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1. Introduction

Summer is at its peak, and you spend the day at the beach with your whole family. Unfortunately, you

were not the only one with this idea, and the beach is crowded with optimization specialists. Where

will you put your towels? You should find a place as lovely as possible, sheltered from the wind and

close to the sea, and as isolated as possible from other people to enjoy a little privacy. Optimizing even

more, it could be a good thing to leave no good spots too close to you because a new family coming

to the beach could have the incentive to move there and ruin your spot.

Sit on a bus, a train, or an auditorium: Where should you sit to enjoy privacy and comfort so

that others arriving later will have no incentive to sit too close? Another (more technical and less

antisocial) analogy is to imagine a load-balancing context with local influences. Assume that there are

n processors with m computation tasks to solve but that solving a task on a processor impacts other

processors around (say, for instance, that nearby processors share a resource of energy). How should

the tasks be distributed to processors? Can this distribution be efficiently computed?

1.1. Our model

Many problems in wireless communication networks have been modelled using game-theoretic ap-

proaches and have received considerable attention (see [1] for an overview). To handle access to the

communication medium, one must consider interference problems. For example, in the base station

selection [2], a user’s cost (throughput) depends simultaneously on the number of users associated

with the base station and its neighbourhood.

To model these situations, we introduce the notion of Neighbourhood Balancing Game (NBG).

In such a game, players must choose a single resource in a set of n possibilities. They endure a cost

depending on how many players chose the same resource, but also nearby resources (as opposed, for

instance, to congestion games where the cost of players depends only on the number of players who

chose the same resource). Thus stated, the model of NBG is quite general, so we shall consider par-

ticular cases and use graph-theoretic terminology to model this notion of proximity between resources

and infer results from the graph topology.

We shall be very interested in equilibria, configurations of players’ choices such that no player

can improve its situation by changing location if other players do not move. We shall examine these

equilibria’s existence, structure, and computational tractability.

While we can develop a similar theory with atomic players, here we focus on the nonatomic case

and consider a continuum of players, or mass distribution, to avoid side effects based on divisibility

issues. As will be seen, this case is rich enough to provide many interesting examples.

Our model of nonatomic Neighbourhood Balancing Games lies somewhere between the model

of nonatomic selfish routing (or ”Wardrop model”, see [3]), selfish load balancing and congestion

games.

As will be seen, our framework is more straightforward than the previous ones in many cases, but

many examples already manifest a great depth of complexity.
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1.2. State of the art

The general framework of neighbourhood balancing games extends the congestion games defined

by Rosenthal [4]. Congestion games are non-cooperative games in which the players compete to

share a set of resources, and the cost of each player depends on the number of players choosing the

same resource. There are two types of games: atomic (a finite number of players) and nonatomic (a

continuous number of players).

For nonatomic congestion games, a well-known game theoretic traffic model is due to Wardrop [3].

Wardrop equilibria have been introduced to model network behaviours in which travellers (for trans-

portation context) or packets (telecommunication context) choose routes they perceive as the shortest

(see survey [5] for more details). This model was conceived to represent road traffic with the idea of

an infinite number of agents responsible for an infinitesimal amount of traffic each. Beckmann et al.

[6] proved that Wardrop equilibrium is a solution of a convex optimization program and is unique.

In algorithmic game theory, a question arises about the impact of the degradation of the social cost

of agents, taking into account their interests. This measure is called the price of anarchy [7] (ratio

between the worst equilibria and the optimal solution).

This question has been intensively studied for congestion games.

For nonatomic congestion games with affine costs, the price of anarchy is upper-bounded by 4/3,

and this bound is sharp [8]. Indeed, the simple game introduced by Pigou is defined as a network with

two parallel routes composed of a single edge connecting a source to a destination. Its price of anarchy

is 4/3. Moreover, using the same topology and considering that the network’s cost functions are

polynomials of degree at most p, Roughgarden [9] proved that the price of anarchy for such networks

is large (the order of magnitude is Θ(p/ log p)). Recently, some extensions of the price of anarchy

have been thought about in this type of network, considering the traffic variation [10, 11, 12].

For atomic congestion games, the games that seem most similar to those studied in this work are

load balancing games, or selfish load balancing. The underlying model, known as the KP-model, was

introduced by Koutsoupias and Papadimitriou in [7], where they define measures for the quality of

equilibria. These problems have been studied widely (see chapter 20 of [13] for a survey). Indeed, be-

sides their conceptual simplicity (some machines are shared between selfish users who decide which

machines they will assign their tasks to), these problems are crucial in distributed environments. Kout-

soupias and Papadimitriou proved the existence of Nash equilibria and computed the price of anarchy

when machines are identical. Czumaj and Vöcking [14] gave the tight bound Θ(logm/ log logm) for

the price of anarchy on m uniformly related machines. In such environments, Christodoulou et al. [15]

introduced the coordination mechanisms (a set of scheduling policies, one for each machine) to obtain

socially desirable solutions despite the selfishness of the agents. Several works analyzed the existence

of pure Nash equilibria (see [16, 17, 18] for example) and their prices of anarchy [19, 20, 21, 22, 23]

for these models (for uniform machines or unrelated machines, for weighted or not players).

Moreover, the price of stability [24] (ratio between the best equilibria and the optimal solution) is

another measure when the game admits several equilibria. Since nonatomic congestion games have a

unique equilibrium, their prices of anarchy and stability are identical. This reason is why it has been

studied only for atomic congestion games; the price of stability is known for congestion games with

linear cost functions [25, 26] and is upper-bounded [27] for congestion games with polynomial cost

functions.
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One of the closest games related to our model is the facility location game introduced by Vetta [28].

Competitive facility location games deal with the placement of sites by competing market players.

The facility location game plays on weighted bipartite graphs in which each player chooses to open a

single facility within the set of facilities the suppliers will serve, according to the distribution of users

on some vertices. Given a strategy profile, a supplier s serves the facilities closest to s and receives a

payment from these facilities. Vetta [28] proved that the facility location game always admitted a Nash

equilibrium and gave an upper bound on the price of anarchy. This has been extended in literature in

several papers.

The discrete Voronoi game corresponding to a simple model for the competitive facility location

is very similar to neighbourhood balancing games. The discrete Voronoi game plays on a given graph

with two players. Every player has to choose a set of vertices, and every vertex is assigned to the

closest player. Dürr and Thang [29], and Teramoto et al. [30] independently proved that deciding the

existence of a Nash equilibrium for a given graph is NP-hard. Several works have been devoted to

extending similar results on various types of graphs (cycles [29], trees [31]).

1.3. Outline of the paper

Section 2 is devoted to defining the games that we shall call NBG and the variants we shall study.

Section 3 will describe the notion of equilibrium and δ-strong equilibrium. We shall also prove a

sufficient condition on the costs for the game to admit an equilibrium. Moreover, in Subsection 3.4,

we prove that knowing whether a game admits a strong equilibrium is NP-complete. Furthermore, we

adapt the notion of potential to our games to prove that symmetric graphical games admit a potential

function. Subsections 3.9 and 3.10 focus on the efficiency of equilibria. Finally, in Section 4, we

focus on characterizing equilibria in games where very simple graphs represent interactions between

resources.

2. Neighbourhood Balancing Games (NBGs)

In this section, we present and discuss our model, starting from the general case and refining particular

cases and properties that will be needed later.

2.1. General model

Let n ≥ 1 be an integer. Integers from 1 to n, whose set we denote as [n], will be called vertices ;

those are the resources (we use a graph-theoretical vocabulary for reasons that will appear soon). In

the paper, symbols i, j are for vertices; if omitted, their scope is the set [n].

A mass distribution on [n] is a vector x = (x1, x2, · · · , xn) with real nonnegative entries, where

xi is to be thought of as the mass on vertex i. The total mass of such a distribution is the sum of all

xi’s for i ∈ [n] and will be denoted by r. A mass distribution can be considered as a continuum of

players, each choosing a single vertex as a strategy. We also refer to such an imaginary player by the

expression ”infinitesimal unit of mass”.
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We shall denote ∆r(n) the set of n-dimensional mass distributions with total mass r > 0. Given

x ∈ ∆r(n), we say that a vertex i is charged if xi > 0, otherwise it is uncharged. The support of x is

the set of charged vertices.

A cost function on vertex i is a function

Ci : x 7→ Ci(x) ∈ R
+

mapping every mass distribution x ∈ ∆r(n) (for a given r) to a nonnegative real number, the cost of

vertex i under mass distribution x.

We interpret the cost Ci(x) as the price paid by individuals in the continuum of players that have

chosen vertex i as their strategy. Of course, each player has a goal of minimizing such a cost. This

can also be viewed as people in location i enduring a nuisance, based on the total number of people in

their location and other locations.

To aggregate all this, we define a Neighbourhood Balancing Game (NBG for short) as a triple

(n, r, C), where n ≥ 1, r > 0, and C = (Ci)i∈[n] is the n-dimensional vector of cost functions

Ci : ∆r(n) → R
+.

Given this, the definition is quite general, and we shall be interested in NBGs where cost functions

have prescribed forms, which we shall describe afterwards.

2.1.1. A first example: two-commodity dilemma game (see Figure 1)

Let us consider a first, simple NBG: the NBG (2, 1, C) with C1(x1, x2) = 4x1x2 and C2(x1, x2) =
x1. This can be thought of as a two-commodity dilemma with a total mass 1 of players simultaneously

deciding between commodities 1 and 2, then enduring the cost Ci depending on their choice and the

repartition of the mass.

0 r = 1

1

3
4

1
2

3
4

x1

cost

C2

C1

Figure 1. Costs functions for the example in Subsection 2.1.1. The cost C1 (resp. C2) is represented by the

dotted curve (resp. solid). The x-axis is the mass of vertex 1.
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Since for all (x1, x2) ∈ ∆1(2) we have x1 + x2 = 1, we can rewrite these costs as functions of x1
only i.e. C1(x1) = 4x1(1 − x1) ans C2(x1) = x1; these are depicted in Figure 1. As can be seen,

costs are equal when x1 = 0 and x1 = 3
4 . When x1 < 3

4 , vertex 2 has a lower, hence better cost.

Hence, the mass on vertex 1 might want to move to 2, decreasing x1 in the process. When x1 >
3
4 , the

cost is better on vertex 1, hence the mass on 2 might want to move to 1, increasing x1. Thus, we can

expect that if we let the mass continuously move, starting from x1 6= 3
4 , we would obtain stabilization

at either x1 = 0 or x1 = 1 depending on the case. If x1 is exactly 3
4 , the two costs are equal, and we

can interpret this as a case where no player can improve its cost by switching from one vertex to the

other.

We shall define mass distributions such as x1 = 0, x1 = 3
4 and x1 = 1, where no mass has the

incentive to move, as equilibria, and it will be our main endeavour to try and understand them; see

Section 3 for a definition.

2.2. Graphical NBGs

2.2.1. Definition

In this section, we define a subclass of NBGs, which will be our main focus for the rest of the paper.

In addition to being a natural and more straightforward case, Subsection 3.6 will explain the reason

for this particular class.

We now consider only the cost functions of the form

Ci(x) = fi(xi) +
∑

j 6=i

αj,ixj

where:

(i) fi : [0, r] → R
+ is a continuous non-decreasing function, such that

t > 0 ⇒ fi(t) > 0

(hence values are positive except possibly for t = 0);

(ii) αj,i, for every i 6= j in [n], are nonnegative real numbers.

Functions fi are called vertex-cost functions and are not to be confused with proper cost functions Ci

that are deduced from fi’s and αi,j’s.

We call such a game a graphical NBG and it will be denoted

(n, r, f, α),

where f = (fi)i∈[n] and α = (αi,j)i 6=j∈[n]. If furthermore for all i, j ∈ [n], i 6= j, we have αj,i = αi,j ,

we say that the game is symmetric.
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To a graphical NBG, we can associate an underlying graph (hence the name), which is either a

directed graph (V,A) (in the general, non-symmetric case) or an undirected graph (V,E) (if the game

is symmetric), where V = [n] and either

A = {(i, j) : 1 ≤ i 6= j ≤ n and αi,j > 0}

is the set of arcs in the directed case or

E = {{i, j} : 1 ≤ i 6= j ≤ n and αi,j > 0}

is the set of edges in the symmetric case.

Let us go back to the example in Subsection 2.1.1. It is not graphical since C1(x) = 4x1x2 is not

of the prescribed form. If we had C1(x) = x1 + x2 and still C2(x) = x1, the example would have

been graphical and even symmetric, with f1(x1) = x2, f2(x2) = 0 and α1,2 = α2,1 = 1.

2.2.2. Special case where there are two resources (n = 2)

The case n = 2 is, of course, more straightforward than the general case but is still rich enough to

provide examples and counterexamples. We shall represent a symmetric graphical NBG as:

1 2
α1,2 = α

f1(x1) f2(x2)

The following proposition will be used to build examples. It shows that in the case n = 2, if some

regularity conditions are satisfied, we can always find α1,2 and vertex-cost functions to obtain any

couple of cost functions on vertices, up to translation.

Proposition 2.1. Let D1 and D2 be two continuously differentiable functions on ∆r(2) for a given

r > 0. We can find a real number c, a positive α > 0 and two functions f1 and f2 such that (2, r, f =
(f1, f2), α) is a symmetric graphical NBG with cost functions C1 = D1 + c and C2 = D2 + c.

Proof:

For x ∈ ∆r(2) we want

D1(x1, x2) + c = C1(x1, x2) = f1(x1) + αx2 = f1(x1) + α(r − x1),

so we define on [0, r]

f1(x1) = D1(x1, r − x1) + c− α(r − x1)

and likewise

f2(x2) = D2(r − x2, x2) + c− α(r − x2)

where c and α are to be defined.
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What remains to do is to find values α ≥ 0 and c such that f1 and f2 will be positive and non-

decreasing. Both functions are continuously differentiable and for x1 ∈ [0, r] we have

f ′(x1) =
∂D1

∂x1
(x1, r − x1)−

∂D1

∂x2
(x1, r − x1) + α,

hence if we want f1 and f2 non-decreasing it is enough to use any α satisfying

α ≥ max
(

max
x∈[0,r]

{

−∂D1

∂x1
(x, r − x) +

∂D1

∂x2
(x, r − x)

}

,

max
x∈[0,r]

{

∂D2

∂x1
(r − x, x)− ∂D2

∂x2
(r − x, x)

}

)

and then we can easily find c such that both functions are positive. ⊓⊔

2.3. Affine, linear, normal, uniform NBGs

We shall restrict graphical NBGs by considering the following definitions for a graphical NBG G =
(n, r, f, α):

• G is affine if all vertex-cost functions fi for i ∈ V are of the form

fi(xi) = αi,ixi + bi,

where αi,i, bi are nonnegative. Cost functions are then of the form

Ci(x) = bi +
∑

j∈V
αj,ixj

hence are also affine functions. An affine graphical NBG can be symmetric or not.

• if G is affine and moreover all bi’s satisfy bi = 0, then the NBG is linear and all cost functions

Ci for i ∈ V are of the form

Ci(x) =
∑

j∈V
αj,ixj ,

where the αi,j’s are nonnegative. A linear NBG is said to be normal if αi,i = 1 for all i.

• G is an α-uniform NBG if it is a normal linear NBG where all nonzero αi,j’s for i 6= j have a

common value α, or in other words all cost functions Ci, i ∈ V , are of the form

Ci(x) = xi + α
∑

j∈N [i]

xj ,

where N [i] ⊆ V \ {i} is a set of vertices which we call neighbours of i using graph-theoretic

terminology. If the game is symmetric, these neighbours are precisely the neighbours in the

underlying undirected graph (otherwise, they are the in-neighbours in the underlying directed

graph).

We shall recall these definitions when needed.
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2.4. Summary

Here is a table to sum up the different cases:

Class of NBG condition on cost functions Ci

general Ci(x) ≥ 0

Ci(x) = fi(xi) +
∑

j 6=i αj,ixj

graphical fi continuous non-decreasing

t > 0 ⇒ fi(t) > 0

fi(0) ≥ 0, αj,i ≥ 0

affine Ci(x) = bi +
∑

j αj,ixj

bi ≥ 0, αj,i ≥ 0

linear Ci(x) =
∑

j αj,ixj

αj,i ≥ 0

normal linear with αi,i = 1

α-uniform normal linear with

j 6= i, αj,i > 0 ⇒ αj,i = α

Each class contains the classes below it in the table, and all classes included in the Graphical class

can be either symmetric (αj,i = αi,j for all i 6= j) or not.

3. Equilibria

Equilibria of NBGs are our main focus in this paper. An equilibrium is a mass distribution such that

no infinitesimal player has the incentive to move because, in that distribution, every player has made

the best choice for itself. This notion relates to the n-player games definition of Nash equilibria and

the definitions of equilibria in other nonatomic games such as Wardrop games or nonatomic conges-

tion games. We consider only pure equilibria here because infinitesimal players do not use mixed

strategies.

In this section, after properly defining equilibria and proving their existence in the general case, we

establish an algorithmic complexity result for the existence of a refined notion of equilibria, δ-strong

equilibria. We then introduce the notion of the potential function and prove that symmetric graphical

games enjoy the existence of such a function, which is a tool to compute equilibria.

3.1. Definition

An equilibrium is a mass distribution such that no infinitesimal mass quantity can get a lower cost by

moving from one vertex to another. Formally, x∗ ∈ ∆r(n) is an equilibrium if

∀i, j ∈ [n], x∗i > 0 ⇒ Ci(x
∗) ≤ Cj(x

∗).

This definition implies that in an equilibrium, all charged vertices share the same cost, while uncharged

vertices have at least the same cost as the charged vertices.
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For δ ≥ 0, a δ-strong equilibrium is a x
∗ ∈ ∆r(n) such that no mass quantity 0 ≤ ǫ ≤ δ can

improve its cost by moving from one vertex to another. Formally,

∀0 ≤ ǫ ≤ δ,∀i, j ∈ [n], x∗i ≥ ǫ ⇒ Ci(x
∗) ≤ Cj(x

∗ − ǫ · ei + ǫ · ej), (1)

where (ei)i∈[n] is the canonical basis of Rn. If δ ≤ δ′, a δ′-strong equilibrium is δ-strong, particularly

all δ-strong equilibria are 0-strong, which amounts to saying that it is an equilibrium in the sense

defined above.

We say that an equilibrium is strong if it is δ-strong for some δ > 0. See Figures 2 and 3 for

examples of equilibria, strong or not. Thanks to Proposition 2.1, we do not need to define these

examples explicitly where only the curves’ relative positions and shapes are relevant.

0 rγ
x1

cost

C1

C2

Figure 2. We consider a game with 2 vertices. The curves represent the costs of the two vertices as a function

of the mass on vertex 1. There are three equilibria in this case: x1 = 0, x1 = γ (second intersection of the

costs curves) and x1 = r. Equilibria x1 = 0 and x1 = r are strong; however x1 = γ is not strong since a small

quantity ǫ of mass can always move from 2 to 1 and improve its cost.

0 r
x1

cost

C1

C2

Figure 3. We consider a game with 2 vertices. The curves represent the costs of the two vertices as a function

of the mass on vertex 1. There is only one equilibrium in x1 = 0, which is not strong.
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3.2. Existence of equilibria

Here, we consider general cost functions and show the existence of an equilibrium under the condition

of continuity. The proof is adapted from Nash’s proof of the existence of a mixed symmetric Nash

equilibrium in a symmetric game [32].

Theorem 3.1. Let (n, r, C) be a general NBG, and suppose that cost functions (Ci)i∈[n] are continu-

ous. Then, the game admits an equilibrium.

Proof:

Define, for all i, j ∈ [n], a function gi,j : ∆r(n) → R
+ by

gi,j(x) = xj ·max (0, Cj(x)− Ci(x))

and Fi : ∆r(n) → R
+ by

Fi(x) =
xi + r ·∑j∈[n] gi,j(x)

1 +
∑

i,j∈[n] gi,j(x)
.

This definition guarantees that F = (F1, F2, · · · , Fn) takes values in ∆r(n) and is continuous, hence

has a fixed point x
∗ by Brouwer’s fixed point theorem. Consider k ∈ [n] such that Ck(x

∗) =
max{Cj(x

∗) : x∗j > 0} and x∗k > 0. Then

Cj(x
∗) > Ck(x

∗) ⇒ x∗j = 0,

so that gk,j(x
∗) = 0 for all j ∈ [n]. In particular, we have Fk(x

∗) = x∗k, hence

x∗k
1 +

∑

i,j∈[n] gi,j(x
∗)

= x∗k.

Since x∗k > 0, this implies that gi,j(x
∗) = 0 for all i, j ∈ [n]. In particular, for i, j with x∗j > 0, we

have max(0, Cj(x
∗)− Ci(x

∗)) = 0, which is the definition of an equilibrium. ⊓⊔

3.3. Games with no equilibria

A non-continuous game does not need to have an equilibrium. Consider for instance (2, 1, C) with

C1(x) = 1, and C2(x) = 2 when x1 < 1
2 , and C2(x) = 0 otherwise. When x1 < 1

2 , we have x2 > 0
but C1(x) < C2(x), hence not an equilibrium, and for x1 ≥ 1

2 we have x1 > 0 and C2(x) < C1(x)
hence also not an equilibrium.

3.4. Structure and complexity of equilibria

Here, we study the structure of equilibria in one particular case, namely normal linear NBGs. This

enables us to derive complexity results for the problem of finding an equilibrium in a given NBG.
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So we consider a (possibly non-symmetric) normal linear NBG G and its underlying directed

graph D, i.e. its cost functions are of the form

Ci(x) = xi +
∑

j 6=i

αj,ixj, (2)

where αi,j may be different from αj,i.

Let us recall that for a directed graph D = (V,A), a kernel is a set of vertices K ⊆ V such that:

• for any two distinct vertices v,w ∈ K , arcs (v,w) and (w, v) do not belong to A (hence K is a

directed stable set);

• if z 6∈ K , then there is v ∈ K with (v, z) ∈ A (K is a directed dominating set).

Proposition 3.2. Let G = (n, r, C) be an NBG with normal linear cost functions and underlying

graph D; suppose furthermore that

αi,j > 0 ⇒ αi,j > 1 and αi,j + αj,i > 2 (i 6= j).

Then, the supports of strong equilibria are exactly the kernels of D.

Proof:

First, consider a kernel K of D of size k and define x
∗ by x∗i = r

k
if i ∈ K and x∗i = 0 otherwise.

Since K is a stable set, the cost inside K is exactly r
k

, and since K is dominating and any nonzero

αi,j is at least one, the cost is at least r
k

outside K . Let 0 ≤ ǫ ≤ r
k

and consider a mass ǫ moving from

vertex i ∈ K to j.

If j ∈ K , the cost in j after the change will be r
k
+ ǫ, which is worse. If j 6∈ K , then there is an

arc (i′, j) from a vertex i′ ∈ K to j. The worst case is when i′ = i, and in this case, the cost in j will

be at least

ǫ+ αi,j(
r

k
− ǫ) = (αi,j − 1)(

r

k
− ǫ) +

r

k
≥ r

k
,

which is also not better. Hence, K is the support of a r
k

-strong equilibrium.

Conversely, suppose now that x∗ is a δ-strong equilibrium of G for a δ > 0, and i, j ∈ [n] are two

charged vertices with αi,j > 0, i.e. (i, j) is an arc of D. Consider an ǫ > 0 as in Definition (1), and

suppose furthermore that ǫ < min(δ, x∗i , x
∗
j ). Then

Ci(x
∗) ≤ Cj(x

∗ + ǫ · ej − ǫ · ei)

and

Cj(x
∗) ≤ Ci(x

∗ + ǫ · ei − ǫ · ej).
Let Ai =

∑

k 6=i,j αk,ix
∗
k and Aj =

∑

k 6=i,j αk,jx
∗
k. Then, the inequalities above can be written

x∗i + αj,ix
∗
j +Ai ≤ x∗j + ǫ+ αi,j(x

∗
i − ǫ) +Aj

and

x∗j + αi,jx
∗
i +Aj ≤ x∗i + ǫ+ αj,i(x

∗
j − ǫ) +Ai.
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Summing these two inequalities, we obtain after cancellations

0 ≤ 2ǫ− ǫ(αi,j + αj,i),

so that αi,j+αj,i ≤ 2, contradicting our hypothesis. So, there can be no arc between charged vertices,

and the support of the equilibrium is a stable set.

Moreover, if j is uncharged, then its cost must be positive by the definition of equilibria; hence,

there must be some charged vertex i with αi,j > 0. Therefore, the support of a strong equilibrium is a

kernel of D. ⊓⊔

For a normal linear NBG or even an affine NBG, checking if a mass distribution is a strong equilibrium

is a simple task and amounts to checking a quadratic number of inequalities. Now, observe that

determining whether a given digraph admits kernels is NP-complete ([33], [34, p. 204]). Also, there

is a straightforward polynomial reduction from kernels to strong equilibria by changing a digraph into

a normal linear NBG simply by choosing some αi,j > 1 on all arcs. Hence:

Corollary 3.3. Determining whether an affine NBG admits a strong equilibrium is NP-complete.

In general, checking if a distribution is a strong equilibrium depends on the model used to define

functions. However, we still have that:

Corollary 3.4. Determining whether an NBG admits a strong equilibrium is NP-hard.

As a conclusion to this subsection, let us mention a simple example where the game admits an

equilibrium (not strong), and the graph has no kernel. We consider the normal linear NBG on three

vertices {1,2,3} with arcs (1, 2), (2, 3) and (3, 1), with a coefficient α > 0 on each arc. Consider the

mass distribution (1/3, 1/3, 1/3): it is an equilibrium. However, this equilibrium is not strong, and

the graph admits no kernel.

3.5. Potential function

Let G = (n, r, C) be an NBG. A potential function for G is a differentiable function Φ defined on a

neighbourhood of ∆r(n) such that

∀i ∈ [n],
∂Φ(x)

∂xi
= Ci(x).

A potential function is a tool to study equilibria. In particular

Proposition 3.5. If an NBG, G = (n, r, C), admits a potential function Φ, then the local minima of

Φ on ∆r(n) are equilibria of the game.

Proof:

Let x∗ denote a local minimum of Φ on ∆r(n). In particular, if x∗i > 0 and j ∈ [n], j 6= i, there is an

ǫ > 0 such that if x∗i − ǫ ≥ 0, we have

Φ(x∗) ≤ Φ(x∗ − t · ǫ · ei + t · ǫ · ej)
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for all t ∈ [0, 1]. Defining

f(t) = Φ(x∗)− Φ(x∗ − t · ǫ · ei + t · ǫ · ej),

we see that f is differentiable on [0, 1] and is nonpositive while f(0) = 0. Hence, we have f ′(0) ≤ 0
and thus

ǫ · Ci(x
∗)− ǫ · Cj(x

∗) ≤ 0,

which is the definition of equilibria. ⊓⊔

Remark. Following the proof above, an interpretation of the potential function Φ is that for |t| small

enough, if xi > 0 we have

Φ(x+ t · ei − t · ej)− Φ(x) = t · (Ci(x)− Cj(x)) + o(|t|),

hence the total quantity of cost variation when moving between i and j can be deduced from the

difference of potential.

Remark. An equilibrium corresponding to the minimum of a potential function is not necessarily

strong. See Figure 3 for an example with a unique, not strong, equilibrium, which must be the global

minimum of the potential function (this example is a graphical symmetric NBG, so it admits a potential

function by Proposition 3.6).

Remark. The converse is false: an equilibrium does not always correspond to a local minimum of the

potential. See a counterexample in Figure 4.

0

2

1

r = 1
x1

cost

C1

C2

Figure 4. With n = 2 and r = 1 (so that x2 = 1 − x1), consider α1,2 = α2,1 = 1, f1(x1) = 1 and

f2(x2) = 1+ x2. This gives C1(x) = 2− x1, C2(x) = 2, and Φ(x) = x1 + (x2 +
1

2
x2

2
) + x1x2 = (3− x2

1
)/2

(this potential function is given by Equation (3) in the upcoming Proposition 3.6; we can check that this is

indeed a potential. Otherwise, other potentials are equal to this one up to an additive constant; also note that a

potential can be expressed with x1 alone, with x2 alone, or with both x1 and x2). There are two equilibria, one

in x1 = 1 which is a minimum of the potential function, and one in x1 = 0, which is a maximum.

Note that since Φ is continuous on the compact set ∆r(n), it admits a global minimum on ∆r(n),
which gives another, more constructive, proof of the existence of an equilibrium when there is a

potential function.
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3.6. Potential function and graphical NBGs

To build examples where there is a potential function, one could consider a differentiable function Φ

and define Ci(x) as
∂Φ(x)
∂xi

.

However, to identify classes of games where there always exists a potential function, we can

restrict our attention to cost functions which are decomposable in the following natural way:

Ci(x) = fi(xi) +
∑

j 6=i

fj,i(xj)

where the fi’s and fi,j’s are continuously differentiable functions (for practical reasons).

Supposing that the game admits a potential function Φ, by Schwarz’s theorem, we must have for

all i 6= j
∂2Φ

∂xi∂xj
(x) =

∂2Φ

∂xj∂xi
(x),

so
∂fj,i(xj)

∂xj
=

∂fi,j(xi)

∂xi
.

Therefore, these functions must be linear, of the form fj,i = cxj and fi,j = cxi for a c ∈ R; whence

the definition of symmetric graphical games.

The following is then easy to check.

Proposition 3.6. Let G = (n, r, f, α) be a symmetric graphical game. Define:

Φ : ∆r(n) −→ R

by

Φ(x) =
∑

i

∫ xi

0
fi(t)dt+

∑

i<j

αi,jxixj. (3)

Then Φ is a potential function for G.

Remark. A graphical NBG which is not symmetric may admit no potential. Indeed, by the discussion

above, if αi,j 6= αj,i and the fi’s are continuously differentiable, then we see by Schwarz’s theorem

that a potential function cannot exist.

In the following, we investigate how our model of NBG leads to equilibria that can be good or bad

from a social viewpoint.

3.7. Social costs

A social cost is a way to average all the costs paid by the infinitesimal players in the game and quantify

by a single number the cost, hence the quality of equilibria, if we want to compare them.
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We define two social costs:

• The utilitarian social cost, defined as

Cu(x) =
1

r

∑

i∈[n]
xiCi(x),

is simply the average cost of an infinitesimal mass in the graph. It can be low even if a small

fraction of the mass pays a high cost.

• The egalitarian social cost, defined as

Ce(x) = max
i∈[n],xi>0

Ci(x)

is the maximum cost encountered among vertices with a positive quantity of mass. Minimizing

this cost is more complicated than minimizing the utilitarian cost since it considers all infinites-

imal players.

We should note that for all x ∈ ∆r(n), we have Cu(x) ≤ Ce(x), and that there is equality if x is an

equilibrium.

3.8. A Braess-like Paradox

Braess’s Paradox was discovered by Braess [35] in the context of nonatomic selfish routing. In this

model of routing a continuous mass of vehicles from a source to a destination, one shows the paradox-

ical phenomenon that opening a new road leads to a dramatic increase in the social cost of the (unique)

equilibrium of the model.

Despite being even more straightforward than the nonatomic selfish routing model, we show that

our NBG model admits examples that lead to similar conclusions.

Consider the following example with two vertices:

1 2
α1,2 =

1
4

f1(x1) = 1 f2(x2) = x2 + b2

with total mass r = 1. We can write a mass distribution as x = (x1, 1 − x1) and costs, as a function

of x1, are:

C1(x) = 1 +
1

4
(1− x1) = −1

4
x1 +

5

4

and

C2(x) = 1− x1 + b2 +
1

4
x1 = −3

4
x1 + 1 + b2.

If b2 ∈ [14 ,
3
4 ], costs intersect in 2b2 − 1

2 and there are no other equilibria (see Figure 5). The common

value of both costs is then 11
8 − b2

2 , which grows when b2 decreases; it is also the social cost (utilitarian
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b2 = 1/4
0 r = 1

x1

cost

1/2

1

5/4

C1

C2

b2 = 1/2
0 r = 11/2

x1

cost

3/4

1
9/8
5/4

3/2

C1

C2

b2 = 3/4
0 r = 1

x1

cost

1

5/4

7/4

C2

C1

Figure 5. The costs and equilibria for three different values of b2.

or egalitarian) in this equilibrium. This means that a lower vertex-cost function can lead to a worse

equilibrium in the sense of both social costs.

Note that for each mass distribution x, social costs Cu(x) and Ce(x) always decrease when we

reduce b2 or, more generally, vertex-cost functions; here, what increases when we reduce b2 is the

social cost of the unique equilibrium. Also, note that we obtained this paradox in the simple context

of a symmetric affine NBG. In this case, a potential function with a unique minimum exists (so it is

not a protection against these paradoxes).

3.9. The Price of Anarchy

The concept of a price of anarchy (PoA) is a popular measure for the inefficiency of equilibria in

games. If there are multiple equilibria, we consider the worst case and quantify the cost of this worst

equilibrium regarding the best configuration of the game, i.e. an optimal outcome where we do not

have the constraints of equilibria.

Let Eq ⊆ ∆r(n) denote the set of equilibria of an NBG G = (n, r, C). We define the price of

anarchy for the utilitarian social cost, PoAu(G), as follows:

PoAu(G) =

max
x∈Eq

Cu(x)

min
x∈∆r(n)

Cu(x)
, (4)

and PoAe(G) is defined likewise for the egalitarian social cost. Unfortunately, the existence of several

equilibria in NBGs leads to the price of anarchy unbounded even in elementary classes of NBGs.

Proposition 3.7. The price of anarchy (with both social costs) is unbounded on normal α-uniform

NBGs.
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Proof:

Consider the following example on two vertices, where r = 1.

1 2
α1,2 = α > 1

f1(x1) = x1 f2(x2) = x2

We can write both cost functions as functions of x1 and obtain

C1(x1) = (1− α)x1 + α

and

C2(x1) = (α− 1)x1 + 1

There are three equilibria:

• in x1 = 0 we have C1(0) = α > 1 = C2(0) ; the social cost is 1;

• likewise in x1 = 1, the social cost is 1 also. It is easy to see that this is a global optimum for the

social cost;

• in x1 = 0.5, we have C1(0.5) = C2(0.5) =
1+α
2 , this common value being the social cost.

Hence, we see in this example that the price of anarchy is 1+α
2 , but we can consider α as large as

needed. ⊓⊔

We could derive bounds on the price of anarchy in simple cases (for normal linear NBGs, for

instance) based on the size of the coefficients that appear. But instead, we shall now focus on another

measure, more suited to the case of NBGs.

3.10. The Price of Stability

The price of stability (PoS) of the game, for the utilitarian social cost, is defined as

PoSu(G) =

min
x∈Eq

Cu(x)

min
x∈∆r(n)

Cu(x)
. (5)

The price of stability of the egalitarian social cost, PoSe(G), is defined similarly, using Ce. The so-

called stability corresponds to the fact that we require the mass distribution to be an equilibrium, hence

stable concerning unilateral deviation of infinitesimal players; hence the price of stability is a measure

of the increase of global social cost due to this stability.

Note that for both social costs, we have PoA(G) ≥ PoS(G) ≥ 1. It is also easily noted that

PoSe(G) ≤ PoSu(G). (6)

We now give upper bounds on PoS(G) in different cases.
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Proposition 3.8. Let C be a class of vertex-cost functions and 0 < γ ≤ 1
2 such that, for all f ∈ C, one

has
∫ x

0
f(t)dt ≥ γxf(x).

Then, the price of stability for all graphical symmetric NBGs with cost functions in C is at most 1
γ

for

both social costs.

We prove the result for the utilitarian social cost, and the other case follows from (6). To prove

Proposition 3.8, we first prove the following lemma.

Lemma 3.9. With γ as defined in the previous Proposition, and for all mass distributions x of a

graphical symmetric NBG G with potential function Φ (as defined in Proposition 3.6), one has

γ · Cu(x) ≤ Φ(x) ≤ Cu(x).

Proof:

In the case of a symmetric graphical game (n, r, f, α), the utilitarian social cost is equal to:

Cu(x) =
∑

i

xifi(xi) + 2
∑

i<j

αi,jxixj . (7)

Since vertex-cost functions fi are non-decreasing, the upper bound is clear from (3) and (7). The lower

bound comes from the definition of γ and γ ≤ 1
2 . ⊓⊔

Proof of Proposition 3.8. Let xb be a best equilibrium, i.e. an equilibrium that minimizes the util-

itarian social cost Cu; let xφ be a mass distribution that minimizes the potential function Φ, which

is an equilibrium by Proposition 3.5, and let x∗ be a mass distribution that minimizes Cu, so that

PoSu(G) = Cu(xb)
Cu(x∗) . Then we have

Cu(xb) ≤ Cu(xφ) (since xb minimizes Cu among equilibria)

≤ 1

γ
Φ(xφ) (by Lemma 3.9)

≤ 1

γ
Φ(x∗) (by definition of xφ)

≤ 1

γ
Cu(x∗) (by Lemma 3.9),

hence

PoSu(G) ≤ 1

γ
.

⊓⊔
Using the previous relation and Inequality (6), we can deduce that:

Corollary 3.10. On the class of polynomial functions with real nonnegative coefficients of degree

d ≥ 1, both prices of stability are at most d+ 1.
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For d = 0, the price of stability is at most 1, hence equal to 1. For d = 1 (the affine case), the price of

stability is between 1 and 2, and we can give a family of examples reaching asymptotically the bound

2, see Figure 6.

0 r = 1
x1

cost

2 + 2λ

1 + 2λ
1 + λ

C1
C2

Figure 6. A family of graphical games reaching the maximum price of stability of 2 for affine vertex-cost

functions. With n = 2 and r = 1, consider α1,2 = α2,1 = 1, f1(x1) = 1 + 2λ and f2(x2) = (2 + λ)x2 + λ.

This gives C1(x) = 2 + 2λ− x1 and C2(x) = 2 + 2λ− (1 + λ)x1. The only equilibrium of the game has cost

2 + 2λ, while the best utilitarian social cost is obtained for x1 = 1 and is equal to 1 + 2λ (this social cost is

decreasing on [0, 1] if 0 < λ < 1). Thus, we can reach the bound of 2 for PoS(G) by letting λ go to 0.

We can be more specific when all vertex-cost functions are linear: the utilitarian social cost and

the potential functions (as defined by Equations (3) and (7)) are related by:

Cu(x) = 2Φ(x).

Observe by Proposition 3.5 that there exists an equilibrium corresponding to the minimum of Φ.

Since Cu and Φ are minimum on the same mass distributions and using Inequality (6), we get

Corollary 3.11. On the class of linear functions with real nonnegative coefficients, both prices of

stability are 1.

4. The α-uniform graphical NBG for some graphs

This section considers that the underlying undirected graph can be path, cycle and complete bipartite

graph. From the example of the path, we derive the embryo of an algorithm outputting an equilibrium,

which could be adapted to general graphs. Using the linearity of the cost functions, without loss of

generality, we can assume that the total mass is equal to 1 (r = 1).

We can observe that, in a α-uniform NBG,

Rule 1. An equilibrium cannot have an uncharged vertex with only uncharged neighbours.
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Indeed, the cost of an uncharged vertex with uncharged neighbours is zero, and the mass distribu-

tion cannot be an equilibrium because the costs of vertices are strictly positive.

Rule 2. An equilibrium cannot have one uncharged vertex with only one charged neighbour, unless

α ≥ 1.

Indeed, the cost of an uncharged vertex with only one charged neighbour is less than that of the

charged neighbour itself when α < 1, and the mass distribution cannot be an equilibrium by definition.

Rule 3. If an equilibrium x has an uncharged vertex i with k charged neighbours, then α ≥ 1
k

. If

α = 1
k

, then all the neighbours of i have the same mass, and none of them has charged neighbours.

Indeed, suppose that vertex i is not charged in x. The definition of equilibrium in α-uniform NBGs

implies these inequalities: for any neighbour j of i, Cj(x) ≥ xj , and Ci(x) = α
∑

ℓ∈N [i] xℓ ≥ Cj(x) .

These inequalities are valid when α ≥ 1
k

. If α = 1
k

, then Ci(x) =
1
k

∑

ℓ∈N [i] xℓ ≥ xj for all j ∈ N [i],
i.e., the average of the k neighbours masses is at least the mass of each neighbour, so all masses are

equal. Moreover, Ci(x) = Cj(x) for all j, so no neighbour of i can receive an additional cost from a

neighbour.

Rule 4. Let u and v be two vertices having the same neighbourhood. If a mass distribution x is an

equilibrium, then xu = xv.

Indeed, if we let N = α
∑

ℓ∈N [u] xℓ = α
∑

ℓ∈N [v] xℓ, then the definition of equilibrium in α-

uniform NBGs implies the equalities Cu(x) = xu + N and Cv(x) = xv + N . Then xu 6= xv, say

xu > xv, implies that Cu(x) > Cv(x), so xu is uncharged, contradicting xu > xv.

4.1. The case when the underlying graph is a path

In this subsection, we consider the α-uniform case for different values of α, in a quite simple graph:

the path with n vertices, Pn.

Paths are seemingly harder to deal with than cycles; even in the uniform case, they provide differ-

ent interesting cases: for instance, for given n and α, one may have infinitely many equilibria. In the

following, we do not necessarily provide the complete computations.

First, we can look for equilibria x = (x1, . . . , xn) where all vertices are charged or, if uncharged,

have the same cost as charged vertices. We shall call such equilibria uniform-cost or simply uniform.

Hence:

∀i, j ∈ V, Ci(x) = Cj(x).

Let c denote this common cost. To calculate this type of equilibrium, we shall consider it as a solution

to the system of equations (8) below. This allows having a system of equalities rather than inequalities;

on the other hand, there are more unknowns. The first three equations represent the fact that the costs

of the vertices are identical: the first and the third correspond to the vertices 1 and n. The fourth one

corresponds to the constraint that the total mass equals 1.



260 D. Auger et al. / Neighbourhood Balancing Games

We then have:
x1 + αx2 = c

∀ 1 < i < n, αxi−1 + xi + αxi+1 = c

αxn−1 + xn = c
∑

i∈[n]
xi = 1

∀ 1 ≤ i ≤ n, xi ≥ 0.

(8)

If we denote Mn,α the (n+ 1)× (n+ 1) matrix




























1 α −1

α 1 α −1
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. . .
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α 1 α −1
. . .
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. . . −1

α 1 −1

1 1 · · · 1 1 1 1 0





























,

where all blank entries are 0, a solution of System (8) above gives in particular a solution to the linear

system

Mn,α · (x, c) =



















0

0
...

0

1



















, (9)

which will help us to find an equilibrium in Pn (we know that there exists at least one). The same is

true for cycles, with only a slight modification of the matrix (see Section 4.2).

The solutions corresponding to uniform-cost equilibria depend on the determinant of matrix Mn,α

and thus also on the value of α.

Case when n = 2. We have det(M2,α) = −2α+ 2.
For α = 1, we have det(M2,α) = 0 and any mass distribution is a uniform-cost equilibrium. For

α 6= 1, we have at most one uniform-cost equilibrium. For reasons of symmetry this equilibrium is

(12 ,
1
2).

Case when n = 3. By computation, we get det(M3,α) = −4α + 3. Hence, using the same argu-

ment as previously, there is at most one uniform-cost equilibrium for α 6= 3
4 . By computation, this

equilibrium would be

x
∗
0 =

(

α− 1

4α− 3
,
2α− 1

4α− 3
,
α− 1

4α− 3

)

.
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For this to be an equilibrium, its entries must be nonnegative, which is the case if and only if 0 ≤ α ≤ 1
2

or α ≥ 1.

For α = 3
4 , System (9) has no solution. Hence, there is no uniform-cost equilibrium. We can look

for non-uniform equilibria (with at least one uncharged vertex). Two cases are possible:

• if the middle vertex 2 is uncharged, then the only equilibrium must be x
∗
1 = (12 , 0,

1
2), and this

is a valid equilibrium only if α ≥ 1
2 .

• there is no equilibrium where vertex 1 or 3 is uncharged, say x1 = 0, x2 > 0, x3 > 0, since

the cost in vertex 1 would be less than the cost in vertex 3. The equilibrium x
∗
2 = (0, 1, 0) is

possible only if α ≥ 1.

So, to sum up, there are three equilibria, x∗
0, x∗

1 and x
∗
2 if α > 1. Otherwise, if α = 1, there are two

equilibria, x∗
2 (= x

∗
0) and x

∗
1. If 1 > α > 1

2 , then x
∗
1 is the only equilibrium. If α = 1

2 , the only

equilibrium is x∗
1 (= x

∗
0). And if 1

2 > α ≥ 0, then x
∗
0 is the only equilibrium.

Case when n = 4: We have det(M4,α) = 2(α2 + α − 1)(α − 2), whose nonnegative roots are 2

and φ =
√
5−1
2 ≈ 0.618.

Hence, if α 6= 2 and α 6= φ, we have at most one uniform-cost equilibrium. The solution to

System (9) is then x1 = x4 = 1
4−2α , x2 = x3 = 1−α

4−2α , which yields nonnegative values, i.e., a

uniform equilibrium when 0 ≤ α ≤ 1. As mentioned above, a search for non-uniform equilibria can

be easily done, but we prefer to focus on the case α = φ because it leads to infinitely many equilibria.

First, any quadruple (x1, x2, x3, x4) such that

x1 + x4 =
1

2− φ
≈ 0.724, (10)

x2 =
−φ

2− φ
+ x4(1 + φ) ≈ −0.447 + 1.618x4, (11)

x3 =
1

2− φ
− x4(1 + φ) ≈ 0.724 − 1.618x4 (12)

is a solution to System (9). The nonnegativity condition then implies that x4 ∈ [ φ
(φ+1)(2−φ) ,

1
(φ+1)(2−φ) ], i.e. ≈ 0.276 ≤ x4 ≤≈ 0.447; then any triple (x1, x2, x3) verifying (10)–(12) gives, to-

gether with x4, a uniform equilibrium. All these solutions have the same cost, namely 1−φ2

2−φ
≈ 0.447.

Case when n = 5: We obtain det(M5,α) = (α+1)(α−1)(α2 +8α−5), whose nonnegative roots

are 1 and φ =
√
21− 4 ≈ 0.583.

Calculations show that there is no solution to System (9) when α = φ, implying that there is no

uniform equilibrium. More calculations lead to the following results for α ∈ [0, 1]:

• if 0 ≤ α ≤ 1
2 , there is a unique solution: a uniform equilibrium.
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• if 1
2 ≤ α < 1, then x

∗
0 = (13 , 0,

1
3 , 0,

1
3) is the only equilibrium, and it is non-uniform unless

α = 1
2 .

• if α = 1, x∗
0 is an equilibrium, and any 5-tuple (x1, x2, 0, x4, x5) such that x1+x2 = x4+x5 =

1
2 and x2 + x4 ≥ 1

2 (e.g., (18 ,
3
8 , 0,

1
4 ,

1
4)) is a non-uniform equilibrium, except the distributions

(x1, x2, 0, x1, x2), which are uniform, with cost x1 + x2 =
1
2 .

General case: We observe that the four previous determinants, det(M2,α), det(M3,α), det(M4,α),
det(M5,α), show no regularity, and it looks hard to find a general form for them, for their roots, and

for the solutions to System (9).

The first three Rules given above have the following implications when the graph is a path.

Rule 1 implies that an equilibrium cannot have three or more consecutive uncharged vertices.

Rule 2 implies that an equilibrium cannot have two consecutive uncharged vertices unless α ≥ 1.

Rule 3 implies that no equilibrium has uncharged vertices when 0 ≤ α < 1
2 .

Because such a game has at least one equilibrium by Theorem 3.1, we have that

• either det(Mn,α) 6= 0: the unique solution to System (9) is nonnegative;

• or det(Mn,α) = 0: among the solutions to System (9), at least one is nonnegative.

From these three Rules and the above results on small values of n, we can conjecture that:

Conjecture 1. For n ≥ 2 and α < 1
2 , we have det(Mn,α) 6= 0; therefore, there is a unique equilibrium

(which has a uniform cost) in Pn.

Example 4.1. In path P6 with α = 1
4 , the unique equilibrium is 1

76 (15, 11, 12, 12, 11, 15), with cost
71
304 ≈ .23; for α = 1

3 , it is 1
38 (8, 5, 6, 6, 5, 8), with cost 29

114 ≈ .25. In P7 with α = 1
4 , it is

1
240 (41, 30, 33, 32, 33, 30, 41), with cost 97

480 ≈ .20; and for α = 1
3 , it is 1

71(13, 8, 10, 9, 10, 8, 13),
with cost 47

213 ≈ .22.

The above rules lead to a starting point for an algorithm finding an equilibrium in a path with n
vertices, which, however, has too high a worst-case complexity due to Step 2:

• Step 1: compute det(Mn,α).

(a) if det(Mn,α) 6= 0, there is a unique solution to System (9).

– if the solution is nonnegative, we have a uniform equilibrium. We know that this is always

the case if α < 1
2 .

– if the solution is negative, we must search for non-uniform equilibria (see Step 2).

(b) if det(Mn,α) = 0, either there is no solution to System (9), or infinitely many. In the latter

case, if some of these solutions are nonnegative, we have obtained uniform equilibria (see the

example when n = 4). Otherwise, we are back to the search for non-uniform equilibria.



D. Auger et al. / Neighbourhood Balancing Games 263

• Step 2: search for a non-uniform equilibrium: try with uncharged vertices, respecting Rules 1

and 2 above (Rule 3 is respected because we are in a case when no uniform equilibrium has

been found).

This sketch of an algorithm can be adapted to general graphs, with modification of the determinant.

Note that uncharged vertices mean fewer unknowns but induce inequalities on the costs instead of

equalities.

Now, we restrict ourselves to the cases α = 1
2 and α = 1, the study of general α being seemingly

out of reach. We recall Conjecture 1 when α < 1
2 .

General case for α = 1
2 . Both ends of the path must be charged. Rule 3 above shows that if there

is one uncharged vertex xi = 0, then xi−1 = xi+1, and either the vertex i − 1 or i + 1 is an end, or

xi−2 = xi+2 = 0; similarly, xi−3 = xi+3 = xi−1, and so on. There are two cases.

If n is odd, then ( 2
n+1 , 0,

2
n+1 , 0,

2
n+1 , . . . , 0,

2
n+1) is the only equilibrium, with uniform cost equal

to 2
n+1 .

If n is even, n = 2q, then all vertices are charged, and the only equilibrium is given by

x2k = kx2, 1 ≤ k ≤ q

x2k+1 = x1 − kx2, 0 ≤ k ≤ q − 1

x1 =
1

q + 1

x2 =
1

q(q + 1)
,

with uniform cost equal to 2q+1
2q(q+1) . For instance, the equilibrium for n = 10 is

(
1

6
,
1

30
,
2

15
,
1

15
,
1

10
,
1

10
,
1

15
,
2

15
,
1

30
,
1

6
) =

1

30
(5, 1, 4, 2, 3, 3, 2, 4, 1, 5);

its uniform cost is 11
60 . Observe that the odd positions are 5, 4, 3, 2, 1 and the even positions are

1, 2, 3, 4, 5.

General case for α = 1.

Remark 4.2. Let x = (x1, . . . , xn) be an equilibrium. When α = 1, a simple observation is that (in

paths as well as in cycles) if xi = 0, xi+1 > 0 and xi+2 > 0, then xi+3 = 0.

The search for uniform-cost solutions is straightforward (no need to compute the determinant) and

divides into three cases.

• If n = 3k + 2, there is a simple infinity of solutions (x1, x2, 0, x1, x2, 0, . . . , x1, x2, 0, x1, x2),
with x1 ≥ 0, x2 ≥ 0, and x1 + x2 = 3

n+1 . This includes ( 3
n+1 , 0, 0,

3
n+1 , 0, 0, . . . ,

3
n+1 , 0) and

its symmetric (0, 3
n+1 , 0, 0,

3
n+1 , 0, . . . , 0,

3
n+1). The cost for all vertices is x1 + x2 =

3
n+1 . We

can see that this means that α− 1 divides det(Mn,α).
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• When n = 3k + 1 or n = 3k, there is a unique solution, respectively

( 3
n+2 , 0, 0,

3
n+2 , 0, 0, . . . ,

3
n+2) or (0, 3

n
, 0, 0, 3

n
, 0, . . . , 0, 3

n
, 0), which means that in both cases

det(Mn,1) 6= 0.

Still for α = 1, the study of non-uniform-cost equilibria is similar to that for cycles. See below.

4.2. The case when the underlying graph is a cycle

We apply here the same argument as for paths: we build a new matrix

M∗
n,α =





























1 α α −1

α 1 α −1
. . .

. . .
. . . −1

α 1 α −1
. . .

. . .
. . . −1

α α 1 −1

1 1 · · · 1 1 1 1 0





























and its corresponding linear system (9∗).

Cycles and their determinants are more regular than paths, but no general pattern has been found

for their determinants, roots, or solutions to (9∗).

Rules 1, 2 and 3, as well as the sketch of the algorithm above, can be adapted to cycles. Conjec-

ture 1 becomes:

Conjecture 2. For n ≥ 2 and α < 1
2 , we have det(M∗

n,α) 6= 0; therefore there is a unique equilibrium

(which has a uniform cost) in Cn.

Unlike what happens for paths, we can observe that in Cn, the mass distribution described by xi =
1
n

,

1 ≤ i ≤ n, is always a uniform-cost equilibrium. We sketch some results for α = 1
2 and α = 1.

General case for α = 1
2 . There is a simple infinity of equilibria with uniform cost when n is even,

given by (x1, x2, . . . , x1, x2), with x1 ≥ 0, x2 ≥ 0, x1 + x2 = 2
n

. This includes (0, 2
n
, . . . , 0, 2

n
)

and ( 1
n
, . . . , 1

n
). The cost of each vertex is x1 + x2 = 2

n
. When n is odd, the unique solution is with

xi =
1
n

.

General case for α = 1. As for paths, it is straightforward to see that:

– If n = 3k, there is a double infinity of solutions, (x1, x2, x3, . . . , x1, x2, x3), with x1 ≥ 0,

x2 ≥ 0, x3 ≥ 0 and x1 + x2 + x3 =
3
n

. This means that (α− 1)2 divides det(M∗
n,α).

– If n = 3k + 1 or 3k + 2, the only solution is with xi =
1
n

.
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Using Remark 4.2, one can see that non-uniform solutions are combinations of configurations of the

type

(. . . 0, x, 0, 0, x, 0, x, 0, ax, (1 − a)x, 0, bx, (1 − b)x, 0, . . .),

with 0 < a < 1, a ≤ b < 1, and the sum of charges equal to 1.

4.3. The case when the underlying graph is a complete bipartite graph

We consider the complete bipartite graph Kp,q with p + q = n, p ≥ q, and a mass distribution

x = (x1, . . . , xp, xp+1, . . . , xp+q) with r = 1.

Using Rule 4 given above, we have xi = xj for 1 ≤ i < j ≤ p and xk = xℓ for p+ 1 ≤ k < ℓ ≤
p+ q. Let a = x1 and b = xp+1.

We start with the search for equilibria with uncharged vertices. We may assume that either a = 0 (and

b = 1
q
) or b = 0 (and a = 1

p
). We can apply Rule 3 to determine when the equilibrium exists according

to the value α. In the former case, the equilibrium with a = 0 exists when α ≥ 1
q
. Similarly in the

latter case, the equilibrium with b = 0 exists when α ≥ 1
p
.

We see that if none of these two conditions on α is fulfilled, i.e., α < 1
p

, then, since an equilibrium

always exists, we must have a uniform equilibrium with no uncharged vertices.

Now we search for a uniform equilibrium with no uncharged vertices. By definition, we have a +
αqb = b+ αpa, i.e., a(1 − αp) = b(1 − αq), and pa+ qb = r = 1. Since a 6= 0 and b 6= 0, we can

consider two cases: (i) 1− αp = 1− αq = 0, (ii) both 1− αp and 1− αq are nonzero.

(i) If 1 − αp = 1 − αq = 0, then p = q and the only condition remaining is a + b = 1
p

: there is

an infinity of equilibria, given by (a, b) = (a, 1
p
− a), 0 ≤ a ≤ 1

p
, and the common cost is 1

p
.

(ii) If both 1− αp and 1− αq are nonzero, then a = b 1−αq
1−αp

.

(1) 1
p
< α < 1

q
. Then a and b have different signs, and no uniform equilibrium with no

uncharged vertices exists.

(2) α < 1
p

or α > 1
q
. If p+ q − 2αpq has the same sign as 1− αp and 1− αq, then

a =
1− αq

p+ q − 2αpq
, b =

1− αp

p+ q − 2αpq

gives the only uniform equilibrium, with common cost 1−α2pq
p+q−2αpq . Otherwise, we have to search for a

non-uniform equilibrium.

Note that the case p = q = 1 gives the path P2, p = q = 2 gives the cycle C4, and q = 1 gives the

star, see below.
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Particular case of the star. The graph now is Kn−1,1.

(1) If xn = 0, i.e., only the center is uncharged, then xi =
1

n−1 , 1 ≤ i ≤ n − 1, and necessarily

α ≥ 1
n−1 . In this case, we have an equilibrium, which is uniform only for α = 1

n−1 .

(2) If all leaves are uncharged, then xn = 1. This leads to an equilibrium whenever α ≥ 1, and

this equilibrium is uniform for α = 1.

(3) If there is no uncharged vertex, then b(1 − α) = a(1 − (n − 1)α) and b + (n − 1)a = 1. If

α = 1, then a = 0 and b = 1. If α = 1
n−1 , then b = 0 and a = 1

n−1 . These are two uniform equilibria

but with uncharged vertices.

If α < 1 and α > 1
n−1 , then a and b have opposite signs and no uniform equilibrium exists.

If α > 1 or α < 1
n−1 , then a has the same sign as b. We obtain a = 1−α

n−2α(n−1) and b = 1−(n−1)α
n−2α(n−1) .

Both numbers are positive and yield a uniform equilibrium.

Summarizing for the star: if α < 1
n−1 , there is one uniform equilibrium, with all vertices charged.

For all α ≥ 1
n−1 , there is one equilibrium with the centre uncharged, which is uniform for α = 1

n−1 .
If α = 1, there is one uniform equilibrium with all uncharged leaves. If α > 1, there is one uniform

equilibrium with all charged vertices and one non-uniform equilibrium with all uncharged leaves.
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