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1. Introduction

The so-called synthesis problem for nets of some class τ (τ -synthesis, for short) consists in deciding

whether for a given labeled transition system (TS, for short) A there is a net N of class τ (a τ -net,

for short) that implements A. In case of a positive decision, N should be constructed, possibly while

minimizing some features (number of places, arc weights, . . . ); in case of a negative decision, some

reason(s) should be given.

τ -Synthesis is used to, for example, extract concurrency from sequential specifications like TS and

languages [1] and has applications in, for example, process discovery [2], supervisory control [3] and

the synthesis of speed independent circuits [4].

However, whether N exists depends crucially on the kind of implementation we are striving at,

that is, whether N should be an (exact) realization (meaning that A and N ’s reachability graph are

isomorphic), or a language-simulation (meaning that A and N have the same language) or an embed-

ding (meaning that N preserves the distinctness of states of A). Unfortunately, whatever the kind of

implementation, a solution does not always exist. This observation motivates the search for techniques

that modify the given TS (as little as possible) so that the result is an implementable behavior.

For instance, label-splitting has been considered in [5, 6, 7, 8]: This approach may convert a

non-implementable TS A into an implementable one A′ by relabeling differently some edges that

previously had the same label. However, the new events produced by the label-splitting increase the

complexity of the derived net, since each new copy will be transformed into a new transition. Hence,

it is desired to find a label-splitting that induces the minimal number of transitions in the sought net.

This allows to consider τ -label-splitting as a decision problem with input A and κ ∈ N; the question

is whether there is a TS B implementable by a τ -net that, firstly, is derived from A by splitting labels

and, secondly, has at most κ labels (then, by a dichotomic search, an optimal splitting may be found).

Recently, in [9], it has been shown that τ -label-splitting aiming at embedding is NP-complete if τ

equals the class of weighted Place/Transition-nets. Moreover, in [10], we have shown that τ -label-

splitting aiming at language-simulation or realization is also NP-complete for this type.

Since label-splitting is intractable (at least for weighted Place/Transition nets), other techniques

with better worst-case complexity would be preferable. This led to the idea of simplifying an unim-

plementable TS by removing some edges, events or states until the result is implementable. Indeed,

the removal of components is a strong technique that always leads to implementable behavior, since

the result is implementable when only the initial state is left at the end. However, such an extreme

modification is certainly not desirable. Instead, we aim to remove the minimum number κ of com-

ponents so that the result is implementable. This justifies to consider the decision problems edge-,

event-, and state-removal: given a TS A, and a number κ, the task is to decide whether we can modify

A to an implementable TS B by the removal of at most κ edges, events or states, respectively. Un-

fortunately, it has been shown that these removal techniques are also NP-complete for all implemen-

tations - embedding, language-simulation and realization - if we target (weighted) Place/Transition

nets [11, 12].

Naturally, it raises the question whether the decision problems, and thus the corresponding modi-

fication techniques, are of a different complexity provided the net class sought is different.
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A whole family of net classes for which such investigations are certainly of interest is defined by

the so-called Boolean types of nets [5, 13, 14, 15, 16, 17, 18], since the respective nets are widely

accepted as excellent tools for modeling concurrent and distributed systems.

Boolean nets allow at most one token on each place p in every reachable marking. Therefore, p is

considered a Boolean condition that is true if p is marked and false otherwise. A place p and a transi-

tion t of a Boolean net N are related by one of the following Boolean interactions (partial functions):

no operation (nop), input (inp), output (out), unconditionally set to true (set), unconditionally reset

to false (res), inverting (swap), test if true (used), and test if false (free). The relation between p

and t determines which conditions p must satisfy to allow t’s firing (the corresponding partial func-

tion must be defined), and which impact has the firing of t on p (the partial function determines what

should be the new value of p if t is executed). Boolean nets are then classified by the interactions

of I = {nop, inp,out, res, set, swap,used, free} that they apply or spare. More exactly, a subset

τ ⊆ I is called a Boolean type of net and a net N is of type τ (a τ -net) if it applies at most the

interactions of τ .

However, the determination of the complexity of TS modifications allowing τ -synthesis does not

actually define an open problem for all Boolean types of nets. In particular, it is known that τ -synthesis

aiming at language-simulation or realization is NP-complete for 84 out of the 128 Boolean types of

nets containing nop (which allows some kind of independence between places and transitions) [19,

20, 21, 22, 20]. Likewise, it is known that τ -synthesis striving at embedding is NP-complete for

90 of the nop-equipped Boolean types [23]. Consequently, for these types, the NP-completeness

of τ -synthesis implies already the NP-completeness of the corresponding problems label-splitting,

and edge-, event-, and state-removal, for instance by choosing κ in a way that forbids any splitting,

or removal, respectively. This puts the Boolean types with a tractable synthesis problem in focus.

One of the most prominent Boolean type that fulfills this criterion is the so-called flip-flop type of

nets, where τ = {nop, inp,out, swap}. Flip-flop nets have been originally introduced in [18], and

their name is inspired by the interaction swap that allows a transition to unconditionally change the

current marking of a place from 0 to 1 and from 1 to 0. The flip-flop nets are considered as the

Boolean counterpart of the Place/Transition nets. This characterization is mainly based on the fact

that synthesis aiming at flip-flop nets is solvable by a polynomial time algorithm [18] that is derived

from the algorithm for synthesis aiming at Place/Transition nets, which has been introduced in [24].

In fact, the algorithm for flip-flop nets [18] is extendable to all types τ = {nop, swap} ∪ ω with

ω ⊆ {inp,out,used, free} [21], which makes their synthesis problem also tractable.

In this paper, for all 16 types τ = {nop, swap} ∪ ω with ω ⊆ {inp,out,used, free}, hence in

particular for the flip-flop nets, we investigate the computational complexity of τ -label-splitting and

element removing for all introduced implementations: embedding, language-simulation and realiza-

tion. In particular, we show that this problem aiming at embedding is NP-complete for all these types,

unfortunately. Moreover, label-splitting aiming at language-simulation or realization is NP-complete

if ω 6= ∅, otherwise it is tractable.

Furthermore, for all 15 types τ = {nop, swap} ∪ ω with ω ⊆ {inp,out,used, free} and ω 6= ∅,

we investigate the computational complexity of τ -edge-, event-, and state-removal, and show that these

problems are NP-complete for all these types, regardless which of the implementations embedding,

language-simulation and realization we are aiming at.
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We obtain our NP-completeness results by reductions from a variant of the well-known vertex

cover problem. Our current approach generalizes our methods from [10, 12] and tailors them to flip-

flop nets and its aforementioned derivatives.

This paper, which is an extended version of [25], is organized as follows. The next Section 2

introduces necessary notions and definitions. After that, Sections 3 to 6 present our complexity results

for label-splitting and the edge/event/state-removals. Finally, Section 7 briefly closes the paper.

2. Preliminaries

This section introduces the basic notions used throughout the paper.

Definition 2.1. (Transition Systems)

A transition system (TS) A = (S,E, δ) is a finite directed labeled graph with the set of nodes S (called

states), the set of labels E (called events) and partial transition function δ : S × E −→ S.

We shall assume no event is useless, i.e., for every e ∈ E there are states s, s′ ∈ S such

that δ(s, e) = s′. For convenience, with a little abuse of notation, we often identify δ and the set

{(s, e, s′) ∈ S × E × S | δ(s, e) = s′}.

Event e occurs at s, denoted by s e , if δ(s, e) is defined, otherwise we denote it by s ¬e or

¬s e . We denote δ(s, e) = s′ by s e s′.

An initialized TS A = (S,E, δ, ι) is a TS with a distinct initial state ι ∈ S such that every state

s ∈ S is reachable from ι by a directed labeled path. If w = e1 . . . en ∈ E∗, by ι w we denote that

there are states ι = s0, . . . , sn ∈ S such that si
ei+1 si+1 ∈ A for all i ∈ {0, . . . , n − 1}, in which

case we also denote ι w sn. We extend this notation by stating that ι ǫ ι.

The language of A is defined by L(A) = {w ∈ E∗ | ι w }.

When not given explicitly, we shall refer to the components of a TS A by S(A) (states), E(A)
(events), δA (transition function) and ιA (initial state).

Definition 2.2. (Simulations)

Let A and B be initialized TS with the same set of events E. We say B simulates A, if there is a

mapping ϕ : S(A) → S(B) such that ϕ(ιA) = ιB and s e s′ ∈ A implies ϕ(s) e ϕ(s′) ∈ B; such

a mapping is called a simulation (between A and B).

ϕ is an embedding, denoted by A →֒ B, if it is injective; ϕ is a language-simulation, denoted by

A ⊲ B, if ϕ(s) e implies s e , implying L(A) = L(B) [5, p. 67]; ϕ is an isomorphism, denoted by

A ∼= B, if it is both an embedding and a language simulation.

Definition 2.3. (Boolean Types [5])

A Boolean type is a subset τ of the 8 Boolean interactions

I = {nop, inp,out, set, res, swap,used, free}
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i.e., the partial functions {0, 1} → {0, 1} schematized in Figure 1. To each type τ , we associate the

Boolean1 TS Aτ = ({0, 1}, Eτ , δτ ), where Eτ = τ and, for each x ∈ {0, 1} and i ∈ Eτ , δτ (x, i)
is defined if so is i(x), in which case δτ (x, i) = i(x). Since the correspondence is unique, we often

identify τ with Aτ .

In fact there are (2 + 1)2 = 9 such partial functions, but the empty one (defined nowhere) is of no

interest here, since it may never occur as the label of an event.

x nop(x) inp(x) out(x) set(x) res(x) swap(x) used(x) free(x)

0 0 1 1 0 1 0

1 1 0 1 0 0 1

Figure 1: All interactions i of I . If a cell is empty, then i is undefined on the respective x.

0 1nop nop

inp,swap

swap

Aτ

R1 ainp

a′nop

R2swap

inp

N AN

(1, 0) (0, 1) (0, 0)
a a′

Figure 2: Left: Aτ for the the type τ = {nop, inp, swap}. Middle: A τ -net N (as usual, the initial

marking is indicated by putting a token in the places p such that M0(p) = 1). Right: The reachability

graph AN of N , where each state M is represented by its marking (M(R1),M(R2)), and the initial

state is indicated by the arrow without source state.

Definition 2.4. (τ -Nets)

Let τ ⊆ I . A Boolean net N = (P, T, f,M0) of type τ (a τ -net) is given by finite disjoint sets P of

places and T of transitions, a (total) flow-function f : P ×T → τ , and an initial marking M0 : P −→
{0, 1}. A transition t ∈ T can fire in a marking M : P −→ {0, 1} if δτ (M(p), f(p, t)) is defined for

all p ∈ P . By firing, t produces the marking M ′ : P −→ {0, 1} where M ′(p) = δτ (M(p), f(p, t))

for all p ∈ P , denoted by M t M ′. The behavior of τ -net N is captured by an initialized transition

system AN , called the reachability graph of N . The states set S(AN ) of AN will also be denoted

RS(N); it consists of all markings that can be reached from the initial state M0 by sequences of

transition firings; E(AN ) = T , ιAN
= M0, and (s, e, s′) ∈ δAN

iff s e s′ in N .

Example 2.5. Figure 2 shows the transition system Aτ for the type τ = {nop, inp, swap}, the τ -net

N = ({R1, R2}, {a, a
′}, f,M0) with places R1, R2, flow-function f(R1, a) = f(R2, a

′) = inp,

f(R1, a
′) = nop, f(R2, a) = swap and initial marking M0 defined by (M0(R1),M0(R2)) =

(1, 0). Since 1 inp 0 ∈ τ and 0 swap 1 ∈ τ , the transition a can fire in M0, which leads to the

1Meaning that the state set S = {0, 1}. The initial state is irrelevant here.
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marking M = (M(R1),M(R2)) = (0, 1). After that, a′ can fire, which results in the marking

M ′ = (M ′(R1),M
′(R2)) = (0, 0). The reachability graph AN of N is depicted on the right hand

side of Figure 2.

Definition 2.6. (Implementations)

Let A be an initialized TS, τ be a Boolean type and N a τ -net. We say N is an (exact) realization of A

if A ∼= AN . If A ⊲ AN , then N is a language-simulation of A. If A →֒ AN , then N is an embedding

of A.

Remark 2.7. By definition, the reachability graph of a net is initialized. In the following, we shall

thus only consider initialized transition systems without explicitly mention it every time.

Let τ be a Boolean type of nets. If a TS A is implementable by a τ -net N , then we want to

construct N from the structure of A. Since AN has to simulate A, N ’s transitions correspond to A’s

events. The connection between global states in TS and local states in the sought net is given by

regions of TS that mimic places:

Definition 2.8. (τ -Regions)

A τ -region R = (sup, sig) of A = (S,E, δ, ι) consists of the support sup : S → {0, 1} and the

signature sig : E → Eτ where every edge s e s′ of A leads to an edge sup(s) sig(e) sup(s′) of type

τ . If P = q0
e1 . . . en qn is a path in A, then PR = sup(q0)

sig(e1) . . . sig(en) sup(qn) is a path in

τ . We say PR is the image of P (under R).

Notice that R is implicitly completely defined by sup(ι) and sig: Since A is initialized, for every

state s ∈ S(A), there is a path ι e1 . . . en sn such that s = sn. Thus, since δτ is a (partial) function,

we inductively obtain sup(si+1) by sup(si+1) = δτ (sup(si), sig(ei+1)) for all i ∈ {0, . . . , n − 1}
and s0 = ι. Consequently, we can compute sup and thus R purely from sup(ι) and sig (and A), since

when two paths lead to the same state the corresponding supports are the same (otherwise (sup, sig)
does not define a region); this is illustrated by Example 2.14 and Figure 3.

t0 t1 t2

A

a a
t0 t1 t2

B

a a′
1 0 0

BR1

inp nop

Figure 3: Left: The TS A with event set E = {a}. Middle: The TS B with event set E′ = {a, a′}.

Right: The image BR1 of the τ -region R1 = (sup1, sig1) of B, where sup1(t0) = 1, sup1(t1) =
sup1(t2) = 0, sig1(a) = inp and sig1(a

′) = nop, and τ = {nop, inp, swap}. Later, we shall also

represent a region by a color convention indicating the support of each state.

Every set R of τ -regions of A implies a particular synthesized τ -net, where the regions model

places and the associated part of the flow-function:
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Definition 2.9. (Synthesized net)

Let A = (S,E, δ, ι) be a TS, τ a Boolean type and R a set of τ -regions of A. The synthesized net

(indicated by A and R) is defined by NR
A = (R, E, f,M0) where, for all R = (sup, sig) ∈ R and all

e ∈ E, we have that f(R, e) = sig(e) and M0(R) = sup(ι).

It can be shown that there is always a (unique) simulation ϕ between A and the reachability graph

ANR

A
of the synthesized net NR

A where, for all s ∈ S(A) and all R ∈ R, we have that sup(s) = M(R)

for the marking M of NR
A that satisfies ϕ(s) = M . However, to ensure that ϕ is an embedding, we

have to distinguish global states, and to ensure that ϕ is a language-simulation, we have to prevent the

firings of transitions when their corresponding events are not present in TS. This is stated as separation

atoms and properties.

Definition 2.10. (τ -State Separation and Property)

A pair (s, s′) of distinct states of a A defines a states separation atom (SSA). A τ -region R =
(sup, sig) solves (s, s′) if sup(s) 6= sup(s′); then this SSA is said τ -solvable. If every SSA of A

is τ -solvable then A has the τ -states separation property (τ -SSP, for short).

Definition 2.11. (τ -Event Separation and Property)

A pair (e, s) of event e ∈ E and state s ∈ S where e does not occur, that is ¬s e , defines an

event/state separation atom (ESSA). A τ -region R = (sup, sig) solves (e, s) if sig(e) is not defined

on sup(s) in τ , that is, ¬sup(s) sig(e) ; then this ESSA is said τ -solvable. If every ESSA of A is

τ -solvable then A has the τ -event state separation property (τ -ESSP, for short).

Definition 2.12. (τ -Witness)

A set R of τ -regions of A is called a τ -witness of A’s τ -SSP, respectively τ -ESSP, if for each SSA,

respectively ESSA, there is a τ -region R in R that solves it.

The next lemma ([5, p. 162], Proposition 5.10) establishes the connection between the existence

of τ -witnesses and the existence of an implementing τ -net N for the witnessed property:

Lemma 2.13. ([5])

Let A be a TS, τ a Boolean type and N a τ -net. The following statements are true:

1. A →֒ AN if and only if there is a τ -witness R of the τ -SSP of A and N = NR
A .

2. A ⊲ AN if and only if there is a τ -witness R of the τ -ESSP of A and N = NR
A .

3. A ∼= AN if and only if there is a τ -witness R of both the τ -SSP and the τ -ESSP of A and

N = NR
A .

Example 2.14. Let τ be defined like in Figure 2 and A,B,BR1 like in Figure 3. The TS A has neither

the τ -SSP nor the τ -ESSP, since the atoms (t0, t2) and (a, t2) are not τ -solvable. The TS B has both

the τ -SSP and τ -ESSP. The region R1 = (sup1, sig1) that solves (t0, t1), (t0, t2), (a, t1) and (a, t2)
is implicitly defined by sup1(t0) = 1, sig1(a) = inp and sig1(a

′) = nop. We obtain sup1 and

thus R1 explicitly by sup1(t1) = δτ (1, inp) = 0 and sup1(t2) = δτ (0,nop) = 0. BR1 shows the

image of B under R1. The remaining (E)SSP atoms (t1, t2), (a
′, t0) and (a′, t1) are solved by the
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following τ -region R2 = (sup2, sig2) that is implicitly defined by sup2(t0) = 0, sig2(a) = swap

and sig2(a
′) = inp. The set R = {R1, R2} is a witness for the τ -(E)SSP of A and the net NR

A is

exactly the net N that is depicted in Figure 2. N is a realization of A, since a bijective simulation ϕ

between A and AN is given by ϕ(t0) = (1, 0), ϕ(t1) = (0, 1) and ϕ(t2) = (0, 0).

3. The complexity of label-splitting

For a Boolean type τ , τ -synthesis is the task to find, for a given TS A, a τ -net N that implements A.

Regardless of which of the implementations (τ -embedding, τ -language-simulation or τ -realization)

we are aiming at, a suitable τ -net does not always exists. In this case, label-splitting might be a

suitable technique to modify A into a TS B that is then implementable:

Definition 3.1. (Label-splitting)

Let A = (S,E, δ, ι) be a TS and e1, . . . , en ∈ E be pairwise distinct events. The label-splitting

of the events e1, . . . , en into the events e11, . . . , e
m1

1
, . . . , e1n, . . . , e

mn
n (pairwise distinct, and distinct

from the other events in E \ {e1, . . . , en}), where mj ≥ 2 for all j ∈ {1, . . . , n}, yields the event set

E′ = (E \ {e1, . . . , en}) ∪
⋃n

i=1
{eji | j ∈ {1, . . . ,mj}}.

A TS B = (S,E′, δ′, ι) is an E′-label-splitting (E′-LS, for short) of A if |δ| = |δ′| and, for all

s, s′ ∈ S and all e ∈ E, the following is true: If δ(s, e) = s′ and e 6∈ {e1, . . . , en}, then δ′(s, e) = s′;

if δ(s, e) = s′ and e = ei for some i ∈ {1, . . . , n}, then there is exactly one ℓ ∈ {1, . . . ,mi} such that

δ′(s, eℓi) = s′. We say that L = {e1, . . . , en} is the set of events of A that occur split in B.

Note that, in practice, e1j is usually chosen as the original event ej for some or all j ∈ {1, . . . , n}.

Example 3.2. Let A and B be defined like in Figure 3. The TS B is an E′-label-splitting of A, where

E′ = (E \ {a}) ∪ {a, a′}.

To be as close as possible to the original behavior A, a corresponding E′-label-splitting B of A

should change A as little as possible, which means that the number of events of B should be as small

as possible. This gives rise to consider label-splitting as a decision problem that, for a given TS A and

a natural number κ, asks whether there is an E′-label-splitting B of A that is implementable and uses

at most κ labels, i.e., |E′| ≤ κ.

By Lemma 2.13, deciding the existence of an implementing net is equivalent to deciding if the

input TS has the property that corresponds to the implementation. Finally, this leads to the following

three decision problems that are the main subject of this section:

LS-τ -EMBEDDING

Input: a TS A = (S,E, δ, ι), a natural number κ.

Question: Does there exist an E′-label-splitting B of A with |E′| ≤ κ that has the

τ -SSP?
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LS-τ -LANGUAGE-SIMULATION

Input: a TS A = (S,E, δ, ι), a natural number κ.

Question: Does there exist an E′-label-splitting B of A with |E′| ≤ κ that has the

τ -ESSP?

LS-τ -REALISATION

Input: a TS A = (S,E, δ, ι), a natural number κ.

Question: Does there exist an E′-label-splitting B of A with |E′| ≤ κ that has

both the τ -SSP and the τ -ESSP?

The following theorem presents the main result of this section:

Theorem 3.3. If τ = {nop, swap} ∪ ω with ω ⊆ {inp,out,used, free}, then

1. LS-τ -EMBEDDING is NP-complete,

2. LS-τ -LANGUAGE-SIMULATION, and LS-τ -REALISATION are NP-complete if ω 6= ∅, other-

wise they are in P.

First of all, we argue for the polynomial part, where we need the τ -ESSP: If τ = {nop, swap}2,

then a TS A = (S,E, δ, ι) has the τ -ESSP if and only if every event occurs at every state. Indeed, if

every event occurs at every state there is no ESSA that needs to be solved. On the contrary, if some

event e is missing from some state s, since all the allowed functions are defined on both 0 and 1,

it is not possible to solve the ESSA (e, s) of A. This implies that an E′-label-splitting B of A that

reflects an actual splitting, meaning that |E′| > |E|, can never yield a TS that has the τ -ESSP, since it

would produce at least one unsolvable ESSA: If |E′| > |E|, then there is an event ei in A for which

there are edges s
e
j
i s′, and t

eℓi t′ in B with s 6= t, and e
j
i 6= eℓi (since δA, and δB are functions,

and every event has an occurrence by Definition 2.1), which were previously both labeled by ei. This

implies ¬s eℓi (by δA being a function), and thus (s, eℓi) is not solvable. The same argument shows

that, for the realization problem, if A has the ESSP (meaning that every event occurs at every state

as explained before) but has an unsolvable SSA, then any label-splitting introduced to solve this atom

would destroy the ESSP. Hence, for this Boolean type, the decision problems are trivial: either A

is already implementable (which can be can be checked in polynomial time [18, 21]) or it has to be

rejected. Thus, for the proof of Theorem 3.3(2), it remains to consider the cases when ω 6= ∅, hence

the NP-completeness results.

The decision problems LS-τ -EMBEDDING, LS-τ -LANGUAGE-SIMULATION as well as LS-τ -

REALISATION are in NP: If a sought E′-label-splitting B = (S,E′, δ′, ι) of a TS A = (S,E, δ, ι)
exists, then a Turing-machine M can compute B in a non-deterministic computation in time polyno-

mial in the size |δ| of A, since |δ| = |δ′|. After that, M verifies in time polynomial in the size |δ′| of

B (and thus of A) that it allows the sought implementation [18, 21].

2This remains true if τ ⊆ {nop, swap, set, res}, but set/res are not used in this paper.
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Recall that a non-directed graph G = (U,M) consists of a (finite) set U of vertices, and a set M

of (non-directed) edges over U, that is, for all e ∈ M , we have that e ⊆ U, and |e| = 2.

Our NP-completeness proofs are based on reductions from the following classical variant of the

vertex cover (VC) problem [26, p. 190]:

3-BOUNDED VERTEX COVER (3BVC)

Input: a non-directed Graph G = (U,M) such that every vertex v ∈ U is a

member of at most three distinct edges, and a natural number λ ∈ N.

Question: Does there exist a λ-vertex cover (λ-VC, for short) of G, that is a subset

S ⊆ U with |S| ≤ λ and S ∩ e 6= ∅ for all e ∈ M?

Example 3.4. (3BVC)

The instance (G, 2), illustrated in Figure 4, where G = (U,M) such that U = {v0, v1, v2, v3} and

M = {M0, . . . ,M4}, where M0 = {v0, v1},M1 = {v0, v2},M2 = {v0, v3},M3 = {v1, v2}, and

M4 = {v2, v3}, is a yes-instance of 3BVC, since S = {v0, v2} is a 2-VC of G.

vvv0

v1 vvv2

v3

Figure 4: A running graph example G; a 2-VC is {vvv0, vvv2} (in bold).

In the remainder of this paper, let (G,λ) be an input of 3BVC, where G = (U,M) is a graph with

n vertices U = {v0, . . . , vn−1} and m edges M = {M0, . . . ,Mm−1} such that Mi = {vi0 , vi1} and

i0 < i1 for all i ∈ {0, . . . ,m− 1}.

For the proof of Theorem 3.3, we polynomially reduce (G,λ) to a pair (AG, κ) of TS AG =
(S,E, δ,⊥0) and natural number κ such that the following conditions are satisfied:

1. If there is an E′-label-splitting of AG that satisfies |E′| ≤ κ and has the τ -SSP or the τ -ESSP,

then G has a λ-VC.

2. If G has a λ-VC, then there is an E′-label-splitting of AG that satisfies |E′| ≤ κ and has both

the τ -SSP and the τ -ESSP.

Obviously, a polynomial-time reduction that satisfies Condition 1 and Condition 2 ensures that G

allows a λ-VC if and only if AG allows an E′-label-splitting that satisfies |E′| ≤ κ and has the τ -SSP,

the τ -ESSP or both, according to which property is sought. Hence, it proves Theorem 3.3.
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3.1. The proof of Theorem 3.3(1)

In the remainder of this section we assume that τ = {nop, swap} ∪ ω, with an arbitrary but fixed

subset ω ⊆ {inp,out,used, free}.

For a start, we define κ = n + 2m − 1 + λ, where n + 2m − 1 is the number of events of the

aforementioned TS AG. Hence, λ is the maximum number of events of AG that could potentially be

split in an E′-label-splitting BG of AG.

For every i ∈ {0, . . . ,m− 1}, the TS AG has the following directed path Ti that uses the vertices

vi0 and vi1 of the edge Mi as events:

Ti = ti,0 ti,1 ti,2 ti,3 ti,4
vi0 vi1 vi0 vi1

Finally, for all i ∈ {0, . . . ,m − 1}, we apply the edge ⊥i
wi ti,0 and, if i < m − 1, then also

the edge ⊥i
⊖i+1 ⊥i+1 to connect the paths T0, . . . , Tm−1 into the TS AG, cf. Figure 5. Let ⊥ =

{⊥0, . . . ,⊥m−1} and W = {w0, . . . , wm−1} and ⊖ = {⊖1, . . . ,⊖m−1}. The TS AG has exactly

|V ∪W ∪ ⊖| = n+ 2m− 1 events.

⊥0 t0,0 t0,1 t0,2 t0,3 t0,4
w0 v0 v1 v0 v1

⊥1 t1,0 t1,1 t1,2 t1,3 t1,4
w1 v0 v2 v0 v2

⊥2 t2,0 t2,1 t2,2 t2,3 t2,4
w2 v0 v3 v0 v3

⊥3 t3,0 t3,1 t3,2 t3,3 t3,4
w3 v1 v2 v1 v2

⊥4 t4,0 t4,1 t4,2 t4,3 t4,4
w4 v2 v3 v2 v3

⊖1

⊖2

⊖3

⊖4

⊥0 t0,0 t0,1 t0,2 t0,3 t0,4
w0 v′0 v1 v0 v1

⊥1 t1,0 t1,1 t1,2 t1,3 t1,4
w1 v0 v2 v′0 v′2

⊥2 t2,0 t2,1 t2,2 t2,3 t2,4
w2 v′0 v3 v0 v3

⊥3 t3,0 t3,1 t3,2 t3,3 t3,4
w3 v1 v2 v1 v′2

⊥4 t4,0 t4,1 t4,2 t4,3 t4,4
w4 v′2 v3 v2 v3

⊖1

⊖2

⊖3

⊖4

Figure 5: The transition systems AG (top) and BG (bottom) that originate from Example 3.4. They

will serve for illustrating some region constructions in the proofs below.
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In order to prove Theorem 3.3(1) we shall show that AG allows a label-splitting BG restricted by

κ, and having the τ -SSP if and only if there is a λ-VC for G.

The following lemma implies that if a TS has any of the introduced paths, then it does not have

the τ -SSP:

Lemma 3.5. Let A be a TS that has the path P0 = s0
a s1

b s2
a s3

b s4. If R = (sup, sig) is

a τ -region of A, then sup(s0) = sup(s4).

Proof:

Let R = (sup, sig) be an arbitrary but fixed region of A. If sup(s0) 6= sup(s4), then the image PR is

a path from 0 to 1 or from 1 to 0 in τ . This implies that the number of state changes between 0 and 1
on PR must be odd. Since sig(a), sig(b) ∈ {nop, inp,out, swap,used, free} and both a and b occur

twice, i.e. an even number of times, this is impossible. ⊓⊔

Note that this lemma would not be true if set and/or res would be allowed in τ : for instance, we

have 0 set 1 nop 1 set 1 nop 1.

Hence, if a TS has the path Ti for some i ∈ {0, . . . ,m − 1}, then the SSP atom (ti,0, ti,4) is

not τ -solvable by Lemma 3.5. The following lemma states that this implies a λ-VC of G if a sought

E′-label-splitting BG of AG exists:

Lemma 3.6. If there is an E′-label-splitting BG of AG such that |E′| ≤ κ that has the τ -SSP, then G

has a λ-VC.

Proof:

Let i ∈ {0, . . . ,m − 1} be arbitrary but fixed, and let L be the set of events of AG that occur split

in BG. By Lemma 3.5, the SSP atom αi = (ti,0, ti,4) is not τ -solvable by regions of AG. However,

since BG has the τ -SSP, the atom αi is τ -solvable in BG. This implies {vi0 , vi1}∩L 6= ∅. Since i was

arbitrary, this is simultaneously true for all paths T0, . . . , Tm−1 and thus the set S = U ∩ L intersects

with every edge of G. Moreover, by |E′| ≤ κ = n + 2(m − 1) + λ, we have |S| ≤ |L| ≤ λ. Hence,

S defines a λ-VC of G. ⊓⊔

Conversely, let S = {vj0 , . . . , vjλ−1
} ⊆ U be a λ-VC of G. (Notice that a λ-VC with less than

λ states implies one with exactly λ states as longs as λ ≤ |U|, which can be reasonably assumed.)

In the remainder of this section, we argue that there is a sought E′-label-splitting BG of AG. For

every i ∈ {0, . . . , λ − 1}, we split the event vji into the two events vji and v′ji . This yields E′ =

(E \ S) ∪
⋃λ−1

i=0
{vji , v

′
ji
}. To define the aforementioned E′-label-splitting BG = (S,E′, δ′,⊥0) of

AG, it suffices to define δ′ on the states of T0, . . . , Tm−1. In particular, for all i ∈ {0, . . . ,m − 1}, δ′

restricted to S(Ti) and E(Ti) yields the path T ′
i as follows:

• if vi0 ∈ S and vi1 6∈ S , then T ′
i = ti,0

v′i0 ti,1
vi1 ti,2,

vi0 ti,3
vi1 ti,4;

• if vi0 , vi1 ∈ S , then T ′
i = ti,0

vi0 ti,1
vi1 ti,2,

v′i0 ti,3
v′i1 ti,4;

• if vi0 6∈ S and vi1 ∈ S , then T ′
i = ti,0

vi0 ti,1
vi1 ti,2,

vi0 ti,3
v′i1 ti,4.
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The following lemma essentially states that if sup : S(BG) → {0, 1} and sig : E(BG) → τ are

mappings that define regions when restricted to T ′
0, . . . , T

′
m−1, then they can be extended suitably to a

region of BG:

Lemma 3.7. If sup : S(BG) \ ⊥ → {0, 1} and sig : E′ \ (W ∪ ⊖) → τ are mappings such

that s e s′ ∈ BG and e 6∈ W ∪ ⊖ imply sup(s) sig(e) sup(s′) ∈ Aτ , then there is a τ -region

R = (sup′, sig′) of BG that preserves sup and sig as follows:

1. For all s ∈ S(BG), if s 6∈ ⊥ then sup′(s) = sup(s), otherwise sup′(s) = 0.

2. For all e ∈ E′, if e 6∈ W ∪ ⊖ then sig′(e) = sig(e); if e ∈ ⊖, then sig(e) = nop; if

i ∈ {0, . . . ,m− 1} and e = wi, if sup(ti,0) = 0 then sig(e) = nop, otherwise sig(e) = swap.

Proof:

We argue that s e s′ ∈ BG implies sup′(s) sig′(e) sup′(s′) ∈ τ . If e ∈ W ∪ ⊖, then this is easy

to see, since sup′(⊥i) = 0 for all i ∈ {0, . . . ,m − 1}. For e 6∈ W ∪ ⊖, the claim follows by the

assumptions about sup and sig. ⊓⊔

By the next lemma, a τ -region of T ′
i , where T ′

i is considered as a TS, whose signature only uses

nop and swap is always extendable to a region of BG:

Lemma 3.8. Let i ∈ {0, . . . ,m − 1}. Let sup : S(T ′
i ) → {0, 1} and sig : E(T ′

i ) → {nop, swap}

be mappings such that s e s′ ∈ T ′
i implies sup(s) sig(e) sup(s′) ∈ τ . There is a τ -region R =

(sup′, sig′) of BG such that sup′(s) = sup(s) and sig′(e) = sig(e) for all s ∈ S(T ′
i ) and e ∈ E(T ′

i ).

Proof:

By Lemma 3.7, it suffices to argue that sup and sig are consistently extendable to T ′
0, . . . T

′
i−1,

T ′
i+1

, . . . , T ′
m−1. Let j ∈ {0, . . . ,m− 1} \ {i}, be arbitrary but fixed, and let

T ′
j = tj,0

ej,1 tj,1
ej,2 tj,2

ej,3 tj,3
ej,4 tj,4, where ej,1, . . . , ej,4 ∈ E(T ′

j) in accordance to the definition

of BG. We obtain R = (sup′, sig′) as follows. For all e ∈ E(BG) \ (W ∪ ⊖), if e ∈ E(T ′
i ), then

sig′(e) = sig(e) and otherwise sig(e) = nop; for all s ∈ S(T ′
i ), we define sup′(s) = sup(s); for all

j ∈ {0, . . . ,m − 1} \ {i}, we define sup(tj,0) = 0 and inductively sup(tj,ℓ) = δG(sup(tj,ℓ−1), ej,ℓ)

for all ℓ ∈ {1, . . . , 4}. Since sig maps to {nop, swap}, so does sig′. Thus, if s e s′ ∈ T ′
j , then

sup′(s) sig′(e) sup′(s′) ∈ Aτ . Since j was arbitrary, this proves the lemma. ⊓⊔

Lemma 3.9. The TS BG has the τ -SSP.

Proof:

It is easy to see that (⊥i, s) is τ -solvable for all i ∈ {0, . . . ,m − 1} and all s ∈ S(BG) \ {⊥i}: one

may choose sup(⊥i) = 1, sup(s) = 0 if s 6= ⊥i, sig(e) = swap if e ⊥i or ⊥i
e , sig(e) = nop

otherwise.
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Similarly, the atom (s, s′) where s ∈ S(T ′
i ) and s′ ∈ S(BG) \ S(T ′

i ) is τ -solvable for all i ∈
{0, . . . ,m − 1}: one may choose sup(s) = 1 if s ∈ S(Ti) and 0 otherwise, sig(e) = swap if

e = wi and nop otherwise.

Thus, it remains to argue that an atom (s, s′) is also solvable if s 6= s′ ∈ S(T ′
i ), for all i ∈

{0, . . . ,m− 1}. By Lemma 3.8, it suffices to present corresponding regions for T ′
i .

Let i ∈ {0, . . . ,m − 1} be arbitrary but fixed, and, for a start, let’s consider the case where

vi0 ∈ M and vi1 6∈ M . That is, T ′
i = ti,0

v′i0 ti,1
vi1 ti,2

vi0 ti,2
vi1 ti,4. For all ℓ ∈ {1, 2, 3}, let

Rℓ = (supℓ, sigℓ) be a pair of mappings supℓ : S(T ′
i ) → {0, 1}, sigℓ : E(T ′

i ) → {nop, swap},

(implicitly) defined by sup1(ti,0) = 0, sig1(v
′
i0
) = sig1(vi0) = nop and sig1(vi1) = swap; and

sup2(ti,0) = 0, sig2(v
′
i0
) = sig2(vi1) = nop and sig2(vi0) = swap; and sup3(ti,0) = 0, sig3(vi0) =

sig3(vi1) = nop and sig3(v
′
i0
) = swap. The images of T ′

i under R1, R2 and R3 are as follows:

T ′
i
R1 = 0 nop 0 swap 1 nop 1 swap 0andT ′

i
R2 = 0 nop 0 nop 0 swap 1 nop 1

T ′
i
R3 = 0 swap 1 nop 1 nop 1 nop 1

By Lemma 3.8, Rℓ can be extended to a τ -region of BG that preserves sup for all ℓ ∈ {1, 2, 3}.

Moreover, obviously, for every SSP atom (s, s′) of T ′
i , there is an ℓ ∈ {1, 2, 3} such that supℓ(s) 6=

supℓ(s
′). Thus, (s, s′) is τ -solvable in BG.

The arguments for the case vi0 6∈ M and vi1 ∈ M is similar (the situation is symmetrical); the

case vi0 , vi1 ∈ M is simpler since no two events are the same.

By the arbitrariness of i, this proves the lemma. ⊓⊔

3.2. The proof of Theorem 3.3(2) when τ ∩ {inp,out} 6= ∅

Let τ = {nop, swap}∪ω be a type of nets such that ω ⊆ {inp,out,used, free} and ω∩{inp,out} 6=
∅, and let AG and κ be defined as in Section 3.1.

Lemma 3.10. If there is an E′-label-splitting BG of AG such that |E′| ≤ κ that has the τ -ESSP, then

G has a λ-VC.

Proof:

Let i ∈ {0, . . . ,m−1} be arbitrary but fixed and L be the set of events of AG that occur split in BG. If

R = (sup, sig) is a τ -region of AG, then sup(ti,0) = sup(ti,4) by Lemma 3.5. Thus, αi = (vi0 , ti,4)

is not τ -solvable, since sup(ti,0)
sig(vi0) implies sup(ti,4)

sig(vi0) . On the other hand, BG has the

τ -ESSP, implying the τ -solvability of αi. This implies {vi0 , vi1} ∩ L 6= ∅. Since i was arbitrary, this

is true for all T0, . . . , Tm−1. Thus, just like for Lemma 3.6, we get that S = L ∩ U defines a λ-VC of

G. This proves the lemma. ⊓⊔

Conversely, let S be a λ-VC of G, and BG be the E′-label-splitting of AG as defined in Section 3.1.

By the following lemma, BG has an exact net realization:

Lemma 3.11. The TS BG has the τ -SSP, and the τ -ESSP.
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Proof:

By Lemma 3.9, the TS BG has the τ -SSP. It remains to argue for the τ -ESSP. Without loss of gener-

ality, we assume that inp ∈ τ and present τ -regions R = (sup, sig) that only use nop, inp and swap.

Indeed, if inp 6∈ τ , then out ∈ τ and one gets corresponding (complement) regions R′ = (sup′, sig′)
simply by sup′(s) = 1 − sup(s), sig′(e) = sig(e) if sig(e) ∈ {nop, swap}, and sig′(e) = out if

sig(e) = inp for all s ∈ S(BG) and all e ∈ E′.

The general idea to solve an ESSA (e, s) is to choose sup(s) = 0, sig(e) = inp, and sig(e′) ∈
{nop, swap} as needed, and sup(s′) accordingly for the other events e′, and states s′ of AG. For

instance, if e ∈ W ∪ ⊖, one may choose sup(s′) = 1 if s′ e and sup(s′) = 0 otherwise; sig(e) =
inp, sig(e′) = swap when e′ leads to or originates from the unique state with support 1, and nop

otherwise: all the ESSAs (e, s) will then be solved.

For the other events, we proceed as follows. Let v be some node of the graph G.

If v 6∈ S , it may only occur in at most three paths of BG of the form

T ′
i = ti,0

v
ti,1

vi ti,2
v

ti,3
v′i ti,4 or T ′

i = ti,0
v′i ti,1

v
ti,2

vi ti,3
v

ti,4, since the companion

vertex vi must be in S; moreover, if v belongs to several edges of BG, all the corresponding compan-

ions must be different. Also, v occurs twice, with a vi in between. We may thus choose sig(v) = inp,

sup(s) = 1 and sup(s′) = 0 if s v s′, sig(e) = swap if e s, in each path T ′
i containing v. All the

other events will have a signature nop. For any T ′
j not containing v, hence only containing signatures

nop and swap, the latter will introduce states with support 1 while we would like to have supports 0
to exclude v; if this occurs, we shall thus consider two choices for the support of tj,0: 0 (region R0)

and 1 (region R1, with sig(wj) = swap); then the corresponding supports for the various tj,ℓ will be

complementary too. In any case, we shall get regions separating v from all the needed states.

⊥0 t0,0 t0,1 t0,2 t0,3 t0,4
w0 v′0 : swap v1 : inp v0 : swap v1 : inp

⊥1 t1,0 t1,1 t1,2 t1,3 t1,4
w1 v0 : swap v2 v′0 : swap v′2

⊥2 t2,0 t2,1 t2,2 t2,3 t2,4
w2 v′0 : swap v3 v0 : swap v3

⊥3 t3,0 t3,1 t3,2 t3,3 t3,4
w3 : swap v1 : inp v2 : swap v1 : inp v′2

⊥4 t4,0 t4,1 t4,2 t4,3 t4,4
w4 v′2 v3 v2 : swap v3

⊖1

⊖2

⊖3

⊖4

Figure 6: Region R0 = (sup, sig) for v = v1. v occurs in T ′
0 and T ′

3. The supports of t1,0, t2,0, t4,0
are chosen 0. The colored nodes have support 1, otherwise 0. When not indicated, signatures are nop.

If v ∈ S , it may only occur in at most three paths of BG of the form

T ′
i = ti,0

v′
ti,1

vi ti,2
v

ti,3
vi ti,4 or T ′

i = ti,0
vi ti,1

v
ti,2

vi ti,3
v′

ti,4,

or T ′
i = ti,0

v
ti,1

vi ti,2
v′

ti,3
v′i ti,4 or T ′

i = ti,0
vi ti,1

v
ti,2

v′i ti,3
v′

ti,4, depending on the
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⊥0 t0,0 t0,1 t0,2 t0,3 t0,4
w0 v′0 : swap v1 : inp v0 : swap v1 : inp

⊥1 t1,0 t1,1 t1,2 t1,3 t1,4
w1 : swap v0 : swap v2 v′0 : swap v′2

⊥2 t2,0 t2,1 t2,2 t2,3 t2,4
w2 : swap v′0 : swap v3 v0 : swap v3

⊥3 t3,0 t3,1 t3,2 t3,3 t3,4
w3 : swap v1 : inp v2 : swap v1 : inp v′2

⊥4 t4,0 t4,1 t4,2 t4,3 t4,4
w4 : swap v′2 v3 v2 : swap v3

⊖1

⊖2

⊖3

⊖4

Figure 7: Region R1 = (sup, sig) for v = v1. v occurs in T ′
0 and T ′

3. The supports of t1,0, t2,0, t4,0
are chosen 1. The colored nodes have support 1, otherwise 0. When not indicated, signatures are nop.

fact that the companion vertex vi belongs to S or not. Again, if v belongs to several edges, all the

corresponding companions must be different. Also, v occurs only once, as well as v′. For v, we may

thus choose sig(v) = inp, sup(s) = 1 and sup(s′) = 0 if s v s′, sig(e) = swap if e s, in each

path T ′
i containing v. All the other events will have a signature. For any T ′

j not containing v, we may

have some events with signature swap, hence some states with support 1 while we would like to only

have supports 0 in order to exclude v; hence, if needed, we shall again consider two choices for the

support of tj,0: 0 (region R2) and 1 (region R3); then the corresponding supports for the various tj,ℓ
will be complementary too. In any case, we shall get regions separating v from all the needed states.

However, for the first two kinds of configuration, since v is between two vi’s, after the second vi (with

signature swap), we shall have states with support 1 after v, while we would like to have supports

0 to exclude v; hence we will also use a region where wi has signature swap and vi has signature

nop (region R3). Note that, in this case, no event in any T ′
j not containing v has a signature swap

and all the states have support 0; hence we do not need here to introduce an additional region with

sig(wj) = swap to get complementary supports. In any case, we shall get regions separating v from

all the needed states.

For v′, we proceed similarly.

This proves the lemma. ⊓⊔

3.3. The proof of Theorem 3.3(2), when τ ∩ {inp,out} = ∅

Since we already handled the case τ = {nop, swap}, we may assume τ = {nop, swap} ∪ ω with

∅ 6= ω ⊆ {used, free}. Then, if we have to solve an ESSA (e, s), we have to try to find a τ -region

where sig(e) = used and sup(s) = 0, or sig(e) = free and sup(s) = 1, but if s′ e s ¬e , in either

case sup(s′) = sup(s) and we may not solve (e, s).

Thus, there is no E′-label-splitting of the TS AG of Section 3.1, that has the τ -ESSP. To overcome

this obstacle, with as little effort as possible, we shall use transition systems AG and BG which extend
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⊥0 t0,0 t0,1 t0,2 t0,3 t0,4
w0 v′0 v1 : swap v0 : inp v1 : swap

⊥1 t1,0 t1,1 t1,2 t1,3 t1,4
w1 : swap v0 : inp v2 v′0 v′2

⊥2 t2,0 t2,1 t2,2 t2,3 t2,4
w2 v′0 v3 : swap v0 : inp v3 : swap

⊥3 t3,0 t3,1 t3,2 t3,3 t3,4
w3 v1 : swap v2 v1 : swap v′2

⊥4 t4,0 t4,1 t4,2 t4,3 t4,4
w4 v′2 v3 : swap v2 v3 : swap

⊖1

⊖2

⊖3

⊖4

Figure 8: Region R2 = (sup, sig) for v = v0. v occurs in T ′
0, T ′

1 and T ′
2. The supports of t3,0, t4,0 are

chosen 0. The colored nodes have support 1, otherwise 0. When not indicated, signatures are nop.

⊥0 t0,0 t0,1 t0,2 t0,3 t0,4
w0 : swap v′0 v1 v0 : inp v1

⊥1 t1,0 t1,1 t1,2 t1,3 t1,4
w1 : swap v0 : inp v2 v′0 v′2

⊥2 t2,0 t2,1 t2,2 t2,3 t2,4
w2 : swap v′0 v3 v0 : inp v3

⊥3 t3,0 t3,1 t3,2 t3,3 t3,4
w3 v1 v2 v1 v′2

⊥4 t4,0 t4,1 t4,2 t4,3 t4,4
w4 v′2 v3 v2 v3

⊖1

⊖2

⊖3

⊖4

Figure 9: Region R3 = (sup, sig) for v = v0. v occurs in T ′
0, T ′

1 and T ′
2. The supports of t3,0, t4,0

are chosen 0. The colored nodes have support 1, otherwise 0. When not indicated, signatures are nop.

Note that here no vi with i 6= 0 needs to have a signature swap; hence we do not need to add a region

with signature swap for wj when T ′
j does not contain v.
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AG and BG by backward-edges (see Figure 10). Similarly, we shall denote by T i the subsystem Ti

with backward edges, for any i.

⊥0 t0,0 t0,1 t0,2 t0,3 t0,4
w0 v0 v1 v0 v1

⊥1 t1,0 t1,1 t1,2 t1,3 t1,4
w1 v0 v2 v0 v2

⊥2 t2,0 t2,1 t2,2 t2,3 t2,4
w2 v0 v3 v0 v3

⊥3 t3,0 t3,1 t3,2 t3,3 t3,4
w3 v1 v2 v1 v2

⊥4 t4,0 t4,1 t4,2 t4,3 t4,4
w4 v2 v3 v2 v3

⊖1

⊖2

⊖3

⊖4

⊥0 t0,0 t0,1 t0,2 t0,3 t0,4
w0 v′0 v1 v0 v1

⊥1 t1,0 t1,1 t1,2 t1,3 t1,4
w1 v0 v2 v′0 v′2

⊥2 t2,0 t2,1 t2,2 t2,3 t2,4
w2 v′0 v3 v0 v3

⊥3 t3,0 t3,1 t3,2 t3,3 t3,4
w3 v1 v2 v1 v′2

⊥4 t4,0 t4,1 t4,2 t4,3 t4,4
w4 v′2 v3 v2 v3

⊖1

⊖2

⊖3

⊖4

Figure 10: The new transition systems AG (top) and BG (bottom) that originate from Example 3.4.

Lemma 3.12. If there is an E′-label-splitting of AG such that |E′| ≤ κ that has the τ -ESSP, then G

has a λ-VC.

Proof:

The proof is similar to the one of Lemma 3.10. ⊓⊔

Conversely, let S be a λ-VC of G, and let BG = (S(BG), E
′, δ′′,⊥0) be the bi-directed extension

of the TS BG = (S(BG), E
′, δ′,⊥0), which has been defined in Section 3.1. That is, for all s, s′ ∈

S(BG) and all e ∈ E′ if δ′(s, e) = s′, then δ′′(s, e) = s′ and δ′′(s′, e) = s. To complete the proof of

Theorem 3.3.2 it remains to argue that BG has the τ -ESSP and the τ -SSP. Recall that the signatures of

the regions that have been presented for the proof of Lemma 3.9 only use nop and swap. Thus, they

can be directly applied to BG, which proves BG’s τ -SSP. Hence, it remains to argue for BG’s ESSP.

The following lemma confirms both properties for BG and thus completes the proof of Theorem 3.3.

Lemma 3.13. The TS BG has the τ -SSP, and the τ -ESSP.
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Proof:

First, we may observe that the signatures of the regions that have been presented for the proof of

Lemma 3.9 only use nop and swap. Thus, they can be directly applied to BG, which proves BG’s

τ -SSP.

We now argue that BG has the τ -ESSP. Without loss of generality, we assume used ∈ τ . (Oth-

erwise free ∈ τ and this case is similar.) We thus have to find, for each ESSA (e, s), a region

R = (sup, sig) such that sig(e) = used and sup(s) = 0. The proof is very similar to the one for

Lemma 3.11.

For instance, if e ∈ W ∪ ⊖, one may choose sup(s′) = 1 if s′ e and sup(s′) = 0 otherwise;

sig(e) = used, sig(e′) = swap when e′ leads to or originates from the unique state with support

1, and nop otherwise: all the ESSAs (e, s) will then be solved. For the other events, we proceed as

follows.

Let v be some node of the graph G.

If v 6∈ S , it may only occur in at most three edges of G (in each case, the companion vertex must be in

S , and if v belongs to several edges of G, all the corresponding companions must be different), which

leads to the two kinds of decorated paths in BG:

⊥i : 0
wi : swap ti,0 : 1

v : used ti,1 : 1
vi : nop ti,2 : 1

v : used ti,3 : 1
v′i : swap ti,4 : 0

or ti,0 : 0
v′i : swap ti,1 : 1

v : used ti,2 : 1
vi : nop ti,3 : 1

v : used ti,4 : 1.

For any T j not containing v, hence only containing signatures nop and swap, this may introduce

states with support 1 while we would like to have supports 0 to exclude v; if this occurs, we may

consider two choices for the support of tj,0: 0 (region R0) and 1 (region R1, with sig(wj) = swap);

then the corresponding supports for the various tj,ℓ will be complementary too. In any case, we shall

get regions separating v from all the needed states.

If v ∈ S , this leads us to four kinds of decorated paths in BG, depending on the fact that the

companion vertex vi belongs to S or not, and if v is smaller than vi or not:

ti,0 : 0
v′ : nop ti,1 : 0

vi : swap ti,2 : 1
v : used ti,3 : 1

vi : swap ti,4 : 0

or ti,0 : 0
vi : swap ti,1 : 1

v : used ti,2 : 1
vi : swap ti,3 : 0

v′ : nop ti,4 : 0

or ⊥i : 0
wi : swap ti,0 : 1

v : used ti,1 : 1
vi : swap ti,2 : 0

v′ : nop ti,3 : 0
v′i : nop ti,4 : 0

or ti,0 : 0
vi : swap ti,1 : 1

v : used ti,2 : 1
v′i : swap ti,3 : 0

v′ : nop ti,4 : 0.

Again, if v belongs to several edges, all the corresponding companions must be different. Also, v

occurs only once, as well as v′. For any T j not containing v, we may have some events with signature

swap (the other ones having nop), hence some states with support 1 while we would like to only have

supports 0 in order to exclude v; hence, if needed, we shall again consider two choices for the support

of tj,0: 0 (region R2) and 1(region R3); then the corresponding supports for the various tj,ℓ will be

complementary too. In any case, we shall get regions separating v from all the needed states.

For v′, we proceed similarly.

Altogether, by the arbitrariness of v, we proved the τ -ESSP for BG and this thus completes the

proof of Lemma 3.13. ⊓⊔



280 R. Devillers and R. Tredup / The Complexity of Techniques That Make Transition Systems Implementable...

4. The complexity of edge-removal

In order to make a TS implementable, i.e., to satisfy SSP and/or ESSP, the removal of edges can also

be an appropriate way of modification:

Definition 4.1. (Edge-Removal)

Let A = (S,E, δ, ι) be a TS. A TS B = (S,E, δ′, ι) is an edge-removal of A if, for all e ∈ E′ and all

s, s′ ∈ S′, holds: if s e s′ ∈ B, then s e s′ ∈ A. By K = {s e s′ ∈ A | s e s′ 6∈ B} we refer to

the (set of) removed edges.

We would like to emphasize that B and A have the same set of states and events. Moreover, B

is assumed to be a valid system, i.e., each state remains reachable from the initial one and each event

occurs at least once in δ′.

τ -EDGE-REMOVAL FOR EMBEDDING

Input: A TS A = (S,E, δ, ι), a natural number κ.

Question: Does there exist an edge-removal B for A by K that has the τ -SSP and

satisfies |K| ≤ κ?

τ -EDGE-REMOVAL FOR LANGUAGE-SIMULATION

Input: A TS A = (S,E, δ, ι), a natural number κ.

Question: Does there exist an edge-removal B for A by K that has the τ -ESSP

and satisfies |K| ≤ κ?

τ -EDGE-REMOVAL FOR REALIZATION

Input: A TS A = (S,E, δ, ι), a natural number κ.

Question: Does there exist an edge-removal B for A by K that has the τ -ESSP

and the τ -SSP and satisfies |K| ≤ κ?

The following theorem characterizes the complexity of the edge-removal problem for all imple-

mentations and types under consideration:

Theorem 4.2. If ω ⊆ {inp,out, free,used}, and τ = {nop, swap} ∪ ω, then

1. τ -EDGE-REMOVAL FOR EMBEDDING is NP-complete.

2. τ -EDGE-REMOVAL FOR LANGUAGE-SIMULATION and

τ -EDGE-REMOVAL FOR REALIZATION are NP-complete if ω 6= ∅, otherwise they are solvable

in polynomial time.

First of all, we argue for the polynomial part: If τ = {nop, swap}, then a TS A = (S,E, δ, ι)
has the τ -ESSP if and only if every event occurs at every state, since the functions nop,swap are

defined on both 0 and 1. Thus, any ESSA (e, s) of A would be unsolvable. This implies that an

edge-removal may neither render nor keep the τ -ESSP valid, since the removal of an edge would
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produce an unsolvable ESSA. Hence, the decision problems are polynomial, since either A is already

implementable, which can be checked in polynomial time [21], or it has to be rejected. Thus, for the

proof of Theorem 4.2, it remains to consider the NP-completeness results.

In order to prove Theorem 4.2, we present suitable reductions of 3BVC, where we reduce an input

G = (U,M) to an instance (AG, κ), such that G has a λ-VC if and only if AG allows an implementable

edge-removal BG that satisfies |K| ≤ κ. However, due to their different ability to solve ESSAs, when

it comes to language-simulation or realization, we have to distinguish again between the types τ that

have at least one of inp or out, and the ones that do not have any of them.

4.1. The proof of Theorem 4.2(1), and the proof of Theorems 4.2(2) for the types with

inp or out

In this section, we shall prove Theorem 4.2(1) for all types τ = {nop, swap} ∪ ω with ω ⊆
{inp,out, free,used}, and we prove Theorems 4.2(2) for the types that additionally satisfy ω ∩
{inp,out} 6= ∅. We deal with these proofs simultaneously, since they use the same reduction. In

particular, according to our general approach, we start from an input (G,λ) of 3BVC, and construct

an instance TS (AG, κ) as follows:

If τ = {nop, swap} ∪ ω with ω ⊆ {inp,out, free,used}, then AG allows an edge-removal BG that

respects κ, and has the τ -SSP if and only if G has a λ-vertex-cover;

If τ = {nop, swap} ∪ ω with ω ⊆ {inp,out, free,used}, and ω ∩ {inp,out} 6= ∅, then AG allows

an edge-removal BG that respects κ, and has the τ -ESSP if and only if G has a λ-vertex-cover.

Hence, in the remainder of this section, let τ = {nop, swap}∪ω with ω ⊆ {inp,out, free,used},

whenever we deal with the τ -SSP, and let additionally ω ∩ {inp,out} 6= ∅, whenever we deal with the

τ -ESSP (where the TS in question is clear from the context).

We now define the announced instance (AG, κ). First of all, κ = λ. Moreover, for every i ∈
{0, . . . ,m−1}, the TS AG has the following path Ti, that uses the vertices of ei = {vi0 , vi1} (assuming

i0 < i1) as events:

Ti = ti,0 ti,1 ti,2
vi0 vi1

Furthermore, for every i ∈ {0, . . . , n−1}, the TS A has the following gadget Fi that uses the node

vi as event, and, for all j ∈ {0, . . . , κ}, has an aj-labeled edge which directs in the same direction as

the vi-labeled edge:

Fi = fi,0 fi,1

...

vj

a0

a1

aκ−1

aκ
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The TS AG has the initial state ι; for all i ∈ {0, . . . ,m − 1}, and all j ∈ {0, 1, 2}, it has the

edge ι
y
j
i ti,j; finally, for all ℓ ∈ {0, . . . , n − 1}, it has the edge ι zℓ fℓ,0. The y

j
i -, and zℓ-labeled

edges serve to ensure reachability. For the sake of simplicity, we summarize these events by Y =⋃m−1

i=0
{y0i , y

1
i , y

2
i } ∪ {z0, . . . , zn−1}.

Lemma 4.3. If there is an edge-removal BG of AG that satisfies |K| ≤ κ, and has the τ -SSP, respec-

tively the τ -ESSP, then there is a λ-VC for G = (U,M).

Proof:

Let BG be an edge-removal of AG that satisfies |K| ≤ κ, and has the τ -SSP, respectively the τ -ESSP,

and let S = U∩ {e ∈ E(AG) | ∃s, s
′ ∈ S(AG) : s

e s′ ∈ K} be the set of events of AG that label an

edge of AG that is removed to obtain BG. First of all, we note that |S| ≤ |K| ≤ κ = λ. Moreover, in

the following, we will argue that S defines a vertex cover of G.

Let i ∈ {0, . . . ,m− 1} be arbitrary but fixed. We show that S ∩ {vi0 , vi1} 6= ∅. If ti,0
vi0 ti,1 ∈ K

or ti,1
vi1 ti,2 ∈ K, then we are finished. Otherwise, since BG has the τ -SSP, respectively the τ -

ESSP, there is a τ -region R = (sup, sig) that solves (ti,0, ti,2), respectively (vi0 , ti,2), and thus

satisfies sup(ti,0) 6= sup(ti,2). This implies either sup(ti,0) = sup(ti,1), and thus sig(vi0) ∈
{nop, free,used}, and sig(vi1) ∈ {inp,out, swap}, or sup(ti,1) = sup(ti,2), and thus sig(vi0) ∈
{inp,out, swap}, and sig(vi1) ∈ {nop, free,used}.

We show that this implies K ∩ {fi0
vi0 fi0,1, fi1

vi1 fi1,1} 6= ∅: Assume, for a contradiction, that

the opposite is true. Since |K| ≤ κ, there is a j ∈ {0, . . . , κ}, such that both fi0
aj fi0,1, and

fi1
aj fi1,1 are present in BG. If sig(vi0) ∈ {nop, free,used}, and sig(vi1) ∈ {inp,out, swap}, we

have sup(fi0,0) = sup(fi0,1), and sup(fi1,0) 6= sup(fi1,1), which simultaneously implies sig(aj) ∈
{nop, free,used}, and sig(aj) ∈ {inp,out, swap}, which is a contradiction. Hence, we have

K ∩ {fi0
vi0 fi0,1, fi1

vi1 fi1,1} 6= ∅. Analogously, if sig(vi0) ∈ {inp,out, swap}, and sig(vi1) ∈

{nop, free,used}, then we get K ∩ {fi0
vi0 fi0,1, fi1

vi1 fi1,1} 6= ∅ as well.

By the arbitrariness of i, this implies that S is a vertex cover of G. ⊓⊔

For the converse direction, we have to show that the existence of a suitable vertex cover implies that

AG has an implementable edge-removal. So let S = {vℓ0 , . . . , vℓλ−1
} be a vertex cover of G, and let

BG be the TS that originates from AG be removing the edge fℓi,0
vℓi fℓi,1 for all i ∈ {0, . . . , λ − 1},

and nothing else. One easily verifies that BG is a well-defined reachable edge-removal of AG that

satisfies |K| ≤ κ.

In the following, we will show that BG has the τ -SSP as well as the τ -ESSP, by presenting re-

gions that altogether solve the individual separation atoms of BG. Let I = {t0,0, t1,0, . . . , tm−1,0} ∪
{f0,0, f1,0, . . . , fn−1,0} be the set of the initial states of the gadgets of BG, and E = E(AG) \ Y be

the set of events in those gadgets (i.e., the vertices of G and the aj’s).

For the sake of simplicity, we often restrict the presentation of a region R = (sup, sig) to the states

of I and the events of E. This is justified, since we can easily extend R to BG, when this is possible.



R. Devillers and R. Tredup / The Complexity of Techniques That Make Transition Systems Implementable... 283

Indeed, choosing as we want sup(ι), for any s ∈ I and ι e s (then e ∈ Y and is unique), we may

choose sig(e) = nop if sup(ι) = sup(s) and sig(e) = swap otherwise; for any i ∈ {0, . . . ,m− 1},

from the support of ti,0, the signatures of vi0 and vi1 determine the supports of ti,1 and ti,2 (if the

functions of the signatures are defined for these supports); for any i ∈ {0, . . . , n − 1}, if fi,0
e fi,1

in BG, from the support of fi,0, the signature of e determines the support of fi,1 (if defined); however,

if we also have fi,0
e′ fi,1 with e′ 6= e in BG, it is necessary that the signature of e′ is ”compatible”

with the pair sup(fi,0) and sup(fi,1) (to go from 0 to 0, sig(e′) may be nop or free; to go from 0 to 1,

sig(e′) may be swap or out; to go from 1 to 0, sig(e’) may be swap or inp; to go from 1 to 1, sig(e′)
may be nop or used).

In fact, the same is true if we choose as we want sup(ι) as well as sup(s) when one chooses as

we want some s in each Ti (i ∈ {0, . . . ,m − 1}) and each Fj (j ∈ {0, . . . , n − 1}), and (coherently)

signatures sig(e) when e ∈ E. This is due to the fact that, for each partial function in τ , its inverse

is also a partial function (this would not be true if we allowed set or res). Hence we may proceed

backward as well as forward in the exploration of BG.

Fact 4.4. The TS BG has the τ -SSP.

Proof:

-Let sup0(ι) = 0, sup0(s) = 1 when s ∈ S(AG) \ {ι}, sig0(e) = swap for all e ∈ Y and

sig0(e) = nop when e ∈ E(AG) \ Y , then R0 = (sup0, sig0) is a region that solves ι.

Let i ∈ {0, . . . ,m− 1} be arbitrary but fixed.

- For all s ∈ I , let sup1(s) = 1 if s = ti,0, 0 otherwise, and let sig1(e) = nop for all e ∈ E. This

leads to a region R1 = (sup1, sig1) that solves (s, s′) for all s ∈ S(Ti), and all s′ ∈ S(AG) \ S(Ti).

-If sup2(s) = 0 for all s ∈ I and sig2(e) = swap for all e ∈ E, then R2 = (sup2, sig2) solves

(ti,0, ti,1) and (ti,1, ti,2).

-If sup3(s) = 0 for all s ∈ I and, for all e ∈ E, if e = vi0 then sig3(e) = swap, nop otherwise, then

R3 = (sup3, sig3) solves (ti,0, ti,2).

By the arbitrariness of i, this shows, for all s ∈
⋃m−1

i=0
S(Ti), that s is solvable.

Similarly, one shows the solvability of each s ∈
⋃n−1

i=0
S(Fi). The fact follows. ⊓⊔

In the rest of the subsection, we shall assume that ω ⊆ {inp,out, free,used} with ω∩{inp,out} 6=
∅, and τ = {nop, swap} ∪ ω.

Fact 4.5. The TS BG has the τ -ESSP.

Proof:

We shall assume that inp ∈ τ (the case where ω = {out} is symmetrical).

-If sup0(ι) = 1, sig0(e) = inp for all e ∈ Y and sig0(e) = nop for all E(AG) \ Y , then R0 =
(sup0, sig0) solves e for all e ∈ Y .
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We proceed with the aj’s: Let j ∈ {0, . . . , κ} be arbitrary but fixed.

-If sup1(ι) = 0, sup1(s) = 1 for all s ∈ I , sig1(aj) = inp and sig1(e) = swap if e ∈ E(AG)\{aj},

then R1 = (sup1, sig1) solves (aj , s) for all s ∈
⋃n−1

i=0
{fi,1} ∪

⋃m−1

i=0
{ti,1} ∪ {ι}.

-If sup2(s) = 1 for all s ∈ {f0,0, . . . , fn−1,0}, sup2(s) = 0 for all s ∈ {t0,0, . . . , tm−1,0}, sig1(aj) =
inp and sig1(e) = swap if e ∈ E \ {aj}, then R2 = (sup2, sig2) solves (aj , s) for all s ∈⋃m−1

i=0
{ti,0, ti,2}.

Since j was arbitrary, the solvability of the aj’s follows.

We proceed with the vi’s: Let i ∈ {0, . . . ,m− 1} be arbitrary but fixed, and let L select the edges

(at most three) that contain vi, that is, vi ∈ eℓ when ℓ ∈ L.

We start with the case where vi ∈ S , implying that fi,0
vi fi,1 6∈ BG:

-For all s ∈ I , let sup3(s) = 1 if s ∈
⋃

ℓ∈L{tℓ,0} and 0 otherwise; for all e ∈ E, then sig3(e) = inp

if e = vi and nop otherwise. Then R3 = (sup3, sig3) solves (vi, s) for all s ∈ S \
⋃

ℓ∈L S(Tℓ).

Let ℓ ∈ L. The region R3 also solves (vi, tℓ,2) and, if tℓ,0
vi , then it solves also (vi, tℓ,1). With

respect to Tℓ, it remains to address the case tℓ,1
vi , which requires to solve (vi, tℓ,0). The following

region R4 = (sup4, sig4) does it: For all s ∈ I , if s vi (implying that vi is the “first” event in the

corresponding edge of the graph), then sup4(s) = 1, otherwise sup4(s) = 0; for all e ∈ E, if e = vi,

then sig4(e) = inp, otherwise sig4(e) = swap (note that, here, it is important that fi,0
vi fi,1 6∈ BG,

otherwise we would lose the coherency in Fvi). Since i and ℓ were arbitrary, this shows that solvability

of vertex events that do belong to the vertex cover.

It remains to consider the case where vi 6∈ S , implying that fi,0
vi fi,1 ∈ BG:

-Let sup5(s) = 1 when s ∈ I and, for all e ∈ E, sig5(e) = inp when e 6∈ S , nop otherwise. Then

R5 = (sup5, sig5) solves (vi, s) for all s ∈
⋃n−1

i=0
{fi,1}. (Notice that never two events with an inp-

signature occur one after the other, since S is a vertex cover.)

-If sup6(s) = 1 for all s ∈ {fi,0} ∪
⋃m−1

i=0
{ti,0}, sup6(s) = 0 for all s ∈

⋃n−1

j=0
{fj,0} \ {fi,0}, and,

for all e ∈ E, sig6(e) = inp if e = vi, sig6(e) = swap if e ∈ {a0, . . . , aκ} ∪ U \ S , sig6(e) = nop

otherwise, then R6 = (sup6, sig6) solves (vi, s) for all s ∈
⋃n−1

j=0
{fj,0} \ {fi,0}.

In order to solve vi within Tj when j 6∈ L, it suffices to define a region that is complementary

to R6 within the Tj’s. The following region R7 = (sup7, sig7) accomplishes this: for all s ∈ I , if

s ∈ {fi,0} ∪
⋃

l∈L{tl,0}, then sup7(s) = 1, otherwise sup7(s) = 0; for all e ∈ E, sig(e) = inp if

e = vi, sig7(e) = swap if e ∈ {a0, . . . , aκ} ∪ U \ S , otherwise sig7(e) = nop.

It remains to solve vi within Tj when j ∈ L. Let j ∈ L be arbitrary but fixed. The ESSA (vi, tj,2)

is solved by R5, and if tj,0
vi , then R5 solves (vi, tj,1) as well. Hence, it remains to consider the

case tj,1
vi , which implies vj0 ∈ S , and requires to solve (vi, tj,0). The following region R8 =

(sup8, sig8) accomplishes this: for all s ∈ I , if s ∈ {fi,0} ∪
⋃

l∈L{tl,0} \ {tj,0}, then sup8(s) = 1,

otherwise sup8(s) = 0; for all e ∈ E, sig8(e) = inp if e = vi, sig8(e) = swap if e ∈ {vj0} ∪
{a0, . . . , aκ} ∪ U \ S , sig8(e) = nop otherwise.

Since i and j were arbitrary, this completes the solvability of the vertex events. The fact follows. ⊓⊔
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Altogether, we get the following lemma:

Lemma 4.6. If there is a λ-VC for G, then there is an edge-removal BG of AG that satisfies |K| ≤ κ,

and has the τ -SSP as well as the τ -ESSP.

4.2. The proof of Theorem 4.2(2) for the types without inp and out

In this section, we assume that ∅ 6= ω ⊆ {free,used}, and more exactly used ∈ ω (the case

ω = {free} may be handled symmetrically).

Note that, like in section 3.3, if A is a TS such that s′ e s ¬e , then the ESSA (e, s) cannot be

solved by a τ -region. The current reduction then extends the former one by simply adding the missing

reverse edges. More exactly, we first define κ = 2λ. Then, for every i ∈ {0, . . . ,m−1}, and for every

j ∈ {0, . . . , n − 1}, the new TS AG has the following gadgets T i, and F j : (where s e s′ implies

s′ e s):

T i = ti,0 ti,1 ti,2
vi0 vi1

F j = fj,0 fj,1

...

vj

a0

a1

aλ−1

aλ

Again, the TS AG has the initial state ι; for all i ∈ {0, . . . ,m− 1} and all j ∈ {0, 1, 2}, it has the

edges ι y
j
i ti,j; finally, for all ℓ ∈ {0, . . . , n− 1}, it has the edges ι zℓ fℓ,0. The result is a TS

AG, where the y
j
i -, and zℓ-labelled edges serve to ensure reachability even if we delete some vj’s. For

the sake of simplicity, we summarize these events by Y =
⋃m−1

i=0
{y0i , y

1
i , y

2
i } ∪ {z0, . . . , zn−1}.

Lemma 4.7. If there is an edge-removal BG of AG that satisfies |K| ≤ κ, and has the τ -ESSP, then

there is a λ-VC for G = (U,M).

Proof:

Let BG be an edge-removal of AG that satisfies |K| ≤ κ, and has the τ -ESSP, and let S = {v ∈

U | s v s′ ∈ K} select the vertex events that label an edge of AG that is removed in BG. Note that

s e s′ ∈ K implies s′ e s ∈ K, since otherwise we would have an unsolvable ESSA (e, s′) in BG,

which is a contradiction. This particularly implies |S| ≤ κ
2
= λ.

We argue that S defines a vertex cover for G:

Let i ∈ {0, . . . ,m − 1} be arbitrary, but fixed. Similarly to the proof of Lemma 4.3 one argues that

S ∩ {vi0 , vi1} = ∅ implies a contradiction to the solvability of (vi0 , ti,2). Hence, by the arbitrariness

of i, we have S ∩ ei 6= ∅ for all i ∈ {0, . . . ,m− 1}. This proves the claim. ⊓⊔

Lemma 4.8. If there a λ-VC for G, then there is an edge-removal BG of AG that satisfies |K| ≤ κ

and has both the τ -SSP and the τ -ESSP.
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Proof:

Let S = {vℓ0 , . . . , vℓλ−1
} be a suitable vertex cover, and let BG be the TS that originates from AG by

the removal of the edges fℓj ,0
vℓj fℓj ,1 and fℓj ,1

vℓj fℓj ,0 for all j ∈ {0, . . . , λ− 1}, and nothing else.

Clearly, BG is an edge-removal of AG that satisfies |K| = κ = 2λ.

Note that every region presented for the proof of Lemma 4.4 can be directly transferred to the

current edge-removal BG, since their signatures only use nop, and swap. Hence, BG has the τ -SSP.

We argue for the τ -ESSP:

Let I = {t0,0, t1,0, . . . , tm−1,0, f0,0, f1,0, fn−1,0} be the set of the initial states of the gadgets of

AG (when considered as TS).

Let i ∈ {0, . . . ,m − 1} be arbitrary but fixed. In the following, we argue that y0i , and y1i , and y2i
are solvable at the necessary states of Ti. We start with y0i , and have to distinguish the case where vi0
belongs to the vertex cover, and the case where it does not belong to the vertex cover, which implies

that F i0 is completely present in BG.

The following region R0 = (sup0, sig0) solves (y0i , ti,1), and (y0i , ti,2):

The case vi0 ∈ S (implying that fi0,0
vi0 fi0,1 6∈ BG): We let sup(ι) = sup(s) = 1 for all

s ∈ I , and, for all e ∈ E(BG) \ (
⋃m−1

i=0
{y1i , y

2
i }), if e = y0i , then sig(e) = used, if e = vi0 , then

sig(e) = swap, and sig(e) = nop otherwise.

After that we compute the support completely: for every j ∈ {0, . . . ,m − 1}, and every ℓ ∈
{0, 1}, we let sup(tj,ℓ+1) = 1 − sup(tjℓ) if vjℓ = vi0 (implying sig(vjℓ) = swap), and otherwise

sup(tj,ℓ+1) = sup(tjℓ); for every j ∈ {0, . . . , n − 1}, we let sup(fj,1) = 1 (which is consistent,

since vi0 ∈ S). Finally, we complete the signature: for all e ∈
⋃m−1

i=0
{y1i , y

2
i }, if e s ∈ BG, and

sup(s) = 0, then sig(e) = swap, and sig(e) = nop otherwise.

The case vi0 6∈ S (implying that fi0,0
vi0 fi0,1 ∈ BG, and vi1 ∈ S , which implies fi1,0

vi1 fi1,1 6∈
BG): We let sup(ι) = sup(s) = 1 for all s ∈ I , and, for all e ∈ E(BG) \ (

⋃m−1

i=0
{y1i , y

2
i }), if

e ∈ {y00 , y
0
1 , . . . , y

0
m−1} ∪ {z0, . . . , zn−1}, then sig(e) = used, if e = vi1 , then sig(e) = nop, and

sig(e) = swap otherwise.

After that we compute the support completely: for every j ∈ {0, . . . ,m − 1}, and every ℓ ∈
{0, 1}, we let sup(tj,ℓ+1) = 1 − sup(tjℓ) if vjℓ = vi0 (implying sig(vjℓ) = swap), and otherwise

sup(tj,ℓ+1) = sup(tj,ℓ); for every j ∈ {0, . . . , n − 1}, we let sup(fj,1) = 0. Finally, for all e ∈
⋃m−1

i=0
{y1i , y

2
i }, if e s ∈ BG, and sup(s) = 0, then sig(e) = swap, and sig(e) = nop otherwise.

It is easy to see, that we can define a region R that solves (y1i , ti,0), and (y1i , ti,2), respectively

(y2i , ti,0), and (y2i , ti,1), in a similar way. We thus refrain from representing the tedious details, and

consider y0i , y
1
i , y

2
i solved with respect to the necessary states of T i.

-If sup1(ι) = 1 and, for all e ∈ E(BG), if e ∈ {y0i , y
1
i , y

2
i }, then sig0(e) = used, if e ∈

Y \ {y0i , y
1
i , y

2
i } then sig1(e) = swap, and sig1(e) = nop otherwise, then the resulting region

R1 = (sup1, sig1) solves (yji , s) for all s ∈ S(BG) \ ({ι} ∪ S(T i)), and all j ∈ {0, 1, 2}.



R. Devillers and R. Tredup / The Complexity of Techniques That Make Transition Systems Implementable... 287

By the arbitrariness of i, this proves the solvability of y for all y ∈
⋃m−1

i=0
{y0i , y

1
i , y

2
i }. Similarly, one

argues that z is solvable for all z ∈
⋃n−1

i=0
{zi}.

If e ∈ {a0, . . . , aκ} ∪ U and s ∈ S(BG) belongs to a gadget that does not contain e, then it is

easy to see that (e, s) is τ -solvable: One simply defines a region that maps exactly to 1 the states

that belong to gadgets of BG that contain e (and 0 to the others), maps e to used, choses a suitable

signature of the reachability events from Y (either nop or swap), and maps all the other events e′ with

e′ ∈ E(BG)\({e}∪Y ) to nop. This particularly implies the solvability of a for all a ∈ {a0, . . . , aλ}.

Hence, it remains to address the vertex events.

Let i ∈ {0, . . . ,m − 1} be arbitrary but fixed. By the former discussion, if fi0,0
vi0 fi0,1 ∈ K

then vi0 is solvable in F i0 , otherwise there is no need to solve it in F i0 . Similarly, the solvability of

vi1 in F i1 needs no further discussion. Hence, it remains to argue for the solvability of vi0 in T i (the

case of vi1 will be similar). Let us first assume that vi0 ∈ S (so that it does not occur in F i0): The

following region R2 = (sup2, sig2) solves (vi0 , ti,2) (and thus vi0 in T i): sup2(ι) = 0; and for any

j ∈ {0, . . . ,m− 1},

if tj,0
vi0 tj,1 ∈ T j , then sup2(tj,0) = sup2(tj,1) = 1, and sup2(tj,2) = 0 else

if tj,1
vi0 tj,2 ∈ T j , then sup2(tj,0) = 0 and sup2(tj,1) = sup2(tj,2) = 1, otherwise sup2(tj,0) =

sup2(tj,2) = 0 and sup2(tj,1) = 1; and, for every j ∈ {0, . . . , n − 1}, sup2(fj,0) = 0 and

sup2(fj,1) = 1; moreover, for all e ∈ E(BG) \ Y , if e = vi0 then sig2(e) = used, otherwise

sig2(e) = swap; finally, for all e ∈ Y , if ι e s and sup(s) = 1, then sig2(e) = swap, otherwise

sig2(e) = nop.

Let us now assume that vi0 6∈ S , so that vi1 ∈ S , since we have a vertex covering (then vi0
occurs in F i0 , but the vertex cover events do not occur in the F -gadgets). For all e ∈ E(BG) \ Y , if

e = vi0 then sig3(e) = used, if e ∈ S , then sig3(e) = swap, otherwise sig3(e) = nop; moreover,

sup(ι) = 1, and for any j ∈ {0, . . . , n − 1}, sup3(fj,0) = 1, and for any j ∈ {0, . . . ,m − 1}, if

vj0 = vi0 , then sup3(tj,0) = 1, otherwise sup3(tj,0) = 0; the other supports and signatures may then

be derived coherently, delivering a region R3 = (sup3, sig3) which, as expected, solves (vi0 , ti,2).

Since i was arbitrary, this completes the proof. ⊓⊔

5. The complexity of event-removal

In this section, we deal with the following modification:

Definition 5.1. (Event-Removal)

Let A = (S,E, δ, ι) be an TS. A TS B = (S,E′, δ′, ι) with E′ ⊆ E is an event-removal of A if for all

e ∈ E′ the following is true: s e s′ ∈ B if and only if s e s′ ∈ A for all s, s′ ∈ S. By E = E \ E′

we refer to the (set of) removed events.

We want to stress that an event-removal B is an initialized TS by definition and Remark 2.7

systems, i.e., each state remains reachable from the initial one, and each remaining event occurs at

least once in δ′ since this was already the case in A.
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τ -EVENT-REMOVAL FOR EMBEDDING

Input: A TS A = (S,E, δ, ι), a natural number κ.

Question: Does there exist an event-removal B for A by E that has the τ -SSP and

satisfies |E| ≤ κ?

τ -EVENT-REMOVAL FOR LANGUAGE-SIMULATION

Input: A TS A = (S,E, δ, ι), a natural number κ.

Question: Does there exist an event-removal B for A by E that has the τ -ESSP

and satisfies |E| ≤ κ?

τ -EVENT-REMOVAL FOR REALIZATION

Input: A TS A = (S,E, δ, ι), a natural number κ.

Question: Does there exist an event-removal B for A by E that has the τ -ESSP

and the τ -SSP and satisfies |E| ≤ κ?

The following theorem is the main result of this section:

Theorem 5.2. If ω ⊆ {inp,out, free,used}, and τ = {nop, swap} ∪ ω, then

1. τ -EVENT-REMOVAL FOR EMBEDDING is NP-complete.

2. τ -EVENT-REMOVAL FOR LANGUAGE-SIMULATION, and

τ -EVENT-REMOVAL FOR REALIZATION are NP-complete if ω 6= ∅.

5.1. The proof of Theorem 5.2(1), and the proof of Theorem 5.2(2) for the types with

inp or out

Let τ = {nop, swap}∪ω with ω ⊆ {inp,out, free,used}, and for the input (G,λ) of 3BVC, where

G = (U,M), let (AG, κ) be defined as in Section 4.1. In this section, we show that G has a λ-VC

if and only if AG allows an event-removal BG that respects κ, and has the τ -SSP. Moreover, we also

show that if τ ∩ {inp,out} 6= ∅, then G has a λ-VC if and only if AG allows an event-removal BG

that respects κ, and has the τ -ESSP. Altogether, this proves Theorem 5.2(1), and the statements of

Theorem 5.2(2) for the types τ ∩ {inp,out} 6= ∅.

For the sake of simplicity, in the remainder of this section, if we discuss aspects of the τ -ESSP

(where the addressed TS is clear from the context), we always assume that τ ∩ {inp,out} 6= ∅.

Lemma 5.3. If there is an event-removal BG of AG that satisfies |E| ≤ κ, and has the τ -SSP, respec-

tively the τ -ESSP, then there is a λ-VC for G = (U,M).

Proof:

Let BG be an event-removal of AG that satisfies |E| ≤ κ, and has the τ -SSP, respectively the τ -ESSP,

and let S = E ∩ U be the set vertex-events that are removed from AG.
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Let i ∈ {0, . . . ,m− 1} be arbitrary but fixed.

Since |E| ≤ κ, there is a j ∈ {0, . . . , κ} such that the event aj , and thus all aj-labeled edges are present

in BG. Hence, similar to the arguments for the proof of Lemma 4.3, one argues that if {vi0 , vi1}∩E =
∅, implying that all vi0-labeled, and vi1-labeled edges are present in B, then (ti,0, ti,2) is an unsolvable

SSA of B, respectively (vi0 , ti,2) is an unsolvable ESSA of B, which is a contradiction. By the

arbitrariness of i, and since |S| ≤ |E| ≤ κ = λ, the claim follows. ⊓⊔

Reversely, if G has a λ-VC, then AG allows a suitable event-removal BG that has the τ -SSP,

respectively the τ -ESSP:

Lemma 5.4. If there is a λ-VC for G = (U,M), then there is an event-removal BG of AG that

satisfies |E| ≤ κ, has the τ -SSP, and that has τ -ESSP if τ ∩ {inp,out} 6= ∅.

Proof:

Let S = {vℓ0 , . . . , vℓλ−1
} be a vertex cover for G, and let BG be the TS that originates from AG by the

removal the events of S (and thus the edges labeled by these events), and nothing else. By the events

of Y , BG is a reachable TS, which has the same states as AG, and obviously satisfies |E| ≤ κ = λ.

In the following, we argue that the solvability of BG follows from the regions presented for the

proofs of Fact 4.4, and Fact 4.5 of Section 4.1:

Let B′
G be the TS that originates from AG by removing, for all i ∈ {0, . . . , λ − 1}, the edge

fℓi,0
vℓi fℓi,1, and nothing else (that is, B′

G corresponds to the edge-removal defined in Section 4.1).

By definition, both BG, and B′
G have the same states as AG, and thus have the same SSA to solve.

Moreover, if s e s′ is an edge of BG, then it is an edge of B′
G, since, for all i ∈ {0, . . . , λ − 1}, BG

does not only miss the edge fℓi,0
vℓi fℓi,1, but all vℓi-labeled edges (and nothing else). In particular,

for every event e ∈ E(BG), which implies e 6∈ S , all the (original) e-labeled edges (of AG) are

present in both BG, and B′
G. Hence, if (e, s) is an ESSA of BG, then it is an ESSA of B′

G. Finally,

if R = (sup, sig) is a region of B′
G, then its restriction to (the events of) BG is also a region of BG,

since sup(s) sig(e) sup(s′) ∈ τ is implied for all s e s′ ∈ BG, by s e s′ ∈ B′
G. Moreover, if R

solves a (state or event) separation atom α of B′
G that is also present in BG, then it also solves this

atom in BG. Consequently, since B′
G has the τ -SSP, and the τ -ESSP by the arguments of Fact 4.4,

and Fact 4.5, respectively, we conclude that BG has also these properties. ⊓⊔

5.2. The proof of Theorem 5.2(2) for the types without inp and out

Let ∅ 6= ω ⊆ {free,used}, and τ = {nop, swap} ∪ ω. In order to complete the proof of Theo-

rem 5.2(2) (for τ ), we reduce the input G = (U,M) to the instance (AG, κ), where AG is the TS

(with bi-directional edges) as defined in Section 4.2, and κ = λ, and show that G has a λ-VC if and

only if AG allows an event-removal BG that respects κ, and has the τ -ESSP, respectively the τ -ESSP,

and the τ -SSP. We would like to emphasize that we define κ = λ here, in contrast to the definition

of κ = 2λ in section 4.2. This (current) definition is justified by the fact that the removal of an event

already implies the removal of all its edges. For details see the following arguments.
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Lemma 5.5. If there is an event-removal BG of AG that satisfies |E| ≤ κ, and has the τ -ESSP, then

there is a λ-VC for G = (U,M).

Proof:

Let BG be an event-removal BG of AG that satisfies |E| ≤ κ, and has the τ -ESSP; let S = U ∩ E.

Note that |S| ≤ |E| ≤ κ = λ.

We argue that S is a vertex cover:

Let i ∈ {0, . . . ,m − 1} be arbitrary but fixed. If {vi0 , vi1} ∩ S = ∅, then T i, F i0 and F i1 are

completely present in BG. Similar to the proof of Lemma 4.7 one argues that this contradicts the

τ -ESSP of BG. Hence {vi0 , vi1} ∩ S 6= ∅, and the arbitrariness of i implies the claim. ⊓⊔

Lemma 5.6. If there is a λ-VC for G = (U,M), then there is an event-removal BG of AG that

satisfies |E| ≤ κ and has the τ -ESSP as well as the τ -SSP.

Proof:

Let S = {vℓ0 , . . . , vℓλ−1
} be a suitable vertex cover of G, and let BG be the event-removal that

originates from AG by removing the events of S (and the corresponding edges), and nothing else. One

easily checks that BG is a (well-defined) reachable TS, and satisfies |E| ≤ |S|.

In the following, we argue that the τ -SSP, and the τ -ESSP of BG is implied by the regions pre-

sented for the proof of Lemma 4.8: Let B
′

G be the TS that originates from AG by the removal of the

edges fℓj ,0
vℓj fℓj ,1, and fℓj ,1

vℓj fℓj ,0, and nothing else (that is, B
′

G corresponds to the edge-removal

of Section 4.2). One verifies that BG, and B
′

G have the same states, and thus the same SSAs to solve.

Moreover, if s e s′ is an edge of BG, implying that e 6∈ S , then s e s′ ∈ B
′

G. Hence, every ESSA

of BG is an ESSA of B
′

G. Moreover, for every region R = (sup, sig) of B
′

G, the restriction of R

to (the events of) BG is a region of BG, since sup(s) e sup(s′) is implied for every s e s′ of BG

(by s e s′ ∈ B
′

G, and the region property of R). Hence, since the regions of Lemma 4.8 justify the

τ -SSP, and the τ -ESSP, they particularly justify these properties for BG. ⊓⊔

6. The complexity of state-removal

In this section, we address the following modification:

Definition 6.1. (State-Removal)

Let A = (S,E, δ, ι) be a TS. A TS B = (S′, E, δ′, ι) with states S′ ⊆ S is a state-removal of A if the

following two conditions are satisfied:

(1) for all e ∈ E and all s, s′ ∈ S′, s e s′ ∈ B if and only if s e s′ ∈ A;

(2) if s e s′ ∈ A and s e s′ 6∈ B, then s 6∈ S′ or s′ 6∈ S′ (or both).

By S = S \ S′ we refer to the (set of) removed states.
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In the following, we shall assume that B is a valid system, i.e., each state remains reachable from the

initial one and each event occurs at least once in δ′.

In particular, we investigate the complexity of the following three decision problems:

τ -STATE-REMOVAL FOR EMBEDDING

Input: A TS A = (S,E, δ, ι), a natural number κ.

Question: Does there exist a state-removal B for A by S that has the τ -SSP and

satisfies |S| ≤ κ?

τ -STATE-REMOVAL FOR LANGUAGE-SIMULATION

Input: A TS A = (S,E, δ, ι), a natural number κ.

Question: Does there exist a state-removal B for A by S that has the τ -ESSP and

satisfies |S| ≤ κ?

τ -STATE-REMOVAL FOR REALIZATION

Input: A TS A = (S,E, δ, ι), a natural number κ.

Question: Does there exist a state-removal B for A by S that has the τ -ESSP and

the τ -SSP and satisfies |S| ≤ κ?

The following theorem is the main result of this section:

Theorem 6.2. If ω ⊆ {inp,out, free,used}, and τ = {nop, swap} ∪ ω, then

1. τ -STATE-REMOVAL FOR EMBEDDING is NP-complete.

2. τ -STATE-REMOVAL FOR LANGUAGE-SIMULATION, and

τ -STATE-REMOVAL FOR REALIZATION are NP-complete if ω 6= ∅, otherwise they are solvable

in polynomial time.

First of all, we argue for the polynomial part: If τ = {nop, swap}, then a TS A = (S,E, δ, ι) has

the τ -ESSP if and only if every event occurs at every state, since the functions nop,swap are defined

on both 0 and 1. Thus, any ESSP atom (e, s) of A would be unsolvable. Again, we may determine the

states s ∈ S such that, for some event e, we have ¬s e : they must be removed. Let B = (S′, E, δ, ι)
be the (unique) result of this phase. For the language-simulation problem, this is enough and we

simply have to check if B is valid and if the number k of removed states does not exceed κ. Let

(s, s′) be an unsolvable SSA of B. Since B is an initialized TS, there is a path ι e1 s1 . . . sn−1
en sn

such that sn = s in B. If we remove sn (and get, say, B′), then ¬sn−1
en , since nop and swap are

functions, and thus we have an unsolvable ESSA (sn1
, en). Consequently, we have also to remove

sn−1, and get, say, B′′. By the same arguments, we inductively obtain that sn−1, . . . , s1, and finally ι,

have to be removed, which is a contradiction, since every state-removal of A has the initial state ι by

Definition 6.1. Similarly, the removal of s′ yields also a contradiction.

Thus, for the proof of Theorem 6.2, it remains to consider the NP-completeness results.
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6.1. The proof of Theorem 6.2(1), and the proof of Theorem 6.2(2) for the types with

inp or out

Let ω ⊆ {inp,out, free,used} and τ = {nop, swap} ∪ ω be such that τ ∩ {inp,out} 6= ∅.

In order to prove Theorem 6.2(1), and the statement of Theorem 6.2(2) for τ ∩ {inp,out} 6= ∅,

we use the following reduction that transforms an input (G,λ), where G = (U,M), to an instance

(AG, κ): κ = λ, and AG is the TS that is defined just like the one in Section 4.1, but, for all i ∈

{0, . . . ,m− 1}, and for all j ∈ {1, 2}, it does not implement the edges ι y
j
i ti,j . (The edge ι y0i ti,0 is

still present to ensure reachability.) By doing so, we ensure that if BG is well-defined state-removal of

AG, then, for all i ∈ {0, . . . ,m−1}, if ti,1 is removed, then ti,2 is also removed, and, moreover, if ti,0
is removed, then also both ti,1 and ti,2 are removed. This can be seen as follows: By Definition 6.1,

BG is a TS, and thus is initialized; hence the initial state ι is present and its states are reachable from

ι by a directed path. Hence, if, for example, the state t0,1 is missing in BG (compared with AG),

implying that the (only) edge t0,1
v01 t0,2 is removed too, then the state t0,2 is also not present in BG,

since it would not be reachable by a directed path from ι otherwise, which is a contradiction.

Lemma 6.3. If there is a state-removal BG of AG that satisfies |S| ≤ κ, and has the τ -SSP, respec-

tively the τ -ESSP with τ ∩ {inp,out} 6= ∅, then there is a λ-VC for G = (U,M).

Proof:

Let BG be a state-removal of AG that satisfies |S| ≤ κ, and has the τ -SSP, respectively the τ -ESSP.

Let S = {v ∈ U | ∃s ∈ S : v s}. Note that |S| ≤ |S|, since every state of A is the target of at most

one vertex event. We show that S defines a vertex cover: Let i ∈ {0, . . . ,m−1} be arbitrary but fixed.

Recall that, as argued above, ι is present in BG, and, for every path s0
e1 s1 . . .

en sn of AG, if si is

missing in BG, then sj is also missing for all i < j ∈ {0, . . . , n}, since BG would have unreachable

states otherwise. Hence, if S ∩ {vi0 , vi1} = ∅, implying {ti,1, ti,2, fi0,1, fi1,1} ⊆ S(BG), then Ti,

and Fi0 , and Fi1 are completely present in BG. Consequently, similar to the proof of Lemma 4.3, one

argues that this implies that BG has the unsolvable SSA (ti,0, ti,2), respectively the unsolvable ESSA

(vi0 , ti,2), which is a contradiction. By the arbitrariness of i, S is a suitable vertex cover, which proves

the lemma. ⊓⊔

For the converse direction, we state the following lemma:

Lemma 6.4. If there is a λ-VC for G = (U,M), then there is a state-removal BG of AG that satisfies

|S| ≤ κ and has the τ -SSP, and, since τ ∩ {inp,out} 6= ∅, it has the τ -ESSP.

Proof:

Let S = {vℓ0 , . . . , vℓλ−1
} be a vertex cover for G, and let BG the TS that originates from AG by

removing the states fℓ0,1, fℓ1,1, . . . , fℓλ−1,1 (and thus the edges incident to these states), and nothing

else. Notice that, for all j ∈ {0, . . . , λ−1}, this reduces Fℓj to fℓj ,0, since, for all a ∈ {a0, . . . , aλ−1},

the edge fℓj ,0
a fℓj ,1 is removed by the removal of fℓj ,1. Obviously, |S| ≤ κ = λ.
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Let B′
G be the TS that result by the removal of the edge fℓj ,0

vℓj fℓj ,1 for all j ∈ {0, . . . , λ− 1},

that is, B′
G corresponds to the edge-removal defined in Section 4.1. Obviously, every edge of BG is

present in B′
G. Hence, every region R = (sup, sig) of B′

G is a region of BG, when restricted to its

present states, and events. Furthermore, if (s, s′) is an SSA of BG, then it is also an SSA of B′
G, and

solved by a corresponding region of Fact 4.4.

If (e, s) is an ESSA of BG such that e 6∈ {a0, . . . , aλ}, or s 6∈ {fℓ0 , . . . , fℓλ−1
}, then (e, s) is also

an ESSA of B′
G, and solved by a corresponding region of Fact 4.5.

Hence, it only remains to argue that an ESSA (e, s) is also solvable, if e ∈ {a0, . . . , aλ} and s ∈
{fℓ0 , . . . , fℓλ−1

}. The following region R = (sup, sig) accomplishes this: sup(ι) = 0, and, for all

e ∈ E(BG), if e ∈ {a0, . . . , aλ}, then sig(e) = inp, and if e ∈ {zℓ0 , . . . , zℓλ−1}, then sig(e) = nop,

otherwise sig(e) = swap. Notice that this definition implies sup(fℓj,0) = 0 for all j ∈ {0, . . . , λ−1}
(by sig(zℓj ) = nop), and sup(fi,1) = sup(fi,0)− 1 = 0 for all i ∈ {0, . . . , n − 1} \ {ℓ0, . . . , ℓλ−1}
(by sig(zi) = sig(vi) = swap, respectively sig(a0) = · · · = sig(aλ) = inp) such that R is actually

a well-defined region that solves the remaining ESSA. This proves the lemma. ⊓⊔

6.2. Proof of Theorem 6.2(2) for the Types without inp and out

Let ∅ 6= ω ⊆ {free,used}, and τ = {nop, swap} ∪ ω.

The following reduction transforms an input (G,λ), where G = (U,M), to an instance (AG, κ):
κ = λ, and AG is the TS that is defined just like the one in Section 4.2, but, for all i ∈ {0, . . . ,m−1},

and for all j ∈ {1, 2}, does neither implement the edge ι y
j
i ti,j nor the edge ι y

j
i ti,j . Hence, for every

state-removal BG of AG, if there is i ∈ {0, . . . ,m− 1}, such that ti,1 is missing in BG (implying that

the edge ti,1
vi1 ti,2 is also removed), then ti,2 is also removed, since this state would not be reachable

from the initial state ι otherwise, which is a contradiction. Similarly, if ti,0 is removed, then so are

ti,1, and ti,2.

In the following, we argue that (AG, κ) is a yes-instance (i.e., it allows a fitting state-removal that

has the ESSP, and, when realization is considered, the SSP) if and only if (G,λ) is a yes-instance.

Lemma 6.5. If there is a state-removal BG of AG that satisfies |S| ≤ κ and has the τ -ESSP, then

there is a λ-VC for G = (U,M).

Proof:

Let BG be a state-removal of AG that satisfies |S| ≤ κ and has the τ -ESSP, and let S = {v ∈ U |

∃s ∈ S : v s}. Note that |S| ≤ |S| ≤ κ = λ, which can be seen as follows: On the one hand, if

ti,1 ∈ S for some i ∈ {0, . . . ,m − 1}, which implies vi0 , vi1 ∈ S , then ti,2 ∈ S. (Otherwise, ti,2
would no reachable, which is excluded by the definition of TS.) On the other hand, there is no other

kind of state that is adjacent to two different vertex events.

We argue that S is a vertex cover:

Let i ∈ {0, . . . ,m − 1} be arbitrary but fixed. If {vi0 , vi1} ∩ S = ∅, then T i, and F i0 , and F i1 are

completely present in BG. Similar to the proof of Lemma 4.7 one argues that this contradicts the

τ -ESSP of BG. Hence {vi0 , vi1} ∩ S 6= ∅, and the arbitrariness of i implies the claim. ⊓⊔
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For the converse direction, we present the following lemma:

Lemma 6.6. If there is a λ-VC for G = (U,M), then there is a state-removal BG of AG that satisfies

|S| ≤ κ and has the τ -ESSP, and the τ -SSP.

Proof:

Let S = {vℓ0 , . . . , vℓλ−1
} be a vertex cover of G, and let BG be the TS that originates from AG by

the removal of the states fℓ0,1, fℓ1,1, . . . , fℓλ−1,1 (and the corresponding adjacent edges), and nothing

else. One finds our that BG is a well-defined (i.e. reachable) TS, which satisfies |S| ≤ κ = λ.

Similar to the proof of Lemma 5.6, one argues that BG has both the τ -SSP, and the τ -ESSP. The claim

follows. ⊓⊔

7. Concluding remarks

In this paper, we characterized the computational complexity of finding a label-splitting of a TS A

that allows implementing τ -net for all types τ = {nop, swap} ∪ ω with ω ⊆ {inp,out,used, free}
and all implementations previously considered in the literature. By the results of [20, 21, 22], the

synthesis problem aiming at language-simulation and realization is NP-complete for all types τ =
{nop, swap}∪ω with ω ⊆ {inp,out, res, set,used, free} and ω∩{inp,out,used, free} 6= ∅ and ω∩
{set, res} 6= ∅. Hence, their corresponding label-splitting problem is also NP-complete. Moreover,

similar to the proof of Theorem 3.3, one argues that label-splitting aiming at language-simulation or

realization is trivial for τ = {nop, swap} ∪ ω when ω ⊆ {res, set}: the relabeling of an input TS

A would result in some ESSAs, and since τ does not allow for solving ESSAs, either A already has

the separation properties or it has to be rejected. Moreover, we already know that synthesis aiming

at embedding is NP-complete for all Boolean types τ with {nop, swap} ⊆ τ and τ ∩ {res, set} =
∅ [23]. Hence, again their corresponding label-splitting problem is also NP-complete. Altogether,

with the present work, the complexity of τ -label-splitting is characterized for all 64 Boolean types

with {nop, swap} ⊆ τ and all implementations. It remains future work to determine the complexity

of the label-splitting problem for the swap-free and nop-equipped Boolean types whose underlying

synthesis problem is in P.

In order to avoid to deal with the intractability of label-splitting, we also analyzed the complex-

ity of various element removal techniques to render a τ -implementable TS, for similar types τ ∪ ω

with ∅ 6= ω ⊆ {inp,out,used, free}. Unfortunately, it turns out that these techniques are also

NP-complete for (almost) all τ ’s, and all implementations. There is however a single case that, sur-

prisingly, remains undetermined: the complexity for event-removal when ω = ∅. Hence, it remains

for future work to investigate this special case, and to search for other techniques that may have a

better complexity to make a TS implementable, like for example the insertion of states, edges or

events.

Moreover, one might consider κ as a parameter and investigate the discussed modification tech-

niques from the point of view of parameterized complexity.
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