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Abstract. In process discovery, the goal is to find, for a given event log, the model describing the
underlying process. While process models can be represented in a variety of ways, Petri nets form
a theoretically well-explored description language and are therefore often used. In this paper, we
extend the eST-Miner process discovery algorithm. The eST-Miner computes a set of Petri net
places which are considered to be fitting with respect to a certain fraction of the behavior described
by the given event log as indicated by a given noise threshold. It evaluates all possible candidate
places using token-based replay. The set of replayable traces is determined for each place in
isolation, i.e., these sets do not need to be consistent. This allows the algorithm to abstract from
infrequent behavioral patterns occurring only in some traces. However, when combining places
into a Petri net by connecting them to the corresponding uniquely labeled transitions, the resulting
net can replay exactly those traces from the event log that are allowed by the combination of all
inserted places. Thus, inserting places one-by-one without considering their combined effect may
result in deadlocks and low fitness of the Petri net. In this paper, we explore adaptions of the eST-
Miner, that aim to select a subset of places such that the resulting Petri net guarantees a definable
minimal fitness while maintaining high precision with respect to the input event log. Furthermore,
current place evaluation techniques tend to block the execution of infrequent activity labels. Thus,
a refined place fitness metric is introduced and thoroughly investigated. In our experiments we
use real and artificial event logs to evaluate and compare the impact of the various place selection
strategies and place fitness evaluation metrics on the returned Petri net.
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1. Introduction and related work

More and more corporations and organizations support their processes using information systems,
which record the occurring behavior and represent this data in the form of event logs. Each event in
such a log has a name identifying the executed activity (activity name), an identifier mapping the event
to some execution instance (case id), a timestamp showing when the event was observed, and often
extended meta-data of the activity or process instance. Based on the timestamp and case id, we can
organize the event log as sequences of activities, also called traces, which represent example execution
sequences of the process. In the field of process discovery, we utilize the event log to identify relations
between the activities (e.g., pre-conditions, choices, concurrency), which are then expressed within a
process model. While several modeling formalisms exist, this work focuses on modeling processes
using Petri nets [1, 2, 3, 4].

Process discovery is non-trivial for various reasons. We cannot assume that the given event log is
complete, as some possible behavior might be yet unobserved. Also, real-life event logs often contain
noise in the form of incorrectly recorded data or deviant behavior, which is usually not desired to be
reflected in the process model. However, correctly classifying behavior as noise is often not trivial.
Several quality dimensions have been defined to evaluate process models ([5]) which are partially in
conflict with each other and thus it is usually not possible to achieve perfect values for all aspects. A
process model with good fitness can (mostly) reproduce the behavior contained in the event log, while
high precision corresponds to not allowing for (much) unobserved behavior. Furthermore, a model
with good generalization is expected to express behavior possible in the process that generated the
event log even if it has not yet been observed. Finally, since process models are often used in contexts
that require interpretation by a person, model simplicity is of interest. Additionally, an ideal discovery
algorithm should be reasonably time and space efficient. Since real-life event logs rarely allow for a
model that perfectly satisfies all the different quality criteria, different discovery algorithms focus on
different aspects, while neglecting others. As a result, the models returned by these discovery algo-
rithms for a given event log can differ significantly. Note that generally there is no clearly definable
best process model but instead this choice depends on what purpose it should serve.

Many existing discovery algorithms abstract from the full information given in a log or gener-
ate places heuristically, in order to decrease computation time and complexity of the returned pro-
cess models. While this is convenient in many settings, the resulting models are often underfitting,
in particular when processes are complex. Examples are the Alpha Miner variants [6], the Induc-
tive Mining family [7], genetic algorithms or Heuristic Miner [8]. In contrast to these approaches,
which are not able to (reliably) discover complex model structures, algorithms based on region the-
ory [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]) discover models whose behavior is the minimal behavior
representing the input event log. On the downside, these approaches are known to be rather time-
consuming, cannot handle noise, and tend to produce complex, overfitting models which can be hard
to interpret. A combination of strategies has been introduced in [20], which aims to circumvent per-
formance issues by limiting the application of region theory to small fragments of a pre-discovered
Petri net.

In [21] we introduced the discovery algorithm eST-Miner. This approach aims to combine the ca-
pability of finding complex control-flow structures like long-term dependencies (non-free choice con-
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structs) with an inherent ability to filter infrequent behavior patterns while exploiting the token-game
to increase efficiency. The basic idea is to construct a Petri net without any places and one uniquely
labeled transition for each activity in the event log, and then compute and insert a set of fitting places.
A place can be considered fitting even if it disagrees with a part of behavior in the event log, which
allows to filter infrequent behavior. Efficiency is significantly increased by skipping uninteresting
parts of the search space. The approach guarantees that all places considered fitting with respect to
the event log are discovered, and can thereby provide some kind of precision guarantee. In fact, in
the case where fitting places are defined as feasible places, i.e., the discovered Petri net is required to
reflect all behavior in the input event log, it guarantees to return a minimal over-approximation.

The eST-Miner evaluates each candidate place in isolation, i.e., for each place it focuses only
on the activities in the event log whose transitions are connected to that place. This allows us filter
infrequent behavior patterns in the event log, by requiring each place to be able to replay only parts of
the traces in the event log. A candidate place will be accepted and inserted into the returned Petri net, if
the event log contains sufficient support for the relation between the activities as defined by the place.
Common noise filtering techniques, which are often applied as a preprocessing step before applying
a discovery algorithm lose information by simply removing infrequent trace variants or infrequent
activities from the event log. In contrast, the eST-Miner can consider all information in the event log
to discover relations between activities. In particular, we aim to accurately represent behavior patterns
with high support in the event log, while ignoring infrequent deviations.

L = [⟨▶, x1, x2, x3, y3, y2, y1,■⟩1,
⟨▶, x1, x2, x3, y3, y1, y2,■⟩1,
⟨▶, x1, x2, x3, y2, y3, y1,■⟩1,
⟨▶, x1, x2, x3, y2, y1, y3,■⟩1,
⟨▶, x1, x2, x3, y1, y3, y2,■⟩1,

⟨▶, x3, x2, x1, y1, y2, y3,■⟩1,
⟨▶, x3, x1, x2, y1, y2, y3,■⟩1,
⟨▶, x2, x3, x1, y1, y2, y3,■⟩1,
⟨▶, x2, x1, x3, y1, y2, y3,■⟩1,
⟨▶, x1, x3, x1, y1, y2, y3,■⟩1]

Figure 1. The behavior in event log L corresponds in large parts to the sequential Petri net below. However,
in all traces some deviations in activity order occur (marked in red). Since all traces and all activities are
equally frequent, it is not possible to filter infrequent behavior patterns and discover the underlying main process
structure by simply removing infrequent traces or activities in a preprocessing step. This becomes even more
challenging for processes that include concurrency, choice or non-free choice constructs.

Consider the simple example event log and Petri net in Figure 1. The event log exhibits frequent
behavioral patterns which are reflected in the behavior of the Petri net. However, in all traces some
deviations in activity order occur (marked in red). Often, users do not want a discovery algorithm
to return a model including all possible behavior in an event log but rather only the main process
structure with noise or deviations filtered out. In this example, it is not possible to discover the main
process behavior by simply removing infrequent traces or activities in a preprocessing step. In more
complex processes, exhibiting concurrency, choice or non-free choice constructs, this becomes even
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more challenging. However, the place-wise perspective of the eST-Miner allows it to ignore deviating
parts of a trace not involved with the place currently evaluated. Each place included in the presented
Petri net is able to replay a large part of the presented event log and can therefore be discovered when
considered in isolation.

The place-wise perspective of the eST-Miner ensures that all occurrences of activities within a
log are considered when discovering a model. However, when the set of discovered fitting places is
combined in a Petri net, this Petri net allows only for the behavior in the intersection of the behaviors
allowed by all inserted places. This intersection may be small or even empty, thus, the Petri net may
contain deadlocks or dead parts, resulting in a much lower overall fitness than the fitness of each
individual place and an overly complicated model. In extreme cases, the constructed net cannot replay
any trace at all, as illustrated by the small example in Figure 2. Here, having inserted places p6 and
p7 into the Petri net, each of which allows execution of at least 40 traces from the example event log
when considered in isolation, together they cause a deadlock and the Petri net discovered cannot fire
any transition after the start transition.

Figure 2. Consider the event log L = [⟨▶, a, b,■⟩40, ⟨▶, b, a,■⟩60], where the first trace variant occurs 40
times and the second one 60 times. Considered in isolation, place p6 allows for the first sequence of activities
while place p7 allows for the second. However, in combination they cause a deadlock in the Petri net.

In this paper, we aim to remedy the issue by investigating strategies of selecting a subset of places
which can be combined into a deadlock-free Petri net with definable minimal fitness, while simultane-
ously striving for high precision and simplicity. Additionally, we introduce a new fitness metric used
to evaluate candidate places with the goal to better control how candidate place selection affects the
inclusion of infrequent activities into the discovered model. We require the algorithm to maintain its
ability to discover and model non-free choice constructs and to provide guarantees as indicated above
without over- or underfitting. Furthermore, the time and space consumption should remain reasonable,
in particular more scalable than classic region theory approaches.

This paper is a significantly extended and revised version of our work presented in [22]. With
respect to this previous work, the main extensions are:

• Section 4 details the root causes of deadlocks and dead parts in the discovered Petri net and
introduces our twofold solution approach.

• In Section 5 we introduce a new fitness metric for place evaluation to refine the handling of
infrequent activities and thoroughly investigate its properties. In particular, we aim to be able
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to maintain the eST-Miner’s ability to abstract from deviations and avoid overfitting, while at
the same time preventing infrequent activities to cause dead parts in the returned Petri net.
We explore the properties of the new metric and show that it can be directly incorporated into
the eST-Mining framework. This refines the place candidate evaluation and enables significant
improvements of the eST-Miners approach to noise filtering.

• We significantly extend the introduction to the eST-Miner (Section 3), to better motivate our so-
lution approach and provide a basis for the newly introduced fitness metric for place evaluation.

• Section 6 has been partially reworked to clarify the goals and properties of the place selection
strategy and correct a mistake related to the adaption functions.

• We refine and extend the experimental evaluation of our previous work and provide an in-depth
discussion of the results, in particular with respect to their interpretation in the context of the
applied quality metrics. Furthermore, a brief analysis of the algorithm’s running time is added.

• We extend and refine the definitions and concepts to make the paper self-contained. Further-
more, Section 4 provides a discussion of the context and assumptions we make, together with
detailed examples and motivation for the proposed extensions and refinements. Examples and
motivation are extended in other sections as well.

Section 2 provides basic notation and definitions. In Section 3, we briefly review the basics of
the standard eST-Miner before providing a detailed problem description and method overview in Sec-
tion 4. The newly introduced fitness metric and its incorporation into the eST-Miner framework are
investigated in Section 5. Section 6 presents our place selection approach, followed by an exten-
sive evaluation in Section 7. Finally, we discuss design choices, open questions and future work in
Section 8 before concluding this work with Section 9.

2. Basic notations, event logs, and process models

A set, e.g. {a1, a2, . . . an}, does not contain any element more than once. In contrast, a multiset
m : A → N0 over the set A can contain multiples of the same element. We use square brack-
ets to denote multisets with the multiplicity of an element indicated in its exponent, i.e., we write
[a

m(a1)
1 , a

m(a2)
2 , . . . , a

m(an)
n ]. For readability, elements with multiplicity 0 and exponents with value 1

are omitted and we write a ∈ m if m(a) ≥ 1 holds. The intersection of two sets contains only elements
that occur in both sets, i.e., {x, y}∩{y, z} = {y}, while the intersection of two multisets contains each
element with its minimum frequency, i.e, [x, y2, z]C [y5, z2] = [y2, z]. Similarly, the union of two sets
contains all elements in both sets once, i.e., {x, y} ∪ {y, z} = {x, y, z}, while the union of two mul-
tisets contains all elements with the sum of their frequencies, i.e, [x, y2, z] ⊎ [y5, z2] = [x, y7, z3]. By
P(X) we refer to the power set of the set X , and M(X) is the set of all multisets over X . We project a
multiset m onto a set A by removing all elements not contained in A from m while maintaining other
frequencies, e.g., for A = {x, y} we have [x3, y, z2]↾A = [x3, y]. More formally, m↾A(a) = m(a) if
a ∈ A, and m↾A(a) = 0 otherwise. In contrast to sets and multisets, where the order of elements is
irrelevant, in sequences the elements are given in a certain order, e.g., ⟨x, y, x, y⟩ ̸= ⟨x, x, y, y⟩. We
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refer to the i-th element of a sequence σ by σ(i). The size of a set, multiset or sequence X , that is
|X|, is defined to be the number of elements in X . As short notation for the real numbers between 0
and 1 we introduce R1

0 = {r ∈ R | 0 ≤ r ≤ 1}.
In the following, we give a standard definition for activities, traces, and logs, except that we

require each trace to begin with a designated start activity (▶) and end with a designated end activity
(■). Note that it is reasonable to assume a process to have a clear start and end of execution, with each
trace describing an end-to-end example run of this process, and that any log can easily be transformed
accordingly by adding artificial activities.

Definition 2.1. (Activity, Trace, Event Log)
Let A be the universe of all possible activities (e.g., actions or operations), let ▶ ∈ A be a designated
start activity and let ■ ∈ A with ■ ̸= ▶ be a designated end activity. A trace is a sequence σ =
⟨a1, a2, . . . , an⟩ with n ≥ 2 such that a1 = ▶, an = ■ and ai ∈ A\{▶,■} for i ∈ {2, 3, . . . , n− 1}.
Let T be the universe of all such traces. An event log L ∈ M(T ) is a multiset of traces.

In this paper we extend the eST-Miner algorithm, which, given an event log, returns a Petri net without
silent or duplicate transition labels, i.e., a Petri net where each transition can be uniquely identified by
its activity label. Therefore, in this paper we can refer to transitions as activities. Furthermore, there is
a predefined source place connected to ▶ marking the start of the process and a predefined sink place
connected to ■ marking the end of the process. Besides the two predefined places, we only allow for
places connecting transitions that are initially unmarked. These places are uniquely identified by their
non-empty sets of input activities I and output activities O (we are not interested in duplicated places).
Considering this context, we introduce the following simplified definition for Petri nets.

Definition 2.2. (Places and Petri nets)
A Petri net is a pair N = (A,P), where A ⊆ A is the finite set of activities including start and end,
i.e., {▶,■} ⊆ A and P ′ ⊆ {(I|O) ∈ P(A) × P(A) | I ⊆ A ∧ I ̸= ∅ ∧ O ⊆ A ∧ O ̸= ∅} is the
set of intermediate places. We call I the set of ingoing activities of a place and O the set of outgoing
activities. The complete set of places of N is P = P ′ ∪ {(∅|{▶}), ({■}|∅)}.

Note that if p = (I|O), then •p = I and p• = O using standard notation. To reduce notional overload,
we omit set brackets in places, i.e., we write (▶|■) instead of ({▶}|{■}). Figure 3 shows an example
Petri net with places represented by circles and transitions represented by squares.

Figure 3. Petri net with A = {▶, a, b, c,■} and P = {(▶|a, b), (▶|a, c), (a, b|■), (a, c|■), (∅|▶), (■|∅)}.

The state of a Petri net N = (A,P ) is defined by its marking. A marking M assigns tokens
to places, i.e., M : P → N0, and can therefore be defined as a multiset of places. The Petri net in
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Figure 3 is in marking [p0] with the corresponding token being represented as a black dot. A transition
a is enabled in marking M if and only if all places connected to it by an ingoing arc (i.e., all places
in the preset of a, {(I|O) ⊆ P | a ∈ O}) hold at least one token. An enabled transition a can
fire, thereby changing the marking M of the Petri net to a new marking M ′ by removing one token
from every ingoing place and producing a token in every outgoing place. We write M

a−→ M ′. In the
example Petri net only the transition ▶ can fire initially, consuming the token from its ingoing place
p0 and producing tokens in p1 and p2. This enables transitions a, b and c.

Definition 2.3. (Replayable Traces)
Consider a Petri net N = (A,P ) and a trace σ = ⟨▶, a1, . . . , an,■⟩. We say that N can replay the
trace σ if and only if the transitions corresponding to the activities can be consecutively fired from the
marking MI = [(∅|▶)] to reach the marking MF = [(■|∅)], i.e., there exists a sequence of markings
⟨M1, . . . ,Mn,Mn+1⟩ such that MI

▶−→ M1
a1−→ M2 . . .Mn

an−→ Mn+1
■−→ MF .

Consider the Petri net in Figure 3. This Petri net can replay the trace ⟨▶, a,■⟩ as follows: [p0]
▶−→

[p1, p2]
a−→ [p3, p4]

■−→ [p5]. In contrast, the trace ⟨▶, a, c,■⟩ is not replayable: after firing [p0]
▶−→

[p1, p2]
a−→ [p3, p4] the next transition to be fired would be c but c is not enabled in [p3, p4].

Definition 2.4. (Behavior of a Petri net)
We define the behavior of the Petri net N = (A,P) to be the set of traces replayable by N , i.e.,
behavior(N) = {σ ∈ T | N can replay σ}.

Note that Definition 2.4 only allows for traces in the behavior of the form ⟨▶, a1, a2, . . . , an,■⟩ (com-
pare Definition 2.1) such that all intermediate places are unmarked at the end of replaying a trace
and never have a negative number of tokens. The behavior of the Petri net in Figure 3 is {⟨▶, a,■⟩,
⟨▶, b, c,■⟩, ⟨▶, c, b,■⟩}.

3. Introducing the eST-Miner

Several variants and extensions of the eST-Miner have been proposed in the past years. In the follow-
ing, we introduce the eST-Miner variant used as the basis of this work. For further details, we refer
the interested reader to the respective papers.

Method Overview

As input, the algorithm takes a log L over the set of activities A ⊆ A and a noise threshold τ ∈ R1
0, and

returns a Petri net as output. Inspired by language-based regions, the basic strategy of the approach
is to begin with a Petri net N = (A, {(∅|▶), (■|∅)}) whose transitions correspond exactly to the
activities in L and no intermediate places. From the finite set of unmarked, intermediate candidate
places, {(I|O) ∈ P(A) × P(A) | I ⊆ A ∧ I ̸= ∅ ∧ O ⊆ A ∧ O ̸= ∅}, the subset of all places
fitting with respect to L and τ is computed and inserted, where the noise threshold τ allows us to
ignore deviations from the main control-flow relations. A candidate place is considered fitting, if it
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does not hinder the replay of a significant part of L as indicated by τ . Details on the exact definition
and computation of the set of fitting places are provided below.

To facilitate further computations and human readability, implicit places are identified and re-
moved [23, 24, 25] from the set of fitting places. A place is implicit if its removal does not increase
the number of traces replayable by the Petri net. We have two approaches at our disposal. The first
option is to solve optimization problems to identify implicit places based on the structure of the Petri
net, as proposed for the original eST-Miner [21]. This approach reliably removes implicit places, but
is computationally expensive. The second approach replays the event log to compare the markings
of the places and uses this information to compute non-minimal regions, corresponding to implicit
places [26]. While it is much faster, for correct and complete implicit place identification certain re-
quirements must be satisfied, e.g. sufficient similarity between the event log and behavior of the Petri
net as well as guaranteed inclusion of certain places in the Petri net. Adaptation of this approach to
the context of this work is out of scope, therefore, we use the first implicit place removal variant.

We continue with defining the exact meaning of fitting places.

Fitting Places

The eST-Miner considers all possible candidate places based on the activities in the event log. There-
fore, in the following, we consider only places whose sets of ingoing and outgoing activities occur in
the corresponding event log at least once.

A candidate place can be either fitting or unfitting with respect to L and τ . We further distinguish
unfitting places into underfed and overfed places. These concepts can be used to compute the set of
fitting places more efficiently. We introduce them on the level of individual traces first.

Definition 3.1. (Fitting, Underfed and Overfed Places, cf. [27])
Let p = (I|O) ∈ P(A)× P(A) be a place, and let σ be a trace. With respect to σ, p is called

• underfed, denoted by

△

σ(p), if and only if ∃k ∈ {1, 2, . . . , |σ|} such that
|{i | i ∈ {1, 2, . . . , k − 1} ∧ σ(i) ∈ I}| < |{i | i ∈ {1, 2, . . . , k} ∧ σ(i) ∈ O}|

• overfed, denoted by △σ(p), if and only if
|{i | i ∈ {1, 2, . . . , |σ|} ∧ σ(i) ∈ I}| > |{i | i ∈ {1, 2, . . . , |σ|} ∧ σ(i) ∈ O}|,

• fitting, denoted by □σ(p), if and only if not

△

σ(p) or △σ(p).

A place is underfed with respect to a trace σ if, at some point, replaying σ requires more outgoing
transitions of the place to be fired than ingoing transitions have been fired before, implying a lack of
tokens in the place. Such a place hinders replay of σ because a transition that should be fired is not
enabled. Consider the Petri net in Figure 3 and the trace σ = ⟨▶, a, b,■⟩. The place p1 is underfed
with respect to this trace, because when its outgoing transition b occurs in the trace, not enough ingoing
transitions have been fired before to provide the necessary token. Thus, we can conclude that in any
Petri net that contains p1, b is not enabled in the marking reached after firing ▶ and a.

A place whose ingoing transitions occur more often than its outgoing transitions in a trace σ is
called overfed with respect to σ. It hinders replay because it has tokens remaining if the end of replay
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is reached, which violates the requirement of ending in marking [(■|∅)]. The place p3 is overfed with
respect to σ: ▶ is not connected, a and b each produce a token here, and firing ■ at the end of the trace
consumes only one of the two tokens, thus one token is remaining.

Note that a place can be underfed and overfed with respect to a trace at the same time. If a place
is neither overfed or underfed with respect to a trace, it is fitting. The place p2 is fitting with respect
to σ. Firing ▶ produces a token, which is subsequently consumed when a is fired. Neither b or ■ are
connected to p2. Thus, at the end of σ, no token is missing or remaining in p2.

We can formalize these observations and relate them to the behavior of a Petri net as introduced in
Section 2 as follows:

Observation 3.1. (Place Fitness and Firing Sequences)
Given a Petri net N = (A,P ) and a trace σ = ⟨a1, a2, ..., an⟩ ∈ T that is replayable by N , consider
a place p = (I|O) with p /∈ P . The following properties hold for N ′ = (A,P ∪ {p}):

• □σ(p) ⇔ σ ∈ behavior(N ′)

•

△

σ(p) ⇔ ∃k, 0 ≤ k ≤ n, such that [(∅|▶)]
a1−→ M1

a2−→ ...
ak−→ Mk ∧ p /∈ Mk ∧ ak+1 ∈ O

⇒ σ /∈ behavior(N ′)

• △σ(p) ⇔ [(∅|▶)]
a1−→ M1

a2−→ ...
an−→ Mn ∧ p ∈ Mn ⇒ σ /∈ behavior(N ′)

We define the following functions to succinctly refer to multisets of traces of the event log with
respect to which (sets of) places are fitting, underfed or overfed.

Definition 3.2. (Multisets of Fitting/Underfed/Overfed Traces (compare [27]))
Given a set of places P ⊆ P(A) × P(A) and a an event log L ∈ M(T ), we define the following
functions with respect to a place p ∈ P :

• fittingL(p) = L↾{σ∈L|□σ (p)} is the multiset of log traces for which p is fitting

• underfedL(p) = L↾{σ∈L| △

σ (p)} is the multiset of log traces for which p is underfed

• overfedL(p) = L↾{σ∈L|△σ (p)} is the multiset of log traces for which p is overfed

We extend these functions to the set of places P as follows:

• fittingL(P) = L↾{σ∈L|∀p∈P : □σ (p)}.

• underfedL(P) = L↾{σ∈L|∃p∈P :

△

σ (p)}.

• overfedL(P) = L↾{σ∈L|∃p∈P : △σ (p)}.

Note that, for a Petri net N = (A,P ) and event log L, fittingL(P) corresponds exactly to the log
traces replayable by N , since none of the places in N hinders the replay of those traces.

A fitness metric is used to assign a value to a place, indicating how well it fits the given event log.
We require its range to be R1

0 to facilitate comparison with thresholds and between different metrics.
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Definition 3.3. (Measuring Fitness of a Place)
Given an event log L ∈ M(T ) we define a fitness metric to be a function fmL : P(A)× P(A) → R1

0,
which assigns a fitness score to a place based on L such that 0 represents the lowest achievable fitness,
while 1 reflects the highest achievable fitness.

Before introducing concrete fitness metrics, we define the multiset of traces in an event log which
contain a given set of activities.

Definition 3.4. (Activated Traces, cf. [27])
Given an event log L ∈ M(T ) and a set of activities A ⊆ A, we define the multiset of traces activated
by A as actL(A) = L↾{σ∈L|∃i∈N : σ(i)∈A}.

Two fitness metrics have been proposed so far, in the following called absolute fitness and relative
fitness.

Definition 3.5. (Fitness Metrics, cf. [27])
Let L ∈ M(T ) be an event log and let p = (I | O) be a place. We define two different fitness metrics
of the place p with respect to L.

absolute fitness: fmLabs(p) =
|fittingL(p)|

|L|

relative fitness: fmLrel(p) =
|actL(I ∪O)

p
fittingL(p)|

|actL(I ∪O)|

Both metrics return values between 0 (low fitness) and 1 (high fitness).

Based on a fitness metric and the noise threshold τ we can lift the notions of fitting and unfitting to
the complete event log rather than a single trace.

Definition 3.6. (Fitness with Respect to a Threshold, compare [27])
With respect to an event log L ∈ M(T ), a threshold τ ∈ R1

0 and a fitness metric fm, we call a place p

• fitting if and only if fmL(p) ≥ τ , and

• unfitting if and only if fmL(p) < τ.

To increase the efficiency of place candidate evaluation, we need to lift the concepts of underfed and
overfed to the log level in a similar way. However, this is done for concrete fitness metrics individually
to satisfy certain requirements as explained in the following subsection.

Efficient candidate places evaluation

The eST-Miner uses token-based replay to evaluate each candidate place. The number of possible
places is finite but exponential in the number of observed activities. To avoid replaying the log on the
exponential number of candidate places and increase efficiency, the eST-Miner aims to skip uninter-
esting subsets of candidate places, while still guaranteeing to discover all places that are considered
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fitting. To this end, it utilizes the following monotonicity properties to derive information about can-
didate places based on a place p already evaluated: If p is underfed with respect to a trace, a candidate
place generated only by adding outgoing activities to or removing ingoing activities from p will lack
at least as many tokens during replay and will therefore also be underfed for that trace. Vice versa,
if p is overfed, a candidate place constructed by adding only ingoing activities or removing outgoing
activities will have at least the same number of tokens remaining and is therefore overfed as well.
Clearly, this information can be derived without actually evaluating the newly generated places.

Theorem 3.7. (Monotonicity Properties, cf. [27])
Consider two places p1 = (I1 | O1) and p2 = (I2 | O2). Then the following holds for any event log
L ∈ M(T ):

• I1 ⊇ I2 ∧O1 ⊆ O2 =⇒ underfedL(p1) ⊆ underfedL(p2)

• I1 ⊆ I2 ∧O1 ⊇ O2 =⇒ overfedL(p1) ⊆ overfedL(p2)

The eST-Miner organizes the candidate places as a forest, called the complete candidate tree. In this
forest, we distinguish between two types of edges: blue edges connect a parent candidate place to a
child place constructed from it by adding an outgoing activity, while red edges connect it to a child
generated by adding an ingoing activity. A visualization of such a tree-structured candidate space for
activities ▶, a, b and ■ is given in Figure 4. If combined with suitable fitness metrics, the monotonicity
properties can be used to skip subtrees in the complete candidate tree.

(▶|a)  (▶|b)  (▶|■)  (a|a)  (a|b)  (a|■)  (b|a)  (b|b)  (b|■)

(▶|a,b) (▶|a,■) (▶|b,■) (a|a,b) (a|a,■) (a|b,■) (b|a,b) (b|a,■) (b|b,■)     (▶,a|a) (▶,b|a) (a,b|a) (▶,a|b) (▶,b|b) (a,b|b) (▶,a|■) (▶,b|■) (a,b|■)

(▶|a,b,■) (a|a,b,■) (b|a,b,■)    (▶,a|a,b) (▶,a|a,■) (▶,a|b,■)    (▶,b|a,b) (▶,b|a,■) (▶,b|b,■) (a,b|a,b) (a,b|a,■) (a,b|b,■)    (▶,a,b|a) (▶,a,b|b) (▶,a,b|■) 

(▶,a|a,b,■) (▶,b|a,b,■) (a,b|a,b,■) (▶,a,b|a,b) (▶,a,b|a,■) (▶,a,b|b,■)

       (▶,a,b|a,b,■)

Figure 4. Example of a tree-structured candidate space for the set of activities {▶, a, b,■}, with orderings
■ >i b >i a >i ▶ and ■ >o b >o a >o ▶.

Definition 3.8. (Complete Candidate Tree)
Let A ∈ A be a set of activities and let >i, >o be two total orderings on this set of activities. A
complete candidate tree is a pair CT = (V, F ) with

V = {(I|O) ∈ P(A)× P(A) | I ⊆ A\{■} ∧O ⊆ A\{▶} ∧ I ̸= ∅ ∧O ̸= ∅}.



120 L.L. Mannel and W. M.P. van der Aalst / Discovering Process Models while Providing Guarantees...

We have that F = Fred ∪ Fblue, with

Fred ={((I1|O1), (I2|O2)) ∈ V × V | |O2| = 1 ∧O1 = O2

∧ ∃a ∈ I1 :
(
I2 ∪ {a} = I1 ∧ ∀a′ ∈ I2 : a >i a

′)} (red edges)
Fblue ={((I1|O1), (I2|O2)) ∈ V × V | I1 = I2

∧ ∃a ∈ O1 :
(
O2 ∪ {a} = O1 ∧ ∀a′ ∈ O2 : a >o a

′)} (blue edges).

If ((I1|O1), (I2|O2)) ∈ F , we call the candidate (I1|O1) the child of its parent (I2|O2).

Note the incremental structure of the trees, i.e., the increase in distance from the roots corresponds
to the increase of the number of activities connected to the candidate places. Specifically, for a place
(I|O) at depth k we have that |I| + |O| = k. Each level of the tree contains all possible places that
can be created by connecting the corresponding number of activities (excluding ▶ as an outgoing
activity and ■ as an ingoing activity, since such places cannot fit), with the root level consisting of
all candidate places that can be build using exactly two transitions. The asymmetry in the definition
of red and blue edges (Definition 3.8) ensures that all candidates are reachable from exactly one root
by a unique path (using the same rules for both types of edges would result either in some candidates
having both, a blue and a red parent, or no parent at all). Thus, candidate traversal following the tree
structure guarantees that all candidates are considered exactly once.

Organization of candidates within the same depth and their connections to parent and child can-
didates is not fixed, but defined by ordering strategies for of ingoing activities (>i) and outgoing
activities (>o). With knowledge of these ordering strategies we can deterministically compute the
next candidate place to be considered based on the last candidate we evaluated, i.e., based only on
the connected activities of the last place. This is very space efficient, since we do not need to keep
the whole tree in memory. It also contributes to time efficiency: we do not only avoid evaluation of
candidates in skipped subtrees but do not even need to compute and traverse them.

Consider any candidate place p = (I|O) in the complete candidate tree (Definition 3.8). By
construction, the tree structure guarantees that for every descendant pblue = (Iblue|Oblue) of p reachable
via a path of purely blue edges we have that I = Iblue and O ⊆ Oblue and thus, by Theorem 3.7,
underfedL(p) ⊆ underfedL(pblue) holds. Respectively, for every descendant pred of p reachable
via purely red edges, we have that overfedL(p) ⊆ overfedL(pred). Combining this property with a
suitable fitness metric allows us to cut off subtrees consisting of only unfitting candidate places based
on the replay result of the parent candidate place.

In Definition 3.6 we have used the noise threshold τ to lift the concepts of fitting and unfitting
places to the log level. To enable skipping of uninteresting subtrees, we have to lift the notions of
underfed and overfed places to the log level in a way that is suitable for the applied fitness metric.

Definition 3.9. (Underfed/Overfed Places with Respect to an Event Log, cf. [27])
With respect to an event log L ∈ M(T ) and a noise threshold τ ∈ R1

0 we define a place p = (I|O) to
be underfed or overfed based on the fitness metric used.
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A place unfitting with respect to absolute fitness can be classified further as

• underfed, denoted by

△L,τ
abs (p), if and only if |underfedL (p)|

|L| > 1− τ ,

• overfed, denoted by △L,τ
abs (p), if and only if |overfedL (p)|

|L| > 1− τ .

A place unfitting with respect to relative fitness can be classified further as

• underfed, denoted by

△L,τ
rel (p), if and only if |actL(I∪O)

p
underfedL(p)|

|actL(I∪O)| > 1− τ ,

• overfed, denoted by △L,τ
rel (p), if and only if |actL(I∪O)

p
overfedL(p)|

|actL(I∪O)| > 1− τ .

In Figure 5 we provide an overview illustrating the fitness status a place can have based on Defini-
tions 3.6 and 3.9. A place can either be fitting or unfitting. A place that is unfitting may be further
classifiable to be underfed or overfed. A place can be underfed and overfed at the same time, given
that sufficiently many traces validate the necessary requirements. It can also be unfitting without being
neither underfed nor overfed. Considering the event log L = [⟨▶, a, a, b, d,■⟩60, ⟨▶, a, c, d, d,■⟩40]
as an example, the following place fitness classifications hold for all fitness metrics discussed in this
paper. With respect to L and a noise threshold of τ = 0.5 the place p1 = (▶|b) is fitting, p2 = (c|■)
is underfed, p3 = (▶|c) is overfed, and p4 = (a, d|a) is underfed as well as overfed. With respect to
L and a noise threshold of τ = 0.3 the place p5 = (a|d) is unfitting but neither underfed nor overfed.

Underfed Overfed
Underfed 
& Overfed

UnfittingFitting

Figure 5. Illustrating the fitness status a candidate place can have with respect to an event log and noise
threshold. A place can either be fitting or unfitting. If it is unfitting, it may be underfed, overfed or both,
enabling the skipping of derived candidate places. It may also be unfitting (Definition 3.6) without satisfying
the threshold to be underfed or overfed (Definition 3.9), in which case no candidates can be skipped based on it.

The prerequisite for the eST-Miner to skip parts of the candidate space is the guarantee, that if
a place is determined to be underfed (overfed), the same must hold for all its blue (red) descendants
in the complete candidate tree. Due to the construction of the tree and the following lemma this
requirement is satisfied for Definition 3.9.

Lemma 3.10. (Monotonicity of Fitness Metrics, cf.[27])
Consider an event log L ∈ M(T ) and a noise threshold τ ∈ R1

0.
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For two places p = (I|O) and p′ = (I|O′) with O ⊆ O′ the following implications hold:

△L,τ
abs (p) =⇒

△L,τ
abs (p

′),

△L,τ
rel (p) =⇒

△L,τ
rel (p′).

For two places p = (I|O) and p′′ = (I ′′|O) with I ⊆ I ′′ the following implications hold:

△L,τ
abs (p) =⇒ △L,τ

abs (p
′′),

△L,τ
rel (p) =⇒ △L,τ

rel (p′′).

Conclusion

The runtime of the eST-Miner strongly depends on the number of candidate places skipped during
the search for fitting places. In Figure 6, the subset relations between the sets of places relevant to
the eST-Miner framework are visualized. To illustrate the effect of cutting off candidate subtrees, the
absolute number of places in these sets is shown for two example applications of the algorithm on two
different event logs. While the size of the complete candidate space is the same for both event logs
(based on the number of activities), the ordering of the candidates within the tree and properties of the

Set of Places Teleclaims RTFM

complete candidate space 16,769,025 16,769,025
evaluated candidates 5,119,151 (69 % skipped) 3,066,180 (82 % skipped)

fitting places 18,139 3,855
non-implicit places 8 4

Figure 6. Comparison of the sets of places considered within the eST-Miner framework. To exemplify the
impact of cutting off unfitting subtrees, we choose the well-known Teleclaims and Road Traffic Fine

Management event logs (both have 11 + |{▶,■}| = 13 activities) with τ = 1.0 (i.e., requiring all places to be
perfectly fitting). The table shows the size relations of the computed sets of places to the complete candidate
space (for lexicographical activity orderings >i and >o in the complete candidate tree).
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event logs themselves result in different sizes for the subset of candidate places to be evaluated. This
example emphasizes the performance gain achieved by skipping subtrees.

4. Problem explanation and solution framework

One of the major advantages of the eST-Miner is its ability to ignore infrequent behavior patterns
during discovery. This is achieved by computing for each place candidate individually the multiset
of log traces it allows to replay. Thus, it can consider and combine information contained in all log
traces even if not all of these traces are replayable in the constructed Petri net. This is illustrated by
the example in Figure 1: every place in the sequential net allows for a large fraction of the event log
to be replayed and the discovered Petri net indeed represents the main behavior contained in the log.

On the downside, its straightforward insertion of fitting places makes the eST-Miner prone to
introduce deadlocks into the discovered Petri net. Deadlocking constructs are clearly undesirable,
since they may result in a model that does not meet the user’s expectations with respect to fitness or at
least is unnecessary complicated given the behavior it represents. We use the example event log and
corresponding Petri net given in Figure 7 to illustrate the issue of deadlocks, discuss its two causes
and motivate our twofold solution approach.

Figure 7. To exemplify the problems addressed in this work we use the Petri net above together with the event
log [⟨▶, a, b, c, d,■⟩35, ⟨▶, a, b, c, e,■⟩5, ⟨▶, b, a, c, d,■⟩55, ⟨▶, b, a, c, e,■⟩5]. One issue is the insertion of p7
instead of the more desirable place p6. Another problem is posed by the interaction between p2 and p4.

Deadlocks Related to Place Evaluation

The first reason for deadlocks in the Petri net discovered by the eST-Miner is caused by how the
proposed fitness metrics evaluate places that are connected to infrequent activities. Both, the absolute
and relative fitness metric, evaluate the fitness of a place based on a fraction of log traces it allows
to replay. Places that hinder replay of only a few traces are likely to pass the threshold defined by τ .
Places that hinder replay of infrequent activities are hardly penalized by this strategy, since blocking
of such activities does not significantly lower the fraction of replayable traces. Therefore, it is likely
that returned models include places that block infrequent activities.

Consider the example event log and the place p7 = (b|c, e) in Figure 7. This place can replay all
traces in the event log that do not include the infrequent activity e, i.e., a fraction of 0.9 of all traces.
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Inserting this place into the Petri net would block e from being executed completely. However, despite
occurring only infrequently, activity e has a clear positioning within the control-flow: whenever it
occurs in a trace, it replaces execution of activity d after c and before ■. The place p6 can perfectly
replay the event log (i.e., replays a fraction of 1.0 of all traces) but is removed as implicit when p7 is
added.

In Section 5, we aim to tackle this problem by introducing a new fitness metric to evaluate a
place. This strategy maintains a high fitness score for places that adequately represent the control-flow
patterns of all their connected activities (e.g., p6) while places that block too many traces for any of
their connected transitions are assigned a low fitness value (e.g., p7). Additionally, the new metric is
defined in such a way that the eST-Miner can still use the evaluation results to improve efficiency by
skipping parts of the candidate space.

Deadlocks Related to Combination of Places

The second reason for deadlocks in the Petri net discovered by the eST-Miner is caused by the com-
bination of places that allow for replay of differing parts of the event log. When a candidate place
is evaluated to be fitting based on L and τ , it is simply inserted into the Petri net by connecting it to
its uniquely labeled ingoing and outgoing transitions. The resulting Petri net can replay exactly the
subset of log traces in the intersection of the traces replayable by all inserted places. Independently
of the fitness metric used, this may result in Petri nets that can replay a fraction of traces significantly
lower than τ , despite each single place satisfying the threshold.

We illustrate the issue using the example in Figure 7. Consider the example event log and the
candidate places p1 to p6. All of these places can replay at least a fraction of 0.4 traces in the event
log and thus would be inserted into the Petri net for any threshold τ ≤ 0.4. However, the resulting
Petri net would not be able to replay any trace at all: the places p2 and p3 will block any execution
of activities a and b. Two viable solutions exist to obtain a more reasonable model. The first variant,
visualized in Figure 8, would be to include neither p2 nor p4 and allow a behavior where a and b are
executed in parallel.

Figure 8. Consider the event log [⟨▶, a, b, c, d,■⟩35, ⟨▶, a, b, c, e,■⟩5, ⟨▶, b, a, c, d,■⟩55, ⟨▶, b, a, c, e,■⟩5].
The Petri net above is able to perfectly replay all traces in the event log.

Alternatively, one can focus on the most frequent behavior and insert only p2, which would result
in the removal of the then implicit places p1 and p6. This second option is illustrated in Figure 9.
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Figure 9. Consider the event log [⟨▶, a, b, c, d,■⟩35, ⟨▶, a, b, c, e,■⟩5, ⟨▶, b, a, c, d,■⟩55, ⟨▶, b, a, c, e,■⟩5].
The Petri net above (implicit places marked with gray, dashed lines) is able to replay the two trace variants
⟨▶, b, a, c, d,■⟩55 and ⟨▶, b, a, c, e,■⟩5, which constitute a fraction of 0.6 of the input event log.

To avoid the issue of deadlocks caused by combining places, in Section 6 we propose to extend
the eST-Mining framework with a place selection strategy that inserts a maximal subset of all fitting
places such that the resulting Petri net can replay at least a fraction of τ traces in the event log and does
not contain transitions that can never be fired. With respect to the example above, this corresponds
to the second solution (Figure 9), which maximizes precision while still satisfying the given fitness
threshold.

In the following we give an overview of the algorithmic framework including the proposed exten-
sions.

Algorithmic Framework

This work introduces an algorithmic framework extending the eST-Miner with the goal to address
the two different causes for deadlocks described previously. The fitness metric explored in Section 5
refines the evaluation of places. In particular, it enhances the handling of places connected to rarely
occurring activities (e.g., p7 in Figure 7). To prevent deadlocks stemming from combinations of places
(e.g., p2 and p4 in Figure 7), we replace the straightforward place insertion of the eST-Miner with a
strategy preventing such structures. This new place insertion strategy is detailed in Section 6. The
goal is to select a subset of fitting places such that the returned Petri net is guaranteed to replay at least
a fraction of τ traces in the event log. At the same time, we aim to maximize simplicity and precision
of the model.

The proposed algorithm extends the eST-Miner framework by adding and adapting certain sub-
methods. An overview of the framework, including the positioning of our proposed extensions, is
given in Figure 10 and described in the following. Details on the extensions will be provided in the
corresponding sections.

Initialization: As the only preprocessing steps we add artificial start and end activities (▶ and
■) to all traces in the given event log and initialize the output model N as a Petri net with one labeled
transition for each activity in the input event log (including ▶ and ■) and no places except for a marked
start place (∅|▶) and a final place (■|∅).

Place Insertion: The eST-Miner traverses the complete candidate tree (Candidate Traversal) to
generate place candidates, which are evaluated one by one, possibly allowing to exploit monotonicity
properties to skip uninteresting subtrees. Different traversal strategies of the tree are possible, e.g.
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Algorithmic Framework

traverse the complete 
candidate tree using BFS

(compare Def. 3.8)

Candidate Traversal

Place Selection

(compare Def. 3.6)

Candidate Evaluation

• Remove dead activities
• Merge self-loop places
• Remove implicit places

Postprocessing

N

(compare Section 6)

Figure 10. High-level overview of the proposed algorithmic framework. The newly introduced place selection
submethod (represented as a black box) is described in detail in Section 6.

Depth-First-Search, Breadth-First-Search or guided by heuristics. It is also possible to limit the depth
of tree traversal, improving computation time while losing the option to discover any place below that
depth. The extension proposed in this paper, with details provided in Section 6, requires a Breath-
First-Search traversal strategy and allows limiting the traversal depth.

Every traversed place candidate is evaluated one by one (Candidate Evaluation) to measure how
fitting they are with respect to the event log L and the noise threshold τ . We can use absolute fitness,
relative fitness or the new metric introduced in Section 5.

The new place selection subroutine (Place Selection) following place evaluation is introduced
in detail in Section 6. The selected places are added to the Petri net by connecting them to their
corresponding uniquely labeled transitions.

Model Simplification: After the selected fitting places have been added, we apply a set of
simplification steps (Postprocessing). First, the proposed place selection strategy may result in certain
activities to be no longer included in the replayable part of the event log. The corresponding transitions
are removed from the Petri net (details are provided in Section 6).

Second, all pairs of places of the form (I ∪A1|O ∪A1) and (I ∪A2|O ∪A2) are merged, i.e.,
replaced by a new place (I ∪A1 ∪A2|O ∪A1 ∪A2). This merging of places with self-loops (with
A1 and A2 being the sets of self-looping transitions) simplifies the Petri net without impacting its
behavior. Note that this is necessary only when the tree traversal depth is limited, resulting in the two
smaller places being discovered while the larger place connected to more transitions is cut off.

As the final postprocessing step we remove implicit places before returning the resulting Petri net.

Using the Extensions: The newly introduced place selection strategy focuses on guaranteeing
minimal fitness of the complete returned Petri net. However, as illustrated before, places that allow for
replay of most of the event log may still have a devastating effect on the fitness of single activities, to
the degree of blocking their execution completely. Consequently, the proposed fitness metric and the
proposed selection technique complement each other but can also be applied independently.
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When applying the place selection strategy with relative or absolute fitness, we expect most in-
frequent activities to be blocked (dead) and consequently be removed from the returned Petri net.
This can be desired by users who want to obtain a model reflecting only the most important behavior
or subprocess without applying manual preprocessing. However, since removing activities or traces
from the event log that do not satisfy a certain frequency threshold is trivial in commonly used tools,
it can be reasonable to expect a user to have applied such preprocessing. For users who have applied
filtering such that the event log contains only activities and traces they are actually interested in, an
ideal model represents the control-flow of all the activities remaining in the event log. We expect that
the new fitness metric allows us to continue to abstract from infrequent behavioral patterns without
outright removal of infrequent activities or complete trace variants.

Both scenarios are investigated and discussed in our evaluation.

5. A new fitness metric

To prevent the introduction of deadlocks as explained in Section 4, in this section we introduce aggre-
gated fitness as a new fitness metric. It refines the fitness evaluation of places with the goal to improve
the handling of rarely occurring activities: places simply preventing such actvities from being fired
will obtain a low fitness score.

Definition 5.1. (Aggregated Fitness)
Let L ∈ M(T ) be an event log and let p = (I|O) be a place. We define the fitness metric aggregated
fitness as

fmLagg(p) = mina∈(I∪O)

(
|actL({a})

p
fittingL(p)|

|actL({a})|

)
.

Aggregated fitness as introduced in Definition 5.1 returns the minimal fitness computed for each indi-
vidual transition connected to the place. To maintain the eST-Miners efficiency we require a fitness
metric to allow for cutting off subtrees by exploiting the monotonicity properties of the places (Defini-
tion 3.7), i.e., the metric has to guarantee that there are no fitting places in the skipped subtrees of the
complete candidate tree. In the following, we show that the proposed aggregated fitness can satisfy
this requirement.

To enable exploitation of the monotonicity results for skipping candidate subtrees while employing
the noise threshold τ to filter infrequent behavior patterns, we extend the notions of underfed and
overfed (compare Definition 3.1) from single traces to the whole event log in a suitable way:

Definition 5.2. (Aggregated Fitness: Underfed/Overfed Places with Respect to an Event Log)
Consider an event log L ∈ M(T ), a noise threshold τ ∈ R1

0 and a place p = (I|O). If p is unfitting
with respect to L and τ and aggregated fitness, it can be classified further as

• underfed, denoted by

△L,τ
agg (p), if and only if ∃a ∈ I ∪O : |actL({a})

p
underfedL(p)|

|actL({a})| > 1− τ ,

• overfed, denoted by △L,τ
agg (p), if and only if ∃a ∈ I ∪O : |actL({a})

p
overfedL(p)|

|actL({a})| > 1− τ .
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As we have seen before for absolute and relative fitness, Definition 5.2 allows for aggregated fitness
that a place is underfed and overfed at the same time, given that sufficiently many traces validate the
necessary requirements, or is unfitting without being neither underfed nor overfed.

To skip parts of the candidate space without missing fitting places, we need to guarantee, that if
a place is determined to be underfed (overfed), the same is guaranteed to be true for its blue (red)
descendants in the complete candidate tree.

Lemma 5.3. (Monotonicity of Aggregated Fitness)
Consider an event log L ∈ M(T ) and a noise threshold τ ∈ R1

0. For three places p = (I|O),
p′ = (I|O′) with O ⊆ O′ and p′′ = (I ′′|O) with I ⊆ I ′′the following implications hold:

△L,τ
agg (p) =⇒

△L,τ
agg (p

′),

△L,τ
agg (p) =⇒ △L,τ

agg (p
′′).

Proof:
First, assume that

△L,τ
agg (p). Then, by definition, there exists some activity a ∈ I ∪ O such that

|actL({a})
p

underfedL(p)|
|actL({a})| > 1−τ . Because of O ⊆ O′ we know that a ∈ I∪O′. Also, by Theorem 3.7

we have that underfedL(p) ⊆ underfedL(p
′). Together, this implies that |actL({a})

p
underfedL(p

′)|
|actL({a})| ≥

|actL({a})
p

underfedL(p)|
|actL({a})| > 1− τ , and thus by definition

△L,τ
agg (p

′).

Now, assume that △L,τ
agg (p). Then, by definition, there exists an activity a ∈ I ∪ O such that

|actL({a})
p

overfedL(p)|
|actL({a})| > 1 − τ . Because of I ⊆ I ′′ we know that a ∈ I ′′ ∪ O. By Theorem 3.7

we have that overfedL(p) ⊆ overfedL(p
′′). Together, this implies that |actL({a})

p
overfedL(p

′′)|
|actL({a})| ≥

|actL({a})
p

overfedL(p)|
|actL({a})| > 1− τ , and thus by definition △L,τ

agg (p′′). ⊓⊔

We have shown that the monotonicity properties of the newly introduced aggregated fitness enable
the same efficiency optimizations by skipping candidate subtrees as the absolute and relative fitness.
Thus, this metric can be easily integrated into the eST-Miners framework. To compare the impact on
the place fitness evaluation, we continue to investigate relationships between these fitness metrics.

Lemma 5.4. (Relationships Between Fitness Metrics)
Let L ∈ M(T ) be an event log and let p = (I|O) be a place. Then the following holds:

fmLrel(p) ≤ fmLabs(p).

Proof:
With respect to the place p, we can partition the event log L into the following disjunct multisets of
traces:

L�
✓ = fittingL(p) C actL(I ∪O), the multiset of fitting, activated traces.

L⊠
✓ = (underfedL(p) ⊎ overfedL(p)) C actL(I ∪O), the multiset of unfitting, activated traces.

L× = L\actL(I ∪O), the multiset of non-activated traces.
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Note that |L�
✓|+ |L⊠

✓| > 0, since we consider only activities contained in L. In the following, we use
these sets to rewrite absolute and relative fitness and show the claimed relation between them:

fmLrel(p) ≤ fmLabs(p)

⇔
|L�

✓|
|L�

✓|+ |L⊠
✓|

≤
|L�

✓|+ |L×|
|L�

✓|+ |L⊠
✓|+ |L×|

⇔ |L�
✓| ·

(
|L�

✓|+ |L⊠
✓|+ |L×|

)
≤
(
|L�

✓|+ |L×|
)
·
(
|L�

✓|+ |L⊠
✓|
)

⇔ |L�
✓|

2 + |L�
✓| · |L

⊠
✓|+ |L�

✓| · |L×| ≤ |L�
✓|

2 + |L×| · |L�
✓|+ |L�

✓| · L
⊠
✓|+ |L×| · |L⊠

✓|
⇔ 0 ≤ |L×| · |L⊠

✓| ⊓⊔

We have shown that relative fitness is at least as strict as absolute fitness. Therefore, using relative
fitness instead of absolute fitness during candidate place evaluation guarantees the discovered places
to be at least as fitting. Unfortunately, no similar relation holds between fmLagg(p) and fmLrel(p) as
illustrated by the example in Figure 11. Consider the given place p and event log L1: we have that
fmL1

agg(p) = min(9090 ,
0
10) = 0, which is strictly smaller than fmL1

rel (p) =
90
100 . However, considering the

same place p and the event log L2, we have that fmL2
agg(p) = min(3333 ,

33
66 ,

33
66) =

1
2 is strictly larger than

fmL2
rel (p) =

33
99 = 1

3 .

L1 = [⟨a, b⟩90, ⟨x, y⟩20, ⟨c⟩10]
L2 = [⟨a, b, a, c⟩33, ⟨x⟩1, ⟨b⟩33, ⟨c⟩33]

Figure 11. Traces in L1 and L2 which are unfitting with respect to the place p = (a|b, c) are marked in red,
while traces not activated are colored gray. For L1 we have that fmL1

agg(p) < fmL1

rel (p), while for L2 we have that
fmL2

agg(p) > fmL2

rel (p).

To obtain a metric that guarantees to satisfy a given fitness threshold τ with respect to all three
fitness metrics discussed, we define combined fitness as a final fitness metric. Combined fitness simply
takes the minimum of all three fitness metrics and therefore inherits their monotonicity properties, i.e.,
when using it to skip parts of the candidate space we maintain the guarantee to not skip any fitting
place candidate. More specifically, if a place is fitting with respect to combined fitness, then it is also
fitting with respect to each individual fitness metric, and if a place is underfed (overfed) with respect
to at least one of the individual metrics then the descendants in the corresponding subtree are also
underfed (overfed) with respect to that fitness metric.

Definition 5.5. (Combined Fitness of a Place)
Let L ∈ M(T ) be an event log and let p = (I|O) be a place. We define the combined fitness of the
place p with respect to L as

fmLcomb(p) = min(fmLabs(p), fm
L
rel(p), fm

L
agg(p)).
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Combined fitness is rather restrictive, mostly due to the newly introduced aggregated fitness. A more
forgiving aggregation function than the minimum, e.g., such as average, median or harmonic mean,
would be interesting to investigate as an alternative. Unfortunately, such aggregations would not
allow for the skipping of candidate subtrees in the eST-Miners complete candidate tree, since they
do not provide the same monotoncity properties. For example, consider the place p = (a|b, c) and
the event log L = [⟨▶, a, b, b,■⟩1, ⟨▶, a, c,■⟩1, ⟨▶, a, d,■⟩1]. The aggregated fitness of p as de-
fined is fmLagg(p) = min(23 ,

0
1 ,

1
1) = 0 and p would be considered underfed because of b, allowing

us to skip its blue subtree. When taking the average instead of the minimum, the score would be
average(23 ,

0
1 ,

1
1) ≈ 0.55. Consider now the place p′ = (a|b, c, d) constructed from p by adding the

outgoing activity d. The aggregated fitness of p′ is fmLagg = min(23 ,
0
1 ,

1
1 ,

1
1) = 0 and p′ would also

be underfed, as expected. However, when taking the average instead of minimum, the score would
be average(23 ,

0
1 ,

1
1 ,

1
1) ≈ 0.66. This example clearly illustrates that the monotonicity properties

necessary to skip subtrees without losing guarantees do not hold for such aggregation functions.
The combined fitness is the strictest fitness metric introduced in this work and therefore guaran-

tees that any (set of) places satisfying a threshold τ with respect to combined fitness also satisfies τ
with respect to absolute, relative and aggregated fitness. We can still choose to be less restrictive by
lowering the threshold τ . Note that due to Lemma 5.4 we do not need to compute absolute fitness in
the implementation of combined fitness. In Section 7 we apply the proposed eST-Miner variant with
combined fitness as well as relative fitness as a fitness metric to various event lots to evaluate their
impact on real-life data.

6. Place selection

The eST-Miner evaluates all candidate places and discovers a set of places fitting the input event log
based on the noise threshold τ and the chosen fitness metric. As illustrated by the simple example in
Figure 7, simply adding all fitting places to a Petri net indiscriminately may result in deadlocks and
unnecessary complexity. In this section, we propose an approach aiming to mitigate this problem by
selecting a suitable subset of places.

To motivate our strategy, we first discuss a more complex example. Consider the event log L and
the set of places p1 to p8 in Figure 12. For each of the three fitness metrics introduced in Definitions 3.5
and 5.1, all places in this (incomplete) subset of candidate places are fitting with respect to L and
τ = 0.75. Inserting all of these places results in the given Petri net N , which can replay only the
first trace variant in L, corresponding to 60 % of the traces. The introductory example in Figure 7
illustrates, that the fraction of replayable traces may even decrease to 0. Such a result is undesirable,
since it is unnecessarily complex with respect to the behavior it represents, not free of dead parts and
likely to disappoint user expectations with respect to fitness. In the following, we explore strategies to
return a deadlock free Petri net that is guaranteed to replay at least a fraction of τ traces in the event
log by inserting only a selection of the discovered fitting places.

Consider the set of all fitting places discovered during the place candidate evaluation of the eST-
Miner. Selecting an adequate subset of these places, such that also the resulting Petri net as a whole
satisfies the noise threshold τ , is challenging for a variety of reasons. While trivial solutions exist, such
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ID Traces in L p1 p2 p3 p4 p5 p6 p7 p8 N

(▶|a) (a|c) (a|b) (c|e) (b|e) (e|■) (b|c, d) (d, e|■)
1 ⟨▶, a, b, c, e,■⟩60 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 ⟨▶, a, b, d,■⟩20 ✓ × ✓ ✓ × × ✓ ✓ ×
3 ⟨▶, a, c, b, e,■⟩15 ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ×
4 ⟨▶, a, b, d, e,■⟩5 ✓ × ✓ × ✓ ✓ ✓ × ×

a

b

c e

d

p1

p2

p3

p5

p4 p6

p8

p7

Figure 12. The table indicates for each of the given trace variants and candidate places whether the place can
replay that trace variant. The Petri net N is created by inserting all these places and can replay only the first
trace variant, i.e., 0.6 · |L| = 60 traces.

{p1, p3}
1,2,3,4

1.0{p1, p3, p4, p8}
1,2,3
0.95 {p1, p3, p7}

1,2,4
0.85

{p1, p3, p5, p6}
1,3,4
0.8

{p1, p2, p3, p4, 
p5, p6, p8}

1,3
0.75

{p1, p3, p4, p7, p8}
1,2
0.8

{p1, p3, p5, p6, p7}
1,4

0.65

{p1, p2, p3, p4, p5, 
p6, p7, p8}

1
0.6

N1

N2

N6

N4 N5

N3

N7

N8

set of places
forming N

replayable 
trace variants

fraction of 
replayable 

traces

Figure 13. Consider the set of places given in Figure 12. This figure shows all possible combinations of these
places such that adding any other place to the corresponding Petri net would decrease the number of replayable
log traces. Each set of places, i.e., Petri net, is annotated with the list of trace variants it can replay and the
corresponding fraction of log traces. Note that N8 corresponds to the Petri net shown in Figure 12.
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as not inserting any place at all, defining what the best solution would be is not straightforward, since
several maximal subsets of places satisfying this requirement may exist. These subsets may differ, for
example, in size, fraction of replayable traces, place complexity (number of connected activities) or
subjective ’interestingness’ measures. Figure 13 illustrates all maximal sets of places that can be built
from the example places given in Figure 12. These sets are maximal in the sense that adding any of
the other places would decrease the number of replayable log traces. Depending on the choice of the
minimal fitness threshold τ , the solution considered optimal by the user is unclear.

Furthermore, even if we have somehow obtained a notion of optimality, first collecting all fitting
places and then computing an optimal solution can quickly become unfeasible, both in terms of time
complexity and memory requirements. This is due to the huge number of fitting but potentially implicit
places discovered by the eST-Miner. Unfortunately, knowledge of which places are contained in the
Petri net is required to identify implicit places reliably.

To circumvent the issue of time and space complexity, we combine the eST-Miners sequential
place evaluation procedure with a guided greedy place selection approach, which is described in detail
in Subsections 6.1 and 6.2. In the absence of a clear notion of optimality, we propose and investi-
gate several heuristic selection strategies and evaluate their impact on different quality aspects of the
returned Petri net. In this paper, we consider fitness, precision, and simplicity as desirable properties.

A model with high fitness can express most of the behavior seen in the event log. High precision
means that the model does not allow for a lot of behavior not seen in the event log. Simplicity refers
to the general readability and understandability of the model and is therefore inherently subjective. In
this work, we approximate simplicity by assuming that fewer arcs indicate a simpler model. While
generalization (avoiding overfitting with respect to the sample process executions given in the event
log) is desirable, additional information would be required to evaluate it, which is why we consider
it outside the scope of this work. The concrete metrics used in this work to evaluate quality will be
briefly discussed in Section 7. For further details, we refer the reader to [5, 28].

6.1. Place classification

When making the decision to insert a place into the model, this reduces the possible choices we can
make later on: the place constrains the behavior of the model and only places with a sufficiently large
intersection of replayable traces can be added to the model at a later point. Consider the example place
combinations in Figure 13 with a fitness threshold of τ = 0.75 and assume that the model already
contains the places p1 and p3. If the next fitting place we discover is p7, and we immediately insert it
into the Petri net, we can no longer discover a Petri net including, for example, p6 without violating our
fitness constraint. Such choices may prevent us from discovering a more desirable solution. Therefore,
we aim to capture the main behavior of the log by using heuristics to postpone, or even disallow, the
addition of very restrictive places.

To this end, we introduce a new parameter δ which is our main tool to guide the choice of places
while balancing fitness, precision, and simplicity. This δ specifies the largest acceptable reduction
in replayable traces when adding a place to the model. Optionally, δ can be adapted for each place
individually using an adaption function adapt to favor certain places over others, according to the
user’s preferences. Favored places can be added earlier, despite being rather restrictive, while other
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places will be added only if they do not constrain the behavior too much. Such adaption strategies are
discussed in Section 6.3.

Definition 6.1 formalizes the use of τ , δ and adapt to decide for a newly discovered fitting place
p, whether the algorithm should add it to the selected set of places P , keep it for later re-evaluation or
discard it forever.

Definition 6.1. (Place Classification Using τ, δ and adapt)
Consider an event log L ∈ M(T ) over the set of activities A ∈ A, a set of places P ⊆ P(A)× P(A),
and a place p ∈ P(A) × P(A). We use parameters τ ∈ R1

0 and δ ∈ R1
0, and a function adapt : R1

0 ×
(P(A)× P(A)) → R1

0 to categorize p as follows:

keepL,τ (P, p) = |fittingL(P ) C fittingL(p)| ≥ τ · |L|
addL,τ,δ(P, p) = keepL,τ (P, p)

∧ |fittingL(P )| − |fittingL(P ) C fittingL(p)| ≤ adapt(δ, p) · |L|

If keepL,τ (P, p) does not hold, p will be discarded.

In the following subsection, we give an overview of the complete approach.

6.2. Selection framework

An overview of our approach, indicating inputs, outputs and use of parameters, is given in Figure 14.
Since we consider the simplicity of the model to be a desirable property, we set the eST-Miner to

Algorithmic Framework

re-evaluate

keep (not add)

Parameters

traverse the complete 
candidate tree using BFS

(compare Def. 3.8)

Candidate Traversal

Place Selection

(compare Def. 3.6)

Candidate Evaluation

• Remove dead activities
• Merge self-loop places
• Remove implicit places

Postprocessing

(compare Def. 6.1)

Place Classification

Q

N

Trigger 
revisiting 
of Q

add

P

Figure 14. Overview of the presented approach, including input, output, and parameter use.



134 L.L. Mannel and W. M.P. van der Aalst / Discovering Process Models while Providing Guarantees...

traverse the complete candidate tree using BFS rather than DFS. Thus, places with few connected ac-
tivities are evaluated first and can therefore be inserted into the model at an earlier stage. Furthermore,
we limit the traversal depth to places with dcut activities. This can not only significantly improve the
running time but also balances precision and fitness on the one hand and simplicity and generalization
on the other hand by preventing the algorithm to discover complex places located at deeper levels of
the complete candidate tree. While some complex behaviors may need such places to be expressed ex-
actly, inserting them into the Petri net is usually devastating to readability and in practical applications
their constraints can often be sufficiently approximated by much simpler places.

After the eST-Miner framework evaluates a candidate place p to be fitting with respect to a thresh-
old τ , we use the classification functions given in Definition 6.1 to decide whether the place should
immediately be added to the output Petri net, discarded forever or kept for re-evaluation. In the latter
case it is added to a queue Q of potential places which is sorted according to how interesting a place is.
In our case, we sort first by place simplicity (few transitions are better) and second by the number of
replayable log traces. Optionally, the length of Q can be limited to Q≤ with the least interesting places
being dropped if necessary, thus trading an improvement in time and space complexity for potentially
lowered model quality.

Whenever the BFS candidate traversal reaches a new level in the complete candidate tree, we
revisit the potential places queue Q and re-evaluate its places using the classification functions be-
fore proceeding with the traversal of more complex places. This makes sense to promote simplicity
in particular together with the sigmoid delta adaption function proposed in Section 6.3, which gives
preference to places less complex than indicated by the current tree level. After reaching the lowest
tree level, the approach continues to iterate over the potential places queue repeatedly d+ times. This
can be relevant for delta adaption functions depending on place complexity and current tree depth, as
exemplified in Section 6.3: with each iteration the current tree depth parameter of the adaption func-
tions is incremented (hence the term artificial tree depth) allowing for gradually increased leniency
also for the most complex places evaluated.

Finally, the resulting Petri net N = (A,P ) may contain dead parts: activities which occur only
in the subset of log traces that are no longer replayable by N are not guaranteed to be executable at
all. Therefore, as a final step, we detect and remove all activities that do not occur in fittingL(P )
together with their connected arcs. Before returning this Petri net as final output, the eST-Miner
framework removes implicit places, and merges self-looping places when applicable (see Section 4).

The approach returns a Petri net N satisfying the following guarantees.

Theorem 6.2. (Guarantees)
Given an event log L ∈ M(T ) over activities A, parameters τ ∈ R1

0, δ ∈ R1
0, s ∈ N, Q≤ ∈ N, d+ ∈

N, dcut ∈ N and an adaption function adapt : R1
0 × (P(A) × P(A)) → R1

0, the eST-Miner extended
with the place selection strategy given in Definition 6.1 computes a Petri net N=(A′, P ) with A′⊆A,
such that N can replay at least τ · |L| traces from L and every transition in A′ can be fired at least once.

Proof:
The algorithm initializes the Petri net N0 = (A, {(∅|▶), (■|∅)}) with one transition for each activity
in L. There is no place constraining the behavior of N0 except for {(∅|▶) and (■|∅) }, which allow
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for ▶ and ■ to be fired exactly once each. According to our trace definition (Definition 2.1), these
activities do occur exactly once in each trace. Thus, N0 can replay at least τ · |L|. The method
then iteratively adds places. According to Definition 6.1 a place p can be added to a Petri net N1 =
(A1, P1) only if addL,τ,δ(P1, p)) holds, which requires keepL,τ (P1, p) to hold. This requirement
ensures that |fittingL(P1) C fittingL(p)| ≥ τ · |L|, i.e., the Petri net with the place p added,
N2 = (A1, P1 ∪ {p}) can replay at least τ · |L| traces from L.

Since the requirement must hold for all added places, no further transitions are added and every
transition that is not part of the replayable traces is removed, the final returned Petri net N = (A′, P )
can replay at least τ · |L| traces from L, A′ ⊆ A holds and every transition can be fired at least once
(when replaying a trace including the corresponding activity). ⊓⊔

Furthermore, if the length of Q is not limited, and thus a place p is discarded only if it does
not satisfy keepL,A,τ (P, p), the set of places P is maximal in the sense that no place from the set
of evaluated candidate places can be added without violating the fitness constraints imposed by the
chosen heuristics.

6.3. Selection strategies

As illustrated by the example place combinations in Figure 13, the order of places added can have
a significant impact on the selected subset of places and, thus, the behavior of the returned Petri net.
The presented framework allows for a wide range of heuristic functions, optimizing the place selection
individually towards a variety of possible user interests. Thus, obviously, the examples presented in
the following are by far not exhaustive and entirely different choices are possible, but they can serve
as a starting point for an investigation of the impact and suitability of our approach.

The sigmoid delta adaption function aims to promote fitness and simplicity. The constant and
no delta delta adaption functions are introduced to be used as a baseline in our experiments, towards
which the effect of the sigmoid delta adaption function can be compared.

No Delta

As a baseline to compare to, we introduce a function that ignores the parameter δ and simply adds
every fitting place to the Petri net as soon as it is discovered. Within the framework, this can be
formalized to

adaptnoDelta(δ, p) = 1.

Constant Delta

Trivially, we can choose not to adapt delta at all. We simply add every fitting, non-discarded place
that does not reduce the replayable traces from the log by a fraction of more than delta. Formally, this
resembles the identity function:

adaptconstant(δ, p) = δ
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Sigmoid Delta Adaption

While optimizing towards fitness as well as simplicity, we can balance the two forces in different ways
based on the details of the adaption function. In this work investigate the sigmoid delta adaption as
defined in the following and visualized in Figure 15.

Figure 15. Example behavior of the delta adaption modifier mods,d
sigmoid(δ) for three places with 2, 3, and 4

activities, respectively. The x-axis indicates the current tree depth d, with dmax = 12, while the y-axis indicates
the modifier to be multiplied with δ.

Given a set of activities A, the maximum depth of the complete candidate tree is dmax = 2|A|.
Furthermore, let d ∈ [2, 3, . . . , dmax] be the current depth of the candidate tree traversal. We call
s ∈ N\{0} the steepness modifier.

Consider a place p = (I|O). We define the sigmoid delta adaption function as follows:

adapt
s,d
sigmoid(δ, (I|O)) = δ · mods,dsigmoid((I|O))

= δ ·

(
2

1 + e

(
(−1)· s

(|I|+|O|) ·(d−(|I|+|O|))
) − 1

)

The adaption function multiplies a modifier with the parameter δ. Figure 15 illustrates the be-
havior of this modifier for three example places of varying complexity. The sigmoid delta adaption
is designed to prefer simple places. When a place originates from the currently traversed level of the
complete candidate tree, i.e., it is among the most complex places currently available, the function will
evaluate to 0, meaning that only a perfectly fitting place can be added. The simpler the evaluated place
is compared to the current tree level, the larger the result of the function and the more unfitting traces
are allowed, with δ marking the maximal returnable value. The modifier grows fast in the beginning,
but stagnates towards the end, preferring the simpler places more strongly, while the more complex
places are (roughly) equally undesirable. The steepness modifier s controls the intensity of the growth.

7. Experimentation and evaluation

We performed several experiments where we run the proposed algorithm with a wide variation of
combinations of possible parameter settings on several event logs with different properties. The focus
of this paper is on avoiding deadlocks and dead parts in the returned models, which is why the main
focus of this evaluation is on the quality of the discovered models. In the end of this section we will
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briefly discuss the performance, in particular showing that the extension proposed in this work does
not add significantly to the running time of the eST-Miner.

7.1. Experimental setup

Table 1 provides an overview of the event logs used in our experimentation. Sepsis has a relatively
high number of different trace variants, all of which have comparable frequencies, with the most
frequent trace variant making up only 3.33 % of the event log. Activities are repeated often within a

Table 1. List of logs used for the evaluation. The upper part lists real-life logs while the lower part shows
artificial logs. Logs are referred to by their abbreviations.

Log Name Abbreviation Activities Trace Variants Reference

Sepsis Sepsis 16 846 [29]
Road Traffic Fine Management RTFM 11 231 [30]

Teleclaims Teleclaims 11 12 [5]
Order-Handling Orders 8 9 [31]

Table 2. Overview of the parameter settings used in our experimentation. The combinations result in 6300
runs for each event log. The value ranges were chosen based on a smaller set of preliminary experiments,
aiming to investigate a wide range of parameter settings on the one hand, while on the other hand avoiding
unnecessary complexity resulting from variation without notable impact. For example, for our inputs no places
were discarded for Q≤ ≥ 10000. For d+ we chose a very low and a very high value to evaluate whether it
had any impact at all. Finally, for the chosen event logs dcut = 5 has shown to be sufficient to find complex
structures with the standard eST-Miner, i.e., increasing the traversed tree depth increases computation time but
has no strong impact on model quality.

Parameter Used Values Purpose
τ 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.9
Defines the minimal fraction of log traces that every
place, as well as the final Petri net, must be able to
replay.

δ 0.05, 0.1, 0.15,
0.2, 0.25

Used to define the allowed reduction in log traces
replayable by N when adding a place.

fm fmrel, fmcomb Defines the fitness metric to be used.

adapt adaptnoDelta,
adaptconstant,
adaptsigmoid

The delta adaption function used to guide the heuris-
tics.

s 1, 2, 3, 4, 5 The steepness of the increase of the adaption func-
tion (relevant for adaptsigmoid only).

Q≤ 100, 1000, 10000 The maximal number of places stored in Q.

d+ 0, 10 Artificial tree depth to re-evaluate places in Q after
end of tree traversal (relevant for adaptsigmoid only).

dcut 5 Stop candidate traversal after the specified tree level.
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trace, which must lead to looping behavior within a Petri net with uniquely labeled transitions. RTFM
is rather large, with a moderate variety of trace variants and activities. Both for variants and activities
some are very frequent while others are quite infrequent. Teleclaims is an established artificial log
useful for testing discovery of various control-flow structures. With Orders we can demonstrate the
algorithm’s ability to discover complex control flow structures, as well as the option to abstract from
rare behavior.

For each event log we perform 6300 runs of the algorithm with varying combinations of the differ-
ent parameters, as specified in Table 2. Note that we keep the order of place candidate traversal fixed
for all runs.

To investigate the qualitative impact of the proposed heuristics, we need to fix the order of candi-
date evaluation to prevent effects due to different evaluation orders. For easy reproducibility, we use a
lexicographical ordering based on activity names. The purpose is to focus on the effect of the differ-
ent parameters, and possibly derive which of them are the most relevant for the discovery of certain
models and whether certain (combinations of) settings are preferable.

Our experiments with combined fitness have shown that only for the Sepsis log there are place
candidates that score lower on relative fitness than aggregate fitness. However, this happened for very
few parameter combinations and then only for at most 2 candidate places. Thus, for the logs evaluated,
we can conclude that the choice between using fmagg and fmcomb does not have a significant impact.

Evaluation Metrics

Several approaches exist to measure model quality with respect to an event log. In the following, we
give a brief overview of the techniques applied in the context of this evaluation.

We use alignment-based fitness to measure how well the behavior in the log is represented by the
model. Alignments take an event log and compute the minimal number of insertions and deletions
needed to make the traces fitting with respect to a given model, then normalize this value using the
worst-case edit distance. Consider the example Petri net in Figure 16 and the trace ⟨▶, a, b, c,■⟩. This
trace can be aligned to the Petri net by, for example, removing b and c or by removing a. Removing a
needs 1 edit operation, which is the optimum in this case. The worst-case edit distance would require
us to remove every activity from the trace (5) and insert an activity for every transition that needs to
be fired to obtain the shortest path through the model (3). This results in an alignment-based fitness of
1− 1

5+3 for the example trace. For details, we refer the reader to [32].

Figure 16. An example model used to illustrate the applied quality metrics.
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Evaluating whether the model is sufficiently restrictive, i.e., does not allow for (much) behavior out-
side of the process behavior is more challenging. The event log represents a set of example process
executions and cannot be expected to be complete, making it hard to reliably evaluate process-related
precision. Another problem is the potentially infinite language of the model which can make a straight-
forward comparison infeasible. Therefore, metrics that approximate precision are commonly used. We
choose a precision metric based on escaping edges. This metric compares the number of activities en-
abled in the model with the number of activities actually executed during the replay of the event log.
Consider the example Petri net in Figure 16 and the traces ⟨▶, a,■⟩ and ⟨▶, c, b,■⟩. We replay all
prefixes of traces in the event log and take note of the frequency of that prefix, the number of enabled
transitions at the end of the prefix and the number of transitions fired after the prefix. In our example,
for both traces in the beginning only ▶ is enabled and consequently fired (2·1 enabled, 2·1 fired). This
enables three activities a, b and c, of which we fire a in the first trace and c in the second trace (2 · 3
enabled, 2 ·2 executed). Now, for the first trace ■ is the only one executed and fired (1 ·1 enabled, 1 ·1
fired). For the second trace, after firing c only b is enabled and fired (1 · 1 enabled, 1 · 1 fired) followed
by the final activity, ■, being enabled and fired (1 · 1 enabled, 1 · 1 fired). This results in a precision
of 2·1+2·2+1·1+1·1+1·1

2·1+2·3+1·1+1·1+1·1 = 9
11 , i.e., the number of transitions actually fired during replay divided by the

number of enabled transitions. For details on escaping edges precision we refer the reader to [33].

Recall, that for most real-life logs not all quality aspects can be perfectly satisfied at the same time
(e.g., high fitness often entails low precision and the other way around). They should be balanced ac-
cording to the user’s needs, i.e., the choice of the best model depends on its purpose. In our evaluation,
we consider two target audiences. Some users prefer to directly apply a discovery algorithm to the
unmodified log, expecting the algorithm to filter infrequent activities automatically and return a model
that focuses on the main behavior in the event log. In the absence of a clear use-case, it is common to
score process models based on the harmonic mean of fitness and precision (F1-Score), which ensures
that the resulting aggregated quality score reflects both metrics, i.e., a low value in one of the metrics
cannot be obscured by a high value in the other. Without further information, we assume that such a
user to be interested in obtaining a model with a high F1-Score.

Definition 7.1. (F1-Score)
Given an event log L ∈ M(T ) and a Petri net N with a fitness score of fitnessL(N) and a precision
score of precisionL(N), we define the F1-score as

F1(L,N) =


0, if fitnessL(N) = 0 ∨ precisionL(N) = 0

2

1

fitnessL(N)
+

1

precisionL(N)

, otherwise


In general, users applying our algorithm have the option to perform some basic preprocessing be-
forehand. In particular, they may use available functionality [34] to remove infrequent activities and
infrequent trace variants they are not interested in. In such cases, all infrequent activities and traces
remaining in the event log can be considered to be of interest and should be reflected in the discov-
ered model, while still abstracting from exceptional behavior patters. Without further information,
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we assume that such a user is interested in obtaining a model that scores high in fitness and preci-
sion but ideally also contains all activities from the event log. Therefore, we introduce the the metric
of activity-coverage and define the HM-Score as the harmonic mean of fitness, precision and activity-
coverage.

Definition 7.2. (Activity-Coverage)
Let L ∈ M(T ) be an event log over the set of activities A and let N = (A′, P ) be a Petri net with
A′ ⊆ A, i.e., A′ is the subset of log activities included in the Petri net N . We define activity-coverage
of N with respect to L as

activity-coverageL(N) =
|A′|
|A|

A value of 1 indicates that all activities in the event log are also part of the Petri net, while a value
of 0 indicates that no activity in the event log is part of the Petri net. With respect to the event
log L = [⟨▶, a,■⟩, ⟨▶, c, b,■⟩, ⟨▶, d, e, d, e, a,■⟩], the example Petri net in Figure 16 achieves an
activity-coverage of 3

5 .

Definition 7.3. (HM-Score)
Given an event log L ∈ M(T ) and a Petri net N with a fitness score of fitnessL(N) and a precision
score of precisionL(N), we define the HM-score as

HM(L,N) =


0, if fitnessL(N) = 0 ∨ precisionL(N) = 0 ∨ activity-coverage = 0

3

1

fitnessL(N)
+

1

precisionL(N)
+

1

activity-coverageL(N)

, otherwise


The simplicity of a model is highly subjective and a variety of factors may contribute to the readability
of a model. Not all of these can be easily represented by numbers, e.g., the way a Petri net is plotted.
Even though several metrics have been suggested for it, they are restricted to only some aspects con-
tributing to model understandability and no generally agreed upon solution has become the standard
yet. Therefore, we forgo an extensive evaluation of simplicity and focus on a straightforward metric
based on the average number of arcs per transition. Not only is this metric closely related to the strat-
egy of the presented approach to prefer places that have few arcs, but also existing research confirms
the general relevance of this aspect [35].

Definition 7.4. (Simplicity)
Given a Petri net N = (A,P ), we define simplicity as the average number of arcs per transitions, i.e.,

simplicity(N) =

∑
(I|O)∈P |I|+ |O|

|A|
.

The example Petri net in Figure 16 achieves a simplicity of 14
5 ≈ 2.8. On the downside, this measure

of simplicity does not map to the interval between 0 and 1 and is therefore not directly comparable
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with the other quality metrics (and thus not included in the aggregated score). On the upside, it returns
an objective value that allows for further subjective interpretation as the reader sees fit.

7.2. Qualitative analysis

Some interdependencies between the model quality aspects are to be expected and confirmed by our
results. Removing a transition from a Petri net reduces the behavior of the net and therefore has
a negative effect on fitness and a positive effect on precision. It is important to keep in mind the
exact metrics used to measure fitness and precision to avoid misinterpretation of the results: while
alignments are quite forgiving with respect to missing infrequent transitions (they simply assign a
penalty whenever the corresponding activity occurs in the event log), escaping edges based precision
is sensitive with respect to transitions that are frequently enabled without being fired (e.g. in the case
of parallelism).

One of our major goals in this work is to be able to avoid the removal of transitions based on
infrequency. By achieving this goal, we obtain models that contain transitions which are far more
often enabled than fired. Such models score significantly worse with respect to precision than models
without those infrequent transitions, while fitness remains comparable. Therefore, in addition to eval-
uating models using the HM-Score, we focus on models with perfect activity-coverage by evaluating
them separately from the complete set of results. Finally, we include some representative models to
support the interpretation of the number-based evaluation. However, one needs to keep in mind that
the choice of the best model always depends on the user’s needs and models scoring high in the context
of this general evaluation do not necessarily represent the best model for every application.

Overview of Quality Results

In Figure 17, an overview of the quality results of the 6300 models generated for each log is given.
Fitness and simplicity remain rather stable, with fitness being generally high and simplicity values
clustering between 2 and 3 arcs per transition on average, which we consider a good value. On the
other hand, precision and activity-coverage, and by extension the harmonic means HM and F1, vary a
lot for the discovered models. This clearly indicates that the choice of parameters has a strong impact
on these quality aspects.

While we discovered only 5 unique models, i.e., models with different behavior, for Orders, there
were 29 unique models found for RTFM, 34 for Teleclaims and 160 for Sepsis. The quality results
and frequencies of a selected subset of the discovered Petri nets are given in Table 3. Additionally,
we provide the same results for the models discovered by the Inductive Miner infrequent (IMf) with
default settings as implemented in ProM [34] and the models discovered by the eST-Miner with τ =
1.0 (comparable to region theory results). Our approach can discover models with HM and F1 scores
that clearly outperform IMf with default settings as well as eST-Miner with τ = 1.0 on the two real-
life event logs. For the two artificial event logs results are comparable. A detailed comparison of these
models follows at the end of this section.
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Figure 17. Overview of model quality results for all 6300 runs (complete) with varying parameters but fixed
candidate traversal order.

Table 3. Overview of the qualitative results of selected models discovered during our experimentation. For
each log we show the quality results of the model with the maximal HM value, the maximal F1 value, and the
model with the maximal HM out of the subset of models with perfect activity-coverage (aCov), as well as the
frequency with which this model was discovered. Additionally, we provide scores for the Inductive Miner
infrequent (IMf, default settings) and the eST-Miner with τ = 1.0. Green background marks comparatively
large values. All of these models are also visualized in Figures 20 to 23 at the end of the section.

Imf 
(default)

eST 
(τ=1.0)

Max. 
HM Max. F1

HM 
(aCov)

Imf 
(default)

eST 
(τ=1.0)

Max. 
HM Max. F1

HM 
(aCov)

Imf 
(default)

eST 
(τ=1.0)

Max. 
HM Max. F1

HM 
(aCov)

Imf 
(default)

eST 
(τ=1.0)

Max. 
HM Max. F1

HM 
(aCov)

HM 0.7300 0.7385 0.9018 0.8108 0.9018 0.4154 0.4212 0.7620 0.7620 0.5854 0.9659 0.6917 0.9640 0.9640 0.9640 0.9550 0.9536 0.9536 0.9432 0.9536
F1 0.6432 0.6531 0.8596 0.9638 0.8596 0.3215 0.3266 0.7836 0.7836 0.4849 0.9496 0.5993 0.9469 0.9469 0.9469 0.9340 0.9319 0.9319 0.9664 0.9319
Fitness 0.9820 1.0000 0.8747 0.9301 0.8747 0.9060 1.0000 0.9115 0.9115 0.9679 0.9490 1.0000 0.9244 0.9244 0.9244 0.9600 1.0000 1.0000 0.9562 1.0000
Precision 0.4782 0.4849 0.8451 1.0000 0.8451 0.1954 0.1954 0.6871 0.6871 0.3235 0.9503 0.4279 0.9706 0.9706 0.9706 0.9094 0.8725 0.8725 0.9768 0.8725
Activity-
Coverage

1.0000 1.0000 0.8451 0.6154 0.8451 1.0000 1.0000 0.7222 0.7222 1.0000 1.0000 1.0000 0.9231 0.9231 0.9231 1.0000 1.0000 1.0000 1.0000 1.0000

Simplicity 2.3333 2.1538 2.7692 2.0000 2.7692 2.5833 2.1111 2.4615 2.4615 3.4444 2.1333 3.2308 2.0000 2.0000 2.0000 2.2000 2.9000 2.8000 2.2222 2.8000
Frequency - - 150 1590 150 - - 72 72 180 - - 504 504 504 - - 44 2252 44

For Comparison
Selection of Discovered 

Models

Metric

RTFM Sepsis Teleclaims Orders

For Comparison
Selection of Discovered 

Models
For Comparison

Selection of Discovered 
Models

For Comparison
Selection of Discovered 

Models
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Discussion of Dead Transitions

Since we are interested in abstracting from infrequent behavioral patterns without outright removal of
infrequent activities or complete trace variants, we take a closer look at the discovery of models that
include all activities from the event log. During our experimentation, we discovered 2 different such
models for Orders, 31 for Teleclaims, 29 for Sepsis and 9 for RTFM.

Figure 18. Overview of quality results for all models discovered in the 6300 runs that include all activities
observed in the corresponding event log.

In Figure 18, we show an overview of the quality metrics restricted to the runs that resulted in
models that include all activities. The general tendencies remain similar to the results shown for the
models discovered for the complete set of runs. Fitness is consistently high, with less lower scoring
outliers than we have seen for the complete set of models. This is to be expected, since these models
do contain all log activities and our proposed approach guarantees that they can all be fired at least
once. Consequently, precision is comparable for the artificial logs which do not include a lot of noise
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or diverse behavior, or lower for the real-life logs, which exhibit a significantly higher variance in
behavior. Notably, the number of models and variance in precision have decreased for Sepsis and
Orders - apparently, the parameter combinations allowing for the discovery of models without dead
transitions do result in models scoring similarly in quality.

Figure 19. Comparison of the number of dead transitions of the models discovered using relative fitness and
using combined fitness with the proposed algorithm.

In Section 5, we introduced combined fitness with the goal of preventing the uncontrolled deletion
of infrequent activities due to their execution being blocked accidentally. In Figure 19, we compare
the impact of using combined fitness and of using relative fitness on the number of dead transitions in
the discovered models. In particular for the two real-life event logs, Sepsis and RTFM, a clear effect
is visible: when using combined fitness is it much more likely to discover models which include all
or most of the observed activities. This observation is confirmed by the data in Table 4 where we
compare the number of runs that result in models without dead transitions for the runs using combined

Table 4. Out of the 6300 runs we performed in our experiments, 3150 were performed using combined fitness
and 3150 using relative fitness. For each event log this table gives an overview about the number of runs that
resulted in models without dead transition, as well as how many different such models were discovered.

combined fitness
(3150 runs)

relative fitness
(3150 runs)

#runs #unique models #runs #unique models

RTFM 1946 8 252 1
Sepsis 2479 26 238 3

Teleclaims 2688 18 2700 13
Orders 1206 1 1206 1
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fitness and the runs using relative fitness. While the trend is clearly visible for the two real-life event
logs, for Teleclaims and Orders the majority of parameter combinations result in models without
dead transitions, independently of the fitness metric chosen. Similar tendencies can be observed for
the number of different models without dead transitions; especially for the two real-life logs, most
such models are discovered using combined fitness.

Another interesting aspect can be observed for the RTFM and Teleclaims event logs: models with
certain numbers of dead transitions (1, 2, 4 for RTFM, 1 for Teleclaims) are never discovered. This
can be explained by groups of transitions which are closely coupled in behavior and (almost) always
occur together in the same traces. They are removed from the model together once these traces are no
longer replayable.

Discussion of Selected Models

In Figures 20, 21, 22 and 23 we present a selection of models for each log. For comparison, we
present the models discovered by IMf (default settings) and the model discovered by the eST-Miner
with τ = 1.0. From the many models discovered during the experimentation with our approach,
we show the models scoring highest with respect to HM (the harmonic mean of fitness, precision,

Inductive Miner infrequent (default settings):

eST-Miner (τ = 1.0):

Presented Approach: highest HM value out of the complete set of results, as well as the set of models without dead transitions.

Presented Approach: highest F1-score out of the complete set of results.

Figure 20. The Petri nets discovered based on the Orders log using the Inductive Miner infrequent (default
settings), the eST-Miner with τ = 1.0, and a subset of interesting models discovered using the presented
approach.
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Inductive Miner infrequent (default settings):

eST-Miner (τ = 1.0):

Presented Approach: highest HM value and highest F1-score out of the complete set of results.

Presented Approach: highest HM value out of the set of models without dead transitions.

Figure 21. The Petri nets discovered based on the Sepsis log using the Inductive Miner infrequent (default
settings), the eST-Miner with τ = 1.0, and a subset of interesting models discovered using the presented
approach.
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activity-coverage) as well as with respect to F1 (harmonic mean of fitness and precision only). Fur-
thermore, we present the models with the highest HM and F1 values out of the set of models without
dead transitions. Of course, while these models score highest with respect to the general quality
metrics used in this evaluation, other models may still be considered to be more suitable for specific
contexts or applications.

All models shown in Figure 20 were discovered for the Orders log. For this rather simple event
log, all models achieve relatively high scores with respect to the quality metrics. However, some
notable differences in the expressed behavior can be observed in particular with respect to the activities
send invoice, send reminder, pay and cancel order. According to the event log, in most cases the
execution of send invoice is eventually followed either by pay (and then delivery) or by cancel order,
but never both. In rare cases, payment occurs before sending the invoice. After sending the invoice,
reminders can be sent repeatedly, until payment is received or the order is canceled. This behavior is
fully expressed only by the model discovered using the eST-Miner with τ = 1.0, which is comparable
to results produced by region-based approaches. Since payment before sending the invoice is rare,
users may prefer the other models which focus on behavior where payment arrives after sending the
invoice. The model discovered by IMf further deviates from the log by not allowing for repeated
reminders (occurring in 25 % of the traces), and enabling the cancellation of orders after payment.
The model with the highest HM value is the same for both, the complete set of models as well as the set
without dead transitions. It includes all activities observed in the event log, in contrast to the model
with the highest F1-Score, which does not contain the activity cancel order (occurring in 13.03 % of
traces) at all, resulting in slightly lower fitness but increased precision.

The Sepsis event log exhibits many repetitions of activities and a comparatively high control-
flow variance, with 846 trace variants in 1050 traces, the most frequent of which occurs only 35 times.
Thus, the discovery of a model with simultaneously high fitness and precision is challenging. Fig-
ure 21 presents a selection of discovered Petri nets. The IMf manages to discover groups of activities
that occur in sequence, however, within these groups the activities are in parallel and mostly skippable,
resulting in a very low precision. The eST-Miner with τ = 1.0 illustrates a disadvantage of requiring
perfect fitness: the resulting model allows for nearly all possible behaviors. For the model with high-
est HM value out of all models without dead transitions, this problem becomes less severe. Finally, the
model with highest HM and F1 values out of all discovered models manages to capture the main be-
havior hidden in the traces while ignoring infrequent activity behavior, achieving comparatively high
precision at the cost of not representing all activities.

Figure 22 shows Petri nets discovered from the RTFM log. Considering the models discovered
by IMf and eST-Miner with τ = 1.0, we observe the same general tendencies as for the previous
logs. For the model with the highest F1-score discovered by our approach, we note that several
activities are missing, meaning that they are not part of any replayable trace from the event log. The
reason can be found by investigation of this particular event log, which describes two very distinct
sub-processes, the more frequent of which consists of the activities still contained in the model. The
activities of the infrequent sub-process related to appeals have been removed, allowing to focus on the
main process. The model with the highest HM includes all activities from the event log. It includes
the main process which is also expressed by the model with highest F1, with additional self-loops that
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Inductive Miner infrequent (default settings):

eST-Miner (τ = 1.0):

Presented Approach: highest HM value out of the complete set of results, as well as the set of models without dead transitions.

Presented Approach: highest F1-score out of the complete set of results.

Figure 22. The Petri nets discovered based on the RTFM log using the Inductive Miner infrequent (default
settings), the eST-Miner with τ = 1.0, and a subset of interesting models discovered using the presented
approach.

model optionality of those activities. Additionally, the control-flow of the appeal-related subprocess is
included. Here, self-loops are not only used to model skippable activities but also to enforce a certain
order on the events. Despite the limitations of using only uniquely labeled transitions, the positioning
of the infrequent activities within the control-flow is precise and reflects their behavioral patterns in
the event log.

A set of process models discovered from the Teleclaims log is presented in Figure 23. For this
event log, the same model scores highest with respect to HM and F1 for the complete set of discovered
models as well as for the set of models without dead transitions. This model and the model discovered
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Inductive Miner infrequent (default settings):

eST-Miner (τ = 1.0):

Presented Approach: highest HM value and highest F1-score out of the complete set of results, as well as the set of models
without dead transitions.

Figure 23. The Petri nets discovered based on the Teleclaims log using the Inductive Miner infrequent
(default settings), the eST-Miner with τ = 1.0, and and a subset of interesting models discovered using the
presented approach.

by IMf express similar behavior, with the main difference being the representation of skippable activ-
ities: with all transitions being uniquely labeled, our approach has to rely on loop constructs rather
than silent activities. The eST-Miner with τ = 1.0 does not abstract from infrequent behavior, which
in this case results in a perfectly fitting but quite complex model.

Our results confirm the expectation that even minor gains in fitness are usually accompanied by
a major drop in precision. The models with the best F1-Score are usually those with the highest pre-
cision value. From Figures 20 to 23 we can observe that these models seem to focus on the main
process behavior, giving a clear representation of the control-flow of the main activities. However,
they are likely not to incorporate infrequent activities. This is clearly illustrated by the Orders and
RTFM event logs. Here, infrequent but potentially vital paths in the control-flow (e.g. cancellation of
an order or appeal against a fine) are revealed when the discovery algorithm abstracts from deviat-
ing behavioral patterns without ignoring infrequent activities themselves. Our results show that the
presented approach is able to return models anywhere on the scale balancing fitness, precision and
activity-coverage, based on the choice of parameters.
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7.3. Impact of parameter choices

While the quality results discussed earlier clearly indicate that our approach is able to discover models
balancing fitness, precision and activity-coverage while maintaining reasonable simplicity, the choice
of parameters has a significant impact. Therefore, we investigate this further. We used decision tree
analysis to search for parameter settings that would result in the highest quality models as indicated by
the HM-Score. Since, for some event logs, the best model according to this metric was discovered very
infrequently, we extended the notion to the top 5% of runs. However, in other logs the best model was
discovered in significantly more than 5% of the runs. This discrepancy resulted in an imbalance of
the absolute number of runs resulting in the highest-scoring model(s). Additionally, we performed the
same analysis approach for the set of models without dead activities, again looking for the (at least)
5% of runs which resulted in models with the highest HM value.

The results of this analysis are shown in Figure 24, where each line represents a set of parameter
combinations that leads to the discovery of the best model(s). Information on the frequency and
entropy of the corresponding leaf in the decision tree is included as well.

For Sepsis the overall best scoring model requires the lowest investigated value of τ , that is 0.3.
Additionally, δ should either be ignored completely by using the adaptnoDelta adaption function or set
to the largest value. Slightly lower values of δ paired with the less constraining relative fitness can be
combined with adaptconstant, i.e., always using the maximum value for δ. All in all, the parameters
indicate that rather restricting places with comparatively low fitness must be accepted to discover
models with higher quality for the Sepsis log. This makes sense in the context of the large variety of
traces without clear main behavior, i.e., all trace variants have similarly low frequency. However, the
large HM value of the models discovered with those parameter settings is mostly based on scoring high
precision, which is also due to 5 activities not being included. Choosing τ = 0.7 or larger together
with relative fitness balances fitness and precision such that the highest-scoring model that includes
all log activities can be discovered.

For the RTFM event log the use of combined fitness is a prerequisite to discovering the best-scoring
models. In contrast to Sepsis, larger values of τ seem important: a choice τ = 0.5 or τ = 0.8 while
ignoring δ (adaptnoDelta) results in a high-quality model. Alternatively, τ = 0.8 can be combined with
large values of δ. In this case, the highest scoring model in general and with full activity-coverage
coincide.

For the Teleclaims event log the set of best-scoring models coincides with the set of best-scoring
models without dead transitions. A τ value of at most 0.4 is a prerequisite. Combining a δ ≥ 0.15 with
the constant adaption function results in a high-quality model. Gradually adapting δ using sigmoid
adaption requires larger values of δ and high steepness s.

The set of best-scoring models in general and best-scoring models with perfect activity-coverage
is the same for the Orders event log. To discover such models, one can combined combined fitness
either with the sigmoid adaption function or with any other adaption function and low values for τ .

For the four event logs investigated in this paper, the most important parameter seems to be τ . This
is not surprising, since τ has a direct impact on which places are available for addition to the Petri net.
Furthermore, the combined fitness metric plays an important role in finding the best models for all
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Best 5% of Leaf Entropy Frequency
Adaption 
Strategy

s

Sepsis

Complete 
(514)

0 300

0.30.469 20 0.25

0 60 [0.15, 0.2]

Perfect 
activity-
coverage 

(180)

0 180 [0.7,0,9]

RTFM

Complete 
(435)

0 150 0.5

0 150 0.8

0.811 180 0.8 [0.15,0.25]

Perfect 
activity-
coverage 

(435)

0 150 0.5

0 150 0.8

0.811 180 0.8 [0.15,0.25]

Teleclaims

Complete 
(504)

0 360

[0.3,0.4]

[0.15,0.25]

0 96
[0.2,0.25]

[4,5]

Perfect 
activity-
coverage

(504)

0 360

[0.3,0.4]

[0.15,0.25]

0 96 [0.2,0.25] [4,5]

Orders

Complete 
(2412)

0 1092

0 356 [0.3,0.4]

Perfect
activity-
coverage 

(2412)

0 1092

0 356 [0.3,0.4]

Figure 24. Overview of the parameter choices resulting in the discovery of the models with the top 0.05
fraction of the HM value, once for all discovered models and once for the models with perfect activity-coverage.
For each log, we indicate how often such models have been discovered in our experimentation. Each line
refers to a set of parameter combinations, with the frequency and entropy of the corresponding leaf node in
the decision tree. For each parameter that our decision tree analysis has revealed to be impactful, the possible
values are indicated. Empty cells indicate that the corresponding parameter was insignificant for reaching the
leaf. Leaves which did not include a significant number of positive instances are not included, resulting in a
slight discrepancy between the number of such models discovered and the sum of leaf frequencies.
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event logs but Sepsis. The constant and sigmoid adaption functions usually appear in combination
with certain choices for δ, which makes sense since δ is limiting the range of the adaption strategies,
which include the use of s. Generally, higher values for delta seem to be favored to find good models.

Notably, the artificial tree depth d+ as well as Q≤ seem to have had no major impact on the
discovery of any of the examined models (and therefore do not appear in Figure 24). For the potential
places queue Q≤ this indicates that either the length limit was not reached or no important places were
dropped. For d+ we can conclude that in the scope of our experiments it did not result in significant
complex places being added.

Some dependencies on log features are expected, and seem to be confirmed by the results in
Figure 24. For the RTFM log, which has a few very dominant trace variants, we seem to generally
achieve good results for rather high values of τ . In contrast, for the Sepsis log, which has a high
variety of traces, a low τ -value seems mandatory to achieve high scores. Most likely, the large variety
of fitting places allows for obtaining high precision, while our heuristics seems to successfully ensure
the focus on the main behavioral patterns.

Indeed, the results from the Sepsis log, seem to confirm our algorithms ability to discover the
main behavior hidden in an event log even in the absence of clear main trace variants: for a low value
of τ , e.g. τ = 0.3, the fraction of log traces replayable by the returned Petri net is close to 0.3,
however, the alignment-based fitness reliably remains above 0.9, indicating that most of the traces are
close to being replayable. We can conclude that the returned model successfully expresses the core
behavior of the process.

To summarize, the results clearly show that high-quality models balancing the different quality
aspects can be discovered. There is a significant variance in some of the metrics, particularly precision,
indicating that the settings of the algorithm have a notable impact. Our preliminary investigation shows
that, based on the event log, certain parameter choices are likely to result in high-quality models.
Choosing combined fitness significantly increases the likelihood of the discovered model to contain
all or most of the log activities. Our experimentation and analysis give a first indication about which
parameters have a more notable impact and whether certain settings are more suitable for logs with
certain properties. However, we investigated only four event logs and clearly further experimentation
needs to be performed to explore to which degree a generalization of our results is possible. Note that
the impact of the candidate traversal order has not been investigated yet, and may allow for further
improvements.

7.4. Running time analysis

In general, the worst-case running time of the eST-Miner is exponential in the number of log activities
A, since O((2|A |)2) candidate places may have to be evaluated (compare [21]). However, limiting the
tree depth to a fixed value 2 ≤ k ≤ |A|, as was done in the experiments performed in the context
of this work, can improve the worst-case running time. In the complete candidate tree the depth of a
place coincides with the number of activities connected to that place, i.e., for a place (I|O) at depth
k we have that |I| + |O| = k. The number of candidate places at depth k corresponds to the number
of all possible subsets of A of size k times all possibilities to split them over the sets of ingoing and
outgoing transitions (for simplicity, we omit the insignificant border case of empty sets). For a fixed
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traversal depth of k, in the worst-case we visit all candidates on all levels from 2 to k. Thus, for a fixed
traversal depth k the number of place candidates visited in the complete candidate tree is bounded by

k∑
i=2

((
|A|
i

)
· 2i
)

≤ k ·
((

|A|
k

)
· 2k
)

∈ O(k) · O(|A|k) · O(2k) ⊆ O(|A|k) ( for fixed k)

We conclude that for a fixed traversal depth of k the number of place candidates evaluated in the
worst-case becomes polynomial in the number of activities.

In our experimentation, we chose a fixed tree traversal depth of 5 to make a large-scale experi-
mentation more feasible. We tracked the running times of the various components of the proposed
eST-Miner variant with the goal to verify that our newly introduced place selection subroutine does
not significantly decrease the algorithm’s performance. In Figure 25, a summary of the running times
of the different subroutines is shown on the left. Clearly, the fitness evaluation, i.e., the replay of
the event log on each evaluated place candidate, makes up the bulk of the algorithms running time.
The time needed for removing implicit places varies a lot over the runs (low values of τ tend to re-
sult in more places being inserted and thus more time needed for implicit place removal) but remains
insignificant in most cases. Most importantly, in the context of this work, the time spend on place
selection is even less than the time spend on computing the place candidates (tree traversal), as can be
seen on the right-hand side of Figure 25 (note that the scale is different).

Figure 25. Overview of the running times achieved in our experiments on the left, with a smaller scale visu-
alization of the shorter running times on the right. The newly added place selection subroutine does not add
significantly to the overall running time of the algorithm.

8. Discussion and future work

The algorithm presented in this work is an extension of the eST-Miner. The goal is to provide fitness
guarantees on the returned Petri net and to abstract from infrequent behavioral patterns without cate-
gorically removing infrequent activities while preserving the advantages of the algorithm, such as its
ability to reliably discover complex control-flow structures (e.g. long-term dependencies) and guar-
antee of returning a maximal set of places. The latter are closely related to achieving high precision.
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The algorithmic framework we proposed allows for a lot of flexibility in a variety of components and
only a subset of the possible options has been explored in this work. On the one hand we can imagine
several extensions and refinements of the strategies proposed so far. On the other hand, a strategy to
reduce the load of decision making on the user, such as a recommender system or simplified interface,
becomes more pressing the more complex the extensions to the algorithm grow.

In Section 5, we introduced a new fitness metric usable within the eST-Mining framework with the
goal of avoiding the discovery of places that block infrequent activities. Aggregated fitness does not
allow for any place to restrict an activity more than what is allowed according to the noise threshold,
which guarantees that no activity can be blocked (dead) (if τ > 0). Thus, activities get removed from
the Petri net only if all the traces that contain them happen to be no longer replayable. This strategy
has the intended positive effect, i.e., our evaluation clearly shows that we succeed in the sense that the
models discovered using combined fitness are much more likely to contain all activities from the event
log. However, the decision tree analysis shows that we do not necessarily find the best-scoring models
using combined fitness, in particular with respect to precision. While inclusion of infrequent but well-
defined behavior has been the goal, achieving it results not only in the representation of infrequent
but interesting behavioral patterns by the returned process models, but also activities without a well-
defined control-flow remain part of the discovered model. The eST-Miner framework connects these
activities using the most constraining places allowed, which in the worst-case result in an activity
that is enabled by ▶, may loop, and gets disabled by ■. An example for such structures can be seen
in Figure 21 for the activities LacticAcid, Leucocytes and CRP. Obviously, such structures have a
strong negative impact on precision, even though they seem reasonable in the context of the goals
and constraints. Less constraining fitness metrics allow for more restrictive places to be added, which
may remove such activities or connect them in a more restrictive way, resulting in higher precision
values. Based on the assumption of our user being interested in all activities given in the event log, an
investigation of a suitable adaption of aggregated fitness or a postprocessing step for more restrictive
re-connection of such activities are promising future work. Fitness metrics diverging significantly
from what has been proposed so far may be useful depending on the quality aspects a potential user is
interested in. However, to utilize the performance optimization enabled by the eST-Miners complete
candidate tree, they must satisfy the monotonicity properties discussed in Section 5. Straightforward
relaxations of aggregated fitness such as the average, mean or harmonic mean of the individual fitness
of a place’s transitions do not satisfy this requirement.

Another interesting topic to investigate is the removal of activities that are no longer part of the
replayable event log. In particular, when using combined fitness, this straightforward approach to
guarantee deadlock-freeness of the returned model is unnecessarily strict: the removed activity may
not be the reason for the trace being unfitting and may not be included in a deadlock at all. Future
work includes the investigation of alternative approaches for deadlock detection and prevention that
may keep such activities as part of the model.

We proposed and evaluated several delta adaption strategies. Unfortunately, no reliable conclu-
sions can be drawn from the experiments performed so far. In any case, improvements or variations
of the adaption strategies are likely possible. In fact, there is a multitude of options for delta adaption
functions which do not necessarily need to be based on the parameters of place complexity, but may
incorporate any information available at the place level. Examples include all kinds of relations be-
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tween or constraints on the connected activities, token behavior and/or attributes of related activities
or replayable traces. It would be particularly interesting to investigate to which degree the approach
can be used to prioritize non-standard quality aspects, for example related to user interests such as
compliance or performance.

There is room for improvement concerning the time performance of the algorithm as well. When
an activity is determined to be no longer part of the replayable event log and is therefore removed,
all subtrees in the complete candidate tree including this activity may be cut off without impacting
the returned model. Furthermore, in this work, we apply the standard ILP-based approach to implicit
place removal, which identifies implicit places based on the structure of the Petri net. Unfortunately,
this approach becomes very time-consuming for larger sets of places. The replay-based approach
introduced in [26] is much faster and can identify most implicit places. However, in the standard eST-
Mining framework it does not verify whether all places required to make a currently evaluated place
implicit are indeed present in the net, which is incompatible with the use of combined fitness in the
framework proposed in this work. An adaption of this implicit place removal strategy may contribute
to the overall performance of the proposed eST-Miner variant. Related to performance, we have shown
that the number of candidate places becomes polynomial when limiting the depth of a tree. Tighter
bounds on the degree of the polynomial would be of interest.

Finally, with a working solution to select subsets of fitting places such that high quality models
without dead parts can be discovered, the remaining major limitation of the eST-Miner is its cur-
rent inability to include silent or duplicate transition labels in the discovered Petri nets. With their
added expressiveness, even better results with respect to fitness and, in particular, precision could be
achieved.

9. Conclusion

In this paper, we proposed various extensions to the eST-Miner. We introduced a new fitness metric,
aggregated fitness, investigated its properties and showed that it can be incorporated into the eST-
Mining framework. The goal of this metric is to improve the eST-Miner’s place evaluation to avoid
the discovery of places that prevent infrequent activities from being executed categorically, while
maintaining its ability to abstract from infrequent behavioral patterns. Furthermore, we propose a
framework for place selection with the goal of guaranteeing that the discovered Petri net is free of
deadlocks and satisfies a user-definable minimal fitness constraint. The approach employs heuristics to
efficiently select a suitable subset of the discovered fitting places, while aiming towards high precision
and simplicity. The algorithm is capable of discovering complex control-flow structures such as non-
local dependencies. Furthermore, it is able to abstract from infrequent behavioral patters in the event
log without simply filtering out infrequent activities or trace variants and to provide guarantees without
over- or underfitting.

Our experiments, using four different event logs, clearly show that not only is it possible to dis-
cover high-quality models using the introduced approach, but also the heuristics applied have a signif-
icant impact on the obtained Petri net. Based on the parameter settings, models with a very different
focus with respect to fitness, precision and the handling of infrequent behavior can be discovered.
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Some parameters have a stronger effect than others and some parameter choices seem to be more
suitable for logs with certain properties, which should be verified by further experimentation. A the-
oretical analysis of the running time, as well as an experimental overview of the time needed for the
various subroutines of the algorithm, was presented, followed by a discussion of design decisions,
open questions and future work.

Besides the aspects discussed in detail in Section 8, future work includes further experimentation
to explore the generalization of the presented preliminary results, as well as the impact of the candidate
place traversal order and its interaction with the heuristics used. The dead transitions removed from
the model because they are no longer part of the replayable event log give rise to further possible
extensions of the eST-Miner. When detected early on, they can be used to identify and cut off candidate
subtrees consisting of dead places to improve the running time. Further investigation into the cause of
their removal may lead to better noise handling strategies to improve the quality of discovered models.
Finally, it would be interesting to investigate whether the presented place selection strategies can be
adapted to improve other algorithms as well.
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