
ar
X

iv
:2

30
1.

00
74

3v
4

 [
cs

.S
C

]
 1

2
O

ct
 2

02
3

Fundamenta Informaticae 190(1) : 1–15 (2022) 1

Available at IOS Press through:

https://doi.org/10.3233/FI-222163

Computing Square Roots in Quaternion Algebras

Przemysław Koprowski*

Institute of Mathematics

University of Silesia in Katowice

ul. Bankowa 14, 40-007 Katowice, Poland

przemyslaw.koprowski@us.edu.pl

Abstract. We present an explicit algorithmic method for computing square roots in quaternion

algebras over global fields of characteristic different from 2.

Keywords: square root computation, quaternion algebra, number fields, global fields

1. Introduction

The computation of square roots is one of the most basic operations in mathematics. Effective methods

for computing square roots are among the oldest algorithms in the realm of computational mathemat-

ics. In fact, Heron’s method for a numerical approximation of a square root of a real number is two

thousand years old and preceded by the Euclidean algorithm (wildly believed to be the oldest mathe-

matical algorithm) by only about three to four centuries (for an in-depth discussion on the chronology

see [1]). Although numerous methods for computing square roots in various algebraic structures are

known nowadays, some important omissions prevail. Among them are general quaternion algebras.

Computation of square roots in the algebra of Hamilton quaternions H =
(−1,−1

R

)

is well-known (see

[2]) and very simple as for every quaternion ∈ H there is a subfield K ∼= C of H containing ,

and so the computation of the square root in H can be reduced to the computation of the square root

in C. It is no longer so in a general quaternion algebra Q =
(α,β

K

)

for an arbitrary field K and two

*Address for correspondence: Institute of Mathematics, University of Silesia, ul. Bankowa 14, 40-007 Katowice, Poland.

Received January 2023; accepted September 2023.

http://arxiv.org/abs/2301.00743v4

2 P. Koprowski / Computing Square Roots in Quaternion Algebras

elements α, β ∈ K×. To the best of our knowledge, no algorithm for computing quaternionic square

roots exists in the literature. One possible explanation for this (quite surprising) fact is that in the

commutative case when one considers a field extension L/K, a typical way to compute a square root

of an element a ∈ L is to factor the polynomial x2 − a in L[x]. However, for quaternion algebras,

there are no known polynomial factorization algorithms.

The sole purpose of this paper is to correct this evident omission and present an explicit algorithm

for computing square roots in quaternion algebras over arbitrary global fields of characteristic different

from 2.

2. Notation

Throughout this paper, K will denote an arbitrary global field of characteristic charK 6= 2. Hence, K
is either a number field, i.e. a finite extension of Q (then its characteristic is just 0) or a global function

field, that is, a finite extension of a rational function field over a finite field Fq, where q is a power of

an odd prime. The set of nonzero elements of K is denoted K×.

Recall that a quaternion algebra Q =
(α,β

K

)

over q K is a 4-dimensional K-algebra with a basis

{1, i, j, k} and a multiplication gathered by the rules:

i2 = α, j2 = β, ij = k = −ji.

As usual, we shall identify the field K with the subfield K · 1 of Q, which is known to coincide with

the center Z(Q) of Q. We refer the reader to [3, 4] for a comprehensive presentation of the theory of

quaternion algebras.

A quaternion is called pure (see e.g., [4, Definition 5.2.1]) if ∈ spanK{i, j, k}. Every quater-

nion ∈ Q can be uniquely expressed as a sum = a+
0

of a scalar a ∈ K and a pure quaternion
0
.

We write := a −
0

for the conjugate of . The map that sends a quaternion to its conjugate is an

involution.

If x is an element of either a quadratic field extension L = K
(√

α
)

of K or a quaternion algebra

Q =
(α,β

K

)

over K , we write N (x) := xx and call it the norm of x. If the domain is not clear from

the context, we write NL/K or NQ/K .

Remark 2.1. When Q is a quaternion algebra, the norm of in the above sense should not be confused

with the determinant of the endomorphism of Q defined by the multiplication by , which is often also

called the norm. For this reason, in [3, 4] the map 7→ is called the reduced norm and denoted

nrd. In that manner, our terminology in the present paper agrees with the one used by Lam in [5] but

not with the one used by Vigneras in [3] and Voight in [4].

Equivalency classes of valuations on K are called places. Throughout this paper, places are de-

noted using fraktur letters p, q, r. Every place of a global field is either archimedean, when it extends

the standard absolute value on Q (then the field K is necessarily a number field) or non-archimedean.

Over a global function field, every place is non-archimedean. To avoid monotonous repetitions, non-

archimedean places will also be called primes (or finite primes when we want to emphasize the fact

P. Koprowski / Computing Square Roots in Quaternion Algebras 3

that they are non-archimedean). The completion of K with respect to a place p is denoted Kp. If p is

a finite prime, we write ordp : K → Z to denote the corresponding (normalized) discrete valuation

on K . The prime p is called dyadic if ordp 2 6= 0. The map ordp induces a natural map K×/K×2 → Z/2Z
on the group of square classes of K that is again denoted ordp.

If p is an archimedean place, then the completion Kp is isomorphic either to C or to R. The places

of the second kind are called real. The field K is formally real if −1 is not a sum of squares in K .

Otherwise, it is called non-real. It is well known that a global field is formally real if and only if it

contains at least one real place. We write sgnr a for the sign of a ∈ K with respect to the unique

ordering of K induced by a real place r.

Given some nonzero elements a1, . . . , an ∈ K we denote by 〈a1, . . . , an〉 the quadratic form

a1x
2
1 + · · ·+ anx

2
n. Further, if p is a place and a, b ∈ K× we write (a, b)p for the Hilbert symbol of a

and b at p, that is

(a, b)p :=

{

1 if
(a,b
Kp

) ∼= M2Kp,

−1 otherwise.

Here, M2Kp denotes the ring of 2× 2 matrices with entries in Kp. The Hilbert symbol is symmetric,

bi-multiplicative and for every a, b ∈ K× and every place p one has (a, b)p · (a, b)p = 1. These three

properties of the Hilbert symbol will be extensively used in the paper.

For a quadratic form ξ = 〈a1, . . . , an〉 we define its Hasse invariant spξ at p by the formula (see

e.g., [5, Definition V.3.17]):

spξ :=
∏

i<j

(ai, aj)p.

Given a quadratic form ξ = 〈a1, . . . , an〉 over K and a place p, we write ξ ⊗Kp for the form over Kp

with the same entries as ξ. If r is a real place, the form ξ ⊗ Kr is called definite if all its entries

a1, . . . , anhave the same sign. Otherwise, it is called indefinite.

Finally, abusing the notation harmlessly, by log-1 we will denote the (unique) isomorphism from

the multiplicative group {±1} to the additive group {0, 1} with addition modulo 2.

3. Square roots of non-central elements

Let us begin by writing down the explicit formula for a square in quaternion algebra so that we can

easily reference it in the discussion that follows.

Observation 3.1. If = q0 + q1i + q2j + q3k ∈ Q is a quaternion, then

2 = (q20 + q21α+ q22β − q23αβ) + 2q0q1i + 2q0q2j + 2q0q3k

= (2q20 −N()) + 2q0 · (q1i + q2j + q3k).
(1)

An immediate consequence of the previous observation is the following rather well-known fact.

Corollary 3.2. If ∈ Q is a pure quaternion, then 2 ∈ Z(Q) = K .

4 P. Koprowski / Computing Square Roots in Quaternion Algebras

Another direct consequence of Eq. (1) is the following observation that may be treated as a partial

converse of Corollary 3.2.

Observation 3.3. Let ∈ Q be a square root of some element a ∈ K . Then is either pure or ∈ K .

Proof:

Let = q0 + q1i + q2j + q3k. If 2 = a ∈ K then by Eq. (1) we have

2q0q1 = 2q0q2 = 2q0q3 = 0.

Therefore, if is not pure, that is if q0 6= 0, then q1 = q2 = q3 = 0, hence ∈ K . ⊓⊔
Combining Corollary 3.2 with Observation 3.3 we see that for computing the square roots in

quaternion algebras it is crucial to distinguish between the case when one computes a quaternionic

square root of an element in K (i.e., in the center of Q) and the case when the argument comes from

Q \Z(Q). It turns out that the latter case is, in fact, trivial and requires nothing more than high-school

mathematics.

Algorithm 1. Let Q =
(α,β

K

)

be a quaternion algebra over a field K of characteristic charK 6= 2.

Given a quaternion = q0 + q1i + q2j + q3k ∈ Q \ Z(Q), this algorithm outputs its square root or

reports a failure when is not a square.

1. Check if the norm N() of is a square in K .

(a) If it is not, then report a failure and quit.

(b) If it is, let d be an element of K such that d2 = N().

2. Check if any of the following two elements is a square in K:

a+ :=
q0 + d

2
, a− :=

q0 − d

2
.

3. If neither of them is a square, then report a failure and quit.

4. Otherwise, fix r0 such that either r20 = a+ or r20 = a−.

5. Set

r1 :=
q1
2r0

, r2 :=
q2
2r0

, r3 :=
q3
2r0

.

6. Output r = r0 + r1i + r2j + r3k.

Proof of correctness:

Since the norm N : Q → K is multiplicative, it is obvious that if N() /∈ K2, then cannot be a

square in Q. This fact justifies the early exit in step (1a) of the algorithm. Assume that N() = d2

and let r = r0 + r1i + r2j + r3k be the sought square root of , if it exists. By Eq. (1) we have

q1 = 2r0r1, q2 = 2r0r2, q3 = 2r0r3.

It is, thus, clear that it suffices to find r0. Again by Eq. (1) we may write

q0 = r20 + r21α+ r22β − r23αβ = r20 +
(q1
2r0

)2
α+

(q2
2r0

)2
β −

(q3
2r0

)2
αβ.

P. Koprowski / Computing Square Roots in Quaternion Algebras 5

The above formula can be rewritten in the form of a bi-quadratic equation:

4r40 − 4q0r
2
0 +

(

q21α+ q22β − q23αβ
)

= 0.

If we treat the left-hand-side as a quadratic equation in r20, then its discriminant equals 16 · N() =

(4d)2, hence

r20 =
q0 ± d

2
= a±.

It follows that the sought quaternion r exists if and only if either a+ or a− is a square in K . This

proves the correctness of the algorithm. ⊓⊔

Remark 3.4. In the above proof, we constructed the square root r of a quaternion ∈ Q \ Z(Q) by

solving a bi-quadratic equation. Such equations in general, may have four roots. Hence, one may

suspect that there are four distinct quaternions r such that r2 = . It is not the case. It is clear from

the above proof that ∈ Q \ Z(Q) has only finitely many square roots in Q. Now, if r2 ∈ Q, then r

is a root of a quaternionic polynomial x2 − . But [6, Theorem 5] asserts that a quadratic polynomial

over Q which has more than two zeros must have infinitely many of them. This way, we conclude

that has just two square roots. Notice that for hamiltonian quaternions this fact has been observed

already 80 years ago by Niven in [2].

4. Square roots of central elements. Split case

It is evident from the preceding section that the only non-trivial case that must be considered is how

to compute a quaternionic square root of an element of the base field K , which is not a square in K .

In contrast to the previous case (cf. Remark 3.4), in general, an element a ∈ K = Z(Q) may have

infinitely many square roots in Q. Once again, for hamiltonian quaternions it has been observed

already by Niven.

First, we need, however, to introduce an auxiliary algorithm that is not specific to quaternions, as

it deals with an arbitrary quadratic form. Recall that a quadratic form is called isotropic (see e.g., [5,

Definition I.3.1]) if it represents zero non-trivially. It is well known (see, e.g., [5, Theorem I.3.4]) that

every isotropic form represents all elements of K .

Algorithm 2. Let ξ be an isotropic quadratic form of dimension n over a field K of characteristic

charK 6= 2. Given an element a ∈ K and a vector V ∈ Kn such that ξ(V) = 0, this algorithm

outputs a vector W ∈ Kn satisfying the condition ξ(W) = a.

1. Find a vector U ∈ Kn such that U and V are linearly independent.

2. Set b := ξ(U) and c := 1/2 ·
(

ξ(U + V)− ξ(U)
)

.

3. Output

W := U +
a− b

2c
· V.

6 P. Koprowski / Computing Square Roots in Quaternion Algebras

Proof of correctness:

Just compute:

ξ(W) = ξ
(

U +
a− b

2c
· V
)

= ξ(U) +
a− b

2c
·
(

ξ(U + V)− ξ(U)− ξ(V)
)

+
(a− b)2

4c2
ξ(V)

= b+
a− b

2c
· 2c+ 0 = a ⊓⊔

Recall that a quaternion algebra Q =
(α,β

K

)

is said to split (see e.g., [4, Definition 5.4.5]) if Q

is isomorphic to the matrix ring M2K . It is well known (see e.g., [4, Theorem 5.4.4] or [5, Theo-

rem III.2.7]) that Q is split if and only if the quadratic form 〈−α,−β, αβ〉 is isotropic. If it is the case,

the preceding algorithm combined with Eq. (1) lets us compute the quaternionic square root of any

element of the base field. In particular, when K is a global field, charK 6= 2, then the computation

of the square root of a ∈ K in a split quaternion algebra boils down to solving a norm equation in

a quadratic extension of K . Algorithms for the latter task are well known. They can be found in

[7, 8, 9, 10, 11].

Algorithm 3. Let Q =
(α,β

K

)

be a split quaternion algebra over a global field K of characteristic

charK 6= 2. Given a nonzero element a ∈ K , this algorithm outputs a pure quaternion ∈ Q such

that 2 = a.

1. Check if α is a square in K . If there is c ∈ K× such that c2 = α, then set V := (0, c, 1).

2. Otherwise, if α /∈ K×2, then:

(a) Construct a quadratic field extension L = K
(√

α
)

of K .

(b) Solve the norm equation

NL/K (x) = −α

β

and denote the solution by λ = b+ c
√
α.

(c) Set V := (1, b, c).

3. Let ξ := 〈−α,−β, αβ〉 be the pure subform of the norm form of Q. Execute Algorithm 2 with

the input (−a, V, ξ) to construct a vector W = (w1, w2, w3) such that ξ(W) = −a.

4. Output = 0 + w1i + w2j + w3k.

Proof of correctness:

We claim that the vector V constructed either in step (1) or in step (2) of the algorithm is an isotropic

vector for ξ. First, suppose that α is a square in K . Say α = c2 for some c ∈ K×. Then

−α · 02 − β · c2 + αβ · 12 = 0.

P. Koprowski / Computing Square Roots in Quaternion Algebras 7

Conversely, assume that α /∈ K×2 and so L = K
(√

α
)

is a proper extension of K . Let λ = b+ c
√
α

be an element of L such that N (λ) = −α/β. Then

−α

β
= λλ = b2 − αc2.

It follows that

−α · 12 − β · b2 + αβ · c2 = 0.

Hence, in both cases V is an isotropic vector of ξ, as claimed. Consequently, executing Algorithm 2

in step (3) we obtain a vector W satisfying the condition ξ(W) = −a. Now, by Eq. (1) the square of

the quaternion outputted by the algorithm equals

2 = −N() = −ξ(W) = a.

Thus, to conclude the proof, we only need to show that the norm equation in step (2b) is solvable. But

this follows immediately from the fact that Q is split. Hence ξ is isotropic. Indeed, if V = (v1, v2, v3)
is an isotropic vector of ξ, then

−α · v21 − β · v22 + αβ · v23 = 0.

Observe that v1 must be nonzero since otherwise, α would be a square. It follows that

−α

β
=
(v2
v1

)2
− α

(v3
v1

)2
= NL/K

(

v2
v1

+
v3
v1

√
α

)

.

Therefore, the norm equation is solvable, as claimed. ⊓⊔

Remark 4.1. The construction of the isotropic vector V in steps (1–2) of Algorithm 3 is equivalent

to establishing an explicit isomorphism Q ∼= M2K . For details, see [5, Chapter III]. Of course, if

the quaternion algebra Q is fixed, the vector V should be computed only once and cached between

successive computations of square roots.

Remark 4.2. If the isomorphism Q ∼= M2K is a priori known explicitly, then the computation of the

quaternionic square root of any a ∈ K× trivializes, as we have the identity

(

0 a

1 0

)2

=

(

a 0

0 a

)

.

5. Square roots of central elements. Non-split case

Now the only case left to be dealt with is when a ∈ K× but Q is not split. Here we have to solve

not one but two norm equations (see Algorithm 5 below). First, however, we need to introduce the

following auxiliary algorithm that constructs an element simultaneously represented by two binary

8 P. Koprowski / Computing Square Roots in Quaternion Algebras

forms. Recall (see e.g., [5, Definition I.2.1]) that for a given quadratic form ξ of dimension d, we

denote the set of nonzero elements of K represented by ξ by the symbol

DK(ξ) :=
{

ξ(V) | V ∈ Kd and ξ(V) 6= 0
}

.

Let P be any finite set of primes of K . Recall that an element a ∈ K× is called P-singular if

ordp a ≡ 0 (mod 2) for all finite primes p /∈ P. The set of all P-singular elements forms a subgroup

of the group K× containing K×2. Thus, the notion of P-singularity generalizes naturally to the square

classes. Define the set

EP :=
{

aK×2 | a is P-singular
}

of P-singular square classes. It is a subgroup of the group K×/K×2 of square classes of K , hence a

vector space over F2. It is known that the dimension of this vector space is finite. In fact it equals (see

e.g., [12, p. 607])

dimF2
EP = |P|+ dimF2

CP/C2

P,

where CP is the P-class group of K . There is a number of known algorithms to construct a basis of

this vector space. For details see e.g., [13, 14, 15].

Before we present the next algorithm it is crucial to point out that the set of non-archimedean

places of a global field K is countable. All the places of K can be arranged into an infinite sequence

q1, q2, One possible way to do that is the following one. If K is a number field, let p1, p2, p3, . . . =
2, 3, 5, . . . be the (strictly increasing) sequence of all prime numbers. On the other hand, if K is

a global function field, i.e., a finite extension of a rational function field Fq(x), let p1 = 1/x and

p2, p3, p4, . . . be a sequence of all the irreducible polynomials from Fq[x] ordered in such a way that

deg pj ≤ deg pj+1 for every j. Now, we can first take the places of K that extend p1, then the ones that

extend p2, then p3, and so on. Consequently, it is possible to iterate over the set of primes of K . This

observation will be indispensable for the rigorous proof of correctness of the algorithm that follows.

Algorithm 4. Let K be a global field of characteristic charK 6= 2. Given two binary quadratic

forms ξ = 〈x0, x1〉 and ζ = 〈z0, z1〉 over K with x0, x1, z0, z1 6= 0, this algorithm outputs a nonzero

element d ∈ K× such that d ∈ DK(ξ) ∩DK(ζ) or reports a failure if there is no such d.

1. If −x0x1 is a square in K , then output z0 and quit.

2. Likewise, if −z0z1 is a square in K , then output x0 and quit.

3. Check (using e.g., [16, Algorithm 5]) whether the form

ξ ⊥ (−ζ) = 〈x0, x1,−z0,−z1〉

is isotropic. If it is not, then report a failure and quit.

4. Construct a set P consisting of all dyadic places of K (if there are any) and of all these non-

dyadic primes of K where at least one of the elements x0, x1, z0, z1 has an odd valuation.

5. If K is a formally real number field, then:

P. Koprowski / Computing Square Roots in Quaternion Algebras 9

(a) Construct the set R of all the real places of K , where either ξ or ζ is definite and denote

its cardinality by r, i.e.

R =
{

r | sgnr x0x1 = 1 or sgnr z0z1 = 1
}

, r = |R|.

(b) [Notation only] Let r1, . . . , rr be all the elements of R.

(c) Construct a vector W = (w1, . . . , wr) ∈ {0, 1}r setting

wi =

{

log-1 sgnri x0 if sgnri x0x1 = 1,

log-1 sgnri z0 if sgnri x0x1 = −1.

Otherwise, if the field K is non-real, set R := ∅, r = 0 and W := ().

6. Repeat the following steps until the sought element d is found:

(a) [Notation only] Let p1, . . . , ps be all the elements of P.

(b) Construct a basis B = {β1, . . . , βk} of the group EP of P-singular square classes.

(c) Construct vectors U = (u1, . . . , us) and V = (v1, . . . , vs) setting

ui = log-1(x0, x1)pi and vi = log-1(z0, z1)pi .

(d) Construct matrices A = (aij) and B = (bij), with k = |B| columns and s = |P| rows,

setting

aij = log-1(−x0x1, βj)pi and bij = log-1(−z0z1, βj)pi .

(e) If R 6= ∅ construct a matrix C = (cij) with k columns and r = |R| rows, setting

cij = log-1 sgnri βj .

Otherwise, when R = ∅, set C = ().

(f) Check if the following system of F2-linear equations has a solution







A

B

C






·









x1
...

xk









=







U

V

W






()

(g) If it does, denote the solution by (ε1, . . . , εk) ∈ {0, 1}k . Output d = βε1
1 · · · βεk

k and quit.

(h) If the system () has no solution, then append to P the first prime qj of K that is not yet

in P (see the comment preceding the algorithm) and reiterate the loop.

10 P. Koprowski / Computing Square Roots in Quaternion Algebras

Proof of correctness:

First, suppose that −x0x1 is a square in K . This means that the form ξ is isotropic (see, e.g., [5,

Theorem I.3.2]). Hence, by [5, Theorem I.3.4] it represents every element of K . In particular, it

represents z0. Since ζ also represents z0 (trivially), step (1) of the algorithm outputs the correct result.

The same argument also applies to step (2), when it is the form ζ that is isotropic. It is also clear that

the sets DK(ξ) and DK(ζ) of elements represented by ξ and ζ , intersect if and only if ξ ⊥ (−ζ) is

isotropic. This justifies the test in step (3). Therefore, without loss of generality, for the remainder of

the proof, we may assume that ξ ⊥ (−ζ) is isotropic while both forms ξ and ζ are anisotropic.

We will first show that the algorithm terminates. Let W = (w0, w1, w2, w3) ∈ K4 be an isotropic

vector of ξ ⊥ (−ζ). Denote e := ξ(w0, w1) = ζ(w2, w3). Further, let R and P be the sets of

places (real and non-archimedean, respectively) constructed in steps (4–5) of the algorithm. We shall

now apply [17, Lemma 2.1]. In the notation of [17] we take S to be the union of P and the set

of all non-archimedean places of K . In particular, S contains R. For every prime p ∈ P we set

n(p) := 1 + ordp 4. For real places r ∈ R, take n(r) := 1. For non-archimedean places p /∈ R, the

choice of n(p) is irrelevant. As in [17], let m =
∏

p∈S pn(p) be a modulus. Next, take bp := e for

every p ∈ S. Moreover, if K is a global function field, pick one more prime not in S and denote1 it p∗
and set the corresponding exponent to be 2. Then [17, Lemma 2.1] asserts that there exists a finite

prime p0 of K (denoted q in [17]) and an element d ∈ K× (denoted b ibid) such that:

i. ordp d = 0 for every finite prime p /∈ P ∪ {p0}, except that if K is a global function field, at

the singled out prime p∗ the valuation ordp∗ d is even but possibly nonzero;

ii. d ≡ e (mod p1+ordp 4) for every p ∈ P;

iii. ordp0 d = 1;

iv. sgnr d = sgnr e for every real places r of K .

Let B = {β1, . . . , βk} be a basis of the group EP∪{p0} of
(

P ∪ {p0}
)

-singular square classes.

The element d is
(

P ∪ {p0}
)

-singular, hence it can be expressed in the form

d = βε1
1 · · · βεk

k ,

where ε1, . . . , εk ∈ F2 are the coordinates of d with respect to B.

Fix a real place ri ∈ R. First, suppose that sgnri x0x1 = 1, so the form ξ ⊗Kri is definite. Then

sgnri(−d) = sgnri(−e) = sgnri x0 since 〈−e, x0, x1〉 is isotropic. But this implies that

k
∏

j=1

(−1)cijεj =

k
∏

j=1

sgnri β
εj
j = sgnri d = sgnri x0 = (−1)wi .

Consequently

ci1ε1 + · · ·+ cikεk = wi. (2)

Conversely, assume that ξ ⊗ Kri is indefinite, hence ζ ⊗ Kri must be definite. Applying the same

arguments to the form ζ instead of ξ, we show that Eq. (2) also holds in this case.

1This prime is denotes p0 in [17], but we will not use this symbol as it would contradict the notation in the rest of the proof.

P. Koprowski / Computing Square Roots in Quaternion Algebras 11

Now fix a finite prime pi ∈ P. Observe that by the local square theorem (see, e.g., [5, The-

orem VI.2.19]) condition (ii) implies that the local squares classes dK×2
pi and eK×2

pi coincide. It

follows that the form

〈−d, x0, x1〉 ⊗Kpi
∼= 〈−e, x0, x1〉 ⊗Kpi

is isotropic. Now, [5, Proposition V.3.22] asserts that the Hasse invariant of 〈−d, x0, x1〉⊗Kpi equals

spi〈−d, x0, x1〉 = (−1, x0x1 · d)pi . (3)

Using the definition of the Hasse invariant and properties of the Hilbert symbol we can rewrite the

above condition as follows

1 = spi〈−d, x0, x1〉 · (−1, x0x1 · d)pi
= (−d, x0)pi(−d, x1)pi(x0, x1)pi(−1, x0x1)pi(−1, d)pi

= (−d, x0x1)pi(−1, x0x1)pi(−1, d)pi (x0, x1)pi

= (d, x0x1)pi(−1, d)pi(x0, x1)pi
= (−x0x1, d)pi(x0, x1)pi .

Therefore, formula (3) is equivalent to the following one:

(−x0x1, d)pi = (x0, x1)pi .

Substituting βε1
1 · · · βεk

k for d we obtain

k
∏

j=1

(−x0x1, βj)
εj
pi = (x0, x1)pi .

Now, (x0, x1)pi = (−1)ui and (−x0x1, βj)pi = (−1)aij , where ui, aij ∈ {0, 1} are the elements

constructed in steps (6c–6d). Therefore, the last condition can be expressed as a linear equation

over F2:

ai1ε1 + · · ·+ aikεk = ui. (4)

Finally, we will show that the above equation also holds for the index i = 0, that is for the prime p0
appended to P. This fact follows from Hilbert reciprocity law (see, e.g., [5, Theorem VI.5.5]). We

already know that for every i ∈ {1, . . . , s} we have

(−x0x1, d)pi = (x0, x1)pi .

The same also holds for primes not in P. Indeed, if q /∈ P ∪ {p0} then q is non-dyadic and all three

elements x0, x1 and d have even valuations at q. Consequently, by [5, Corollary VI.2.5] one obtains

(−x0x1, d)q = (x0, x1)q = 1.

12 P. Koprowski / Computing Square Roots in Quaternion Algebras

Now, by Hilbert reciprocity law, we can write

1 =
∏

p

(−x0x1, d)p ·
∏

p

(x0, x1)p

= (−x0x1, d)p0(x0, x1)p0 ·
∏

p∈P

(

(−x0x1, d)p(x0, x1)p

)

·
∏

q/∈P∪{p0}

(

(−x0x1, d)q(x0, x1)q

)

= (−x0x1, d)p0(x0, x1)p0 .

Hence, in the same way as above, we show that Eq. (4) also holds for i = 0. Applying the same

arguments to the form ζ , we obtain

bi1ε1 + · · ·+ bikεk = vi, (5)

for all i ∈ {0, 1, . . . , s}.

All in all, we have proved that Eq. () has a solution in EP∪{p0}. Now, for every P′ ⊇ P ∪ {p0}
we have EP∪{p0} ⊆ EP′ , hence once the prime p0 is appended to P the algorithm terminates (see also

Remark 5.1 w below).

Now, when we have proved that the algorithm stops, we must show that it outputs a correct result.

To this end, we will show that the forms 〈−d, x0, x1〉 and 〈−d, z0, z1〉 are locally isotropic in every

completion of K . The assumptions are symmetric with respect to both forms, except in real places.

Hence it generally suffices to prove the isotropy of one of them.

Both forms are trivially isotropic in all complex completions of K (provided that there are any)

and in all real completions Kr for r /∈ R. Fix now a real place ri ∈ R. First, assume that the form

〈x0, x1〉 ⊗ Kri is definite. From the preceding part we know that the element d = βε1
1 · · · βεk

k , con-

structed by the algorithm, satisfies the condition sgnri d = sgnri x0. Therefore the form 〈−d, x0, x1〉⊗
Kri is isotropic. Now, the form ξ ⊥ (−ζ) is isotropic because otherwise, the execution of the algo-

rithm would have been interrupted already in step (3). Thus, either sgnri z0 = sgnri x0 = sgnri d or

sgnri z1 = sgnri x0 = sgnri d. In both cases, we have that the form 〈−d, z0, z1〉 ⊗Kri is isotropic, as

well. Conversely, assume that ξ ⊗Kri is indefinite, and so it is ζ ⊗Kri that must be definite. Then,

〈−d, x0, x1〉⊗Kri is trivially isotropic and to the form 〈−d, z0, z1〉⊗Kri we apply the some argument

as to the form 〈−d, x0, x1〉 ⊗Kri in the previous case.

We may now concentrate on finite primes. Fix a prime p. Suppose p is not among the primes

constituting P (here, we allow P to have been already enlarged during the execution of the algorithm).

In that case, p is certainly non-dyadic, and all three elements x0, x1, and d have even valuations at p.

Hence, [5, Corollary VI.2.5] asserts that 〈−d, x0, x1〉 ⊗Kp is isotropic. On the other hand, we know

from the first part of the proof that if p = pi ∈ P, then d satisfies the condition (−x0x1, d)p =
(x0, x1)p, which is equivalent to sp〈−d, x0, x1〉 = (−1, x0x1 · d)p. The later condition implies that

〈−d, x0, x1〉 ⊗ Kp is isotropic, again by [5, Proposition V.3.22]. The very same arguments may be

applied to the form 〈−d, z0, z1〉 ⊗Kp.

All in all, we have shown that the forms 〈−d, x0, x1〉 and 〈−d, z0, z1〉 are locally isotropic in every

completion of K . Thus, they are isotropic over K by the Hasse–Minkowski principle (see e.g., [5,

Theorem VI.3.1]). This means that the forms ξ and ζ represent d over K by [5, Corollary I.3.5]. ⊓⊔

P. Koprowski / Computing Square Roots in Quaternion Algebras 13

Remark 5.1. To rigorously prove that Algorithm 4 terminates, we used the fact that it is possible

to iterate over the primes of K arranging all of them into a sequence. Hence, after finitely many

steps the prime p0, specified in the proof of correctness, is appended to P and so the algorithm stops.

However, it does not present a complete picture. We proved that the corresponding prime p0 exists

using [17, Lemma 2.1]. If one analyzes the proof of this lemma, one will realize that the authors rely

on Chebotarev’s density theorem to show that the set of primes satisfying the assertions of the lemma

has positive density (hence is non-empty, consequently the corresponding prime exists). This means

that in a practical implementation, in step (6h) of the algorithm it is possible to actually add primes

to P at random. If the density of the set mentioned above is d ∈ (0, 1], then the probability that the

system () fails to be solvable after n steps is (1 − d)n, for sufficiently large n. Hence, it diminishes

expotentially with the number of iterations.

We are now in a position to present an algorithm that computes a square root of a scalar in a

non-split quaternion algebra.

Algorithm 5. Let Q =
(α,β

K

)

be a non-split quaternion algebra over a global field of characteristic

charK 6= 2. Given a nonzero element a ∈ K this algorithm outputs a quaternion ∈ Q such that
2 = a or reports a failure if a is not a square in Q.

1. Check if a is a square in K . If there is c ∈ K× such that a = c2, then output = c+0i+0j+0k
and quit.

2. Check if aα is a square in K . If there is c ∈ K× such that aα = c2, then output = 0 +
(c/α)i + 0j + 0k and quit.

3. Check if aβ is a square in K . If there is c ∈ K× such that aβ = c2, then output = 0 + 0i +
(c/β)j + 0k and quit.

4. Execute Algorithm 4 with input ξ = 〈a,−α〉 and ζ = 〈β,−αβ〉. If it fails, then report a failure

and quit. Otherwise, let d ∈ K× denote the outputted element represented by these two binary

forms.

5. Construct two quadratic extensions of K:

L := K
(√

α
)

and M := K
(√

aα
)

.

6. Solve the following two norm equations:

d

β
= NL/K (x) and

d

a
= NM/K (y) .

Denote the solutions by

λ = l0 + l1
√
α and µ = m0 +m1

√
aα,

respectively.

7. Output = 0 + a · m1

m0
i + l0

m0
j + l1

m0
k.

14 P. Koprowski / Computing Square Roots in Quaternion Algebras

Proof of correctness:

The correctness of the results outputted in step (1) is obvious as is the correctness of output of steps

(2–3). Indeed, if aα = c2 for some c ∈ K× and = (c/α)i, then 2 = α · c2/α2 = a. In the

remainder of the proof, we can, thus, assume that neither a nor aα is a square in K . Likewise, α is not

a square, either, since otherwise, the quaternion algebra Q would split. Therefore, L and M are proper

quadratic extensions of K . It follows from Observation 3.3 that a is a square of some pure quaternion

= q1i + q2j + q3k if and only if

a · 12 − α · q21 = β · q22 − αβ · q23.

This equality is equivalent to the condition that the sets of elements of K represented by the binary

forms ξ = 〈a,−α〉 and ζ = 〈β,−αβ〉 have a non-empty intersection. Thus, if Algorithm 4 executed

in step (4) reports a failure, then a is not a square in Q. Now, assume that Algorithm 4 returned some

element d ∈ DK(ξ) ∩DK(ζ). Then there are l0, l1,m0,m1 ∈ K such that

{

d = am2
0 − α(am1)

2 = a ·NM/K (m0 +m1
√
aα)

d = βl20 − αβl21 = β ·NL/K (l0 + l1
√
α) .

Rearranging the terms we have

a = α
(am1

m0

)2
+ β

(l0
m0

)2
− αβ

(l1
m0

)2
.

Now, the right-hand-side is nothing else but the square of the quaternion constructed in step (7).

This proves that the algorithm is correct. ⊓⊔

References

[1] Heath T. A history of Greek mathematics. Vol. I. Dover Publications, Inc., New York, 1981. ISBN

0-486-24073-8. From Thales to Euclid, Corrected reprint of the 1921 original.

[2] Niven I. The roots of a quaternion. Amer. Math. Monthly, 1942. 49:386–388. doi:10.2307/2303134. URL

https://doi.org/10.2307/2303134.

[3] Vignéras MF. Arithmétique des algèbres de quaternions, volume 800 of Lecture Notes in Mathematics.

Springer, Berlin, 1980. ISBN 3-540-09983-2.

[4] Voight J. Quaternion algebras, volume 288 of Graduate Texts in Mathematics. Springer, Cham,

[2021] ©2021. ISBN 978-3-030-56692-0; 978-3-030-56694-4. doi:10.1007/978-3-030-56694-4. URL

https://doi.org/10.1007/978-3-030-56694-4.

[5] Lam TY. Introduction to quadratic forms over fields, volume 67 of Graduate Studies in Mathematics.

American Mathematical Society, Providence, RI, 2005. ISBN 0-8218-1095-2.

[6] Gordon B, Motzkin TS. On the zeros of polynomials over division rings. Trans. Amer. Math. Soc., 1965.

116:218–226. doi:10.2307/1994114. URL https://doi.org/10.2307/1994114.

[7] Cohen H. Advanced topics in computational number theory, volume 193 of Graduate Texts in Mathe-

matics. Springer-Verlag, New York, 2000. ISBN 0-387-98727-4. doi:10.1007/978-1-4419-8489-0. URL

https://doi.org/10.1007/978-1-4419-8489-0.

https://doi.org/10.2307/2303134
https://doi.org/10.1007/978-3-030-56694-4
https://doi.org/10.2307/1994114
https://doi.org/10.1007/978-1-4419-8489-0

P. Koprowski / Computing Square Roots in Quaternion Algebras 15

[8] Fieker C, Jurk A, Pohst M. On solving relative norm equations in algebraic number

fields. Math. Comp., 1997. 66(217):399–410. doi:10.1090/S0025-5718-97-00761-8. URL

https://doi.org/10.1090/S0025-5718-97-00761-8.

[9] Fincke U, Pohst M. A procedure for determining algebraic integers of given norm. In: Computer algebra

(London, 1983), volume 162 of Lecture Notes in Comput. Sci., pp. 194–202. Springer, Berlin, 1983. doi:

10.1007/3-540-12868-9\ 103. URL https://doi.org/10.1007/3-540-12868-9_103.

[10] Garbanati DA. An algorithm for finding an algebraic number whose norm is a given ra-

tional number. J. Reine Angew. Math., 1980. 316:1–13. doi:10.1515/crll.1980.316.1. URL

https://doi.org/10.1515/crll.1980.316.1.

[11] Simon D. Solving norm equations in relative number fields using S-units. Math. Comp., 2002.

71(239):1287–1305. doi:10.1090/S0025-5718-02-01309-1. URL https://doi.org/10.1090/S0025-

5718-02-01309-1.

[12] Czogała A. Witt rings of Hasse domains of global fields. J. Algebra, 2001. 244(2):604–630. doi:

10.1006/jabr.2001.8918. URL https://doi.org/10.1006/jabr.2001.8918.

[13] Cannon J, Bosma W, Fieker C, (eds) AS. Handbook of Magma Functions, 2.26-4 edition, 2021.

[14] Koprowski P. Computing singular elements modulo squares. Fund. Inform., 2021. 179(3):227–238.

doi:10.3233/fi-2021-2022. URL https://doi.org/10.3233/fi-2021-2022.

[15] Koprowski P, Rothkegel B. The anisotropic part of a quadratic form over a number

field. J. Symbolic Comput., 2023. 115:39–52. doi:10.1016/j.jsc.2022.07.003. URL

https://doi.org/10.1016/j.jsc.2022.07.003.

[16] Koprowski P, Czogała A. Computing with quadratic forms over number fields. J. Symbolic Comput., 2018.

89:129–145. doi:10.1016/j.jsc.2017.11.009. URL https://doi.org/10.1016/j.jsc.2017.11.009.

[17] Leep D, Wadsworth A. The Hasse norm theorem mod squares. J. Number Theory, 1992. 42(3):337–348.

doi:10.1016/0022-314X(92)90098-A. URL https://doi.org/10.1016/0022-314X(92)90098-A.

https://doi.org/10.1090/S0025-5718-97-00761-8
https://doi.org/10.1007/3-540-12868-9_103
https://doi.org/10.1515/crll.1980.316.1
https://doi.org/10.1090/S0025-
5718-02-01309-1
https://doi.org/10.1006/jabr.2001.8918
https://doi.org/10.3233/fi-2021-2022
https://doi.org/10.1016/j.jsc.2022.07.003
https://doi.org/10.1016/j.jsc.2017.11.009
https://doi.org/10.1016/0022-314X(92)90098-A

	Introduction
	Notation
	Square roots of non-central elements
	Square roots of central elements. Split case
	Square roots of central elements. Non-split case

