the smallest partition that has both of the partitions
as refinements.

Definition 3.6. Given two partitions δ1, δ2 and p ∈ P , let ←→ be a relation over δ1(p) ∪ δ2(p) such
that θ ←→ θ′ iff θ ∩ θ′ ̸= ∅ where θ, θ′ ∈ δ1(p) ∪ δ2(p). Let←→∗ be the reflexive, transitive closure of
←→ and let [θ] def

=
⋃

θ′∈δ1(p)∪δ2(p),θ←→∗θ′ θ
′ where θ ∈ δ1(p) ∪ δ2(p). Finally, we define the partition

union operator ⊔ by (δ1 ⊔ δ2)(p) =
⋃

θ∈δ1(p)∪δ2(p){[θ]} for all p ∈ P .

For example, assume some place p such that C(p) = {([1, 5])} and partitions δ1 and δ2 such
that δ1(p) = {([1, 2]), ([3, 4]), ([5])} and δ2(p) = {([1]), ([2, 3]), ([4]), ([5])} then (δ1 ⊔ δ2)(p) =
{([1, 4]), ([5])}.

Lemma 3.7. Let δ1 and δ2 be two partitions. Then (i) δ1 ⊔ δ2 ≥ δ1 and δ1 ⊔ δ2 ≥ δ2, and (ii) if δ1 and
δ2 are stable partitions then so is δ1 ⊔ δ2.

Proof:
For the first part of the claim, from definition of partition union, we see that [θ] is the union of any
θ′ that overlaps with θ and δ1 ⊔ δ2 just collects all such unions for every θ. As such, it is trivial that
for any θ ∈ δ1(p) there exists θ′ ∈ δ1(p) ⊔ δ2(p) such that θ ⊆ θ′ for all p ∈ P , in other words
δ1 ⊔ δ2 ≥ δ1. The same is the case for δ2.

For the second part of the claim, let δ = δ1 ⊔ δ2. Assume M and M ′ such that M
δ≡ M ′ i.e. for

all p ∈ P and all [θ] ∈ δ(p) it holds that
∑

c∈[θ]M(p)(c) =
∑

c∈[θ]M
′(p)(c). We want to show that δ

is stable, i.e that
δ≡ is a bisimulation relation, while assuming that

δ1≡ and
δ2≡ are bisimulation relations.

Assume a fixed p ∈ P . From definition of partition union, we get that for every fixed [θ] ∈ δ(p) and for
all c, c′ ∈ [θ] there exist c1, ..., ck ∈ [θ] such that c, c1 ∈ θ1, c1, c2 ∈ θ2, c2, c3 ∈ θ3, . . . , ck, c′ ∈ θk,
where θi ∈ δ1(p) ∪ δ2(p) for all i, 1 ≤ i ≤ k. Let us define markings Mi, for 1 ≤ i ≤ k, such
that Mi(p)(ci) =

∑
c∈[θ]M(p)(c) and Mi(p)(c) = 0 if c ̸= ci and c ∈ [θ], otherwise Mi(p)(c) =

M(p)(c). In other words, in order to obtain Mi, we replace in M all colors in the equivalence class [θ]

with the color ci and obtain the chain M(p)
δj1≡ M1(p)

δj2≡ M2(p)
δj3≡ ...

δjk≡ Mk(p) where ji ∈ {1, 2},
i.e. Mi and Mi+1 are related either by

δ1≡ or
δ2≡, both of them being bisimulation relations. We can

also observe that M(p)
δ≡Mk(p). We can then repeat this process for all other equivalence classes in

δ(p) in order to conclude that M(p)
δ≡ M ′(p). The same process can then be applied to all p ∈ P ,

implying that M
δ≡ M ′. Hence there is a chain of markings as above starting from M and ending in

M ′. Since δ1 and δ2 are stable, meaning that both
δ1≡ and

δ2≡ are bisimulation relations, this implies
that every transition from M can be (by transitivity) matched by a transition from M ′ and vice versa,

implying that
δ≡ is a bisimulation relation and δ is so stable. ⊓⊔
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The lemma above implies the existence of a unique maximum stable partition.

Theorem 3.8. There is a unique maximum stable partition δ such that δ ≥ δ′ for all stable parti-
tions δ′.

Proof:
We prove this by contradiction. Assume two maximum stable partitions δ1 and δ2 where δ1 ̸= δ2. By
Lemma 3.7 (ii) we know that δ1 ⊔ δ2 is stable and by Lemma 3.7 (i) we know that δ1 ⊔ δ2 ≥ δ1 and
δ1 ⊔ δ2 ≥ δ2. Thus δ1 and δ2 cannot both be maximum stable partitions. ⊓⊔

In order to provide an algorithm for computing a stable partition, we define the maximum arc
size for a given CPN N as the function max(N ) = maxp∈P,t∈T,b∈B(|W ((p, t), b)|, |W ((t, p), b)|).
The set of all markings smaller than the max arc size over N is defined by Mbounded(N ) = {M ∈
M(N ) | |M(p)| ≤ max(N ) for all p ∈ P}. As such, Mbounded(N ) is a finite set of all bounded
markings of N with cardinality less than or equal to max(N ).

In order to compute stable partitions we need to show some properties for markings in Mbounded(N ).
The following lemma shows that if there are two non-bisimilar markings that break the fact that the

relation
δ≡ is a bisimulation, then there are also two markings that are bounded and that also break the

bisimulation property.

Lemma 3.9. Let N be a CPN and δ a partition. Then for all t ∈ T it holds that

(a) if there exist M1,M2 ∈ M(N ) such that M1
δ≡ M2, M1

t−→ and M2 ̸
t−→ then there exist

M3,M4 ∈Mbounded such that M3
δ≡M4, M3

t−→ and M4 ̸
t−→, and

(b) if there exist M1,M2 ∈ M(N ) where M1
δ≡ M2 and there exists M ′

1 ∈ M(N ) such that

M1
t−→ M ′

1 and for all M ′
2 ∈ M(N ) where M2

t−→ M ′
2 it holds that M ′

1 ̸
δ≡ M ′

2 then there

exists M3,M4 ∈Mbounded(N ) where M3
δ≡M4 and there exists M ′

3 ∈Mbounded(N ) such that

M3
t−→M ′

3 and for all M ′
4 ∈Mbounded(N ) where M4

t−→M ′
4 it holds that M ′

3 ̸
δ≡M ′

4.

Proof:
Recall that max(N ) is defined as the largest cardinality of all arc multisets in N , i.e. |W ((p, t), b)| ≤
max(N ) for all p ∈ P and b ∈ B(t).

(a) Let M1,M2 ∈ M(N ) such that M1
δ≡ M2, M1

t−→ and M2 ̸
t−→. We construct a marking

M3 such that M3(p) = W ((p, t), b) for all p ∈ P and some b ∈ B(t). It clearly follows
that |M3(p)| ≤ max(N ) for all p ∈ P , hence M3 ∈ Mbounded(N ). We see that M1(p) =
M3(p) ⊎M3(p) since M3(p) ⊆ M1(p) for all p ∈ P where M3(p) describes the remaining
tokens in M1(p) that are not in M3(p). We know that no inhibitor arc can be the reason that

M2 is not enabled because M1
δ≡M2. We also know that M2(p) ̸⊆W ((p, t), b) for at least one

p ∈ P for all b ∈ B(t).
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We pick a marking M4 where M4
δ≡ M3, M4(p) ̸⊆ W ((p, t), b) for at least one p ∈ P and

M2(p) = M4(p) ⊎M4(p) for all p ∈ P such that M4
δ≡M3. Notice that M4 ∈Mbounded(N ).

We know that M4 exists because M2
δ≡ M1 and M2(p) ̸⊆ W ((p, t), b) meaning that M4(p) ⊎

M4(p) ̸⊆W ((p, t), b) and thus M4(p) ̸⊆W ((p, t), b) for some p ∈ P .

(b) Let M1,M2 ∈ M(N ) such that M1
δ≡ M2 and M ′

1 ∈ M(N ) such that M1
t−→ M ′

1 while

for all M ′
2 ∈ M(N ) where M2

t−→ M ′
2 we know that M ′

1 ̸
δ≡ M ′

2. We construct a marking
M3 exactly as before such that M3(p) = W ((p, t), b) for all p ∈ P and some b ∈ B(t) and
M1(p) = M3(p) ⊎M3(p) for all p ∈ P .

We then pick a marking M4 such that M4
δ≡ M3 and M2(p) = M4(p) ⊎M4(p) for all p ∈ P

and b ∈ B(t) such that M4
δ≡ M3. We know that M4 ∈ Mbounded(N ) since M4

δ≡ M3. Let
M ′

3 ∈ Mbounded(N ) such that M3
t−→ M ′

3, which is possible because M3(p) ⊆ M1(p) for all
p ∈ P such that no inhibitor arc can inhibit M3. For the sake of contradiction now assume there

exists a marking M ′
4 ∈ Mbounded(N ) such that M4

t−→M ′
4 and M ′

3

δ≡M ′
4. Then notice that we

can let M ′
1(p) = M ′

3(p) ⊎M3(p) where M1
t−→ M ′

1 since M3(p) ⊆ M1(p) for all p ∈ P and
let M ′

2(p) = M ′
4(p) ⊎M4(p) where M2

t−→M ′
2 since M4(p) ⊆M2(p) for all p ∈ P . But since

M ′
3(p)

δ≡M ′
4(p) and M3(p)

δ≡M4(p) it means that M ′
3(p)⊎M3(p)

δ≡M ′
4(p)⊎M4(p) for all

p ∈ P , i.e. M ′
1

δ≡ M ′
2. However, this contradicts the conditions of (b), and as such M ′

3

δ≡ M ′
4

cannot hold. ⊓⊔

Algorithm 1 now gives a procedure for computing a stable partition over a given CPN. It starts
with an initial partition where every color in the color domain is in the same equivalence class for
each place. The algorithm is then split into two parts. The first part from line 4 to 9 creates an initial
partition applying the guard restrictions to the input places of the transitions. The second part from line
11 to 20 back propagates the guard restrictions throughout the net such that only colors that behave the
same are quotiented together. Depending on the choices in lines 6 and 15, the algorithm may return
the maximum stable partition, however in the practical implementation this is not guaranteed due to
an approximation of the guard/arc expression analysis.

Theorem 3.10. Given a CPN N , the algorithm Stabilize(N ) terminates and returns a stable partition
of N .

Proof:
We first prove that Stabilize(N ) terminates. Notice that each iteration produces a new δ according
to the > operator, and since the operator is well-founded we know that the algorithm terminates. We
then show that for δ = Stabilize(N ), δ is a stable partition of N . Recall, a partition δ is stable iff for

any markings M1
δ≡ M2 whenever M1

t−→ M ′
1 for some t and M ′

1 then M2
t−→ M ′

2 for some M ′
2 such

that M ′
1

δ≡M ′
2. We prove this by contradiction. Assume that δ is not a stable partition. As such there

must exists markings M1,M2 ∈ M(N ) such that M1
δ≡ M2 and there exists a marking M ′

1 ∈ M(N )
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Algorithm 1: Stabilize(N )

1 Input: N = (P , T ,C,B, C ,G,W ,WI ,M0)
2 Output: Stable partition δ
3 let δ(p) := {C(p)} for all p ∈ P
4 for t ∈ T do

5 while ∃M1,M2 ∈Mbounded(N ).M1
δ≡M2 ∧M1 ̸

t−→ ∧M2
t−→ do

6 pick δ′ < δ such that M1 ̸
δ′≡M2

7 δ := δ′

8 end
9 end

10 let Q := P //Waiting list of places
11 while Q ≠ ∅ do
12 let p ∈ Q; Q := Q \ {p}
13 for t ∈ •p do

14 if ∃M1,M2 ∈Mbounded(N ).M1
δ≡M2.∃M ′

1 ∈Mbounded(N ).M1
t−→M ′

1 ∧ ∀M ′
2 ∈

Mbounded(N ).M2
t−→M ′

2 ∧M ′
1(p) ̸

δ≡M ′
2(p) then

15 pick δ′ < δ such that M1 ̸
δ′≡M2 and δ′(p′) = δ(p′) for all p′ ∈ P \ •t

16 Q := Q∪ {p′ | δ′(p′) ̸= δ(p′)}
17 δ := δ′

18 end
19 end
20 end
21 return δ

such that M1
t−→ M ′

1 for some transition t where for all M ′
2 ∈ M(N ) such that M2

t−→ M ′
2 then

M ′
1 ̸

δ≡M ′
2. This is exactly the property stated in the if statement on line 17 and we know from Lemma

3.9 that if the property is satisfied with two markings from M(N ) then there exists two markings from
Mbounded(N ) that also satisfy the property. ⊓⊔

3.2. Stable partition Algorithm for integer CPNs

The Stabilize computation presented in Algorithm 1 can be used to find a stable partition for any finite
CPN. However, implementation-wise it is inefficient to represent every color in a given equivalence
class individually. Hence, for integer CPN we represent an equivalence class as a tuple of ranges. As
an example of computing stable partitions with Algorithm 1, consider the integer CPN in Figure 3.
Table 1 shows the different stages that δ undergoes in order to become stable. In iteration 0, the guard
restrictions from the first for-loop are applied, followed by the iterations of the main while-loop. In
our implementation, we do not iterate through every bounded marking and we instead (for efficiency
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p1 t1

t2

1′(x)

1′(y) 1′(x, y)

1′(x, y)1′(y + 1)

t3

2′(x)

1′(x)

x ≤ 3

y ≥ 3

t4
1′(x, y)

y < 2

Declarations:
Color set A = ([1, 4])
Color set AA = A ×A
variable x : A
variable y : A

[A]

[A]

[A]

[AA]

1′(1)

1′(3) p2

p3

p4

Figure 3: Example CPN

Table 1: Stages of δ throughout Algorithm 1 for CPN in Figure 3. The 0’th iteration is the state of δ
just before the while loop begins. The symbol ’-’ indicates that the value is the same as in the previous
row.

Iteration p1 p2 p3 p4 Q
0 {([1, 4])} {([1, 4])} {([1, 3]), ([4])} {([1, 4], [1]), ([1, 4], [2]), ([1, 4], [3, 4])} {p1, p2, p3, p4}
1, p = p3 {([1, 3]), ([4])} - - - {p1, p2, p4}
2, p = p4 - {([1]), ([2]), ([3, 4])} - - {p1, p2}

3, p = p2 - - -
{([1, 4], [1]), ([1, 4], [2]),
([1, 4], [3]), ([1, 4], [4])}

{p1, p4}

4, p = p4 - {([1]), ([2]), ([3]), ([4])} - - {p1, p2}
5, p = p2 - - - - {p1}
6, p = p1 - - - - {}

Table 2: Stages of α when computing the fixed point of E for the CPN in Figure 3. The symbol ’-’
indicates that the value is the same as in the previous row.

Iteration p1 p2 p3 p4

0, α = α0 {([1])} {([3])} {} {}
1, t = t1 - - {([1])} {([1], [3])}
2, t = t2 - {([3, 4])} - -

3, t = t1 - - - {([1], [3, 4])}
4, t = t2 - {([3, 4]), ([1])} - -

5, t = t1 - - - {([1], [3, 4]), ([1], [1])}

reasons) statically analyze the places, arcs and guards in order to partition the color sets. For example,
in iteration number 1, we consider the place p3 and we can see that the colors in the range [1, 3]
must be distinguished from the color 4. This partitioning propagates back to the place p1 as firing the
transition t1 moves tokens from p1 to p3 without changing its color.
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4. Color approximation

We now introduce another technique for safely overapproximating what colors can be present in each
place of a CPN. Let N = (P , T ,C,B, C ,G,W ,WI ,M0) be a fixed CPN for the rest of this section.
A color approximation is a function α : P −→ 2C where α(p) approximates the possible colors in
place p ∈ P such that α(p) ⊆ C(p). Let A be the set of all color approximations. For a marking M
and color approximation α, we write M ⊆ α iff set(M(p)) ⊆ α(p) for all p ∈ P . A color expansion
is a function E : A −→ A defined by

E(α)(p) =


α(p) ∪ set(W ((t, p), b)) if ∃t ∈ T.∃b ∈ B(t).

set(W ((q, t), b)) ⊆ α(q) for all q ∈ P

α(p) otherwise.

A color expansion iteratively expands the possible colors that exist in each place but without keep-
ing a count of how many tokens of each color are present (if a color is present in a place, we assume
that arbitrary many copies of the color are present). The expansion function obviously preserves the
following property.

Lemma 4.1. Let α be a color approximation then α(p) ⊆ E(α)(p) for all p ∈ P .

Let α0 be the initial approximation such that α0(p)
def
= set(M0(p)) for all p ∈ P . Since E is a

monotonic function on a complete lattice, we can compute its minimum fixed point and formulate the
following key lemma.

Lemma 4.2. Let α be a minimum fixed point of E such that α0(p) ⊆ α(p) for all p ∈ P . If M0 −→∗

M then M ⊆ α.

Proof:
By induction on k we prove if M0 −→k M then M ⊆ α. Base step. If k = 0, we know that M0 ⊆ α by
the assumption of the lemma. Induction step. Let M0 −→k M

t−→ M ′ by some transition t with some
binding b ∈ B(t). We want to show that M ′ ⊆ α. By induction hypothesis we know that M ⊆ α.
If M t−→ M ′ for some b ∈ B(t), then M ′(p) = (M(p) \W ((p, t), b)) ⊎W ((t, p), b) for all p ∈ P .
Since E(α) is a fixed point then α(p) = α(p) ∪ set(W ((t, p), b)) for transition t under binding b for
all p ∈ P i.e. set(W ((q, t), b)) ⊆ α(q) for all q ∈ P . Thus we get M ′ ⊆ α. ⊓⊔

Given a color approximation α satisfying the preconditions of Lemma 4.2, we can now construct
a reduced CPN Nα = (P, T,C,B, Cα, G,W,WI ,M0) where Cα(p) = α(p) for all p ∈ P . The net
Nα can hence have possibly smaller set of colors in its color domains and it satisfies the following
theorem.

Theorem 4.3. The reachable fragments from the initial marking M0 of the LTSs generated byN and
Nα are isomorphic.
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Proof:
By Lemma 4.2 we know that M ⊆ α for any marking M ∈ M(N ) reachable from M0. Since the
reachable fragments of N and Nα are exactly the reachable markings, we know that the reachable
fragments are isomorphic. ⊓⊔

4.1. Computing color approximation on integer CPNs

As with color quotienting, representing each color individually becomes inefficient. We thus em-
ploy integer ranges to represent color approximations. Consider the approximation α where α(p) =
{(1, 2), (2, 2), (3, 2), (5, 6), (5, 7)} are possible colors (pairs of integers) in the place p; this can be
more compactly represented as a set of tuples of ranges {([1, 3], [2]), ([5], [6, 7])}.

However, computing the minimum fixed point of E using ranges is not as trivial as using complete
color sets. To do so, we need to compute new ranges depending on arcs and guards. We demonstrate
this on the CPN in Figure 3. Table 2 shows the computation of the minimum fixed point of E, starting
from the initial approximation α0. For example, in iteration number 5, we check if firing transition t1
can produce any additional tokens to the places p3 and p4. Clearly, there is no change to the possible
token colors in p3 as α(p1) did not change, however the addition of the integer range [1] to α(p2) in
the previous iteration now allows us to produce a new token color (1, 1) into p4 and hence we add the
singleton range ([1], [1]) to α(p4). Due to the guard y ≥ 3 on the transition t2, we know that the added
token (1, 1) does not generate any further behaviour and hence we reached a fixed point.

5. Experiments

We implemented the quotienting method from Section 3 as well as the color approximation method
from Section 4 in C++ as an extension to the verification engine verifypn [13] from the TAPAAL
toolchain [12].

We perform experiments by comparing several different approaches; the quotienting approach
(method A), the color approximation approach (method B) and the combination of both (method
A+B) against

• the unfolder MCC [4] (used also by TINA [17] and LoLA [18]),

• ITS-Tools unfolder [20],

• the Spike unfolder [16] (also used by MARCIE [15] and Snoopy [14]),

• and verifypn TAPAAL unfolder with methods A and B disabled, referred to as Tapaal.

We compare the tools on the complete set of CPN nets and queries from 2021 Model Checking Con-
test [11]1. The experiments are conducted on a compute cluster running Linux version 5.4.0, where
each experiment is conducted on a AMD Epyc 7642 processor with a 15 GB memory limit and 5
minute timeout. To reduce noise in the experiments, we read and write models to a RAM-disk (not
included in the 15 GB). A repeatability package is available in [28].
1We omit the UtilityControlRoom family of models as they contain operators not supported by ITS-Tools.
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Table 3: Number of unfolded nets for each unfolder

Spike Tapaal ITS-
Tools

A B MCC A+B Total

Unfolded nets 170 192 193 195 200 200 203 203

We conduct two series of experiments: in Section 5.1 we study the unfolding performance of the
tools; i.e. how fast and how many models can be unfolded by each tool and how large are the unfolded
models, and in Section 5.2 we study the impact of this unfolding on the ability to answer the queries
from the Model Checking Contest 2021.

5.1. Unfolding experiments

Table 3 shows for each of the unfolders the number of unfolded nets within the memory/time limit.
The last column shows the total number of unfolded nets by all tools combined, and we notice that the
combination of methods A+B allows us to unfold a superset of models unfolded by the other tools.
Our method A+B can unfold 3 nets that no other tool can unfold; DrinkVendingMachine48, 76, 98.
This is directly attributed to method A.

The comparison of the sizes (total number of transitions and places) of unfolded nets is done
by plotting the ratios between the size produced by our A+B method and the competing unfolder.
Figure 4a shows the size ratios where at least one comparison is not equal to 1. We see that our
method has a size ratio always smaller or equal to 1 (no other method unfolds any of the nets to a
smaller size compared to our method A+B) and the size ratio is strictly smaller than 1 for 144 colored
nets (out of 213 nets in the database). Moreover, we can reduce 45 nets by at least one order of
magnitute, compared to all other unfolders.

As our method outperforms the state-of-the-art unfolders w.r.t. the size of the unfolded nets, the
question is whether the overhead of the advanced static analysis does not kill the benefits. Fortunately,
this is not the case as shown in Figure 4b where the 80 slowest unfolding times (independently sorted
in nondecreasing order for each tool) are depicted. The plots show that our method has almost a mag-
nitude reduction in running-time compared to ITS-Tools and MCC (which are close in performance),
while Spike is significantly slower. ITS-Tools is generally fast on the nets that are unfolded in less
than 10 seconds, however it becomes gradually slower and has problems unfolding the larger nets.
Our unfolder and the MCC unfolder demonstrate a similar degradation trend in performance.

The overall conclusion is that our advanced analyses requires less overhead compared to other
existing unfolders, while at the same time it significantly decreases the size of the unfolded nets.

5.2. Query verification experiments

In these experiments, we examine which unfolding engine allows for most query answers verified
on the unfolded nets. To allow for a fair comparison, we let each tool unfold and output the net to
a PNML file. Regarding queries, both method A+B and ITS-Tools can already output the unfolded
queries. For MCC, we implement our own translation from the colored queries to the unfolded queries
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Figure 4: Unfolding size and unfolding time comparison

for the given nets. For Spike, we were not able to construct a query unfolder that worked consistently
and for this reason Spike is excluded from the query verification experiments.

Since we are testing the effect of the unfolding and not the verification engine, we use verifypn
(revision 507c8ee0) to verify the queries on the nets unfolded by the different unfolders. There is a
total of 20,448 queries to be answered. The results can be seen in Table 4.

Table 4: Number of queries answered for the unfolded nets of each tool. The % column describes how
many percent of the total available queries in each category were answered. Each category counts
213 · 16 = 3408 queries.

Cardinality Queries
A+B MCC ITS-Tools

Solved % Solved % Solved %

ReachabilityCardinality 2909 85.4 2793 82.0 2759 81.0

CTLCardinality 2651 77.8 2490 73.1 2443 73.8

LTLCardinality 2952 86.6 2818 82.7 2785 81.7

Total 8512 83.3 8101 79.2 7987 78.1
Fireability Queries

ReachabilityFireability 2567 75.3 2484 72.9 2513 73.7

CTLFireability 2047 60.1 1878 55.1 1695 49.7

LTLFireability 2798 82.1 2639 77.4 2520 73.9

Total 7412 72.5 7001 68.5 6728 65.8

Total query answers 15924 77.9 15102 73.9 14715 72.0
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We see that using the method A+B to unfold nets allows us to answer more queries in every
category due to the generally smaller nets it unfolds to. In total, we are able to answer 4 percentage
points more queries using the unfolded nets of method A+B compared to using the unfolded nets of
MCC and 5.9 percentage points more compared to ITS-Tools.

6. Conclusion

We presented two complementary methods for reducing the unfolding size of colored Petri nets (CPN).
Both methods are proved correct and implemented in an open-source verification engine of the tool
TAPAAL. Experimental results show a significant improvement in the size of unfolded nets, compared
to state-of-the-art tools, without compromising the unfolding speed. The actual verification on the
models and queries from the 2021 Model Checking Contest shows that our unfolding technique allows
us to solve 4% more queries compared to the second best competing tool. In future work, we plan to
combine our approach with structural reduction techniques applied directly to the colored nets.

Acknowledgments. We would like to thank Yann Thierry-Mieg for his answers and modifications to
the ITS-Tools, Silvano Dal Zilio for his answers/additions concerning the MCC unfolder and Monika
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