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are called strongly (resp. weakly) Gram congruent if their corresponding upper triangular bilinear
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Introduction

An integral quadratic form qpx1, . . . , xnq “
ř

1ďiďjďn qijxixj is an integer homogeneous polynomial

(qij P Z) of degree two on n ě 1 integer variables x1, . . . , xn, more generally considered as a function

q : Zn Ñ Z whose associated map

bq : Z
n ˆ Z

n Ñ Z,

given for (column) vectors x, y P Z
n by bqpx, yq “ qpx`yq ´ qpxq ´ qpyq, is a bilinear form, usually

called polarization of q. The form q is said to be positive (resp. non-negative) if qpxq ą 0 (resp.

qpxq ě 0) for any non-zero vector x P Z
n, that is, whenever the polarization bq is a positive (semi-)

definite form, since qpxq “ 1

2
bqpx, xq for any x in Z

n. Recall that two integral bilinear forms b and

b

1 are called equivalent if there is a Z-invertible matrix B such that b1px, yq “ bpBx,Byq for any

x, y P Z
n.

Integral quadratic forms appear frequently, sometimes implicitly, in Lie theory, in the representa-

tion theory of groups, algebras, posets and bocses, in cluster theory, and in the spectral graph theory

of signed graphs, to mention some examples. Their usefulness, in representation theory alone, which

is our main motivation, has prompted extensive original research for some decades now. For instance:

• In the early stages of the representation theory of associative algebras of finite dimension, after

the work of Gabriel [23]: Bernstein, Gelfand and Ponomarev [9], Ovsienko [49] (see also [21]

and [53]), Dlab and Ringel [17,18], Ringel [53], Bongartz [12,13], de la Peña [50,51], Brüstle,

de la Peña, Skowroński [14].

• Usually in a graphical context, considering arithmetical properties and classification problems

of quadratic forms: Barot [2,3], Barot and de la Peña [6–8] von Höhne [28–30], Dean and de la

Peña [16], Happel [27], Dräxler and de la Peña [19, 20].

• Within Lenzing’s Coxeter formalism of bilinear forms [38]: Lenzing and Reiten [39], Mróz [44,

45], Mróz and de la Peña [46, 47].

• In a graphical context, considering morsifications, Weyl and isotropy groups, certain mesh ge-

ometries of orbits of roots, and classification problems: Simson [57–68], Kosakowska [37],

and Simson and collaborators: Bocian and Felisiak [10, 11], Gąsiorek and Zając [25, 26], Kas-

jan [35, 36], Makuracki and Zyglarski [42, 43], Zając [69, 70].

• Within the context of quasi-Cartan matrices, defined by Barot, Geiss and Zelevinsky in [4] for

the study of cluster algebras: Simson [66], Makuracki and Mróz [40,41] and Perez, Abarca and

Rivera [52].

Let us fix some of the notation and terminology used in the paper. We denote by MnpZq the set of

n ˆ n matrices with integer coefficients. The identity matrix of size n is denoted by Idn, or simply

by Id for adequate size. Recall that M P MnpZq is Z-invertible if and only if detpMq “ ˘1. The

transpose of a matrix M is denoted by M tr, and if M is Z-invertible then M´tr :“ pM´1qtr. Here

all matrices have integer coefficients, and as usual, we identify a m ˆ n matrix M with the linear

transformation M : Zn Ñ Z
m given by x ÞÑ Mx. We denote by ImpMq and KerpMq the column

space of M and the null right space of M , respectively. We say that the matrix K is a kernel matrix
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of M if its columns consists of a basis of KerpMq. The column vector with n entries, all of them

equal to 1, is denoted by 1n, or simply by 1 for appropriate size. For matrices Mt of size m ˆ nt

for t “ 1, . . . , r the m ˆ n matrix with columns those of M1, . . . ,Mr, in that order, is denoted by

rM1,M2, . . . ,Mr´1,Mrs, where n “
řr

t“1
nt. For arbitrary matrices N1, . . . , Nr , take

N1 ‘ N2 ‘ . . . ‘ Nr :“

¨
˚̊
˚̊
˝

N1 0 ¨ ¨ ¨ 0

0 N2 ¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨ Nr

˛
‹‹‹‹‚
.

The canonical basis of Zn is denoted by e1, . . . , en. For a permutation ρ of the set t1, . . . , nu, the

matrix P pρq satisfying P pρqet “ eρptq for t “ 1, . . . , n is called permutation matrix of ρ.

The matrix with integer coefficients G
b

“ rbpei, ejqsni,j“1
is called Gram matrix of an integral

bilinear form b : Zn ˆ Z
n Ñ Z, with respect to the canonical basis of Zn. By symmetric Gram

matrix Gq of an integral quadratic form q we mean the Gram matrix Gq “ G
bq

of the polarization bq

of q (notice that Gq is symmetric and has integer coefficients). We also consider the (unique) bilinear

form q
bq : Z

n ˆZ
n Ñ Z such that qpxq “ q

bqpx, xq for all x P Z
n, and such that its Gram matrix with

respect to the canonical basis of Zn, denoted by qGq, is upper triangular. Note that Gq “ qGq ` qGtr
q .

We say that q is a unit form (or a unitary integral quadratic form) if qpeiq “ 1 for i “ 1, . . . , n. In

that case, qGq is a Z-invertible matrix (since it is upper triangular with all diagonal coefficients equal

to 1), and is called the standard morsification of q in Simson’s terminology [57,61]. Two unit forms

q and q1 are called weakly Gram congruent if their polarizations are equivalent, that is, if there is a

Z-invertible matrix B such that Gq1 “ BtrGqB (or equivalently, q1 “ qB). Similarly, q and q1 are

called strongly Gram congruent if their standard morsifications are equivalent, that is, if there is a

Z-invertible matrix B such that qGq1 “ Btr qGqB. Then we write q „B q1 and q «B q1 for the weak and

strong cases respectively (or simply q „ q1 and q « q1). The weak Gram classification of connected

non-negative unit forms is due to Barot and de la Peña [6] and Simson [62] (see also [70]), in terms

of a unique pair p∆, cq where ∆ is a Dynkin diagram Ar, Ds, Et (for r ě 1, s ě 4 or t P t6, 7, 8u)

and c ě 0 is the corank of the quadratic form q, that is, the rank of the kernel of the symmetric Gram

matrix Gq . Here we deal with the strong Gram classification problem of connected non-negative unit

forms of Dynkin type Ar for r ě 1.

For a unit form q, consider the matrix with integer coefficients Φq “ ´ qGtr
q

qG´1
q , called Coxeter

matrix of q. The characteristic polynomial of Φq, denoted by ϕqpλq, is called Coxeter polynomial

of q. It is well known, and can be easily shown, that if q « q1, then q „ q1 and ϕq “ ϕq1 (cf. [33,

Lemma 4.6]). The validity of the converse of this claim in this, or in partial or equivalent forms, is

a question raised by Simson for at least a decade (see [61]). Here we give a formulation in terms

of non-negative unit forms (see also [34, Problem A]), which correspond to non-negative loop-less

bigraphs as in [61], or to non-negative symmetric quasi-Cartan matrices as in [4]. Generalizations of

these problems may be found, for instance, in terms of Cox-regular bigraphs in [45, Problem 1.3], or

of symmetrizable quasi-Cartan matrices in [66] (see also [61–63]).
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Problem 1 (Simson’s Coxeter Spectral Characterization Question).

If two connected non-negative unit forms are weakly Gram congruent and have the same Coxeter

polynomial, are they strongly Gram congruent?

Problem 2 (Simson’s Strong Gram Classification Problems).

i) Classify all non-negative unit forms up to the strong Gram congruence. This includes (and up

to Problem 1, is exhausted by) the determination of all Coxeter polynomials per weak Gram

congruence class.

ii) Given two non-negative unit forms q and q1 that are strongly Gram congruent, find a Z-invertible

matrix B such that q «B q1.

Solutions to these problems for special classes of quadratic forms are known. For instance, the

positive case was completed recently by Simson [64,67,68] (see further examples and related problems

in [45]). An alternative proof for positive unit forms of Dynkin type Ar was given by the author in [33].

Here we present affirmative solutions to Problems 1 and 2 for connected non-negative unit forms of

Dynkin type Ar (for r ě 1) and arbitrary corank, with the combinatorial methods presented in [32],

and developed to this end in [33, 34].

Recall that two connected non-negative unit forms are weakly Gram congruent if and only if they

have the same Dynkin type and the same corank (see [6] or [70]), or equivalently, the same Dynkin

type and the same number of variables. Simson determined in [62] representatives of the weak Gram

congruence classes of connected non-negative unit forms, the so-called canonical extensions, showing

that any such form having Dynkin type ∆ is weakly Gram congruent to a unique canonical extension

of the unit form q∆, see [62, Theorems 1.12 and 2.12] and [70, Theorem 1.8] (recall that the quadratic

form q∆ associated to a graph ∆ is determined by Gq∆ :“ 2Id ´ Adjp∆q, where Adjp∆q denotes

the symmetric adjacency matrix of ∆). A family of representatives for the corresponding strong

‚ // ‚ ¨¨¨ ‚ // ‚ // ‚ ¨¨¨ ‚ // ‚ ¨¨¨gg

77
gg

¨¨¨ 77
gg

‚ // ‚ // ‚ ¨¨¨ ‚ // ‚ //ii ‚ // ‚ ¨¨¨ ‚ // ‚ // ‚jj

,
/.
/-

2d-arrows

πℓ´1-arrowshkkkkkkkikkkkkkkj πℓ´1-arrowshkkkkkkkikkkkkkkj π2-arrowshkkkkkkkkkkikkkkkkkkkkj π1-arrowshkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

Figure 1. For a partition π “ pπ1, π2, . . . , πℓq of m ě 2, and a non-negative integer d, depiction of the

standard pπ,dq-extension quiver ~Adrπs with m vertices, cycle type π and degree of degeneracy d (see Defini-

tion 1.6). It has n “ m`ℓ`2pd´1q arrows: m´1 arrows in the upper row (going from left to right, numbered

from 1 to m ´ 1), ℓ ´ 1 arrows in the second row (going from right to left, numbered from m to m ` ℓ ´ 2),

and 2d alternating parallel arrows, numbered from m ` ℓ ´ 1 to m ` ℓ ` 2pd ´ 1q. The associated quadratic

form q~Adrπs is called standard pπ,dq-extension of qAm´1
, see (1).
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Gram classes of Dynkin type Ar was proposed in [34, Definition 5.2] (see Figure 1 and 1.3 below).

There they are called standard extensions of the unit form qAr , and here we confirm that they are

representatives of strong Gram congruence in the following classification theorem.

Theorem 1. Every connected non-negative unit form of Dynkin type Ar for r ě 1 is strongly Gram

congruent to a unique standard extension of the unit form qAr .

Alternatively, the following formulation of Theorem 1 answers directly Problem 1.

Theorem 2. Let q and rq be weakly Gram congruent connected non-negative unit forms of Dynkin

type Ar for r ě 1. Then q and rq are strongly Gram congruent if and only if they have the same

Coxeter polynomial.

Using Theorem 2, and the results on Coxeter polynomials of [34] (based on [33, Theorem A]),

we complete the following descriptive theorem of non-negative unit forms of Dynkin type Ar up

to the strong Gram congruence (cf. [34, Problem B]). We need the following general notions. Let

q : Zn Ñ Z be a unit form, with symmetric Gram matrix Gq and Coxeter matrix Φq.

• A partition π of an integer m ě 1, denoted by π $ m, is a non-increasing sequence of positive

integers π “ pπ1, . . . , πℓpπqq such that m “
řℓpπq

t“1
πt. The integer ℓpπq is called the length of

π, and the set of partitions of m is denoted by Ppmq.

• The kernel of Gq in Z
n is called radical of q, denoted by radpqq, and its elements are called

radical vectors of q. The rank of radpqq is called corank of q, and is denoted by corkpqq. The

reduced corank corkrepqq of q is the rank of the kernel of the restriction qrq of q
bq to its radical

(see details in 2.1 below).

• The Coxeter number Cpqq of q is the minimal t ą 0 such that Φt
q “ Id, if such t exists, and

Cpqq :“ 8 otherwise. The reduced Coxeter number Crepqq is the minimal t ą 0 such that

Φt
q ´ Id is a nilpotent matrix (such t always exists if q is non-negative, cf. [55]). The degree

of degeneracy of q is the integer dq ě 0 such that 2dq “ corkpqq ´ corkrepqq, which is a

non-negative even number since it is the rank of a skew-symmetric form (namely, the restriction

qrq of q
bq to the radical radpqq of q, see (13) and further details in 2.1 below).

Theorem 3. Let UQuadc
Apnq denote the set of connected non-negative unit forms in n ě 1 variables

having corank c ě 0 and Dynkin type An´c. Taking m :“ n ´ c ` 1 ě 2, there is a function

ct : UQuadc
Apnq Ñ Ppmq, called the cycle type of a unit form in UQuadc

Apnq, which induces a

bijection,

rUQuadc
Apnq{ «s

ct // Pc
1pmq ,

where Pc
1pmq denotes the set of partitions of m whose length is conditioned by c as follows,

P
c
1pmq :“ tπ $ m | 0 ď c ´ pℓpπq ´ 1q ” 0 mod 2u.

Moreover, if ctpqq “ pπ1, . . . , πℓq for q P UQuadc
Apnq, then the following hold.



22 J.A. Jiménez González / A Strong Gram Classification of Non-negative Unit Forms of Dynkin Type Ar

i) The Coxeter polynomial of q is ϕqpλq “ pλ ´ 1qc´1
śℓ

t“1
pλπt ´ 1q.

ii) The Coxeter number of q is Cpqq “ π1 if ℓ “ 1, and Cpqq “ 8 otherwise.

iii) The reduced Coxeter number of q is Crepqq “ lcmpπq.

iv) The geometric multiplicity of 1 as eigenvalue of Φq is corkpqq “ c.

v) The reduced corank corkrepqq of q is ℓ´ 1, and the algebraic multiplicity of 1 as eigenvalue of

Φq is corkpqq ` corkrepqq.

A solution for the positive and principal cases (coranks zero and one) of Theorem 2, within our

combinatorial framework, was shown in [33, Theorems A and B] by means of certain (admissible)

flations at the level of loop-less quivers. Here we pursue an alternative strategy which we sketch as

follows (see details in Section 4). Let q be a unit form in UQuadc
Apnq. We fix a unique standard

extension ~q such that q „ ~q and ϕq “ ϕ~q (see Definition 3.2 and Remark 1.10 below), and proceed in

three main steps, for which, for a n ˆ n matrix B, we consider the matrix B˚ :“ qG´1

~q Btr qGq.

Step 1. Find a matrix B such that, among other technical conditions (see Definition 3.2paq),

satisfies

~q “ qB, and q “ ~qB˚.

It can be shown that for corank zero or one, the matrix B of Step 1 determines itself a strong Gram

congruence q «B ~q (cf. Lemma 4.12). In general, analyzing how far B is from being a strong Gram

congruence, we arrive to the following correction steps.

Step 2. Find a matrix M such that the matrix B ` M is Z-invertible, and satisfies the same

conditions of Step 1:

~q “ qpB ` Mq, and q “ ~qpB ` Mq˚.

Step 3. Find a matrix C such that rpB ` MqCs˚rpB ` MqCs “ Id.

Clearly, the condition N˚N “ Id for a square matrix N implies that N is Z-invertible and q «N ~q.

The goal of this paper is to constructively exhibit the existence of matrices B, M and C . A solution to

Step 1 is given in Section 1, using the specific structure of standard extensions, see Proposition1.14.

Steps 2 and 3 are simple correction algorithms that work in a much general context (see Remark 4.9).

However, their justification is long and technical at some points, and requires a special condition that

can be easily verified for standard extension (see Lemma 2.8 and Corollary 4.8). Steps 2 and 3 are

shown in Sections 2 and 3, see Propositions 2.10 and 3.8 and their implementable formulations as

Algorithms 3 and 4, respectively. The proofs to our main theorems, comments on generalizations and

suggestions for an implementation are collected in Section 4.

1. A combinatorial realization

In this section we summarize the needed combinatorial notions and results introduced in [32] and

developed in [33, 34] for the Coxeter analysis of non-negative unit forms of Dynkin type Ar, namely,

structural walks, incidence vectors, the inverse of a quiver and standard quivers.
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1.1. Basic notions

Let Q “ pQ0, Q1, s, tq be a quiver, that is, Q0 and Q1 are finite sets (whose elements are called

vertices and arrows of Q, respectively), and s, t : Q1 Ñ Q0 are functions assigning to each arrow

i of Q a source vertex spiq P Q0 and a target vertex tpiq P Q0. Throughout the paper we assume

that both sets Q0 and Q1 are totally ordered (see Remark 1.1 below). Moreover, taking m “ |Q0| and

n “ |Q1| we usually identify the set of vertices Q0 with the set t1, . . . ,mu, and the set of arrows Q1

with the set t1, . . . , nu. The m ˆ n incidence matrix IpQq of Q has as i-th column the difference

espiq´etpiq P Z
m. The symmetric Gram matrix of Q is defined by GQ “ IpQqtrIpQq, and its upper

triangular Gram matrix qGQ is the unique upper triangular matrix satisfying qGQ` qGtr

Q “ GQ. Notice

that if Q has no loop, then qGQ is Z-invertible, and that if Q is connected then KerIpQqtr is generated

by the single vector 1m (see [34, Theorem 3.3piiq]).

The integral quadratic form qQ associated to a quiver Q with m vertices and n arrows, as

defined in [32], is given by

qQpxq “
1

2
||IpQqx||2, for x P Z

n, (1)

where ||y||2 :“ ytry denotes the squared Euclidean norm of a vector y P Z
m. By definition, we have

GqQ “ GQ, which implies that qGqQ “ qGQ.

Remark 1.1. Let Q be a connected loop-less quiver. For any permutation ρ of the set of vertices Q0,

denote by ρ ¨ Q “ pQ0, Q1,rs,rtq the quiver obtained from Q by permuting its vertices via ρ (that is,

rspiq “ ρpspiqq and rtpiq “ ρptpiqq for any arrow i P Q1). Denote by Qop “ pQ0, Q1, s
op, topq the

quiver obtained from Q by reversing the orientation of all of its arrows (that is, sop “ t and top “ s).

i) Then Ipρ ¨ Qq “ P pρqIpQq and IpQopq “ p´1qIpQq.

ii) We have qQ “ qρ¨Q “ qρ¨Qop , and consequently qGQ “ qGρ¨Q “ qQρ¨Qop .

Proof:

Observe that if i P Q1, then

Ipρ ¨ Qqei “ erspiq ´ ertpiq “ eρspiq ´ eρtpiq

“ P pρqpespiq ´ etppiqqq “ P pρqIpQqei,

and

IpQopqei “ esoppiq ´ etoppiq “ p´1qpespiq ´ etpiqq “ p´1qIpQq.

Then piq holds. The claim on quadratic forms in piiq follows from piq and (1), since

qQpxq “
1

2
||IpQqx||2 “

1

2
||P pρqIpQqx||2 “

1

2
||p´1qP pρqIpQqx||2 .

The claim on standard morsifications is clear from the first part of piiq. [\

In the following result we interpret the weak and strong Gram congruences within this combina-

torial realization (compare with [34, Lemma 6.1]).



24 J.A. Jiménez González / A Strong Gram Classification of Non-negative Unit Forms of Dynkin Type Ar

Theorem 1.2. If Q is a connected loop-less quiver with m vertices and n arrows, then qQ is a con-

nected non-negative unit form of Dynkin type Am´1 and corank c “ n ´ m ` 1. Moreover, if q is a

connected non-negative unit form in n ě 1 variables, with Dynkin type Am´1 for m ě 2 and corank

c ě 0, then there is a connected loop-less quiver Q with n arrows and m “ n ´ c ` 1 vertices such

that q “ qQ. Assuming that rQ is also a connected loop-less quiver:

i) We have qQ “ q rQ if and only if there is a permutation matrix P and a sign ǫ P t˘1u such that

Ip rQq “ ǫPIpQq.

ii) We have qQ „ q rQ if and only if p|Q0|, |Q1|q “ p| rQ0|, | rQ1|q, which holds if and only if there

is a permutation matrix P , a sign ǫ P t˘1u and a Z-invertible matrix B satisfying Ip rQq “
ǫPIpQqB.

iii) We have qQ « q rQ if and only if there is a permutation matrix P , a sign ǫ P t˘1u and a

(Z-invertible) matrix B satisfying Ip rQq “ ǫPIpQqB and qG rQ “ Btr qGQB.

Proof:

The main claim follows from [32, Theorem 5.5], see also [33, Proposition 3.15 and Corollary 3.6].

The existence of P and ǫ in claim piq follows from [32, Corollary 7.3], see [34, Lemma 6.1piq] and

Remark 1.1piq. The converse follows from Remark 1.1piiq above.

To show piiq, recall first that two non-negative connected unit forms are weakly Gram congruent

if and only if they have the same Dynkin type and same corank (see the main corollary in [6]), or

equivalently, the same number of variables and the same Dynkin type. By the main part of the theorem,

qQ is a connected unit form on |Q1| variables and Dynkin type A|Q0|´1. This shows that qQ „ q rQ
if and only if p|Q0|, |Q1|q “ p| rQ0|, | rQ1|q. For the second equivalence in piiq, it was shown in [34,

Lemma 6.1piiq] that if qQ „ q rQ, then there is a permutation matrix P , a sign ǫ P t˘1u and a Z-

invertible matrix B satisfying Ip rQq “ ǫPIpQqB (note that the sign ǫ might be “included” in matrix

B, as in [34, Lemma 6.1piiq]). The converse is clear, since ǫ2 “ 1 and P trP “ Id, and therefore

Gq rQ
“ G rQ “ Ip rQqtrIp rQq “ rǫPIpQqBstrrǫPIpQqBs “ BtrIpQqtrIpQqB “ BtrGqQB.

Similarly, the necessity in claim piiiq was shown in [34, Lemma 6.1piiiq], and the sufficiency is clear

from definition. [\

Based on Theorem 1.2, we propose two characterizations of strong Gram congruence between

quadratic forms associated to connected loop-less quivers in Theorem 4.1 below. The proof and hints

for its implementation, which will take the rest of the paper to complete, depend on the following

matrices (cf. [34, Theorem 3.3]). If Q has m vertices and n arrows, take

ΦQ :“ Idn ´ IpQqtrIpQq qG´1

Q and ΛQ :“ Idm ´ IpQq qG´1

Q IpQqtr. (2)

These are called the Coxeter-Gram matrix of Q and the Coxeter-Laplacian of Q, respectively. Basic

properties of ΦQ and ΛQ, and their relation with the Coxeter matrix ΦqQ of qQ, are collected in the

following observation.
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Remark 1.3. Let Q be a connected loop-less quiver with n arrows and m vertices, and with incidence

matrix IpQq. Then,

a) ΦQ “ ΦqQ .

b) ΛQ is a permutation matrix.

c) ϕqQpλq “ pλ ´ 1qn´mpΛQ
pλq, where pΛQ

pλq denotes the characteristic polynomial of ΛQ.

d) Λtr

Q IpQq “ IpQqΦtr

Q .

e) ΛQIpQq “ IpQqΦ´tr

Q .

Proof:

Claims pa, b, cq were shown in [34, Theorem 3.3 and Corollary 4.3]. Claim pdq is clear, since

Λtr

Q IpQq “ IpQq ´ IpQqrIpQq qG´1

Q strIpQq “ IpQqΦtr

Q .

Claim peq follows from pbq and pdq, since

ΛQIpQq “ ΛQrIpQqΦtr

Q sΦ´tr

Q “ ΛQΛ
tr

Q IpQqΦ´tr

Q “ IpQqΦ´tr

Q .
[\

Loosely speaking, due to Remark 1.3pbq and pd, eq, the (inverse transpose) Coxeter-Gram matrix

acts on the columns of the incidence matrix IpQq, and such action is recorded in the Coxeter-Laplacian

ΛQ of Q.

1.2. Walks and incidence vectors

By walk of a quiver Q we mean an alternating sequence of vertices and arrows of Q,

w “ pv0, i1, v1, i2, v2, . . . , vℓ´1, iℓ, vℓq,

starting with a vertex spwq :“ v0 called the source of w, and ending with a vertex tpwq :“ vℓ called

the target of w, and satisfying tspitq, tpitqu “ tvt´1, vtu for t “ 1, . . . , ℓ. The integer ℓpwq :“ ℓ ě 0

is the length of w, and if ℓpwq “ 0 (that is, if w “ pv0q), then w is called a trivial walk. A walk w

in Q of length ℓpwq “ 1 has either the shape w “ pspiq, i, tpiqq or w “ ptpiq, i, spiqq for an arrow

i P Q1. In the first case we use the notation w “ i`1, and in the second w “ i´1. Viewing an arbitrary

walk w of positive length as concatenation of walks of length one, we use the notation

w “ iǫ1
1
iǫ2
2

¨ ¨ ¨ iǫℓℓ , with ǫt P t˘1u, for t “ 1, . . . , ℓ,

where tpiǫtt q “ spi
ǫt`1

t`1
q for t “ 1 . . . , ℓ´1. A walk w as above is called minimally descending, if for

t “ 1, . . . , ℓ ´ 1 the difference it ´ it`1 is positive and it is the minimal positive difference possible,

that is,

it ´ it`1 “ min
j

tit ´ j | pit ´ jq ą 0 and iǫtt j is a walk in Qu.
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A minimally descending walk w is called a (descending) structural walk, if whenever a concatena-

tion of the form w1ww2 is minimally descending, then both w1 and w2 are trivial walks. Such walks

are determined by their sources (or targets), and we will use the notation α´
Qpvq for the structural walk

having vertex v as source. Take ξ´
Q : Q0 Ñ Q0 given by

ξ´
Qpvq :“ tpα´

Qpvqq. (3)

The definitions of minimally ascending walk and (ascending) structural walk are analogous, and

so are the notions of α`
Qpvq and ξ`

Q . It can be easily shown that ξ´
Q and ξ`

Q are inverse to each other,

since

α`
Qpξ´

Qpvqq “ α´
Qpvq´1, (4)

where w´1 denotes the reverse of walk w (see [34, Lemma 3.1]). The mapping ξ´
Q is referred to as

permutation of vertices of the quiver Q determined by the ordering of its arrows. The cycle type of

Q is given by the sequence

ctpQq “ pπ1, . . . , πℓq, (5)

where π1 ě π2 ě . . . , πℓ ą 0 are the cardinalities of the ξ´
Q-orbits on Q0. Then ctpQq is a partition

of |Q0| “ m, and we take ctpqQq :“ ctpQq, which is well-defined by Theorem 1.2piq. We stress that

the cycle type ctpQq depends on the numbering of the arrows in Q, see Example 2.5 below. For a

walk w “ iǫ1
1
iǫ2
2

¨ ¨ ¨ iǫℓℓ of Q, define the incidence vector incpwq P Z
n of w as

incpwq “
ℓÿ

t“1

ǫteit . (6)

The following simple identity is fundamental for our analysis (cf. [34, Remark 3.2]),

IpQqincpwq “ espwq ´ etpwq. (7)

By (1), it implies that qpincpwqq P t0, 1u (that is, incpwq is a t0, 1u-root of qQ) for any walk w of

Q, and the converse also holds (cf. [32, Lemma 6.1]). Consequently, t0, 1u-roots of qQ can be treated

combinatorially via the walks of quiver Q. This also implies that IpQq qG´1

Q is also the incidence matrix

of a quiver, called the (standard) inverse of Q and denoted by Q:. In [34] we take a constructive route,

and derive Q: (denoted by Q´1 in [33] and [34]) directly from the structural walks of Q, as follows.

For every arrow i in Q, there are exactly two descending structural walks containing arrow i, one in

the positive direction i`1, and the other one in the opposite direction i´1. Denote them respectively by

α´
Qpvq and α´

Qpwq for some vertices v and w, and define t:piq :“ tpα´
Qpvqq and s:piq :“ tpα´

Qpwqq.

In [33, Proposition 4.4 and Corollary 4.5] we show that Q: “ pQ0, Q1, s
:, t:q is also a connected

loop-less quiver, satisfying

IpQ:q “ IpQq qG´1

Q . (8)

This approach is useful for several reasons. Among others, the results of [34] depend on the following

facts.
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Lemma 1.4. Let Q be a connected loop-less quiver with m ě 2 vertices and n ě 1 arrows. Consider

the structural walks α˘
Qpvq of Q (for v P Q0), and take a˘

v “ incpα˘
Qpvqq.

i) For any v P Q0 we have ´a´
v “ a`

ξ´
Q

pvq
.

ii) If Q: is the inverse quiver of Q, then IpQ:qtr “ ra`
1
, a`

2
, ¨ ¨ ¨ , a`

m´1
, a`

ms.

iii) We have
řm

v“1
a´
v “ 0 “

řm
v“1

a`
v .

Proof:

Claim piq was shown in [34, Remark 2.1], since ξ´
Qpvq “ tpα´

Qpvqq. Claim piiq was shown in [34,

Lemma 2.3]. Since IpQqei “ espiq ´etpiq, then 1trmIpQq “ 0 for any quiver Q, that is, IpQqtr1m “ 0.

By piiq, this implies that
řm

v“1
a`
v “ 0, and using piq we get

řm
v“1

a´
v “ 0. This shows piiiq. [\

Combining equations (7), (8) and Lemma 1.4piiq, with a straightforward calculation we get the

following combinatorial expression for the Coxeter-Laplacian ΛQ of Q,

ΛQ “ P pξ´
Qq, (9)

see details in [34, Theorem 3.3]. Some basic notions and result will be illustrated with a couple of

running examples.

Example 1.5. Consider the following integral quadratic forms q1, q0 on four variables:

q1px1, x2, x3, x4q “ x1px1 ´ x2 ´ x3 ` 2x4q ` x2px2 ´ x3 ´ x4q ` x3px3 ´ x4q ` x4px4q,

q0px1, x2, x3, x4q “ x1px1 ´ x2 ` 2x3 ´ x4q ` x2px2 ´ x3 ´ x4q ` x3px3 ´ x4q ` x4px4q,

with corresponding standard morsifications given by the upper triangular matrices

qGq1 “

¨
˚̊
˚̊
˝

1 p1 p1 2

0 1 p1 p1
0 0 1 p1
0 0 0 1

˛
‹‹‹‹‚

and qGq0 “

¨
˚̊
˚̊
˝

1 p1 2 p1
0 1 p1 p1
0 0 1 p1
0 0 0 1

˛
‹‹‹‹‚

Consider also the following (connected, loop-less) quivers with corresponding incidence matrices,

Q1 “ ‚1

3

��

‚3
1

oo
4oo

‚2

2

>>⑥⑥⑥⑥⑥⑥⑥⑥

IpQ1q “
ˆ p1 0 1 p1

0 1 p1 0

1 p1 0 1

˙
Q0 “ ‚1

4

��

‚3
1

oo
3oo

‚2

2

>>⑥⑥⑥⑥⑥⑥⑥⑥

IpQ0q “
ˆ p1 0 p1 1

0 1 0 p1
1 p1 1 0

˙

A direct calculation shows that qi “ qQi for i “ 1, 0. By Theorem 1.2, the quadratic forms qi are

connected non-negative unit forms of Dynkin type A2 and corank 2, satisfying q1 „ q0 (indeed, if
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σ3,4 is the transposition of 3 and 4 in t1, 2, 3, 4u then q1 „P p0σ3,4q q0). The corresponding inverse

quivers (8) are given as follows,

pQ1q: “ ‚1 ‚3
1oo

3

oo

‚2

4

OO

2

OO IppQ1q:q “
´ p1 p1 p1 p1

0 1 0 1
1 0 1 0

¯
pQ0q: “ ‚1 ‚3

1oo

‚2

4

OO

2

OO

3

>>⑥⑥⑥⑥⑥⑥⑥⑥

IppQ0q:q “
ˆ

p1 p1 0 p1
0 1 1 1

1 0 p1 0

˙
.

1.3. Standard quivers

For any partition π “ pπ1, . . . , πℓq of an integer m ě 2, and any non-negative integer d, consider the

connected loop-less quivers ~Adrπs and ~Sdrπs with m vertices and n “ m ` ℓ ` 2pd ´ 1q arrows,

given as follows (see [34, Definition 5.2] and Figure 1 above).

Definition 1.6. Fix m ě 2, a partition π “ pπ1, . . . , πℓq of m and an integer d ě 0. Take vt :“
m ´ pπ1 ` . . . ` πtq for t “ 0, . . . , ℓ.

i) Let ~Am be the quiver with m vertices p~Amq0 “ t1, . . . ,mu and m ´ 1 arrows p~Amq1 “
ti1, . . . , im´1u such that spitq “ t and tpitq “ t ` 1 for t “ 1, . . . ,m ´ 1. Then the quiver
~Admrπs “ ~Adrπs is obtained from ~Am by adding ℓ ´ 1 ` 2d arrows j1, . . . , jℓ´1, k1, . . . , k2d
in the following way. Define spjtq :“ vt´1 and tpjtq :“ vt for t “ 1, . . . , ℓ ´ 1. More-

over, taking α :“ im´1 if ℓ “ 1, and α :“ jℓ´1 if ℓ ą 1, define spktq :“ spαǫtq and

tpktq :“ tpαǫtq for t “ 1, . . . , 2d, where ǫt “ p´1qt. The set of vertices p~Amq0 has the

natural order 1 ă 2 ă . . . ă m, and the set of arrows p~Amq1 is ordered as follows: i1 ă i2 ă
. . . ă im´1 ă j1 ă . . . ă jℓ´1 ă k1 ă . . . ă k2d.

ii) Let ~Sm be the quiver with m vertices p~Smq0 “ t1, . . . ,mu and m ´ 1 arrows p~Smq1 “
ti1, . . . , im´1u such that spitq “ 1 and tpitq “ t ` 1 for t “ 1, . . . ,m ´ 1. Then the quiver
~Sdmrπs “ ~Sdrπs is obtained from ~Sm by adding ℓ ´ 1 ` 2d arrows j1, . . . , jℓ´1, k1, . . . , k2d in

the following way. Define spjtq :“ 1 and tpjtq :“ vt ` 1 for t “ 1, . . . , ℓ´ 1. Moreover, taking

α :“ im´1 if ℓ “ 1 and α :“ jℓ´1 if ℓ ą 1, define spktq :“ spαq “ 1 and tpktq :“ tpαq for

t “ 1, . . . , 2d. As before, the set of vertices p~Smq0 has the natural order 1 ă 2 ă . . . ă m, and

the set of arrows p~Smq1 is ordered as follows: i1 ă i2 ă . . . ă im´1 ă j1 ă . . . ă jℓ´1 ă
k1 ă . . . ă k2d.

The quiver ~Q “ ~Admrπs “ ~Adrπs constructed in piq is called standard pπ,dq-extension quiver

of cycle type π and degeneracy degree d (see Corollary 2.7), or simply standard quiver. The cor-

responding quadratic form q ~Q is referred to as standard pπ,dq-extension of the unit form qAm´1
, or

simply as standard extension of qAm´1
. The quiver ~Sdmrπs “ ~Sdrπs constructed in piiq is the inverse

of ~Q (see [34, Remark 5.3]).

Since we fixed linear orders on the sets of vertices and the set of arrows of ~Adrπs and ~Sdrπs, these

quivers fix incidence matrices, given explicitly in Remark 1.12 below.
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Corollary 1.7. For any partition π of m ě 2 and any non-negative integer d, the quadratic forms q ~Q

for ~Q P t~Adrπs, ~Sdrπsu are non-negative unit forms of Dynkin type Am´1 and corank ℓpπq ` d ´ 1.

Proof:

Apply Theorem 1.2. [\

In the following technical observation we show that the cycle type of q ~Q for a standard quiver

~Q “ ~Adrπs is precisely π. One of its consequences, Corollary 1.9 below, is used implicitly in the

proof of [34, Theorem 6.3].

Remark 1.8. Let ~Q “ ~Adrπs be the standard pπ,dq-extension quiver for a partition π of m ě 2

and d ě 0. Recall from Definition 1.6 that the number of vertices (resp. arrows) of ~Q is m (resp.

n “ m ` ℓpπq ` 2pd ´ 1q).

a) Consider the permutation of vertices ξ :“ ξ´
~Q

determined by ~Q, take π “ pπ1, . . . , πℓq and

vt :“ m ´ pπ1 ` . . . ` πtq for t “ 0, . . . , ℓ. Then

ξpvq “

#
v ` 1, if v R tv0, v1, . . . , vℓ´2, vℓ´1u,

vt`1 ` 1, if v “ vt for some t P t0, . . . , ℓ ´ 1u.

b) The cycle type of q ~Q is π.

Proof:

By definition (3), we have ξpvq “ tpα´
~Q

pvqq.

Assume first that d “ 0. Denote by iv the unique arrow in ~Q with spivq “ v and tpivq “ v ` 1,

and by jt the unique arrow in ~Q with spjtq “ vt´1 and tpjtq “ vt for t “ 1, . . . , ℓ ´ 1 (these are all

the arrows of ~Q, since d “ 0). Then a direct calculation shows that if v R tv0, v1, . . . , vℓ´1u, then

α´
~Q

pvq “ i`1
v , and therefore ξpvq “ tpivq “ v ` 1. Now, if v “ vt for some t P t0, 1, . . . , ℓ´ 2u, then

α´
~Q

pvq “ j`1

t`1
i`1
vt`1

, and therefore ξpvtq “ tpivt`1
q “ vt`1 ` 1. Moreover, if v “ vℓ´1, then

α´
~Q

pvq “ j´1

ℓ´1
j´1

ℓ´2
¨ ¨ ¨ j´1

1
i´1

m´1
i´1

m´2
¨ ¨ ¨ i´1

2
i´1

1
.

In particular, ξpvℓq “ tpi´1

1
q “ spi1q “ 1 “ vℓ ` 1. This shows paq for d ě 0, since ξ is unchanged

by adding pairs of (anti-) parallel arrows (see [34, Remark 5.1]).

To show pbq, recall that ctpQq is defined as the sequence of cardinalities of the ξ-orbits on ~Q0,

ordered non-increasingly (5), which equals π by paq. [\

Corollary 1.9. Let π and π1 be partitions of m ě 2 and m1 ě 2 respectively, and take d,d1 ě 0.

a) We have q~Admrπs
„ q~Ad1

m1 rπ1s
if and only if pm, ℓpπq ` 2dq “ pm1, ℓpπ1q ` 2d1q.

b) The following conditions are equivalent:
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b1) pπ,dq “ pπ1,d1q.

b2) ~Admrπs “ ~Ad
1

m1rπ1s.

b3) q~Admrπs
“ q~Ad1

m1 rπ1s
.

b4) q~Admrπs
« q~Ad1

m1 rπ1s

Proof:

Take ~Q “ ~Admrπs and ~Q1 “ ~Ad
1

m1rπ1s, and recall that | ~Q0| “ m and | ~Q1| “ m ` ℓpπq ` 2pd ´ 1q

(and similarly, | ~Q1
0
| “ m1 and | ~Q1

1
| “ m1 ` ℓpπ1q ` 2pd1 ´ 1q, see Definition 1.6). Then paq holds,

since q ~Q „ q ~Q1 if and only if p| ~Q0|, | ~Q1|q “ p| ~Q1
0
|, | ~Q1

1
|q by Theorem 1.2piiq, since both ~Q and ~Q1 are

loop-less and connected quivers.

To show pbq, observe that pb1q implies pb2q by Defnition 1.6, and that evidently pb4q follows

from pb3q, which follows from pb2q. To complete the proof assume that pb4q holds. In particular,

q ~Q „ q ~Q1 , and by paq we have m “ m1 and ℓpπq ` 2d “ ℓpπ1q ` 2d1. Moreover, ctpq ~Qq “ ctpq ~Q1q

by [34, Theorem 6.3], and by Remark 1.8 we have π “ ctp ~Qq “ ctp ~Q1q “ π1. Then ℓpπq “ ℓpπ1q,

which shows that pπ,dq “ pπ1,d1q, that is, pb1q holds. [\

Similar claims, not needed for our discussion, hold for the inverse quivers ~Sdrπs. In the following

result, the mentioned non-negative integer d is the so-called degree of degeneracy of qQ, cf. 2.1 and

Corollaries 2.6, 2.7 below.

Remark 1.10. Let Q be a connected loop-less quiver. Then there is a unique standard quiver ~Q with

the same number of vertices and arrows as Q such that ctp~Qq “ ctpQq, namely, ~Q “ ~AdrctpQqs for

some integer d ą 0. Moreover, in this case there is a permutation ρ of Q0 such that Λρ¨Q “ Λ ~Q
.

Proof:

Take π “ ctpQq and ℓ “ ℓpπq. Recall that if n “ |Q1| and m “ |Q0| then the corank of qQ is given

by c “ n ´ pm ´ 1q (see Theorem 1.2). Since π P Pc
1
pmq by [34, Proposition 4.5], then there is a

non-negative integer d such that 2d “ c ´ pℓ ´ 1q “ n ´ pm ´ 1q ´ pℓ ´ 1q. Take ~Q “ ~Adrπs.
Since π is a partition of m, the standard quiver ~Q has m vertices, and by Definition 1.6 it also has

m ` ℓ ` 2pd ´ 1q “ n arrows. By Remark 1.8, ctp ~Qq “ π “ ctpQq. The uniqueness of ~Q follows

from Corollary 1.9pbq.

To show the existence of such permutation ρ, recall from Remark 1.3pbq that there are permu-

tations ξ and ~ξ of the sets Q0 and ~Q0 such that ΛQ “ P pξq and Λ ~Q
“ P p~ξq, and therefore

ctpξq “ ctpQq “ ctp ~Qq “ ctp~ξq, cf. (5). By Lemma 4.3, ξ and ~ξ are conjugate permutations,

that is, there is a permutation ρ such that ~ξ “ ρξρ´1, or matricially,

Λ ~Q
“ P p~ξq “ P pρqP pξqP pρ´1q “ P pρqΛQP pρ´1q.

Using Remark 1.1pi, iiq and the definition of Coxeter-Laplacian (2), we conclude that

Λρ¨Q “ Idm ´ Ipρ ¨ Qq qGρ¨QIpρ ¨ Qqtr “ Idm ´ P pρqIpQq qGQIpQqtrP pρqtr

“ P pρqrIdm ´ IpQq qGQIpQqtrsP pρ´1q “ P pρqΛQP pρ´1q “ Λ ~Q
. [\
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Example 1.11. The Coxeter-Laplacians ΛQi of the quivers Q1 and Q0 of Example 1.5 are given by

ΛQ1 “

¨
˚̋
0 0 1

1 0 0

0 1 0

˛
‹‚ and ΛQ0 “

¨
˚̋
1 0 0

0 1 0

0 0 1

˛
‹‚,

see (2). In particular, the cycle types of the quadratic forms qi are ctpq1q “ p3q and ctpq0q “ p1, 1, 1q,

cf. (5) and (9). The standard quivers associated to Q1 and Q0, as in Remark 1.10, are given as follows,

~Q1 “ ‚1
1 // ‚2

2 //
hh 3

4

66

‚3 Ip ~Q1q “
ˆ

1 0 0 0
p1 1 p1 1

0 p1 1 p1

˙
~Q0 “ ‚1

1 // ‚2
2 //

hh
34

hh
‚3 Ip ~Q0q “

ˆ
1 0 0 p1
p1 1 p1 1

0 p1 1 0

˙

Note that ΛQi “ Λ ~Qi for i “ 1, 0. The corresponding inverse quivers (8) are given by

p ~Q1q: “ ‚2

‚1

1
99ssssss 2 //

3 44

4

44
‚3

Ipp ~Q1q:q “
ˆ

1 1 1 1
p1 0 0 0

0 p1 p1 p1

˙
p~Q0q: “ ‚2

‚1

1

>>⑥⑥⑥⑥⑥⑥⑥⑥ 2 //
3 44

4

55

‚3

Ipp ~Q0q:q “
ˆ

1 1 1 1
p1 0 0 p1
0 p1 p1 0

˙

It will be convenient to have explicit formulas for the incidence matrices of the standard quivers

and their inverses. The proof of the following remark is clear from Definition 1.6.

Remark 1.12. Take a partition π “ pπ1, . . . , πℓq of m ě 2, an integer d ě 0, and denote by ~Q the

standard quiver ~Adrπs. Take n “ m´1`2d`pℓ´1q and vt :“ m´pπ1 ` . . .`πtq for t “ 0, . . . , ℓ.

a) If ℓ “ 1, then n “ m ´ 1 ` 2d. Taking x :“ em´1 ´ em we have

Ip ~Qq “ rIp~Amq,´x, x, ¨ ¨ ¨ ,´x, xlooooooooomooooooooon
2d columns

s.

If ℓ ą 1, taking xt :“ evt´1
´ evt for t “ 1, . . . , ℓ ´ 1 we have

Ip ~Qq “ rIp~Amq, x1, x2, ¨ ¨ ¨ , xℓ´1,´xℓ´1, xℓ´1, ¨ ¨ ¨ ,´xℓ´1, xℓ´1loooooooooooooooooomoooooooooooooooooon
2d columns

s.

b) If ℓ “ 1, for v P t1, . . . ,mu we have

Ip ~Q:qtrev “

$
’&
’%

1n, if v “ 1,

´ev´1, if 1 ă v ă m,

´em´1 ´
řn

j“m ej, if v “ m.

If ℓ ą 1, take zt :“ evt ` em´1`t for t “ 1, . . . , ℓ ´ 1. For v P t1, . . . ,mu we have

Ip ~Q:qtrev “

$
’’’’&
’’’’%

1n, if v “ 1,

´ev´1, if v R tvt ` 1ut“1,...,ℓ,

´zt, if v “ vt ` 1 for some t “ 1, . . . , ℓ ´ 2,

´zℓ´1 ´
řn

j“m`ℓ´1
ej, if v “ vℓ´1 ` 1.
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For instance, the standard quivers include all (inverse) generalized Kronecker quivers, as indicated

in the following useful observation.

Remark 1.13. For n ě 1, consider the (generalized) Kronecker quiver Kn with two vertices and n

arrows in the same direction,

Kn “ ‚

1 //
2 //

¨¨¨
n´1 //
n //

‚ ; K
:
2n1 “ ‚

1 //
oo 2

¨¨¨
2n1´1 //
oo 2n

1

‚ ; K
:
2n1`1

“ ‚

1 //
oo 2

¨¨¨

oo 2n
1

2n1`1 //

‚ .

Observe that if n is even (n “ 2n1 for n1 ą 0) then Kn “ ~Sn
1´1rp1, 1qs and its inverse is given by

K
:
n “ ~An1´1rp1, 1qs. On the other hand, if n is odd (n “ 2n1 ` 1 for n1 ě 0) then Kn “ ~Sn

1
rp2qs and

its inverse is given by K
:
n “ ~An1

rp2qs. Moreover, assume that n “ 2d ` 1 for some integer d ě 1.

a) Take bt “ et ` et`1 P Z
n and b1

t “ ´et ` et`1 P Z
n for t “ 1, . . . , 2d. Then the set

tb1, . . . b2du is a basis of the kernel of IpK:
nq, and for 1 ď t, t1 ď n we have

btrt b1
t1 “

$
’&
’%

1, if t1 “ t ´ 1,

´1, if t1 “ t ` 1,

0, otherwise.

b) Take ct “ p´1qbt P Z
n if t P t1, . . . , 2du is even, and c2u`1 “

řu
r“0

b2r`1 P Z
n if t “

2u ` 1 P t1, . . . , 2du is odd, and let K “ rc1, . . . , c2ds be the n ˆ 2d matrix with columns the

vectors c1, . . . , c2d. Then K is a kernel matrix for IpK:
nq, and

Ktr qG
K

:
n
K “ W1 ‘ . . . ‘ W1loooooooomoooooooon

d times

, where W1 “

˜
0 1

´1 0

¸
.

Proof:

The shape of the corresponding standard quiver ~An1´1rp1, 1qs and ~An1
rp2qs is clear from definition.

That they are the inverse of the Kronecker quiver Kn (for n “ 2n1 and n “ 2n1 ` 1 respectively),

follows from [34, Remark 5.3].

Claim paq is straightforward. In particular, the matrix K of the point pbq is a kernel matrix of

IpK:
nq. Observe that the p2d ` 1q ˆ p2d ` 1q matrix qG

K
:
n

is given by

qG
K

:
n

“

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

1 p2 2 p2 2 ¨ ¨ ¨ 2

0 1 p2 2 p2 ¨ ¨ ¨ p2
0 0 1 p2 2 ¨ ¨ ¨ 2

0 0 0 1 p2 ¨ ¨ ¨ p2
0 0 0 0 1 ¨ ¨ ¨ 2
...

...
...

...
...

. . .
...

0 0 0 0 0 ¨ ¨ ¨ 1

˛
‹‹‹‹‹‹‹‹‹‹‹‹‚

,
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where p2 :“ ´2, and that b1
t “ qG

K
:
n
bt for t “ 1, . . . , 2d. Then, for 1 ď t, t1 ď n we have

ctrt
qG
K

:
n
ct1 “

$
’&
’%

1, if t is odd and t1 “ t ` 1,

´1, if t is even and t1 “ t ´ 1,

0, otherwise.

(10)

Indeed, if both t and t1 are even, then by the definition ct “ p´1qbt and using paq, we get ctrt
qG
K

:
n
ct1 “

0. A similarly claim holds if both t and t1 are odd. Assume that t is even and t1 is odd. Using paq we

get

ctrt
qG
K

:
n
ct1 “ p´1qbtrt pb1

1 ` b1
3 ` . . . ` b1

t1 q “

$
’&
’%

p´1qbtrt b1
t´1 ` p´1qbtrt b1

t`1 “ 0, if t ă t1,

p´1qbtrt b1
t´1 “ ´1, if t1 “ t ´ 1,

0, otherwise.

Similarly, if t is odd and t1 is even, then

ctrt
qG
K

:
n
ct1 “ pb1 ` b3 ` . . . ` btq

trp´1qb1
t1 “

$
’&
’%

btrt1´1
p´1qb1

t1 ` btrt1`1
p´1qb1

t1 “ 0, if t ą t1,

btrt p´1qb1
t`1 “ 1, if t1 “ t ` 1,

0, otherwise.

These identities show equation (10), which is a coefficientwise expression of the direct sum of d

copies of W1. This completes the proof. [\

1.4. The Coxeter-Laplacian

Our proposed solution to Problem 2piiq starts with an explicit combinatorial construction, that uses

the structural walks of Q given above, cf. Step 1 on page 22.

Proposition 1.14. Let Q be a connected loop-less quiver with m ě 2 vertices and n ě 1 arrows, and

such that ΛQ “ Λ ~Q
for a standard quiver ~Q with the same number of vertices and arrows as Q. Then

there is a (not necessarily Z-invertible) n ˆ n matrix B such that

IpQqB “ Ip ~Qq and Ip ~Q:qBtr “ IpQ:q.

Proof:

If such standard quiver ~Q exists then ctpQq “ ctp ~Qq, see (5) and (9). Therefore, ~Q is the unique

standard quiver ~Q “ ~Adrπs with π “ ctp ~Qq, see Remark 1.10 and Corollary 1.9. Consider the

vectors a˘
v :“ incpα˘

Qpvqq in Z
n as in Lemma 1.4, with n “ m ´ 1 ` 2d ` pℓ ´ 1q. By hypothesis

we have ΛQ “ Λ ~Q
, which implies that ξ :“ ξ´

Q “ ξ´
~Q

by (9). Consider the description of ξ given in

Remark 1.8.
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Case ℓ “ 1. In this case, we have necessarily π “ pmq. Take the matrices

B1
1 “ ra´

1
, a´

2
, ¨ ¨ ¨ , a´

m´1
s,

B3 “ r´a´
m´1

, a´
m´1

, ¨ ¨ ¨ ,´a´
m´1

, a´
m´1loooooooooooooooooooomoooooooooooooooooooon

2d columns

s, and

B “ rB1
1 , B3s. (11)

Clearly, B is a n ˆ n matrix since n “ m ´ 1 ` 2d. In the following steps we show that B satisfies

the wanted conditions.

Step 1. We have IpQqB “ Ip ~Qq. Indeed, recall from Remark 1.12paq that Ip ~Qq has the

following shape

Ip ~Qq “ rIp~Amq,´x, x, ¨ ¨ ¨ ,´x, xlooooooooomooooooooon
2d columns

s,

where x “ em´1 ´ em.

By definition of α´
Qpvq we have spα´

Qpvqq “ v, and by (3), tpα´
Qpvqq “ ξpvq for any v P

t1, . . . ,mu. By Remark 1.8, ξpvq “ v ` 1 if v ă m, and ξpmq “ 1. Thus, using (7), for

1 ď i “ v ă m we get

IpQqBei “ IpQqa´
v “ IpQqincpα´

Qpvqq “ ev ´ ev`1 “ Ip~Amqei.

Moreover, IpQqBem´1 “ IpQqa´
m´1

“ em´1 ´ em “ x, and for m ď i ď n “ m ´ 1 ` 2d

we have

IpQqBei “ ˘IpQqa´
m´1

“ ˘x,

with signs corresponding to the parity of i. Altogether, for 1 ď i ď n we have IpQqBei “
Ip ~Qqei, hence our claim.

Step 2. We have BIp~Q:qtr “ IpQ:qtr. Indeed, using Remark 1.12pbq and Lemma 1.4, we get

BIp ~Q:qtre1 “ B1n “
m´1ÿ

i“1

a´
i `

dÿ

j“1

pa´
m´1

´ a´
m´1

q “ ´a´
m “ a`

ξpmq “ a`
1
.

Moreover, for 1 ă i “ v ă m we have

BIp ~Q:qtrei “ ´Bev´1 “ ´a´
v´1

“ a`
ξpv´1q

“ a`
v .

Using again Lemma 1.4piq we get

BIp ~Q:qtrem “ ´Bem´1 ´
nÿ

j“m

Bej “ ´a´
m´1

“ a`
ξpm´1q “ a`

m.

By Lemma 1.4piiq we conclude that BIp~Q:qtrei “ a`
i “ IpQ:qtrei for 1 ď i ď n. Hence, the

case ℓ “ 1 holds.
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Case ℓ ą 1. For t “ 1, . . . , ℓ ´ 1 fix arbitrary walks δptq from vt to vt ` 1 (recall that vt :“
m ´ pπ1 ` . . . ` πtq for t “ 0, . . . ,m), and take dt “ incpδptqq. Consider the matrices

Bt
1 “ ra´

vℓ`1´t`1
, a´

vℓ`1´t`2
, ¨ ¨ ¨ , a´

vℓ´t´1loooooooooooooooooooomoooooooooooooooooooon
πℓ`1´t ´ 1 columns

s, for t “ 1, . . . , ℓ,

B1 “ rB1
1 , dℓ´1, B

2
1 , dℓ´2, B

3
1 , ¨ ¨ ¨ , Bℓ´1

1
, d1, B

ℓ
1looooooooooooooooooooooooomooooooooooooooooooooooooon

m ´ 1 columns

s,

B2 “ ry1, y2, ¨ ¨ ¨ , yℓ´1loooooooomoooooooon
ℓ ´ 1 columns

s,

B3 “ r´yℓ´1, yℓ´1, ¨ ¨ ¨ ,´yℓ´1, yℓ´1looooooooooooooooomooooooooooooooooon
2d columns

s, and

B “ rB1, B2, B3s, (12)

where yt :“ a´
vt´1

´ dt “ incpα´
Qpvt´1qδptq´1q for t “ 1, . . . , ℓ ´ 1. Clearly, B is a n ˆ n matrix

since n “ m ´ 1 ` 2d` pℓ ´ 1q. Again, we show that B satisfies the wanted conditions in two steps.

Step 1. We have IpQqB “ Ip ~Qq. By construction, the v-th column of B1 (for 1 ď v ă m) is

given by incpγq for a walk γ in Q with spγq “ v and tpγq “ v ` 1 (indeed, if v “ vt for some

t “ 1, . . . , ℓ ´ 1, then γ “ δptq, otherwise γ “ α´
Qpvq). In particular, using (7),

IpQqB1 “ Ip~Amq.

Again by (7), for t “ 1, . . . , ℓ ´ 1 we have IpQqyt “ IpQqincpα´
Qpvt´1qδptq´1q “ evt´1

´
evt “ xt, which implies that

IpQqB “ rIp~Amq, x1, ¨ ¨ ¨ , xℓ´1,´xℓ´1, xℓ´1, ¨ ¨ ¨ ,´xℓ´1, xℓ´1loooooooooooooooooomoooooooooooooooooon
2d columns

s “ Ip ~Qq,

by Remark 1.12paq.

Step 2. We have BIp~Q:qtr “ IpQ:qtr. Indeed, using Remark 1.12pbq and Lemma 1.4 we get

BIp ~Q:qtre1 “ B1n “
ÿ

v“1,...,m
v‰v1,...,vℓ

a´
v `

ℓ´1ÿ

t“1

dt `
ℓ´1ÿ

t“1

pa´
vt´1

´ dtq `
dÿ

j“1

pyℓ´1 ´ yℓ´1q

“
ÿ

v“1,...,m
v‰vℓ´1

a´
v “ ´a´

vℓ´1
“ a`

ξpvℓ´1q “ a`
vℓ`1

“ a`
1
,

since vℓ “ 0. Moreover, for v P t1, . . . ,mu ´ tvt ` 1ut“1,...,ℓ we have

BIp ~Q:qtrev “ ´Bev´1 “ ´a´
v´1

“ a`
ξpv´1q “ a`

v .
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If v “ vt ` 1 for some t P t1, . . . , ℓ ´ 2u, we have (recall that zt :“ evt ` em´1`t for

t “ 1, . . . , ℓ ´ 1),

BIp ~Q:qtrev “ ´Bzt “ ´Bpevt´1
` em´1`tq “ ´dt ´ pa´

vt´1
´ dtq

“ ´a´
vt´1

“ a`
ξpvt´1q “ a`

vt`1
“ a`

v .

Finally,

BIp ~Q:qtrevℓ´1`1 “ ´Bzℓ´1 ´
nÿ

j“m`ℓ´1

Bej

“ ´Bpevℓ´1
` em`ℓ´2q ´

dÿ

j“1

pyℓ´1 ´ yℓ´1q

“ ´dℓ´1 ´ pa´
vℓ´2

´ dℓ´1q “ a´
vℓ´2

“ a`
ξpvℓ´2q

“ a`
vℓ´1`1

.

We conclude that BIp ~Q:qtrev “ a`
v “ IpQ:qtrev for all 1 ď v ď m, by Lemma 1.4piiq. [\

Example 1.15. Let us apply Proposition 1.14 (keeping the notation of its proof) to the running Exam-

ple 1.5. First we take the descending structural walks of quiver Q1:

α´
Q1p1q “ 4´12´1,

α´
Q1p2q “ 3´11´1,

α´
Q1p3q “ 4`13`12`11`1,

B1
1 “

¨
˚̊
˚̊
˝

0 p1 1 p1
p1 0 0 0

0 p1 1 p1
p1 0 0 0

˛
‹‹‹‹‚
.

The cycle type of Q1 has length ℓpctpQ1qq “ 1 (cf. Example 1.11). Then the matrix B1
1 obtained in

Proposition 1.14, given by B1
1 “ ra´

1
, a´

2
,´a´

2
, a´

2
s, is shown explicitly above. On the other hand,

the cycle type of Q0 has length ℓpctpQ0qq “ 3, and its descending structural walks are given by

α´
Q0p1q “ 4`12`11`1,

α´
Q0p2q “ 4´13´12´1,

α´
Q0p3q “ 3`11´1,

B1
0 “

¨
˚̊
˚̊
˝

0 0 p1 0

0 1 p1 p1
0 0 1 p1
1 0 0 p2

˛
‹‹‹‹‚
.

We need arbitrary walks δptq : vt Ñ vt ` 1 in Q0 for t “ 1, . . . , ℓ ´ 1 “ 2, which we choose to be

δp1q “ 2`1 and δp2q “ 4`1 (note that v0 “ 3, v1 “ 2, v2 “ 1 and v3 “ 0, since ctpQ0q “ p1, 1, 1q).

The matrix B1
0 obtained in Proposition 1.14, given by B1

0 “ rd2, d1, a
´
3

´d1, a
´
2

´d2s, is shown above.

A direct computation shows that IpQiqB1
i “ Ip ~Qiq and Ipp ~Qiq:qpB1

iq
tr “ IppQiq:q for i “ 1, 0, see

Example 1.11 for the description of quivers ~Qi and their inverses.

2. Radicals and invertibility assumption

In this section we analyze some strong Gram invariants within the radical of a non-negative unit form

(Lemmas 2.3 and 2.4) in order to prove our invertibility-correction algorithm Proposition 2.10 (see

Algorithm 3).
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2.1. The reduced radical

Recall that a subgroup X of Z
m is called pure if whenever ax P X for some x P Z

m and some

non-zero a P Z, then x P X. For any unit form q consider the following subgroups of Zn,

radpqq “ tx P Z
n | ytrGqx “ 0 for all y in Z

nu “ tx P Z
n | Gqx “ 0u,

radrepqq “ tx P radpqq | ytr qGqx “ 0 for all y P radpqqu.

These are pure subgroups of Zn. The group radpqq is called the radical of q, and we will refer to

radrepqq as the reduced radical of q. The rank corkrepqq of the reduced radical radrepqq of q will

be called reduced corank of q. The restriction of the standard morsification q
bq to the radical of q is

denoted by qrq. To be precise, let k : radpqq Ñ Z
n be the inclusion of the radical of q in Z

n, and take

qrqpx, yq :“ q
bqpkpxq, kpyqq for x, y P radpqq.

Clearly, qrq is a skew-symmetric bilinear form. In particular, its rank is an even non-negative number,

rkpqrqq :“ 2d for some d ě 0 (cf. [24, XI, §4]), and we call dq :“ d the degree of degeneracy of q.

Note that

corkpqq “ 2dq ` corkrepqq. (13)

Observe also that the reduced corank corkrepqq and the degree of degeneracy dq are strong Gram

invariants of q (see Lemma 4.7 below). To the best of the author’s knowledge, these notions are new

in the literature on integral bilinear and quadratic forms. Fixing a Z-basis of radpqq we get matricial

forms K of k and Wq of qrq given by

Wq “ Ktr qGqK. (14)

Let us illustrate these notions.

Example 2.1. Consider the quadratic forms q1 and q0 of Example 1.5. A basis of the radical radpqiq
is given in the columns of the matrix Ki below, and the restriction qrqi of the standard morsification of

qi to its radical, under such basis, is given by the matrix Wqi as in (14), for i “ 0, 1,

K1 “

¨
˚̊
˚̊
˝

1 1

1 0

1 0

0 p1

˛
‹‹‹‹‚
, Wq1 “

˜
0 1

p1 0

¸
,

corkrepq1q “ 0,

dq1 “ 1.

K0 “

¨
˚̊
˚̊
˝

1 p1
1 0

0 1

1 0

˛
‹‹‹‹‚
, Wq0 “

˜
0 0

0 0

¸
,

corkrepq0q “ 2,

dq0 “ 0.

Being the nullity of Wqi , the respective reduced coranks are given by corkrepq1q “ 0 and corkrepq0q “
2, and by (13) the corresponding degrees of degeneracy are dq1 “ 1 and dq0 “ 0.
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Recall that 1m denotes the vector in Z
m with all entries equal to 1.

Lemma 2.2. Let Q be a connected loop-less quiver with m vertices. Then the image of the incidence

matrix IpQq, as a linear transformation IpQq : Zn Ñ Z
m, is the set

ImIpQq “ tx P Z
m | 1trmx “ 0u,

which is a pure subgroup of Zm.

Proof:

Assume first that Q is a tree, that is, that Q has m´1 arrows. By [33, Propositions 3.13 and 3.8], there

is a Z-invertible pm ´ 1q ˆ pm ´ 1q matrix B such that IpQq “ IpSqB, where S is a maximal star

with center a vertex v, that is, the columns of IpSq are given by ˘pev ´ev1q for v1 P t1, . . . ,mu´tvu.

These columns are a basis of the group C :“ tx P Z
m | 1trmx “ 0u, which shows that ImIpQq “ C .

Now, take an arbitrary loop-less quiver Q with m vertices. Since 1trmIpQq “ 0, we have ImIpQq Ď
C . Choose a spanning tree rQ of Q. Clearly, the image of Ip rQq is a subset of the image of IpQq, since

Ip rQq is obtained from IpQq by deleting those columns indexed by the elements of the set Q1 ´ rQ1.

Thus, by the first part of the proof, we have C Ď ImIpQq, hence ImIpQq “ C . Clearly, if ax P C

for some non-zero a P Z, then 1trmpaxq “ ap1trmxq “ 0. Since a ‰ 0, we have x P C , that is, C is a

pure subgroup of Zm. [\

The following is a useful characterization of the reduced radical in case of non-negative unit forms

of Dynkin type Ar.

Lemma 2.3. Let Q be a connected loop-less quiver with inverse quiver Q:, Coxeter-Gram matrix ΦQ

and Coxeter-Laplacian ΛQ. Then

radpqQq “ tx P Z
n | Φtr

Qx “ xu,

radrepqQq “ tIpQ:qtry P Z
n | y P Z

m and Λtr

Q y “ yu.

Proof:

The first identity is easy to verify, since GQx “ p qGQ ` qGtr

Q qx “ 0 if and only if qGQx “ ´ qGtr

Q , that

is, if and only if x “ Φtr

Qx.

For the second identity, recall from (8) that IpQ:q “ IpQq qG´1

Q , and observe that if Λtr

Q y “ y then

IpQqIpQ:qtry “ pId ´ Λtr

Q qy “ 0,

that is, IpQ:qtry P KerIpQq. Moreover, for any x P radpqQq “ KerIpQq we have

xx, IpQ:qtryyQ “ xtr qGQIpQ:qtry “ ´xtr qGtr

Q IpQ:qtry

“ ´rIpQ:q qGQxstry “ ´rIpQqxstry “ 0,

which means that IpQ:qtry P radrepqQq.
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On the other hand, take an arbitrary x in radrepqQq and choose a kernel matrix K of IpQq. Then

xtr qGQK “ 0, and since ImIpQq is pure (Lemma 2.2), by Remark 4.2(e) below there is a vector

y P Z
m such that

xtr qGQ “ ytrIpQq, that is, x “ IpQ:qtry.

Moreover, we have IpQqx “ 0, which implies that pId ´ Λtr

Q qy “ IpQqIpQ:qtry “ 0. We conclude

that x “ IpQ:qtry for some y P Z
m with Λtr

Q y “ y. [\

2.2. Bases for the reduced radical

Let v1
1
, . . . , v1ℓ be representative vertices of the ξ´

Q-orbits in Q0, with orbit sizes π1 ě π2 ě . . . ě πℓ.

The cycle type of Q, as given in (5), is the partition ctpQq “ pπ1, . . . , πℓq of the integer m “ |Q0|
(cf. [34, Definition 4.2]). For t “ 1, . . . , ℓ consider the concatenated walks

βt “ α´
Qpv1t qα´

Qpv2t q ¨ ¨ ¨α´
Qpvπt

t q, (15)

where vr`1

t “ ξ´
Qpvrt q for r “ 1, . . . , πt ´ 1, and v1t “ ξ´

Qpvπt
t q. This is indeed a walk, since

tpα´
Qpvrt qq “ ξ´

Qpvrt q “ vr`1

t “ spα´
Qpvr`1

t qq if 1 ď r ă πt. Alternatively, taking 1rts as the vector in

Z
m with entry in position v given by 1 if v is in the ξ´

Q-orbit of v1t , and 0 otherwise (for t “ 1, . . . , ℓ),

then using Lemma 1.4pi, iiq we have

incpβtq “ ´IpQ:qtr1rts, for t “ 1, . . . , ℓ. (16)

Lemma 2.4. The set βtt0u :“ tincpβ1q, . . . , incpβt0´1q, incpβt0`1q, . . . , incpβℓqu is a basis of

radrepqQq for any t0 P t1, . . . , ℓu.

Proof:

First observe that the vectors 1r1s, . . . ,1rℓs of Zm are a basis of the eigenspace of Λtr

Q corresponding

to the eigenvalue 1, since ΛQ is the permutation matrix of ξ´
Q , see (9). Hence, by (16), Lemma 2.3,

and since
ℓÿ

t“1

incpβtq “ ´IpQ:qtr1m “ 0,

the set βtt0u generates radrepqQq, for any t0 P t1, . . . , ℓu.

Take now integers λ1, . . . , λℓ such that
řℓ

t“1
λtincpβtq “ 0. That is, if y :“

řℓ
t“1

λt1rts then

0 “ ytrIpQ:q. In particular,
řℓ

t“1
λtincpβtq “ 0 if and only if all λt are equal, since the left null

space of IpQ:q is generated by 1trm (see [34, Theorem 3.3piiq]). This shows that if λ1
t0

“ 0, and

0 “
ÿ

i“1,...,ℓ
t‰t0

λ1
tincpβtq “

ℓÿ

t“1

λ1
tincpβtq,

then λ1
t “ 0 for t “ 1, . . . , ℓ, which completes the proof. [\
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Example 2.5. Recall the description of the Coxeter-Laplacians ΛQ1 and ΛQ0 of the quivers Q1 and

Q0 of Example 1.5, given in Example 1.11. In the first case we have Λtr

Q1y “ y iff y “ a13 for some

a P Z, and in this case

IppQ1q:qtry “ a qG´tr

Q1 IpQ1qtr13 “ 0.

By Lemma 2.3, we have radrepq1q “ 0 (see Example 2.1). In the second case Λtr

Q0y “ y for all

y P Z
3. Following the procedure (15), we find the walks

β1 “ α´
Q0p1q “ 4`12`11`1, β2 “ α´

Q0p2q “ 4´13´12´1 and β3 “ α´
Q0p3q “ 3`11´1,

(cf. Example 1.15). Alternatively, consider the inverse quiver pQ0q: of pQ0q given in Example 1.11,

and observe that the columns of the matrix ´IppQ0q:qtr are precisely the incidence vectors incpβtq
of the walks β1, β2, β3, see (16). Note that the basis of radpq0q “ radrepq0q chosen in Example 2.1

(as columns of K0) corresponds to the basis βt2u “ tincpβ1q, incpβ3qu of Lemma 2.4.

As direct consequence of Lemma 2.4 we have the following results.

Corollary 2.6. Let q be a connected non-negative unit form of Dynkin type Ar, corank c and cycle

type ctpqq. Then the reduced corank of q is corkrepqq “ ℓpctpqqq ´ 1, and the degree of degeneracy

of q is dq “ 1

2
rc ´ ℓpctpqqq ` 1s.

Proof:

By Lemma 2.4, the rank of radrepqq, the so-called reduced corank of q, is corkrepqq “ ℓpctpqqq ´ 1.

Then the claim on the degree of degeneracy follows from (13). [\

Corollary 2.7. The degree of degeneracy of the standard pπ,dq-extension of qAm´1
is d.

Proof:

Take ~Q :“ ~Admrπs for a partition π of m ě 2, and d ě 0. By Remark 1.8, the form q :“ q ~Q
has cycle type ctpqq “ π and corank corkpqq “ ℓpπq ` 2d ´ 1. By Corollary 2.6 we have dq “
1

2
rcorkpqq ´ ℓpπq ` 1s “ d, as claimed. [\

Recall that in the text, matrices, linear transformations and their images and kernels are taken over

Z. A matrix or linear transformation M will be called pure if so is the group ImpMq. Similarly,

a bilinear form b : Z
n ˆ Z

n Ñ Z will be called pure if so is the adjoint transformation x ÞÑ
rbpx,´q : Z

n Ñ Zs, or equivalently, if its Gram matrix G
b

is pure (under any choice of basis).

The following result is a simple and important observation: the upper triangular bilinear form of any

standard extension of qAr has pure restriction to its radical. After completing the proof of our main

results we will be able to prove that this observation holds for any connected non-negative unit form

of Dynkin type Ar (Corollary 4.8).

Lemma 2.8. The standard morsification of every standard extension of a unit form of Dynkin type Ar

(r ě 1) has pure restriction to its radical.
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Proof:

Consider a standard quiver ~Q “ ~Admrπs with π a partition of m ě 2 with length ℓ “ ℓpπq, and take

q “ q ~Q. Then q is a connected non-negative unit form of Dynkin type Am´1 in n “ m` ℓ` 2pd´ 1q

variables with corank corkpqq “ 2d ` ℓ ´ 1 (Corollary 1.7) and reduced corank corkrepqq “ ℓ ´ 1

(Lemma 2.4). We fix a kernel matrix K “ rK 1,K2s of Ip ~Qq in the following way. Take the nˆpℓ´1q
matrix K2 whose columns are a basis of radrepqq, see for instance Lemma 2.4. If d “ 0, then

K “ K2. If d ą 0, observe that the last 2d` 1 arrows of the standard quiver ~Q determine the inverse

Kronecker quiver K
:
2d`1

. Consider the inclusion ι : Z2d`1 Ñ Z
n of Z2d`1 into the last 2d`1 entries

of Zn, and take the n ˆ 2d matrix K 1 “ rιpc1q, . . . , ιpc2dqs with c1, . . . , c
d

the vectors constructed in

Remark 1.13pbq, where we showed the second equality identity in (17) below (the first identity can be

easily shown, since K
:
2d`1

is a subquiver of ~Q):

pK 1qtr qG~Q
pK 1q “ rc1, . . . , c

d

str qG
K

:
2d`1

rc1, . . . , c
d

s “
dà

t“1

˜
0 1

´1 0

¸
. (17)

Then the subspace of Zn generated by the columns of K 1 has zero intersection with the reduced radical

of q, which implies that the n ˆ corkpqq matrix K is indeed a kernel matrix of Ip~Qq.

Now, relative to the fixed basis K , the restriction qrq of q
bq to the radical radpqq has Gram matrix

Wq “ Ktr qG~Q
K , see (14). Since the kernel of qrq is the reduced radical of q, see (13), the quotient of

qrq by its kernel has Gram matrix pK 1qtr qG~Q
pK 1q, which is Z-invertible by (17). That is, qrq is a pure

bilinear form, as claimed. [\

2.3. Adding for invertibility

Here we show how to correct the non-invertibility of the matrices obtained in Proposition 1.14. We

need the following preliminary observation.

Lemma 2.9. Let Q and rQ be connected loop-less quivers with m vertices and n arrows. Assume

that ΛQ “ Λ rQ, and that there is a matrix B such that Ip rQ:qBtr “ IpQ:q. Then B restricts to an

isomorphism B|radre
: radrepq rQq Ñ radrepqQq.

Proof:

Since ΛQ “ Λ rQ, and since the matrix IpQ:qtr has as columns the vectors incpα`
Qpvqq for v P Q0

(see Lemma 1.4piiq), by Lemma 2.3 and (16), the equation BIp rQ:qtr “ IpQ:qtr implies that the

transformation B sends the bases for radrepq rQq constructed in Lemma 2.4, to the corresponding

bases of radrepqQq. Hence the claim. [\

For a slightly more general version of the following proposition, see Remark 4.9 below.

Proposition 2.10. Let Q be a connected loop-less quiver. If there is a square matrix B such that

IpQqB “ Ip ~Qq and Ip ~Q:qBtr “ IpQ:q,
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where ~Q is a standard quiver with same number of vertices and arrows as Q, then there is a matrix M

such that B ` M is Z-invertible and satisfies

IpQqrB ` M s “ Ip ~Qq and Ip ~Q:qrB ` M str “ IpQ:q.

Proof:

Let K be a kernel matrix for IpQq, and assume that K “ rK 1,K2s where the last ℓ ´ 1 columns

K2 of K are a basis of the reduced radical radrepqQq. Take similarly a kernel matrix ~K of Ip ~Qq

written as ~K “ r ~K 1, ~K2s, and define K: :“ qGQK and ~K: :“ qG~Q
~K , which are kernel matrices of

IpQ:q and Ip ~Q:q respectively. Since IpQqpB ~Kq “ Ip ~Qq ~K “ 0, there is a unique matrix L such that

B ~K “ KL. The matrices L and ~W “ ~Ktr qG~Q
~K have the following shapes

L “

˜
L1 0

L2 L3

¸
and ~W “

˜
~W 1 0

0 0

¸
,

where L3 is Z-invertible (Lemma 2.9), and by (17) in the proof of Lemma 2.8, ~W 1 is a Z-invertible

skew-symmetric matrix (since it corresponds to the restriction of q
bq~Q

to its radical, modulo its kernel:

the reduced radical). Define M “ KY ~K:tr for some matrix Y “
´

Y1 Y3

Y2 Y4

¯
, and notice that

IpQqpB ` Mq “ IpQqB ` IpQqKY ~K:tr “ Ip ~Qq,

and

Ip ~Q:qpB ` Mqtr “ Ip ~Q:qBtr ` Ip ~Q:qK:Y trKtr “ IpQ:q.

Since ~K:tr “ ´ ~Ktr qG~Q
and ~K:tr ~K “ ´ ~Ktr qG~Q

~K “ ´ ~W , we have

pB ` Mq ~K “ B ~K ` KY ~K:tr ~K “ KpL ´ Y ~W q “ K

˜
L1 ´ Y1

~W 1 0

L2 ´ Y2
~W 1 L3

¸
.

Taking Y1 “ pL1 ´ Idqp ~W 1q´1 and Y2 “ L2p ~W 1q´1 (with Y3 and Y4 arbitrary, say equal to zero), we

get

pB ` Mq ~K “ KpL ´ Y ~W q,

with pL ´ Y ~W q “
`
Id 0
0 L3

˘
a Z-invertible matrix. Then the restriction

pB ` Mq|rad : radpq ~Qq Ñ radpqQq,

is an isomorphism, which implies that pB ` Mq is Z-invertible by Corollary 4.6piiq. [\

Example 2.11. Consider the quivers Qi of Example 1.5, and the matrices B1
i satisfying the assump-

tions of Proposition 2.10, as given in Example 1.15 (for i “ 1, 0). Observe that detpB1
1q “ 0 and

detpB1
0q “ 1, so we apply Proposition 2.10 only for the case i “ 1. Besides the kernel matrix K1 of
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IpQ1q given in Example 2.1, we fix the following kernel matrix for the corresponding standard quiver
~Q1 (cf. Example 1.11),

~K1 “

¨
˚̊
˚̊
˝

0 0

1 0

1 p1
0 p1

˛
‹‹‹‹‚
, B1

1
~K1 “ K1

˜
0 0

0 0

¸
“ K1L.

Observe that B1
1
~K1 “ 0, and therefore the matrix L (using the notation of the proof of Proposi-

tion 2.10) is the 2 ˆ 2 zero matrix. Note also that ~W :“ ~Ktr
1

qG~Q1
~K1 “

`
0 1
p1 0

˘
. Then, as defined in

the proof of Proposition 2.10, the matrix Y is given by Y “ pL ´ Id2q ~W´1 “ ´ ~W tr “ ~W . Taking

M1 :“ K1Y p ~K:
1
qtr where ~K

:
1
:“ qG ~Q1

~K1, we get

M1 “

¨
˚̊
˚̊
˝

0 1 0 p1
0 0 1 p1
0 0 1 p1
0 p1 1 0

˛
‹‹‹‹‚

and B1 :“ B1
1 ` M1 “

¨
˚̊
˚̊
˝

0 0 1 p2
p1 0 1 p1
0 p1 2 p2
p1 p1 1 0

˛
‹‹‹‹‚
.

Note that detpB1q “ ˘1, as claimed in Proposition 2.10. In fact, a direct computation shows that

q1 «B1 ~q1.

3. A model for pseudo-endomorphisms

In this section we provide a method to modify a Z-invertible matrix satisfying the equations of Propo-

sition 1.14 (called pseudo-morphisms) into a strong Gram congruence. It depends on a special decom-

position of skew-symmetric matrices, presented first in Lemma 3.1pbq.

3.1. Decompositions of skew-symmetric matrices

Recall that if Z is a skew-symmetric c ˆ c matrix, then there exists a Z-invertible matrix P such that

P trZP is in canonical form, that is, there are positive integers d1, d2, . . . , dr such that

P trZP “ d1
`

0 1
´1 0

˘
‘ d2

`
0 1

´1 0

˘
‘ . . . ‘ dr

`
0 1

´1 0

˘
‘ 0,

for a square zero matrix 0 of size c ´ 2r, and where dt divides dt`1 for t “ 1, . . . , r ´ 1 (see for

instance [48, Theorem IV.1]). Such expression is usually called the skew normal form of Z . Observe

that Z is pure if and only if dt “ 1 for t “ 1, . . . , r.

Lemma 3.1. Let Z and W be skew-symmetric c ˆ c matrices.

a) If W is Z-invertible, then there is a matrix Y such that Z “ Y trWY .

b) If W is pure, then there is a matrix Y such that Z “ Y ´ Y tr ` Y trWY .
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Proof:

Take ĂW “ RtrWR for some Z-invertible matrix R. If claims paq and pbq hold for ĂW and arbitrary

Z , then they also hold for W and arbitrary Z . Indeed, if rZ :“ R´1ZR´tr, then for each case paq or

pbq there is a matrix rY such that either

rZ “ rY trĂW rY , or rZ “ rY ´ rY tr ` rY trĂW rY ,

respectively. Take Y :“ RrY Rtr. Then rY “ R´1Y R´tr, and

paq Z “ R rZRtr “ RrrY trĂW rY sRtr “ Y trWY,

pbq Z “ R rZRtr “ RrrY ´ rY tr ` rY trĂW rY sRtr “ Y ´ Y tr ` Y trWY.

Therefore, we may assume that W is in skew normal form. In particular, if W is Z-invertible then

WW tr “ W trW “ Idc “ ´WW .

To show paq, observe that if W is Z-invertible then c “ 2r for some r ě 1 and W “
Àr

i“1
W1,

where W1 “
`

0 1
´1 0

˘
. Take a Z-invertible matrix P such that P trZP “

Àr
i“1

diW1 (not necessarily

in skew normal form), and consider the diagonal c ˆ c matrix S “ diagp1, d1, 1, d2, . . . , 1, drq. Then

P trZP “
rà

i“1

diW1 “ SWS, that is, Z “ Y trWY where Y “ SP´1.

To show pbq, assume first that W is Z-invertible and take rZ :“ Z ` W , which is also skew-

symmetric. By part paq there is a matrix rY such that rZ “ rY trW rY . Taking Y :“ rY ´ W , we

get

Z “ rZ ´ W “ pY ` W qtrW pY ` W q ´ W

“ Y trWY ` Y trWW ` W trWY ` W trWW ´ W

“ Y ´ Y tr ` Y trWY,

as wanted. In the pure case, W “

˜
W 1 0

0 0

¸
where W 1 is Z-invertible (since W is in its skew normal

form). Taking

Z :“

˜
Z1 ´Ztr

2

Z2 Z3

¸
and Y :“

˜
Y1 0

Y2 Y3

¸
,

then Y ´ Y tr ` Y trWY “

˜
Y1 ´ Y tr

1 ` Y tr
1 W 1Y1 ´Y tr

2

Y2 Y3 ´ Y tr
3

¸
. Using the first part of the proof

of pbq, since Z1 is skew-symmetric and W 1 is Z-invertible, we may find Y1 such that Z1 “ Y1 ´
Y tr
1 ` Y tr

1 W 1Y1. Take Y2 “ Z2, and take any matrix Y3 such that Z3 “ Y3 ´ Y tr
3 . Then Z “

Y ´ Y tr ` Y trWY , which completes the proof. [\

3.2. Pseudo-morphisms

Let us formalize some of the notions already used in the paper.
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Definition 3.2. Consider connected loop-less quivers Q and rQ with m vertices and n arrows.

a) A square matrix B satisfying

IpQqB “ Ip rQq and Ip rQ:qBtr “ IpQ:q,

is referred to as pseudo-morphism from Q to rQ. These relations are expressed with the notation

Q
.
“B rQ, or simply by Q

.
“ rQ if such matrix B exists.

b) If Q
.

“B Q we call B a pseudo-endomorphism of Q. The set of pseudo-endomorphisms of Q

will be denoted by End .“pQq, that is,

End .“pQq “ tB P MnpZq | IpQqB “ IpQq “ IpQqB˚u, where B˚ :“ qG´1

Q Btr qGQ, see (8).

c) For matrices Z , Z 1 and W in McpZq we will use the notation

Z fW Z 1 :“ Z ` Z 1 ´ ZWZ 1.

Remark 3.3. Let Quiv denote the set of connected loop-less quivers with at least two vertices.

For Q and rQ in Quiv, denote by Hom .
“pQ, rQq the set of pseudo-morphisms from Q to rQ. Then

pQuiv,Hom .
“q, together with the product of matrices, is a category. Moreover, the following hold if

Q and rQ have the same number of vertices and arrows.

a) If Q
.

“ rQ then ΛQ “ Λ rQ.

b) If Q
.

“B rQ then rQ .
“B˚

Q, where B˚ “ qG´1

rQ Btr qGQ.

In particular,
.

“ is an equivalence relation on the set Quiv.

Proof:

Let Q
.

“B rQ and rQ .
“C rrQ be pseudo-morphisms. Then

IpQqpBCq “ pIpQqBqC “ Ip rQqC “ Ip
rrQq,

and

Ip
rrQ:qpBCqtr “ pIp

rrQ:qCtrqBtr “ Ip rQ:qBtr “ IpQ:q,

that is, Q
.

“BC rrQ. Note that the identity matrix serves as neutral element of the monoid Hom .
“pQ,Qq,

and the associativity of the matrix product shows that pQuiv,Hom .
“q is a category.

To show paq, assume that Q
.

“B rQ for a matrix B. By definition of Λ rQ, see (2), and since

Ip rQ:q “ Ip rQq qG´1

rQ , see (8), we have

Λ rQ “ Id ´ Ip rQ:qIp rQqtr “ Id ´ Ip rQ:qrIpQqBstr

“ Id ´ rIp rQ:qBtrsIpQqtr “ Id ´ IpQ:qIpQqtr “ ΛQ.

To prove pbq, using (8) we get

Ip rQqB˚ “ Ip rQ:q qG rQp qG´1

rQ Btr qGQq “ Ip rQ:qBtr qGQ “ IpQ:q qGQ “ IpQq.
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Moreover, using paq, (8) and Remark 1.3peq, we have

IpQ:qpB˚qtr “ IpQq qG´1

Q p qGtr

QB qG´tr

rQ q “ ´rIpQqΦ´tr

Q sB qG´tr

rQ “ ´ΛQIpQqB qG´tr

rQ

“ ´Λ rQIp rQq qG´tr

rQ “ ´Ip rQqΦ´tr

rQ
qG´tr

rQ “ Ip rQq qG´1

rQ
qGtr

rQ
qG´tr

rQ “ Ip rQ:q.

That is, rQ .
“B˚

Q.

Note that
.

“ is a reflective relation since Q
.

“Id Q, and it is transitive by the first part of the proof.

Since the symmetry of
.
“ was shown in pbq, we conclude that

.
“ is an equivalence relation. [\

With the notation introduced in Definition 3.2, Propositions 1.14 and 2.10 may be summarized as

follows:

Corollary 3.4. If Q is a connected loop-less quiver with ΛQ “ Λ ~Q
for a standard quiver ~Q with the

same number of arrows as Q, then there is a Z-invertible matrix B such that Q
.

“B ~Q.

Lemma 3.5. Let Q be a connected loop-less quiver with m vertices and n arrows, fix a kernel matrix

K for IpQq, and take K: :“ qGQK . If c :“ n ´ m ` 1, then the function

McpZq
Υ // End .“pQq

Z
✤ // ΥpZq :“ Id ` KZK:tr,

is a bijection, with inverse denoted by Ξ. Moreover, if B and B1 are pseudo-endomorphisms of Q,

and W :“ Ktr qGQK , then

a) ΞpBB1q “ ΞpBq fW ΞpB1q, where fW is as in Definition 3.2pcq.

b) We have ΞpIdnq “ 0, and B is Z-invertible if and only if there is a matrix Z with ΞpBqfW Z “
0 (or equivalently, Z fW ΞpBq “ 0).

Proof:

Let c “ n ´ m ` 1 be the corank of qQ. Then K and K: are n ˆ c matrices, and for any Z P McpZq,

we have

IpQqΥpZq “ IpQqrId ` KZK:trs “ IpQq ` IpQqKpZK:trq “ IpQq,

and

IpQ:qΥpZqtr “ IpQ:qrId ` K:ZtrKtrs “ IpQ:q ` IpQ:qK:pZtrKtrq “ IpQ:q,

since IpQ:q “ IpQq qG´1

Q and K: “ qGQK . This shows, as claimed, that ΥpZq belongs to End .“pQq.

Now, if B is a pseudo-endomorphism of Q, then B may be expressed uniquely as

B “ Id ` KZK:tr “ ΥpZq,
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for a c ˆ c matrix Z . Indeed, we have IpQqpB ´ Idq “ 0, which implies that there is a unique c ˆ n

matrix L such that B ´ Id “ KL (since the kernel matrix K of IpQq has rank c). On the other

hand, pKLqIpQ:qtr “ pB ´ IdqIpQ:qtr “ 0 implies that LIpQ:qtr “ 0 since the columns of K

are linearly independent, thus there is a unique matrix Z such that L “ ZK:tr. Then the mapping

ΞpBq :“ Z is well defined, by the uniqueness of Z . That is, ΞpΥpZqq “ Z , and clearly

ΥpΞpBqq “ Id ` KΞpBqK:tr “ B,

which proves that Υ is a bijection with inverse Ξ.

To show paq take ΞpBq :“ Z and ΞpB1q :“ Z 1. Then

BB1 “ ΥpZqΥpZ 1q “ pId ` KZK:trqpId ` KZ 1K:trq

“ Id ` KrZ ` Z 1 ` ZK:trKZ 1sK:tr “ Id ` KrZ ` Z 1 ´ ZWZ 1sK:tr

“ Id ` KrZ fW Z 1sK:tr,

since K:trK “ pKtr qGtr

Q qK “ ´W (recall that p qGQ ` qGtr

Q qK “ 0). Claim pbq follows from the

uniqueness of Ξp´q, since clearly ΞpIdq “ 0. [\

Remark 3.6. Let Q be a connected loop-less quiver, and take a kernel matrix K for IpQq. If W :“
Ktr qGQK , then the binary operation fW : McpZq ˆ McpZq Ñ McpZq given in Definition 3.2pcq
makes pMcpZq,fW q a monoid with identity element the zero matrix 0 P McpZq.

Proof:

Use the associativity of End .“pQq (Remark 3.3) and apply Lemma 3.5pa, bq. [\

3.3. Multiplying for strong Gram congruence

For a pseudo-morphism Q
.

“B rQ we have often considered the matrix B˚ :“ qG rQ´1B
tr qGQ (see for

instance Theorem 4.1piiq or Remark 3.3). Here we consider further properties of this star operation,

Hom .
“pQ, rQq

p´q˚

// Hom .
“p rQ,Qq ,

see Remark 3.3pbq.

Lemma 3.7. Let Q and rQ be connected loop-less quivers with the same number of vertices and ar-

rows. Assume that Q
.

“B rQ, and take B˚ :“ qG´1

rQ Btr qGQ.

a) If Q “ rQ then we have ΞpB˚q “ p´1qΞpBqtr.

b) Both matrices ΞpB˚Bq and ΞpBB˚q are skew-symmetric.

c) If B is Z-invertible then rQ .
“B´1

Q and

pB˚q´1 “ qG´1

Q B´tr qG rQ “: pB´1q˚.
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Proof:

To show paq assume that Q “ rQ, and take Z :“ ΞpBq. Note that

B˚ “ qG´1

Q Btr qGQ “ qG´1

Q pId ` KZK:trqtr qGQ

“ Id ` qG´1

Q K:ZtrKtr qGQ “ Id ` Kp´ZtrqK:tr “ Υp´Ztrq,

that is, ΞpB˚q “ ΞpΥp´ΞpBqtrqq “ ´ΞpBqtr.

To show pbq take Z :“ ΞpB˚Bq. Since B˚B “ Id ` rKZ rK:tr and rK: “ qG rQK , we have

rK:Z rK:tr “ qG rQ
rKZ rK:tr “ qG rQpB˚B ´ Idq “ Btr qGQB ´ qG rQ,

and therefore,
rK:Ztr rK:tr “ p rK:Z rK:trqtr “ Btr qGtr

QB ´ qGtr

rQ .

Since IpQqB “ Ip rQq we get

rK:rZ ` Ztrs rK:tr “ BtrGQB ´ G rQ “ pIpQqBqtrpIpQqBq ´ Ip rQqtrIp rQq “ 0.

In particular, Z ` Ztr “ 0 since the columns of rK: are linearly independent. The case BB˚ can be

shown in a similar way.

For pcq, using that IpQqB “ Ip rQq and Ip rQ:qBtr “ IpQ:q, if B is Z-invertible then

Ip rQqB´1 “ IpQq and IpQ:qB´tr “ Ip rQ:q,

that is, rQ .
“B´1

Q. The last claim of pcq is immediate. [\

For a more general version of the following proposition, see Remark 4.9 below.

Proposition 3.8. Let Q be a connected loop-less quiver. If there is a Z-invertible matrix B such that

IpQqB “ Ip ~Qq and Ip ~Q:qBtr “ IpQ:q,

where ~Q is a standard quiver with same number of vertices and arrows as Q, then there is a matrix C

such that IpQqrBCs “ Ip ~Qq and rBCs˚rBCs “ Id.

Proof:

With the notation of Definition 3.2, we have Q
.

“B ~Q. Fix kernel matrices K and ~K of IpQq and

Ip ~Qq, respectively.

Take
ÝÑ
B :“ B˚B, Z :“ Ξp

ÝÑ
B q and ~Z :“ Ξp

ÝÑ
B

´1
q, where Ξ is the function constructed in

Lemma 3.5 with respect to ~K . By Lemma 3.5paq, we have ~Z f ~W
Z “ 0 where ~W “ ~Ktr qG~Q

~K .

By Lemma 3.7pb, cq, the matrices Z and ~Z are skew-symmetric. By Lemma 3.1pbq, there is a matrix

Y such that ~Z “ p´Y trq f ~W
Y , since ~W is a pure skew-symmetric matrix by Lemma 2.8, cf. (14).
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Consider the pseudo-endomorphism C “ Υp´Y trq “ Id ´ ~KY tr ~K:tr of ~Q, which is Z-invertible

by Lemma 3.5pbq, since

p´Y trq f ~W
rY f ~W

Zs “ rp´Y trq f ~W
Y s f ~W

Z “ ~Z f ~W
Z “ 0,

using the associativity of f ~W
(Remark 3.6). Observe that

ÝÝÑ
BC “ pBCq˚pBCq “ C˚pB˚BqC “ C˚ÝÑ

BC.

In particular,
ÝÝÑ
BC “ Id if and only if pCC˚q

ÝÑ
B “ Id since C is Z-invertible. Applying Lemma 3.5pa, bq

we get

ΞrpCC˚q
ÝÑ
B s “ rp´Y trq f ~W

Y s f ~W
Z “ ~Z f ~W

Z “ 0,

since ΞpCq “ p´Y trq, and ΞpC˚q “ Y by Lemma 3.7paq. Thus, we have
ÝÝÑ
BC “ pBCq˚pBCq “ Id,

as wanted. [\

Example 3.9. We now apply Proposition 3.8 to the quiver Q0 of Example 1.5 (recall from Exam-

ple 2.11 that we have already found a matrix B1 such that q1 «B1 ~q1). Consider the Z-invertible

matrix B0 :“ B1
0

given in Example 1.15 satisfying Q0 .
“B0 ~Q0. Following the notation of the proof

of Proposition 3.8 we get

B0 “

¨
˚̊
˚̊
˝

0 0 p1 0

0 1 p1 p1
0 0 1 p1
1 0 0 p2

˛
‹‹‹‹‚
, ~B0 “

¨
˚̊
˚̊
˝

1 p1 1 0

1 0 1 p1
1 p1 2 p1
0 p1 1 1

˛
‹‹‹‹‚

and ~B´1

0
“

¨
˚̊
˚̊
˝

1 1 p1 0

p1 2 p1 1

p1 1 0 1

0 1 p1 1

˛
‹‹‹‹‚
.

Taking ~Z :“
`
0 p1
1 0

˘
we have

~B´1

0
“ Υp~Zq “ Id4 ` ~K0

~Z ~K
:tr
0

“

¨
˚̊
˚̊
˝

1 0

0 1

0 1

1 0

˛
‹‹‹‹‚

˜
0 p1
1 0

¸ ˜
p1 1 1

0 1 0

¸
.

By Lemma 3.1pbq, there is a matrix Y such that ~W “ p´Y trq f ~W
Y . Indeed, note that ~W :“

~Ktr
0

qG~Q0
~K0 “ 0, therefore p´Y trq f ~W

Y “ Y ´ Y tr, so we may simply take Y :“ p 0 0
1 0

q. As in the

proof above, we take

C :“ Υp´Y trq “ Id4 ´ ~K0Y
tr ~K

:tr
0

“

¨
˚̊
˚̊
˝

1 1 p1 0

0 1 0 0

0 0 1 0

0 1 ´1 1

˛
‹‹‹‹‚

and B0C “

¨
˚̊
˚̊
˝

0 0 p1 0

0 0 0 p1
0 p1 2 p1
1 p1 1 p2

˛
‹‹‹‹‚
.

A direct calculation shows that q0 «B0C ~q0, as claimed in Proposition 3.8.
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4. Main proofs, concluding remarks and algorithms

This section collects all preliminary results to prove the main technical theorem of the paper (Theo-

rem 4.1), which connects the Coxeter-Laplacian with the existence of strong Gram congruences, and

suggests implementable algorithms to solve Simson’s Problem 2piiq. The section ends with those re-

sults of general interest used along the paper, and with some comments on generalizations and future

work.

4.1. Main results

The following is a combinatorial version of Theorem 2 in terms of the Coxeter-Laplacian of a quiver.

Theorem 4.1. The following are equivalent for connected loop-less quivers Q and rQ with the same

number of vertices and arrows:

i) The Coxeter-Laplacians of Q and rQ coincide, ΛQ “ Λ rQ.

ii) There is a (not necessarily Z-invertible) matrix B such that Q
.
“B rQ.

iii) There is a (Z-invertible) matrix B such that IpQqB “ Ip rQq and qG rQ “ Btr qGQB.

Proof:

Assume first that B satisfies piiiq and recall that IpQ:q “ IpQq qG´1

Q for any connected loop-less quiver

Q, see (8). Since 1 “ detp qG rQq “ detpBtr qGQBq “ detpBq2, then B is Z-invertible and

Ip rQ:qBtr “ Ip rQqr qG´1

rQ Btr qGQs qG´1

Q “ Ip rQqB´1 qG´1

Q “ IpQq qG´1

Q “ IpQ:q.

That is, Q
.
“B rQ, and piiq holds. That piiq implies piq was shown in Remark 3.3paq.

Assume that ΛQ “ Λ rQ. By Remark 1.10, there is a standard quiver ~Q with the same number

of vertices and arrows as Q, and such that ctpQq “ ctp~Qq. By permuting the vertices of Q and
rQ if necessary, we may assume that ΛQ “ Λ ~Q

“ Λ rQ (see Remarks 1.1 and 1.10; recall that in

Definition 1.6 we fixed linear orders on ~Q0 and ~Q1).

By Proposition 1.14 there is a matrix B1 such that Q
.

“B1
~Q, and by Proposition 2.10 there is a

matrix M such that B1 ` M is Z-invertible and Q
.

“B1`M ~Q. Moreover, using Proposition 3.8 we

find a matrix C such that if B :“ pB1 ` MqC , then IpQqB “ Ip ~Qq and B˚B “ Id. Similarly, since

Λ rQ “ Λ ~Q
, we may find a matrix rB such that Ip rQq rB “ Ip ~Qq and rB˚ rB “ Id (in particular, rB is

Z-invertible since it is a square matrix with detp rBq “ ˘1). This means that qG~Q
“ Btr qGQB and

qG~Q
“ rBtr qG rQ

rB, and therefore, IpQqpB rB´1q “ Ip rQq and

qG rQ “ pB rB´1qtr qGQpB rB´1q,

which completes the proof. [\
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Let us now derive Theorems 1, 2 and 3 from Theorem 4.1.

Proof of Theorem 1:

Let q be a connected non-negative unit form in n ě 1 variables and of Dynkin type Ar for r ě 1.

Using Theorem 1.2 we find a connected loop-less quiver Q with m “ r ` 1 vertices and n arrows

such that q “ qQ. Consider the cycle type ctpqq “ ctpQq and degree of degeneracy dq of q. Take
~Q “ ~Adq rctpqqs, which is also a connected loop-less quiver with m “ r ` 1 vertices and n arrows

(see Definition 1.6). Since ctpQq “ ctp ~Qq by Remark 1.10, we may assume that ΛQ “ Λ ~Q
(by

replacing Q by the quiver ρ ¨ Q for some permutation ρ of the set of vertices Q0, see Remark 1.1). By

Theorem 4.1 there is a matrix B such that IpQqB “ Ip ~Qq and qG~Q
“ Btr qGQB. Taking ~q :“ q ~Q,

by definition we have qGQ “ qGq and qG~Q
“ qG~q , and therefore, q «B ~q. The uniqueness of ~q follows

from the uniqueness of the standard quiver ~Q with cycle type ctpqq, m vertices and n arrows, cf.

Corollary 1.9pbq. [\

Proof of Theorem 2:

Let q and rq be weakly Gram congruent connected non-negative unit forms in n variables and of Dynkin

type Ar. If q and rq are strongly Gram congruent, then ϕq “ ϕrq, see for instance [33, Lemma 4.6].

Assume conversely that ϕq “ ϕrq . Since q „ rq, then q and rq have the same corank c “ corkpqq “

corkprqq. Using Theorem 1.2 we find quivers Q and rQ such that q “ qQ and rq “ q rQ, both of which

have m “ r ` 1 vertices and n arrows. By Remark 1.3pbq we have

ϕqQpλq “ pλ ´ 1qc´1pΛQ
pλq “ pλ ´ 1qc´1pΛ rQ

pλq “ ϕq rQ
pλq.

Therefore, the Coxeter-Laplacians ΛQ and Λ rQ are co-spectral. By Lemma 4.3 below, the matrices ΛQ

and Λ rQ are conjugate, that is, there is a permutation matrix P pρq such that Λ rQ “ P pρqtrΛQP pρq.

Thus, by Theorem 1.2piq and replacing Q by ρ ¨ Q if necessary, we may assume that ΛQ “ Λ rQ, see

Remark 1.1. We conclude that q « rq by Theorem 1.2piiiq, and using the equivalence of piq and piiiq
in Theorem 4.1. [\

Proof of Theorem 3:

The construction of the cycle type ct is given in [34, Definition 4.2], see also (5) above, where it is

shown that ct : rUQuadc
Apnq{ «s Ñ Pc

1pmq is well-defined and surjective. The injectivity of ct is

direct consequence of Theorem 2, and the properties pi ´ iiiq were shown in [34, Theorem 6.3 and

Corollary 6.4]. Claim pivq is clear from definition, see Lemma 2.3.

That the reduced corank of q is corkrepqq “ ℓ ´ 1, where ℓ is the length of ctpqq, was shown in

Corollary 2.6. That the multiplicity of 1 as a root of ϕq is c ` pℓ ´ 1q can be easily derived from the

shape of ϕq , cf. [34, Remark 7.1pbq]. That is, the algebraic multiplicity of 1 as eigenvalue of Φq is

corkpqq ` corkrepqq, which shows pvq. [\

4.2. Some general results

On pure subgroups and orthogonal matrices

We collect some well-known facts about pure subgroups, giving a sketch of the proofs.
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Lemma 4.2. The following are equivalent for a subgroup X of Zm.

a) The group X is pure.

b) The quotient Zm{X is free.

c) There is a subgroup Y of Zm such that Zm “ X ‘ Y .

d) The canonical inclusion X ãÑ Z
m has a left inverse.

e) If f : A Ñ Z
m is any morphism of abelian groups with Impfq “ X, then for any morphism

h : A Ñ B of abelian groups with hpKerpfqq “ 0 there is a morphism g : Zm Ñ B (not

necessarily unique) such that h “ gf .

Proof:

Assume that X is pure. If ȳ :“ y`X P Z
m{X satisfies aȳ “ 0 for some non-zero a P Z, then ay P X,

hence y P X, that is, ȳ “ 0. This shows that Zm{X is a torsion free (finitely generated) abelian group,

thus free. Assume that Zm{X is free, and fix a basis ȳ1, . . . , ȳd of Zm{X with ȳt “ yt ` X and

yt P Z
m for t “ 1, . . . , d. Take Y “ xy1, . . . , ydy the subgroup of Zm generated by y1, . . . , yd, and

verify that Zm “ X ‘Y . Assume that Zm “ X ‘Y , and take the inclusion σX : X Ñ Z
m. Then the

projection πX : X ‘ Y Ñ X satisfies πXσX “ IdX , that is, σX is left invertible. Assume that σX
has a left inverse π : Zm Ñ X, and that ax P X for a non-zero a P Z. Then ax “ πpaxq “ aπpxq,

which implies that x “ πpxq, that is, x P X, and X is a pure subgroup of Zm. These arguments show

that the statements pa ´ dq are equivalent.

Assume now that pdq holds, and take functions f and h as in claim peq. Denote by rf the restriction

of f to its image, rf : A Ñ Impfq. Then f “ σX rf , and therefore rf “ πf , where σX : X Ñ Z
m is the

canonical inclusion, and π is a left inverse of σX . Since rf is a cokernel of the inclusion Kerpfq ãÑ A,

there is rh : Impfq Ñ B such that h “ rh rf . Then the following diagram is commutative,

Kerpfq �
� // A

f //

rf &&▼▼
▼▼

▼▼
▼▼

▼▼

h

&&

Z
m

π
��

Impfq

rh��
B

Take g :“ rhπ and observe that gf “ rhπf “ rh rf “ h, as wanted. Finally, assume that peq holds,

and take f “ σX and h “ IdX . Since Kerpfq “ 0 then hpKerpfqq “ 0, and by hypothesis there

is g : Zm Ñ X such that IdX “ gf “ fσX . This shows the equivalence of claims pdq and peq,

completing the proof. [\

Recall that two permutation matrices P and P 1 are called conjugate if there is a permutation

matrix R such that P 1 “ RtrPR.

Lemma 4.3. The following are equivalent for permutations ξ and ξ1 of the set t1, . . . ,mu.

i) P pξq and P pξ1q are conjugate permutation matrices.

ii) The matrices P pξq and P pξ1q are co-spectral.
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iii) The cycle types ctpξq and ctpξ1q coincide.

iv) ξ and ξ1 are conjugate permutations.

Proof:

If P pξq and P pξ1q are conjugate permutation matrices, then they are similar matrices and their spectra

coincide. Recall that the characteristic polynomial of P pξq is given by

pP pξqpλq “
ℓź

t“1

pλπt ´ 1q,

where π “ pπ1, . . . , πℓq is the cycle type ctpξq “ π of ξ (cf. [54, §2.2] or [34]). If P pξq and P pξ1q are

co-spectral, then the cycle types of ξ and ξ1 coincide (cf. [34, Algorithm 2 and Remark 7.4]). In this

case, ξ and ξ1 are conjugate permutations (see [54, Proposition 2.33]), which in turn shows that P pξq
and P pξ1q are conjugate permutation matrices. [\

On non-negative integral quadratic forms

Let Z be a free finitely generated abelian group. By integral quadratic form q on Z we mean a

function q : Z Ñ Z satisfying qpaxq “ a2qpxq for any a P Z and x P Z , and such that its polarization

bq : Z ˆ Z Ñ Z, given by bqpx, yq :“ qpx ` yq ´ qpxq ´ qpyq, is a (symmetric) bilinear form. The

symmetric matrix of bq with respect to a fixed basis of Z is denoted by Gq . Since the determinant of

Gq is independent of the chosen basis, it is referred to as determinant detpqq of q. The radical of q

is the kernel (or right null space) of Gq. Since qpxq “ 0 for any x P radpqq, the induced function

q{radpqq : Z{radpqq Ñ Z is well defined.

Lemma 4.4. Let q : Z Ñ Z be an integral quadratic form.

i) The form q has zero radical (that is, radpqq “ 0) if and only if detpqq ‰ 0.

ii) If rZ is a free finitely generated abelian group, and B : rZ Ñ Z is a linear transformation, then

qB : rZ Ñ Z is an integral quadratic form.

iii) If rZ is a free finitely generated abelian group, rq : rZ Ñ Z is a function and rB : Z Ñ rZ is a

surjective linear transformation such that q “ rq rB, then rq is an integral quadratic form.

iv) The radical radpqq is a pure subgroup of Z , and the function q{radpqq : Z{radpqq Ñ Z is an

integral quadratic form with radical zero.

v) If q is non-negative, then x P Z is a radical vector of q if and only if qpxq “ 0.

Proof:

Fix a basis pe1, . . . , enq of Z , and let Gq be the Gram matrix of bq with respect to such basis. Then

detpGqq “ 0 if and only if there is a trivial integral linear combination of the rows of Gq , that is, if

there is a vector z “ pz1, . . . , znq P Z
n such that Gqz “ 0 (indeed, use Gaussian elimination over the

rational numbers, then multiply any solution by a common multiple of the denominators to get integer

coefficients). Then claim piq is clear, since x “
řn

i“1
ziei P Z is a radical vector of q.
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For piiq take rq :“ qB. The polarization of rq is given by brqprx, ryq “ bqpBrx,Bryq for vectors

rx, ry P rZ. Then the bilinearity ofbrq follows from the linearity of B and the bilinearity ofbq. Moreover,

for any a P Z and rx P rZ we have

rqparxq “ qpBarxq “ qpaBrxq “ a2qpBrxq “ a2rqprxq,

since B is linear and q is an integral quadratic form.

To show piiiq observe that the polarization of rq has the following shape, for vectors rx, ry P rZ and

vectors x, y P Z such that rBx “ rx and rBy “ ry,

brqprx, ryq “ brqp rBx, rByq “ bqpx, yq.

Then a standard calculation, using that rB is linear and surjective and that bq is bilinear, shows that brq
is bilinear. Moreover, for arbitrary a P Z and rx P rZ , there is x P Z such that rBx “ rx (since rB is

surjective), and we have

rqparxq “ rqpa rBxq “ rqp rBpaxqq “ qpaxq “ a2qpxq “ a2rqp rBxq “ a2rqprxq,

since q is a quadratic form and rB is linear.

To show pivq, since radpqq is the kernel of bq then it is a pure subgroup of Z . Moreover, observe

that x P radpqq if and only if qpx ` yq “ qpyq for any y P Z , which shows that the induced function

q{radpqq is well defined. If rB : Z Ñ Z{radpqq is the canonical surjection, then q “ pq{radpqqqp rBq
and rq is an integral quadratic form by piiiq.

The proof of pvq is a simple generalization of [33, Lemma 2.1pbq]. Indeed, if x P radpqq then

qpxq “ 1

2
xtrGqx “ 0 (here we identify the elements x P Z with their coordinate vectors in Z

n in the

fixed basis). Conversely, if q is non-negative and qpxq “ 0, then for an arbitrary m P Z and a basis

e1, . . . , en of Z we have

0 ď qpmx ` eiq “ mbqpx, eiq ` qpeiq.

Since m is arbitrary, then bqpx, eiq “ 0, and this holds for any i P t1, . . . , nu. That is, x P radpqq.

[\

Lemma 4.5. Let q : Z Ñ Z be a non-negative integral quadratic form, B : rZ Ñ Z a linear trans-

formation, and take rq :“ qB. Then B is an isomorphism if and only if the following conditions

hold,

a) the transformation B restricts to an isomorphism B|rad : radprqq Ñ radpqq;

b) the determinants of q{radpqq and rq{radprqq coincide.

Proof:

By Lemma 4.4piiq, rq “ qB is an integral quadratic form, which is clearly non-negative. By non-

negativity, B restricts to a transformation B|rad : radprqq Ñ radpqq. Indeed, if rx P radprqq then

qpBprxqq “ rqprxq “ 0, and by Lemma 4.4pvq the vector Bprxq is in the radical of q. In particular,
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B induces a linear transformation rBs : rZ{radprqq Ñ Z{radpqq such that the following diagram

commutes,

rZ{radprqq
rq{radprqq

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

rBs

��

Z.

Z{radpqq
q{radpqq

44✐✐✐✐✐✐✐✐✐✐✐✐

Assume first that B is an isomorphism. Then q “ rqB´1 and since rq is also non-negative, the

restriction B´1|rad : radpqq Ñ radprqq is inverse of B|rad. Since radpqq is a direct summand of

Z , and so is radprqq of rZ (Lemma 4.2), then rBs is an isomorphism between free finitely generated

abelian groups, which implies that detprq{radprqqq “ detpq{radpqqqdetprBsq “ detpq{radpqqq.

This shows that paq and pbq hold.

For the converse, by Lemma 4.4pi, vq we have detpq{radpqqq ‰ 0 and detprq{radprqqq ‰ 0. By

pbq, this implies that detprBsq “ ˘1, that is, that rBs is an isomorphism. Assume now that 0 “ Brx
for some rx P rZ . Then rBsprx ` radprqqq “ 0, which implies that rx P radprqq since rBs is injective.

Since B|rad is injective by paq, we have rx “ 0, that is, B is injective. Take now x P Z arbitrary. Since

rBs is surjective, there is rx P rZ such that Bprx ` radprqqq “ x ` radpqq, that is, x ´ Brx P radpqq
since Bpradprqqq Ď radpqq. Using that B|rad is surjective, again by paq there is ry P radprqq such that

Bry “ x ´ Brx, that is, x “ Bprx ` ryq. This shows the surjectivity of B, completing the proof. [\

Corollary 4.6. Let q and rq be connected non-negative unit forms in the same number of variables.

Then the following hold:

i) The forms q and rq have the same Dynkin type if and only if the determinants of q{radpqq and

rq{radprqq coincide.

ii) If q and rq have the same Dynkin type and rq “ qB for an integer matrix B, then B is Z-invertible

if and only if B restricts to an isomorphism B|rad : radprqq Ñ radpqq.

Proof:

To show piq assume first that q and rq have the same Dynkin type. Then they are weakly Gram con-

gruent since they have the same number of variables, that is, there is a Z-invertible matrix B with

rq “ qB. By Lemma 4.5pbq the determinants of q{radpqq and rq{radprqq coincide. Conversely, assume

that q and rq have different Dynkin types, say ∆ and r∆. By [5, Theorem 3.15], the forms q{radpqq
and q∆ are equivalent, therefore, they have the same determinant. The same holds for rq{radprqq and

q r∆. Since q and rq have the same number of variables, and ∆ ‰ r∆, then detpq∆q ‰ detpq r∆q (see for

instance [66, Corollary 3.10pbq]), which shows that the determinants of q{radpqq and rq{radprqq are

different.

Claim piiq follows from piq and Lemma 4.5pbq. [\
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Lemma 4.7. Let q and rq be non-negative unit forms with q «B rq for a n ˆ n matrix B. Then B

restricts to isomorphisms

B|rad : radprqq Ñ radpqq,

B|radre
: radreprqq Ñ radrepqq.

In particular, the standard morsification q
bq has pure restriction qrq to its radical if and only if q

brq has

pure restriction qrrq to its radical.

Proof:

That B|rad is an isomorphism was shown in Lemma 4.5. The second isomorphism holds since
q
brqpx, yq “ q

bqpBx,Byq for any x, y P Z
n, and B is Z-invertible. The claim on pure restriction

is clear since both B|rad and B|radre
are isomorphisms, and radrepqq is the kernel of the restriction

qrq of q
bq to its radical. [\

Some consequences

The following technical observation, basic for our work, seems to hold for more general contexts

(for other Dynkin types and for other unimodular morsifications). The author was not able to find any

related results in the literature, nor any more general proofs.

Corollary 4.8. Let q be a connected non-negative unit form of Dynkin type Ar for r ě 1. Then the

associated upper triangular bilinear form q
bq (the standard morsification of q) has pure restriction to its

radical.

Proof:

Follows from Lemma 4.7, Theorem 1 and Lemma 2.8. [\

Remark 4.9. In the proofs of Propositions 2.10 and 3.8, the only needed condition of the standard

quiver ~Q is that the upper triangular bilinear form q
bq~Q

has pure restriction to its radical (Lemma 2.8).

As consequence of Corollary 4.8, the same constructions of Propositions 2.10 or 3.8 hold when re-

placing ~Q for an arbitrary quiver rQ satisfying Q
.

“B rQ for a square or a Z-invertible matrix B,

respectively.

Observe that a loop-less quiver Q and its inverse Q: have the same Coxeter polynomial. Indeed,

using that IpQ:q “ IpQq qG´1

Q and that qGQ: “ qG´1

Q (cf. [33, Proposition 4.4]), a direct calculation

yields Φtr

Q “ ΦQ: . Then the following result, consequence of Theorem 2, helps us find explicit con-

gruences between the upper and lower triangular Gram matrices for the class of unit forms considered

in this paper (see [31] for related problems).

Corollary 4.10. Let q be a connected non-negative unit form of Dynkin type Ar for some r ě 1,

consider the upper triangular Gram matrix qGq and take q: :“ q qG´1
q . Then q: is a connected unit form

with q: « q. Moreover, any strong Gram congruence q «B q: determines a congruence

Ctr qGqC “ qGtr

q ,

by taking C “ B qGq.
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Proof:

By Theorem 1.2, there is a connected loop-less quiver Q such that q “ qQ. Taking Q: as in (8), that

is, IpQ:q “ IpQq qG´1

Q , then

qQ:pxq “
1

2
||IpQ:qx||2 “

1

2
||IpQq qG´1

Q x||2 “ qQp qG´1

Q xq “ q:pxq.

Therefore, using again Theorem 1.2, q: is a non-negative connected unit form of Dynkin type A.

Clearly, q „
qG´1
q q:, and since qGq is upper triangular then so is its inverse, which shows that qGq: “

qG´1
q . Note that

Φq: “ ´ qGtr

q:
qG´1

q: “ ´ qG´tr

q
qGq “ p´ qGtr

q
qG´1
q qtr “ Φtr

q .

In particular, the Coxeter polynomials of q and q: coincide. Then q « q: by Theorem 2. Finally, if

q «B q: and we take C “ B qGq, then

Ctr qGqC “ qGtr

q Btr qGqB qGq “ qGtr

q
qG´1
q

qGq “ qGtr

q ,

as claimed. [\

We end this section with a numerical strong Gram classification of non-negative connected unit

forms of Dynkin type Ar and some comments on the number of corresponding classes. Recall that

UQuadc
Apnq denotes the set of connected non-negative unit forms on n ě 1 variables having Dynkin

type An´c and corank c ě 0.

Corollary 4.11. Let q, q1 : Zn Ñ Z be non-negative connected unit forms of Dynkin type Ar, r ě 1.

Then q « q1 if and only if ctpqq “ ctpq1q. Moreover,

|UQuadc
Apnq{ « | “

$
’’&
’’%

1, if c “ 0,X
n
2

\
, if c “ 1,Y

pn´1q2`15

12

]
, if c “ 2.

Proof:

Observe first that corkpqq “ corkpq1q “ n ´ r, and since Dynpqq “ Dynpq1q “ Ar, then q and q1

are weakly Gram congruent (cf. [6]). Then the main claim follows directly by Theorem 3, where it is

shown that

|rUQuadc
Apnq{ «s| “ |Pc

1pmq|, where P
c
1pmq :“ tπ $ m | 0 ď c ´ pℓpπq ´ 1q ” 0 mod 2u.

Denoting by pℓpmq the number of partition of m having exactly ℓ parts, then

|Pc
1pmq| “

tc{2uÿ

d“0

pc´2d`1pmq. (18)

Using that p1pmq “ 1 and p2pmq “ tm{2u for all m ě 2, and that m “ n´ c` 1, we get the claimed

values of |UQuadc
Apnq{ « | for c “ 0, 1. If c “ 2 then |P2

1 pmq| “ p3pn ´ 1q ` p1pn ´ 1q. It can be

easily shown that this coincides with the number of partitions of n ´ 1 into 3 or fewer distinct parts, a

number known to be given by tpn ´ 1q2{12 ` 5{4u, cf. entry A014591 in [71]. [\
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In general, the value of |Pc
1pmq| can be found using (18) and the well-known recursive formula

for pℓpmq, see for instance [1, pp. 345–348],

pℓpmq “ pℓ´1pm ´ 1q ` pℓpm ´ ℓq,

subject to the starting conditions p0p0q “ 1 and pℓpmq “ 0 if ℓ ď 0, m ď 0 and ℓ ` m ă 0.

Comments on generalizations and future work

Following Simson’s work, there are many interesting problems to consider in the setting of non-

negative unit forms of arbitrary corank, for instance: the computation of isotropy mini-groups and

Weyl group actions, the description of morsifications, Coxeter-translation quivers and mesh geome-

tries, and applications to quadratic forms associated to posets. The combinatorial framework explored

here is certainly useful for the analysis of such problems, at least for the class of connected non-

negative unit forms of Dynkin type Ar.

As already mentioned in [32], the ideas presented here may be generalized to cover the Dynkin

type Ds for s ě 4, replacing loop-less quivers by certain loop-less bidirected graphs (in the sense

of Zaslavsky [74], see also [73]), satisfying certain cycle condition (cf. [32, §8]). Most of the con-

structions and results are similar to those for quivers, the main challenge now being the choice of an

adequate family of representatives of strong Gram congruence (the corresponding standard unit forms

of Dynkin type Ds). By admitting loops we include semi-unit forms, as well as a class of non-unitary

connected non-negative quadratic forms to be classified yet. The seminal paper by Cameron, Goethals,

Seidel and Shult [15], connecting classical root systems with the spectral analysis of signed graphs,

contains fundamental ideas suitable for further generalizations (see also [73]).

In the following lemma we consider some of the ideas that originated the results of this paper,

presented in a slightly more general context.

Lemma 4.12. Let q, rq : Zn Ñ Z be non-negative connected unit forms with corkprqq ď 1. Then the

following are equivalent for a matrix B P MnpZq,

a) B is Z-invertible and q «B rq;

b) B satisfies rq “ qB and GrqB˚B “ Grq , where B˚ :“ qG´1

rq Btr qGq .

Proof:

Note first that if paq holds then rq “ qB and, by definition of q «B rq, we have B˚B “ Id. Assume

now that pbq holds, which does not require the matrix B to be Z-invertible. Note that rq “ qB implies

that BtrGqB “ Grq, which shows that the matrix M :“ Btr qGqB ´ qGrq is skew-symmetric (recall that

Gq “ qGq ` qGtr
q and similarly for rq). Hence, the rank of M is a non-negative even number (cf. [24, XI,

§4]). Since qGrq is Z-invertible, then the rank of N :“ qG´1

rq M “ B˚B ´ Idn is also a non-negative

even number. However, the condition GrqB˚B “ Grq guarantees that the columns of N are radical

vectors of rq, since

GrqN “ GrqrB˚B ´ Idns “ 0.

Then rkpNq ď corkprqq ď 1, which shows that N “ 0 “ M , that is, Btr qGqB “ qGrq . In particular,

detpBq “ ˘1 and q «B rq, as claimed. [\
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In our context of Dynkin type Ar via connected loop-less quivers, any matrix B satisfying the

condition paq of Definition 3.2, namely Q
.
“B rQ, satisfies q rQ “ qQB and G rQB

˚B “ G rQ. In

particular, if corkpq rQq ď 1, then B determines a strong Gram congruence qQ «B q rQ, as claimed in

the introduction (see comments after Step 1 on page 22).

4.3. Hints for an implementation

We end the paper with some ideas and suggestions for an implementation of our main results, solving

Problem 2piiq for the class of connected non-negative unit forms of Dynkin type Ar. All algorithms

are straightforward, and make use of well-known methods as least squares and depth-first

search. The main construction is presented in Algorithm 1 (resp. Algorithm 2), where for a connected

non-negative unit form of Dynkin type Am´1 (resp. a connected loop-less quiver on m vertices) we

compute a matrix that determines a strong Gram congruence to the corresponding standard unit form

(resp. standard quiver) representative of class, see Theorem 1 and Definition 3.2. This construction is

based on the correction Algorithms 3 and 4, corresponding to Propositions 2.10 and 3.8 respectively,

and on further auxiliary methods given in Algorithms 5, 6 and 7. An algorithmic approach to the skew

normal form may be found in [72] or [48, Theorem IV.1].

Algorithm 1. Standard solution for quadratic forms.

Input: A connected non-negative unit form q in n variables and of Dynkin type Ar for r ě 1.

Output: A n ˆ n matrix B such that

qG~q “ Btr qGqB,

where ~q is the standard non-negative unit form weakly congruent to q and satisfying ϕ~q “ ϕq.

Step 1. Find a quiver Q with n arrows and m “ r ` 1 vertices such that q “ qQ (see [34,

Algorithm 1]).

Step 2. Apply Algorithm 2 below to find a matrix B satisfying qG~Q
“ Btr qGρ¨QB, where ~Q is a

standard quiver and ρ is a permutation such that Λρ¨Q “ Λ ~Q
(cf. Remark 1.1). Since qGq “ qGQ, then

B is the wanted strong Gram congruence matrix, by taking ~q :“ q ~Q. Return matrix B.

Algorithm 2. Standard solution for quivers.

Input: A connected loop-less quiver Q with n ě 1 arrows and m ě 2 vertices.

Output: A permutation ρ of Q0 “ t1, . . . ,mu and a nˆn matrix B such that Ipρ ¨QqB “ Ip ~Qq,

and
qG~Q

“ Btr qGQB,

where ~Q is the standard quiver with ctp~Qq “ ctpQq and same number of arrows as Q.

Step 1. Compute the permutation of vertices ξ´
Q of Q. [Hint: determine the structural walks α´

Qpvq
for v “ 1, . . . ,m, see definition (3), or compute directly the Coxeter-Laplacian ΛQ of Q using (9)].

Step 2. Compute the cycle type ctpQq of Q by considering the cardinalities of the orbits of ξ´
Q

(see also [34, Algorithm 2]), and let ℓ be the length of ctpQq.
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Step 3. Consider the degree of degeneracy d “ 1

2
pc ´ ℓ ` 1q of qQ, where c “ n ´ m ` 1 is the

corank of qQ, and take the standard quiver ~Q :“ ~AdrctpQqs.

Step 4. Determine a permutation ρ such that ξ´
Q ˝ ρ “ ξ´p ~Qq.

Step 5. Take rQ :“ ρ ¨Q By Step 4 we have Λ rQ “ Λ ~Q
. Find a matrix B1 such that Ip rQqB1 “ Ip ~Qq

and Ip ~QqpB1q˚ “ Ip rQq, that is, rQ .
“B1

~Q [Hint: using the structural walks of Step 1 and apply

equations (11) and (12) from the proof of Proposition 1.14; we also need to find arbitrary connecting

walks δptq, for which we may use, for instance, a depth-first search algorithm].

Step 6. Apply Algorithm 3 below to the matrix B1 of Step 5 to find a matrix M such that B1 ` M

is Z-invertible and rQ .
“B1`M ~Q.

Step 7. Apply Algorithm 4 below to the matrix B1 ` M of Step 6 to find a matrix C such that if

B :“ pB1 ` MqC , then Ip rQqB “ Ip ~Qq and rBs˚rBs “ Id, as wanted. Return the pair pρ,Bq.

Using Corollary 4.8, the following correction Algorithms 3 and 4, based on the proofs of Propo-

sitions 2.10 and 3.8 respectively, work for arbitrary connected loop-less quivers Q and rQ with same

number of vertices and arrows (see Remark 4.9).

Algorithm 3. Invertible pseudo-morphism.

Input: Two connected loop-less quivers Q and rQ with the same number of arrows n, and a n ˆ n

matrix B such that Q
.

“B rQ.

Output: A n ˆ n matrix M such that B ` M is Z-invertible and Q
.

“B`M rQ.

Step 1. Fix kernel matrices K and rK of IpQq and Ip rQq respectively, and consider the skew-

symmetric matrices W “ Ktr qGQK and ĂW “ rKtr qG rQ
rK.

Step 2. Make sure that the kernel matrix K has the shape K “ rK 1,K2s, where K2 is a kernel

matrix of the reduced radical radrepqQq, and assume that rK has a similar shape rK “ r rK 1, rK2s.

Step 3. Find a matrix L such that B rK “ KL (for instance, using a least squares algorithm).

As indicated by the partitions K “ rK 1,K2s and rK “ r rK 1, rK2s, the matrices L and ĂW have the

following shapes,

L “

˜
L1 0

L2 L3

¸
and ĂW “

˜
ĂW 1 0

0 0

¸
.

By Corollary 4.8, the matrix ĂW 1 is Z-invertible.

Step 4. Take Y1 :“ pL1 ´ IdqpĂW 1q´1 and Y2 :“ L2pĂW 1q´1. Take also Y :“

˜
Y1 0

Y2 0

¸
and

M :“ KY rK:tr, where rK: :“ qG rQ
rK . Then B `M satisfies the claim, as in Proposition 2.10. Return

matrix M .

Algorithm 4. Strong congruence matrix.

Input: Two connected loop-less quivers Q and rQ with the same number of arrows n, and a Z-

invertible n ˆ n matrix B such that Q
.

“B rQ.

Output: A Z-invertible n ˆ n matrix C such that IpQqpBCq “ Ip rQq and pBCq˚pBCq “ Id.
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Step 1. Fix kernel matrices K and rK of IpQq and Ip rQq as in Steps 1 and 2 of Algorithm 3.

Step 2. Take B˚ :“ qG´1

rQ Btr qGQ, and use Algorithm 5 below to compute Z :“ ΞpB˚Bq and

rZ :“ ΞppB˚Bq´1q.

Step 3. Apply Algorithm 6 below to the matrix rZ of Step 2 in order to find a matrix Y such that

rZ “ Y ´ Y tr ` Y trĂWY,

where ĂW :“ rKtr qG rQ
rK .

Step 4. Define C :“ Id ´ rKY tr rK:tr where Y is the matrix of Step 3, and rK: :“ qG rQ
rK . Then

BC satisfies the claim as in the proof of Proposition 3.8. Return matrix C .

The following are auxiliary constructions for Algorithm 4.

Algorithm 5. Construction of the bijection Ξ of Lemma 3.5.

Input: A connected loop-less quiver Q with n arrows, a fixed nˆ c kernel matrix K of IpQq, and

a pseudo-endomorphism B of Q.

Output: A c ˆ c matrix Z :“ ΞpBq such that B “ Id ` KZK:tr, where K: :“ qGQK .

Step 1. Find a solution L to the equation B ´ Id “ KL (for instance, using a least squares

algorithm).

Step 2. Find similarly a solution Z to the equation L “ ZK:tr where L is the matrix of Step 1.

Return matrix Z .

Algorithm 6. Special decomposition of a skew-symmetric matrix.

Input: A pair pZ,W q of skew-symmetric c ˆ c matrices, where W is pure and in skew normal

form.

Output: A c ˆ c matrix Y such that Z “ Y tr ´ Y ` Y trWY .

Step 1. Assume first that W is Z-invertible and take rZ :“ Z ` W . Using Algorithm 7 below we

find a matrix rY such that rZ “ rY trW rY , and take Y :“ rY ´ W (see the first part of the proof of

Lemma 3.1pbq).

Step 2. Assume now that W is not Z-invertible. Then W “ W 1 ‘ 0 for a Z-invertible skew-

symmetric matrix W 1 and 0 a zero matrix of adequate size, and Z has the following shape

Z “

˜
Z1 ´Ztr

2

Z2 Z3

¸
.

Step 3. Since Z1 and W 1 are skew-symmetric, and W 1 is Z-invertible, using Step 1 we find a

matrix Y1 such that Z1 “ Y1 ´ Y tr
1 ` Y tr

1 W 1Y1.

Step 4. Take Y2 :“ Z2, and let Y3 be the upper triangular part of Z3 (so that Z3 “ Y3 ´ Y tr
3 , since

Z3 is also skew-symmetric). Take

Y :“

˜
Y1 0

Y2 Y3

¸
.

Then Y satisfies the claim, as in the proof of Lemma 3.1. Return matrix Y .
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Algorithm 7. Direct factorization of a skew-symmetric matrix.

Input: A pair pZ,W q of skew-symmetric c ˆ c matrices, where W is Z-invertible and in skew

normal form.

Output: A c ˆ c matrix Y such that Z “ Y trWY .

Step 1. Since W is Z-invertible then c “ 2r for some r ě 0. Find a matrix P such that

P tr rZP “ f1

˜
0 1

´1 0

¸
‘ . . . ‘ fr

˜
0 1

´1 0

¸
,

for integers f1, . . . , fr (the product P tr rZP not necessarily in skew normal form).

Step 2. Consider the 2r ˆ 2r matrix S “ diagp1, d1, 1, d2, . . . , 1, drq and return Y :“ SP´1.
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