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Introduction
An integral quadratic form (21, ..., ¥5) = X1 <;<j<n %j%i; is an integer homogeneous polynomial
(gij € Z) of degree two on n > 1 integer variables x4, . .., z,, more generally considered as a function

q : 7" — 7 whose associated map
by : Z" x 7" — Z,

given for (column) vectors x,y € Z" by by(z,y) = q(z +y) —q(x) —q(y), is a bilinear form, usually
called polarization of g. The form ¢ is said to be positive (resp. non-negative) if g(z) > 0 (resp.
¢(x) = 0) for any non-zero vector x € Z", that is, whenever the polarization b, is a positive (semi-)
definite form, since ¢(z) = 3b,(z,z) for any z in Z". Recall that two integral bilinear forms b and
b’ are called equivalent if there is a Z-invertible matrix B such that b'(z,y) = b(Bz, By) for any
x,y € L.

Integral quadratic forms appear frequently, sometimes implicitly, in Lie theory, in the representa-
tion theory of groups, algebras, posets and bocses, in cluster theory, and in the spectral graph theory
of signed graphs, to mention some examples. Their usefulness, in representation theory alone, which
is our main motivation, has prompted extensive original research for some decades now. For instance:

* In the early stages of the representation theory of associative algebras of finite dimension, after
the work of Gabriel [23]]: Bernstein, Gelfand and Ponomarev [9]], Ovsienko [49] (see also [21]]
and [53]]), Dlab and Ringel [17.[18]], Ringel [53]], Bongartz [[12[13]], de la Pefa [50}51], Briistle,
de la Pena, Skowronski [[14]).

e Usually in a graphical context, considering arithmetical properties and classification problems
of quadratic forms: Barot [2[3]], Barot and de la Pefia [6H8]] von Hohne [28H30], Dean and de la
Pefia [16]], Happel [27], Drixler and de la Pefia [[19,20].

* Within Lenzing’s Coxeter formalism of bilinear forms [38]]: Lenzing and Reiten [39], Mréz [44,
45]], Mréz and de la Pena [46./47]).

* In a graphical context, considering morsifications, Weyl and isotropy groups, certain mesh ge-
ometries of orbits of roots, and classification problems: Simson [57H68]], Kosakowska [37],
and Simson and collaborators: Bocian and Felisiak [10,[11]], Gasiorek and Zajac [25.126], Kas-
jan [351136], Makuracki and Zyglarski [421143]], Zajac [69.[70].

» Within the context of quasi-Cartan matrices, defined by Barot, Geiss and Zelevinsky in [4] for
the study of cluster algebras: Simson [66], Makuracki and Mréz [40,/41]] and Perez, Abarca and
Rivera [52].

Let us fix some of the notation and terminology used in the paper. We denote by M, (Z) the set of
n x n matrices with integer coefficients. The identity matrix of size n is denoted by Id,, or simply
by Id for adequate size. Recall that M € M., (Z) is Z-invertible if and only if det(M) = +1. The
transpose of a matrix M is denoted by M*®F, and if M is Z-invertible then M~ := (M —1)*r, Here
all matrices have integer coefficients, and as usual, we identify a m x n matrix M with the linear
transformation M : Z" — Z™ given by x — Maz. We denote by Im(M') and Ker(M ) the column
space of M and the null right space of M, respectively. We say that the matrix K is a kernel matrix
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of M if its columns consists of a basis of Ker(M). The column vector with n entries, all of them
equal to 1, is denoted by 1,, or simply by 1 for appropriate size. For matrices M, of size m x n;
fort = 1,...,r the m x n matrix with columns those of My, ..., M,, in that order, is denoted by
My, Ms, ..., M,_1,M,], where n = »};_, n;. For arbitrary matrices N1, ..., N,, take

N, O -~ 0
0 Ny --- 0
Nl@N2®®NT =
0 0 --- N,
The canonical basis of Z" is denoted by e;,...,e,. For a permutation p of the set {1,...,n}, the
matrix P(p) satisfying P(p)e; = e, fort = 1,...,n is called permutation matrix of p.

The matrix with integer coefficients Gy, = [b(e;, e;)];_; is called Gram matrix of an integral
bilinear form b : Z"™ x Z"™ — 7, with respect to the canonical basis of Z". By symmetric Gram
matrix G of an integral quadratic form ¢ we mean the Gram matrix G, = Gy, of the polarization b,
of ¢ (notice that GG, is symmetric and has integer coefficients). We also consider the (unique) bilinear
form UB : Z" x I — 7 such that q(z) = qu(ac m) for all z € Z™, and such that its Gram matrix with
respect to the canonical basis of Z", denoted by Gq, is upper triangular. Note that G, = G + Gtr
We say that ¢ is a unit form (or a unitary integral quadratic form) if ¢(e;) = 1fori = 1,... n. In
that case, éq is a Z-invertible matrix (since it is upper triangular with all diagonal coefﬁcients equal
to 1), and is called the standard morsification of ¢ in Simson’s terminology [57.161]]. Two unit forms
q and ¢ are called weakly Gram congruent if their polarizations are equivalent, that is, if there is a
Z-invertible matrix B such that G, = B*™G,B (or equivalently, ¢ = ¢B). Similarly, ¢ and ¢’ are
called strongly Gram congruent if their standard morsifications are equivalent, that is, if there is a
Z-invertible matrix B such that éq/ = B“Cv?qB . Then we write ¢ ~? ¢/ and ¢ ~ ¢ for the weak and
strong cases respectively (or simply ¢ ~ ¢’ and ¢ ~ ¢'). The weak Gram classification of connected
non-negative unit forms is due to Barot and de la Pefa [6] and Simson [62] (see also [[70]), in terms
of a unique pair (A, ¢) where A is a Dynkin diagram A,., Dy, E; (for r > >4orte {6,7,8})
and ¢ > 0 is the corank of the quadratic form g, that is, the rank of the kernel of the symmetric Gram
matrix G,. Here we deal with the strong Gram classification problem of connected non-negative unit
forms of Dynkin type A, forr > 1

For a unit form g, consider the matrix with integer coefficients ®, = —é;réal, called Coxeter
matrix of ¢. The characteristic polynomial of ®,, denoted by ¢,()), is called Coxeter polynomial
of ¢. It is well known, and can be easily shown, that if ¢ ~ ¢/, then ¢ ~ ¢’ and p, = ¢, (cf. [33]
Lemma 4.6]). The validity of the converse of this claim in this, or in partial or equivalent forms, is
a question raised by Simson for at least a decade (see [61]). Here we give a formulation in terms
of non-negative unit forms (see also [34, Problem A]), which correspond to non-negative loop-less
bigraphs as in [61]], or to non-negative symmetric quasi-Cartan matrices as in [4]. Generalizations of
these problems may be found, for instance, in terms of Cox-regular bigraphs in [45 Problem 1.3], or
of symmetrizable quasi-Cartan matrices in [66] (see also [61H63]]).
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Problem 1 (Simson’s Coxeter Spectral Characterization Question).
If two connected non-negative unit forms are weakly Gram congruent and have the same Coxeter
polynomial, are they strongly Gram congruent?

Problem 2 (Simson’s Strong Gram Classification Problems).

1) Classify all non-negative unit forms up to the strong Gram congruence. This includes (and up
to Problem 1, is exhausted by) the determination of all Coxeter polynomials per weak Gram
congruence class.

ii) Given two non-negative unit forms ¢ and ¢’ that are strongly Gram congruent, find a Z-invertible

matrix B such that ¢ ~7 ¢/.

Solutions to these problems for special classes of quadratic forms are known. For instance, the
positive case was completed recently by Simson [6467/68]] (see further examples and related problems
in [45]). An alternative proof for positive unit forms of Dynkin type A, was given by the author in [33]].
Here we present affirmative solutions to Problems 1 and 2 for connected non-negative unit forms of
Dynkin type A, (for » > 1) and arbitrary corank, with the combinatorial methods presented in [32]],
and developed to this end in [33.134].

Recall that two connected non-negative unit forms are weakly Gram congruent if and only if they
have the same Dynkin type and the same corank (see [6] or [70]]), or equivalently, the same Dynkin
type and the same number of variables. Simson determined in [62] representatives of the weak Gram
congruence classes of connected non-negative unit forms, the so-called canonical extensions, showing
that any such form having Dynkin type A is weakly Gram congruent to a unique canonical extension
of the unit form ga, see 62, Theorems 1.12 and 2.12] and [70, Theorem 1.8] (recall that the quadratic
form ga associated to a graph A is determined by G,, := 2Id — Adj(A), where Adj(A) denotes
the symmetric adjacency matrix of A). A family of representatives for the corresponding strong

7Tg—1—aITOWS Tp—1-aIroOws T -aIrrows 701 -aIrOwWs
A - . A
s N ~ ~ " N
e — o e — 0 — 0 e — 0 e — 00— 0 - 06— 0 —> 0 —> 0 o — 0 — o0
2d-arrows
Figure 1. For a partition 7 = (71, 7a,...,m¢) of m > 2, and a non-negative integer d, depiction of the

standard (7, d)-extension quiver A%[x] with m vertices, cycle type 7 and degree of degeneracy d (see Defini-
tion[L@). It has n = m+£+2(d — 1) arrows: m — 1 arrows in the upper row (going from left to right, numbered
from 1 to m — 1), £ — 1 arrows in the second row (going from right to left, numbered from m to m + £ — 2),
and 2d alternating parallel arrows, numbered from m + ¢ — 1 to m + £ + 2(d — 1). The associated quadratic
form gz, is called standard (7, d)-extension of g4, _,, see (.
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Gram classes of Dynkin type A, was proposed in [34] Definition 5.2] (see Figure [1] and below).
There they are called standard extensions of the unit form g, and here we confirm that they are
representatives of strong Gram congruence in the following classification theorem.

Theorem 1. Every connected non-negative unit form of Dynkin type A, for r > 1 is strongly Gram
congruent to a unique standard extension of the unit form gy, .

Alternatively, the following formulation of Theorem [I]answers directly Problem 1.

Theorem 2. Let g and ¢ be weakly Gram congruent connected non-negative unit forms of Dynkin
type A, for = 1. Then ¢ and ¢ are strongly Gram congruent if and only if they have the same
Coxeter polynomial.

Using Theorem 2 and the results on Coxeter polynomials of [34] (based on [33, Theorem A]),
we complete the following descriptive theorem of non-negative unit forms of Dynkin type A, up
to the strong Gram congruence (cf. [34, Problem B]). We need the following general notions. Let
q : Z" — Z be a unit form, with symmetric Gram matrix G, and Coxeter matrix ®,.

* A partition 7 of an integer m > 1, denoted by 7w I m, is a non-increasing sequence of positive
integers ™ = (71, ..., Ty(x)) such that m = ng m¢. The integer ¢() is called the length of
7, and the set of partitions of m is denoted by P(m).

* The kernel of G, in Z™ is called radical of ¢, denoted by rad(q), and its elements are called
radical vectors of ¢q. The rank of rad(q) is called corank of ¢, and is denoted by cork(q). The
reduced corank cork,.(q) of ¢ is the rank of the kernel of the restriction I, of Uﬁv)q to its radical
(see details in 2.1 below).

* The Coxeter number C(q) of ¢ is the minimal ¢ > 0 such that &} = Id, if such ¢ exists, and
C(q) := oo otherwise. The reduced Coxeter number C,.(¢) is the minimal ¢ > 0 such that
<1>f1 — Id is a nilpotent matrix (such ¢ always exists if ¢ is non-negative, cf. [55]). The degree
of degeneracy of ¢ is the integer d, > 0 such that 2d, = cork(q) — cork,.(g), which is a
non-negative even number since it is the rank of a skew-symmetric form (namely, the restriction
Iy of UT)q to the radical rad(q) of ¢, see (I3) and further details in 2.1 below).

Theorem 3. Let UQuad§ (n) denote the set of connected non-negative unit forms in n > 1 variables
having corank ¢ > 0 and Dynkin type A, _.. Taking m := n —c+ 1 > 2, there is a function
ct : UQuad§(n) — P(m), called the cycle type of a unit form in UQuad$ (n), which induces a
bijection,

[UQuadj (n)/ ~] —=—=P{(m) ,

where P{(m) denotes the set of partitions of 7 whose length is conditioned by c as follows,
Pi(m):={rt+m|0<c—({(r)—1)=0 mod 2}.

Moreover, if ct(q) = (71, ..., m) for ¢ € UQuad{ (n), then the following hold.
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i) The Coxeter polynomial of g is ¢, (\) = (A — 1)¢7? Hle()\m —1).

ii) The Coxeter number of ¢ is C(q) = m if £ = 1, and C(q) = o0 otherwise.
iii) The reduced Coxeter number of ¢ is C,.(q) = lem(7).
iv) The geometric multiplicity of 1 as eigenvalue of @, is cork(q) = c.

v) The reduced corank cork,.(q) of ¢ is £ — 1, and the algebraic multiplicity of 1 as eigenvalue of
®, is cork(q) + cork,.(q).

A solution for the positive and principal cases (coranks zero and one) of Theorem 2] within our
combinatorial framework, was shown in [33, Theorems A and B] by means of certain (admissible)
flations at the level of loop-less quivers. Here we pursue an alternative strategy which we sketch as
follows (see details in Section d). Let ¢ be a unit form in UQuad{ (n). We fix a unique standard
extension ¢'such that ¢ ~ ¢'and ¢, = g (see Definition [3.21and Remark [[.IQ below), and proceed in

three main steps, for which, for a n x n matrix B, we consider the matrix B* := G;Btréq.

Step 1. Find a matrix B such that, among other technical conditions (see Definition 3.2}(a)),

satisfies
=¢B, and ¢ = ¢B*.

=y

It can be shown that for corank zero or one, the matrix B of Step 1 determines itself a strong Gram
congruence ¢ ~7 7 (cf. Lemma[.12). In general, analyzing how far B is from being a strong Gram
congruence, we arrive to the following correction steps.

Step 2. Find a matrix M such that the matrix B + M is Z-invertible, and satisfies the same

conditions of Step 1:
§=q(B+ M), and q=q(B+ M)*.

Step 3. Find a matrix C such that [(B + M)C|*[(B + M)C] = Id.

Clearly, the condition N* N = Id for a square matrix N implies that N is Z-invertible and ¢ ~~ .
The goal of this paper is to constructively exhibit the existence of matrices B, M and C. A solution to
Step 1 is given in Section [I] using the specific structure of standard extensions, see Proposition].14]
Steps 2 and 3 are simple correction algorithms that work in a much general context (see Remark [4.9).
However, their justification is long and technical at some points, and requires a special condition that
can be easily verified for standard extension (see Lemma and Corollary [4.8). Steps 2 and 3 are
shown in Sections 2] and [3] see Propositions and [3.8] and their implementable formulations as
Algorithms Bland ] respectively. The proofs to our main theorems, comments on generalizations and
suggestions for an implementation are collected in Section 4l

1. A combinatorial realization

In this section we summarize the needed combinatorial notions and results introduced in [32] and
developed in [331[34] for the Coxeter analysis of non-negative unit forms of Dynkin type A, namely,
structural walks, incidence vectors, the inverse of a quiver and standard quivers.
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1.1. Basic notions

Let Q = (Qo,Q1,s,t) be a quiver, that is, Qo and Q)1 are finite sets (whose elements are called
vertices and arrows of (), respectively), and s,t : Q1 — Qg are functions assigning to each arrow
i of () a source vertex s(i) € )y and a target vertex t(i) € ()o. Throughout the paper we assume
that both sets Qg and 1 are totally ordered (see Remark [[.T|below). Moreover, taking m = |Qo| and
n = |@Q1| we usually identify the set of vertices (o with the set {1, ..., m}, and the set of arrows Q)4
with the set {1,...,n}. The m x n incidence matrix 7(Q) of @ has as i-th column the difference
€s(i) —€g(s) € Z™. The symmetric Gram matrix of () is defined by G = [ (Q)¥™I(Q), and its upper
triangular Gram matrix CVJQ is the unique upper triangular matrix satisfying éQ +Gir = Gg. Notice
that if () has no loop, then CVJQ is Z-invertible, and that if ) is connected then KerI(Q)*" is generated
by the single vector 1,,, (see [34, Theorem 3.3(ii)]).

The integral quadratic form ¢ associated to a quiver () with m vertices and n arrows, as
defined in [32], is given by

1
qo(x) = §\|I(Q)x|\2, for x € 7", (1)

where ||y||? := y*y denotes the squared Euclidean norm of a vector 3 € Z™. By definition, we have
G4 = G, which implies that G, = Gg.

Remark 1.1. Let () be a connected loop-less quiver. For any permutation p of the set of vertices (Jg,
denote by p - Q = (Qo, @1,8, t) the quiver obtained from () by permuting its vertices via p (that is,
S(i) = p(s(i)) and t(i) = p(t(7)) for any arrow ¢ € @Q1). Denote by QP = (Qo, Q1,s?,t°P) the
quiver obtained from () by reversing the orientation of all of its arrows (that is, s’ = t and t°? = s).

i) Then I(p- Q) = P(p)I(Q) and 1(Q) = (~1)I(Q).

ii) We have qg = q,.9 = q,.gor, and consequently CVJQ = éP'Q = @p.Qop.
Proof:
Observe that if i € (01, then

I(p-Q)ei = ex) — ;) = €ps(i) — €pt(i)
= P(p)(esu) — ey)) = P(p)I(Q)e;,

and
I(Q)e; = eson(iy — egor(iy = (—1)(es(i) — (i) = (1) 1(Q).
Then () holds. The claim on quadratic forms in (i7) follows from (7) and (), since
1 1 1
90(@) = S I11(@)l]* = SIP(P)I(@Q)]* = SII(=D P I(Q)z]]*.
The claim on standard morsifications is clear from the first part of (i7). i

In the following result we interpret the weak and strong Gram congruences within this combina-
torial realization (compare with [34, Lemma 6.1]).
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Theorem 1.2. If () is a connected loop-less quiver with m vertices and n arrows, then qg is a con-
nected non-negative unit form of Dynkin type A,,_; and corank ¢ = n — m + 1. Moreover, if g is a
connected non-negative unit form in n > 1 variables, with Dynkin type A,,,_; for m > 2 and corank
¢ = 0, then there is a connected loop-less quiver Q with n arrows and m = n — ¢ + 1 vertices such
that ¢ = q¢. Assuming that @ is also a connected loop-less quiver:

i) We have g = ¢4 if and only if there is a permutation matrix P and a sign € € {£1} such that

~

1(Q) = ePI(Q).
ii) We have go ~ gg if and only if (|Qol,|@1]) = (/Qol, @), which holds if and only if there

~

is a permutation matrix P, a sign € € {£1} and a Z-invertible matrix B satisfying I(Q) =
¢PI(Q)B.

iii) We have gg ~ a5 if and only if there is a permutation matrix P, a sign € € {1} and a
(Z-invertible) matrix B satisfying I(Q) = ePI(Q)B and CVJQ = Bter?QB.

Proof:

The main claim follows from [32, Theorem 5.5], see also [33) Proposition 3.15 and Corollary 3.6].
The existence of P and ¢ in claim (¢) follows from [32} Corollary 7.3], see [34, Lemma 6.1(z)] and
Remark [[L1l(z). The converse follows from Remark [[.T|(7¢) above.

To show (i7), recall first that two non-negative connected unit forms are weakly Gram congruent
if and only if they have the same Dynkin type and same corank (see the main corollary in [6]), or
equivalently, the same number of variables and the same Dynkin type. By the main part of the theorem,
qq is a connected unit form on ()| variables and Dynkin type A|Qo|—1- This shows that gg ~ '

if and only if (|Qol,|Q1]) = (|Qo,|@1]). For the second equivalence in (), it was shown in [34]
Lemma 6.1(i7)] that if gg ~ 'L then there is a permutation matrix P, a sign ¢ € {+1} and a Z-

~

invertible matrix B satisfying 1(Q)) = ePI(Q)B (note that the sign ¢ might be “included” in matrix
B, as in [34, Lemma 6.1(47)]). The converse is clear, since €2 = 1 and Pt P = 1d, and therefore

Gy = G = 1@ I(Q) = [ePIQ)BI"[cPI(Q)B] = B*I(Q)" I(Q)B = B* Gy B.

Similarly, the necessity in claim (¢7i) was shown in [34, Lemma 6.1(477)], and the sufficiency is clear
from definition. m

Based on Theorem we propose two characterizations of strong Gram congruence between
quadratic forms associated to connected loop-less quivers in Theorem (. I]below. The proof and hints
for its implementation, which will take the rest of the paper to complete, depend on the following
matrices (cf. [34], Theorem 3.3]). If () has m vertices and n arrows, take

®q :=1d, — I(Q)"I(Q)Gy' and Ag :=Id, — I(Q)G5'I(Q)™. )

These are called the Coxeter-Gram matrix of () and the Coxeter-Laplacian of (), respectively. Basic
properties of ®¢ and A, and their relation with the Coxeter matrix 4, of g, are collected in the
following observation.
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Remark 1.3. Let () be a connected loop-less quiver with n arrows and m vertices, and with incidence
matrix (Q). Then,

a) Q)Q = (I)qQ.

b) Ag is a permutation matrix.

©) Pqo(A) = (A= 1)"""pa,(A), where pa, (A) denotes the characteristic polynomial of Ag,.
d) AFI(Q) = 1(Q)®g.

e) AQI(Q) = 1(Q)®,".

Proof:
Claims (a, b, ¢) were shown in [34] Theorem 3.3 and Corollary 4.3]. Claim (d) is clear, since

ASIQ) = 1(Q) - I(QU(Q)GL'1"IQ) = 1(Q)®F.

Claim (e) follows from (b) and (d), since

AQI(Q) = AQI(Q)BFIB,™ = AQABT(Q),™ = I(Q),.

O

Loosely speaking, due to Remark [[.3|(b) and (d, ), the (inverse transpose) Coxeter-Gram matrix
acts on the columns of the incidence matrix I (@), and such action is recorded in the Coxeter-Laplacian

AQ of Q

1.2. Walks and incidence vectors

By walk of a quiver () we mean an alternating sequence of vertices and arrows of (),
w = (vo, 71, V1,12, V2, - - -, Vo1, ¢, Vp),

starting with a vertex s(w) := vy called the source of w, and ending with a vertex t(w) := v, called
the target of w, and satisfying {s(i;),t(i;)} = {vi—1,v¢} fort = 1,...,¢. The integer {(w) :=£ >0
is the length of w, and if {(w) = 0 (that is, if w = (vp)), then w is called a trivial walk. A walk w
in @ of length ¢(w) = 1 has either the shape w = (s(i),7,t(7)) or w = (t(i),7,s(4)) for an arrow
i € Q1. In the first case we use the notation w = i*1, and in the second w = i~'. Viewing an arbitrary
walk w of positive length as concatenation of walks of length one, we use the notation

w=1i"iy* -0y, withe € {+1},fort =1,...,¢,
where t(i;') = s(i;'"') fort = 1...,¢—1. A walk w as above is called minimally descending, if for
t=1,...,¢ — 1 the difference ¢; — i;,1 is positive and it is the minimal positive difference possible,
that is,
it —ig+1 = min{i; — j | (iy —7) > 0 and 45" j is a walk in Q}.
J
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A minimally descending walk w is called a (descending) structural walk, if whenever a concatena-
tion of the form w’ww” is minimally descending, then both w’ and w” are trivial walks. Such walks
are determined by their sources (or targets), and we will use the notation v, (v) for the structural walk

having vertex v as source. Take £, : Qo — Qo given by

£q(v) = tlag(v)). 3)

The definitions of minimally ascending walk and (ascending) structural walk are analogous, and
so are the notions of ag(v) and 55. It can be easily shown that 5{2 and 55 are inverse to each other,
since

04 (6g () = ag() ™, @

where w~! denotes the reverse of walk w (see [34, Lemma 3.1]). The mapping fé is referred to as
permutation of vertices of the quiver () determined by the ordering of its arrows. The cycle type of
Q is given by the sequence

Ct(Q) = (le"'awf)? (5)
where m > m > ..., m, > 0 are the cardinalities of the {;-orbits on Qo. Then ct(Q) is a partition

of |Qo| = m, and we take ct(gg) := ct((Q)), which is well-defined by Theorem [L.2)(7). We stress that
the cycle type ct(() depends on the numbering of the arrows in (), see Example [2.5] below. For a

walk w = i{*i5? - - - i;f of @Q, define the incidence vector inc(w) € Z" of w as

L

inc(w) = Z €1€;, - (6)

t=1

The following simple identity is fundamental for our analysis (cf. [34, Remark 3.2]),

I(Q)inc(w) = eg(y) — €g(w)- (7

By ([, it implies that ¢(inc(w)) € {0,1} (that is, inc(w) is a {0, 1}-root of ) for any walk w of
(@, and the converse also holds (cf. [32, Lemma 6.1]). Consequently, {0, 1}-roots of g¢ can be treated
combinatorially via the walks of quiver ). This also implies that / (Q)Cv?él is also the incidence matrix
of a quiver, called the (standard) inverse of () and denoted by QT. In [34]] we take a constructive route,
and derive QT (denoted by Q! in [33]] and [34])) directly from the structural walks of @, as follows.

For every arrow ¢ in @), there are exactly two descending structural walks containing arrow ¢, one in
the positive direction i*!, and the other one in the opposite direction ~!. Denote them respectively by
ag(v) and o (w) for some vertices v and w, and define tT(i) := t(ag(v)) and sf(i) := t(ag(w)).
In [33, Proposition 4.4 and Corollary 4.5] we show that QT = (Qo, Q1,s',t") is also a connected
loop-less quiver, satisfying

1Q") = 1(Q)Gy" 8)

This approach is useful for several reasons. Among others, the results of [34] depend on the following
facts.
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Lemma 1.4. Let () be a connected loop-less quiver with m > 2 vertices and n > 1 arrows. Consider
the structural walks aé(v) of Q (for v € Qp), and take a* = in_c(az—g(v)).

i) For any v € Qg we have —a,;, =a/_ .
§Q (v)

ii) If QT is the inverse quiver of @, then I(Q1)** = [af,af, -+ ,at |, al].
iii) Wehave > ;" ja; =0=>", a.

v=1"v

Proof:

Claim (i) was shown in [34] Remark 2.1], since {;(v) = t(ag(v)). Claim (ii) was shown in [34]
Lemma 2.3]. Since I(Q)e; = eg(;) —ey(;), then 1 1(Q) = 0 for any quiver Q, thatis, I(Q)**1,, = 0.
By (i), this implies that >, ; a;f = 0, and using (i) we get Y" ; a,; = 0. This shows (ii1). =

v=1"v

Combining equations (), () and Lemma [[.4)(i7), with a straightforward calculation we get the
following combinatorial expression for the Coxeter-Laplacian A of Q,

Ag = P(&5), ©)

see details in [34, Theorem 3.3]. Some basic notions and result will be illustrated with a couple of
running examples.

Example 1.5. Consider the following integral quadratic forms ¢, gg on four variables:
q1(z1, 22, x3,24) = x1(x1 — T2 — T3 + 2m4) + x2(T2 — T3 — T4) + x3(23 — T4) + T4(24),

qo(w1, 22,23, 24) = T1(21 — T2 + 223 — T4) + T2(22 — 23 — T4) + T3(23 — 24) + 24(T4),

with corresponding standard morsifications given by the upper triangular matrices

111 2 1121
~ 0111 ~ 0111
G, = ~ and G, = ~
7 0011 q” 0011
000 1 000 1

Consider also the following (connected, loop-less) quivers with corresponding incidence matrices,

1_ .<4—. Iy_ /1011 0 _ .<3—. 0y_ /1011
Ql= == I(Q)—(mo) Q= uT—w I(Q)—<0101>
1701 1110

| A | A

*2 *2

A direct calculation shows that ¢; = gg: for i = 1,0. By Theorem the quadratic forms ¢; are
connected non-negative unit forms of Dynkin type Ay and corank 2, satisfying q1 ~ qo (indeed, if
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03,4 is the transposition of 3 and 4 in {1,2,3,4} then ¢; ~P(003,4) qo)- The corresponding inverse
quivers (8) are given as follows,

N . =——. Ny — /19117 0t — . 0y — (i707
(@) = 1=—"3 I((Q)") <(1)%(1]%) (@) 1<=—e3 I((Q")") <(H(i%)
4”2 1010 4m2/4 1010
3
o 2
1.3. Standard quivers
For any partition 7 = (1, ..., m) of an integer m > 2, and any non-negative integer d, consider the

connected loop-less quivers A%[7] and S”[x] with m vertices and n = m + £ + 2(d — 1) arrows,
given as follows (see [34] Definition 5.2] and Figure [Tl above).

Definition 1.6. Fix m > 2, a partition 7 = (my,...,m¢) of m and an integer d > 0. Take v; :=
m—(m +...+m) fort =0,...,70

i) Let A,, be the quiver with m vertices (An)o = {1,...,m} and m — 1 arrows (A,,); =
{i1,...,im—1} such that s(i;) = ¢t and t(i;) = t+ 1 fort = 1,...,m — 1. Then the quiver
&%[w] = &d[ﬂ] is obtained from A,,, by adding ¢ — 1 + 2d arrows ji, ..., jo—1, k1, .., ko
in the following way. Define s(j;) := v;—1 and t(j;) := v fort = 1,...,¢ — 1. More-
over, taking a := 4,1 if £ = 1, and o := jy_1 if £ > 1, define s(k;) := s(a) and
t(k;) = t(a®) for t = 1,...,2d, where ¢, = (—1). The set of vertices (A, )o has the
natural order 1 < 2 < ... < m, and the set of arrows (&m)l is ordered as follows: i1 < i <
e <1 < J1 < <o < k1 < ... < kog.

ii) Let S, be the quiver with m vertices (Su)o = {1,...,m} and m — 1 arrows (Sp,); =
{i1,...,im—1} such that s(i;) = 1 and t(i;) = t+1fort = 1,...,m — 1. Then the quiver
g% [7] = gd[w] is obtained from S,, by adding ¢ — 1 + 2d arrows ji,...,5¢-1,k1,--., kaq in
the following way. Define s(j;) := 1 and t(j;) := v+ 1 fort = 1,...,¢— 1. Moreover, taking
=iy if ¢ =1and o := jy_1 if £ > 1, define s(k;) := s(a) = 1 and t(k;) := t(«) for
t=1,...,2d. As lzefore, the set of vertices (gm)o has the natural order 1 < 2 < ... < m, and

the set of arrows (S,,,)1 is ordered as follows: 1] < is < ... < i1 < J1 < ... < Jor_1 <
kl <. < kgd.

The quiver Q = A% [x] = A%[x] constructed in (i) is called standard (r, dl)-extension quiver
of cycle type 7 and degeneracy degree d (see Corollary 2.7), or simply standard quiver. The cor-
responding quadratic form a5 is referred to as standard (7, d)-extension of the unit form g4, ,, or
simply as standard extension of g5 _,. The quiver S% [7] = S[x] constructed in (i) is the inverse
of Q (see [34, Remark 5.3]).

Since we fixed linear orders on the sets of vertices and the set of arrows of A%[7] and S[r], these
quivers fix incidence matrices, given explicitly in Remark below.
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Corollary 1.7. For any partition 7 of m > 2 and any non-negative integer d, the quadratic forms a5

for @ € {A%[x],S%[x]} are non-negative unit forms of Dynkin type A,,,_; and corank £(7) + d — 1.

Proof:
Apply Theorem [1.2 O

In the following technical observation we show that the cycle type of 4G for a standard quiver

Q = Ad [7] is precisely 7. One of its consequences, Corollary below, is used implicitly in the
proof of [34, Theorem 6.3].

Remark 1.8. Let § = A%[x] be the standard (7,d)-extension quiver for a partition 7 of m > 2
and d > 0. Recall from Definition that the number of vertices (resp. arrows) of Q) is m (resp.
n=m+{(7) + 2(d — 1)).
a) Consider the permutation of vertices £ := @6 determined by C_j, take 7 = (mq,...,7) and
vpi=m— (m +...+m) fort =0,... ¢ Then

6(1)) . /U+1? ifv¢{UO,UI,"'avf—Qavf—l}a
vee1 + 1, ifv = v, for some t € {0,...,¢ — 1}.

b) The cycle type of 45 is 7.

Proof:
By definition (3), we have £(v) = t(aé(v)).

Assume first that d = 0. Denote by i, the unique arrow in Q with s(i,) = v and t(i,) = v + 1,
and by j; the unique arrow in @ with s(j;) = v;—1 and t(j;) = v, fort = 1,...,¢ — 1 (these are all
the arrows of @, since d = 0). Then a direct calculation shows that if v ¢ {vg,v1,...,ve_1}, then
oz;j(v) = i1, and therefore £(v) = t(i,) = v+ 1. Now, if v = v; for some t € {0,1,...,¢— 2}, then

agj(v) = j;fli;;il, and therefore (v¢) = t(iy,,,) = vi+1 + 1. Moreover, if v = vy_1, then

_ 1 1 1.—1 -1 1.-1
O‘Q(U) =Jo—1Je—2" " J1 Yp—1tm—o "l 1 -

In particular, &(vg) = t(i; ") = s(i;) = 1 = vy + 1. This shows (a) for d > 0, since ¢ is unchanged
by adding pairs of (anti-) parallel arrows (see [34, Remark 5.1]).

To show (b), recall that ct(Q) is defined as the sequence of cardinalities of the &-orbits on Q,
ordered non-increasingly (3), which equals 7 by (a). O

Corollary 1.9. Let 7 and 7’ be partitions of m > 2 and m’ > 2 respectively, and take d,d’ > 0.
a) We have gz 1 ~ g (. if and only if (m, £(7) + 2d) = (m/, e(x") + 2d").

b) The following conditions are equivalent:
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bl) (m,d) = («/,d’).
b2) Ad[r] = AL, [].
b3) Ggg () = Gt [
b 9z 1m ~ Gae

Proof:

Take § = A% [r] and Q' = &S;,[w’], and recall that |Qo| = m and |Q1| = m + () + 2(d — 1)
(and similarly, |G| = m/ and |@}| = m’ + £(n") + 2(d’ — 1), see Definition [L&). Then (a) holds,
since ¢5 ~ qg if and only if (|Qol, |Q1]) = (1Q0 !, 1Q% ) by Theorem[L.2)(¢7), since both () and ()’ are
loop-less and connected quivers.

To show (b), observe that (b1) implies (b2) by Defnition [[.6] and that evidently (b4) follows
from (b3), which follows from (b2). To complete the proof assume that (b4) holds. In particular,
qG ~ 4g» and by (a) we have m = m' and {(7) + 2d = £(7) + 2d’. Moreover, ct(qz) = ct(qs)
by [34, Theorem 6.3], and by Remark [[.8 we have 7 = ct(Q) = ct(@’) = «'. Then {(x) = £(n),
which shows that (7, d) = (7/,d’), that is, (b1) holds. o

Similar claims, not needed for our discussion, hold for the inverse quivers S []. In the following
result, the mentioned non-negative integer d is the so-called degree of degeneracy of qq, cf. 2.1l and
Corollaries below.

Remark 1.10. Let ) be a connected loop-less quiver. Then there is a unique standard quiver @ with
the same number of vertices and arrows as @ such that ct(Q) = ct(Q), namely, Q = A%[ct(Q)] for
some integer d > 0. Moreover, in this case there is a permutation p of Qg such that A, = AQ.

Proof:

Take 7 = ct(Q) and ¢ = ¢(). Recall that if n = |@Q1] and m = |Qo| then the corank of ¢ is given
by ¢ = n — (m — 1) (see Theorem [L2). Since m € Pj(m) by [34] Proposition 4.5], then there is a
non-negative integer d such that 2d = ¢ — (( — 1) = n — (m — 1) — (¢ — 1). Take @ = A%[x].
Since 7 is a partition of m, the standard quiver Q has m vertices, and by Definition it also has
m + €+ 2(d — 1) = n arrows. By Remark [.8 ct(Q) = 7 = ct(Q). The uniqueness of § follows
from Corollary [L9(b).

To show the existence of such permutation p, recall from Remark [[.3|(b) that there are permu-
tations & and ¢ of the sets Q) and Qo such that Ag = P(&) and Ag = P(¢), and therefore

—

ct(&) = ct(Q) = ct(Q) = ct(€), f. (B). By Lemma B3] ¢ and £ are conjugate permutations,
that is, there is a permutation p such that ¢ = p£p~!, or matricially,

Ag = P(&) = P(p)P()P(p~") = P(p)AgP(p™").
Using Remark [L.1l(, i) and the definition of Coxeter-Laplacian (2), we conclude that

Apg = Idm—1I(p-Q)Grol(p- Q)% =1d,, — P(p)(Q)Col(Q)* P(p)t
P(p)[Id,, — I(Q)GQI(Q)™P(p™") = P(p)AgP(p™") = Ag:. 5
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Example 1.11. The Coxeter-Laplacians A of the quivers Q' and Q° of Example[L.3]are given by

0 01 1 00
Apr=11 0 0 and Agp=10 1 0],
010 0 01
see (2). In particular, the cycle types of the quadratic forms ¢; are ct(¢1) = (3) and ct(qo) = (1,1,1),

cf. (B and (). The standard quivers associated to Q! and Q°, as in Remark[[.10] are given as follows,

1 1 2 —»1 — 1 2 - ~
s T@) = () @ e e e 1@ (100
~— =~ ~ ~— ~— 1
0111 4 3 0110
4

Note that Ag: = A@- for i = 1, 0. The corresponding inverse quivers () are given by

(@Y = 2 @D = (1350) @)= 4~ 1@ = (1551
7 0111 / 0110
o] — > o3

It will be convenient to have explicit formulas for the incidence matrices of the standard quivers
and their inverses. The proof of the following remark is clear from Definition

Remark 1.12. Take a partition 7 = (7q,...,7) of m > 2, an integer d > 0, and denote by @ the
standard quiver A%[r]. Taken = m—1+2d+ (¢—1) and v; := m— (71 +...+m) fort = 0,..., 4.

a) If £ =1, thenn = m — 1 + 2d. Taking z := e,,_1 — e,, we have

[(Q) = [I(&m)7 :1’,1’, Tty —.%',%].
2dC(;Tumns
If ¢ > 1, taking 2y :=e,, , —e,, fort =1,...,f —1 we have
1(Q) = [I(Ay,),x1, 9, yLg—1, ~TO—1, Te—1, 5 —Te—1, Te-1].
2dc;1(umns

b) If { =1, forv e {1,...,m} we have
1,, ifv=1,
I(QN%e, = —e, 1, ifl <v<m,

n .
—epm_1 — Zj:m e;, ifv=m.

If ¢ > 1, take z; := €, + €p—14¢ fort =1,..., ¢/ — 1. Forv e {1,...,m} we have
1,, ifv=1,
I(Q’T)trev _ —€y—1, lfU ¢ {Ut + 1}t=1,...,€a
—2¢, ifv=v+ 1forsomet=1,...,0— 2,

n .
—2p_1 — Zj:qu e;, ifv=wv_;+1
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For instance, the standard quivers include all (inverse) generalized Kronecker quivers, as indicated
in the following useful observation.

Remark 1.13. For n > 1, consider the (generalized) Kronecker quiver K,, with two vertices and n
arrows in the same direction,

—_— —_— —_—
2. -2 -2
= . . L . . T
Kn=rem s K=yt Kawa=s 5o
n 2n’ 2n'+1
_— R —_—

Observe that if 7 is even (n = 2n/ for n’ > 0) then K,, = $”'~1[(1,1)] and its inverse is given by
K}, = A7 ~1[(1,1)]. On the other hand, if n is odd (n = 2n + 1 for n/ > 0) then K,, = S"'[(2)] and
its inverse is given by KI, = A™'[(2)]. Moreover, assume that n. = 2d + 1 for some integer d > 1.

a) Take by = e, + €41 € Z" and b, = —e; + €41 € Z" fort = 1,...,2d. Then the set
{b1,...baq} is a basis of the kernel of I(K},), and for 1 < ¢, < n we have
1, ift'=t—-1,
Wb, =4 —1, ift =t+1,
0, otherwise.

b) Take ¢; = (—1)by € Z™if t € {1,...,2d} is even, and coyt1 = D _oborq1 € Z" if t =
2u+1€{l,...,2d} is odd, and let K = [c1, ..., coq] be the n x 2d matrix with columns the
vectors c1, .. ., coq. Then K is a kernel matrix for I(K},), and

. 0 1
KYG K =W @®...0 W, m%WF<1O>
n %/_/ i

d times

Proof:

The shape of the corresponding standard quiver A” ~1[(1,1)] and A™[(2)] is clear from definition.
That they are the inverse of the Kronecker quiver K,, (for n = 2n’ and n = 2n/ + 1 respectively),
follows from [34, Remark 5.3].

Claim (a) is straightforward. In particular, the matrix K of the point (b) is a kernel matrix of
I(K}). Observe that the (2d + 1) x (2d + 1) matrix Gt is given by

1 222 2 2
012 2 2 2
0012 2 p)
ém: 0001 2 2,
00001 2
00000 1
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where 2 := —2, and that b, = éKT b, fort = 1,...,2d. Then, for 1 < ¢, < n we have

1, iftisoddandt =t +1,
c,'ngKLctr = —1, iftisevenandt' =t —1, (10)

0, otherwise.

Indeed, if both ¢ and ¢’ are even, then by the definition ¢; = (—1)b; and using (a), we get c%err‘KT cy =
0. A similarly claim holds if both ¢ and ¢’ are odd. Assume that ¢ is even and ¢ is odd. Using (a) we
get

. (—1)bETD, | + (—1)bETb,, , =0, ift <t
c,'ngKLct, = (1) (V) + by + ...+ b)) =< (—1)bb,_, = —1, ift' =t —1,

0, otherwise.
Similarly, if ¢ is odd and ¢ is even, then

TGy er = (b + b3+ ..+ b) " (=1)by = 4 bEF(=1)b},, = 1, ift' =t+1,

0, otherwise.

These identities show equation (I0), which is a coefficientwise expression of the direct sum of d
copies of Wj. This completes the proof. m]

1.4. The Coxeter-Laplacian

Our proposed solution to Problem 2(7i) starts with an explicit combinatorial construction, that uses
the structural walks of ) given above, cf. Step 1 on page 221

Proposition 1.14. Let () be a connected loop-less quiver with m > 2 vertices and n > 1 arrows, and
such that Ag = AQ for a standard quiver () with the same number of vertices and arrows as Q. Then
there is a (not necessarily Z-invertible) n x n matrix B such that

QB =1(@) ad I1(@QHB"=1@Q").

Proof:

If such standard g‘uiver_’Q’ exists then ct(Q) = ct(Q), see @) and @). Therefore, Q is the unique
standard quiver Q@ = A"[r] with 7 = ct(Q), see Remark and Corollary Consider the
vectors a 1= in_c(ofé(v)) in Z™ as in Lemmal[L.4] with n = m — 1 + 2d + (¢ — 1). By hypothesis
we have Ag = AQ, which implies that § := {, = 55 by [@). Consider the description of £ given in
Remark [.8]
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Case ¢ = 1. In this case, we have necessarily m = (m). Take the matrices

B% = [a1_7a2_7"'7a771—1]7
By = [=Gy_1,8p 1, ", —Cpyq,0,, 4], and
24l columns
B = [Bi,Bs] (11)

Clearly, B is an x n matrix since n = m — 1 + 2d. In the following steps we show that B satisfies
the wanted conditions.

Step 1. We have I(Q)B = I(Q). Indeed, recall from Remark [12(a) that I(Q) has the
following shape

1@Q) = [I(Ay), —2,z,- -, —x,x],

~
2d columns

where £ = €,,_1 — €.

By definition of a5 (v) we have s(ag(v)) = v, and by @), t(ag(v)) = &(v) for any v €
{1,...,m}. By Remark [L.8] {(v) = v+ 1if v < m, and {(m) = 1. Thus, using (@), for
1<i=v<mweget

1(Q)Be; = I(Q)a, = I(Q)inc(ag(v) = e, — eyt = I(Ap)e;.

Moreover, I(Q)Bey,—1 = I1(Q)a,, ; = en—1 —€epn =z, andform <i<n=m—1+2d
we have
I(Q)Be; = £1(Q)a,, | = *z,

with signs corresponding to the parity of i. Altogether, for 1 < ¢ < n we have I(Q)Be; =

—

I(Q)e;, hence our claim.

Step 2. We have BI(QT)** = I1(QT)**. Indeed, using Remark [.12)(b) and Lemmal[l4] we get
. m d
BI(Q"e, = B1, = Z a; + Z(a;kl —a, )= —a, = ag.r(m) =aj.
Moreover, for 1 < ¢ = v < m we have

BI(QT)trei = —Bey_1=—a, ;= ag(vfl) =a.

Using again Lemmal[LL4Yi) we get
. n
BI(Q""emn = —Ben1— ), Bej = —ay, ;= af,, ;) = ap,.
j=m

By Lemmal[L4(ii) we conclude that BI(Q")*e; = aj = I(Q')t"e; for 1 < i < n. Hence, the
case { = 1 holds.
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Case ¢/ > 1. Fort = 1,...,¢ — 1 fix arbitrary walks §(¢) from v; to vy + 1 (recall that v; :=
m—(m+...+m)fort =0,...,m), and take d; = inc(d(¢)). Consider the matrices

B! = [a;z+1_t+1’ Qypy 420" ,a;{_t_ﬁ], fort=1,...,4,
7es1—t — 1 columns
Bi = [Bi,diy,Bf,de2 B}, By ' di, By},
m — 1 columns
By = [y, y2,  ,ye1],
¢ —1 columns
By = [=ye-1,9e-1,-+ ,—ye—1,y0-1], and
2dl columns

B = [B1, By, Bs], (12)
where y; := a,,_, — d; = inc(ag(v—1)d(t)"") fort = 1,...,£ — 1. Clearly, B is an x n matrix
sincen = m — 1+ 2d + (£ —1). Again, we show that B satisfies the wanted conditions in two steps.

Step 1. We have I(Q)B = I(@) By construction, the v-th column of By (for 1 < v < m) is
given by inc(~y) for a walk 7y in @ with s() = v and t(y) = v + 1 (indeed, if v = v; for some
t=1,...,0—1 theny = §(t), otherwise 7 = a(v)). In particular, using (7),

I(Q)Bl = I(&m)

Again by @), fort = 1,...,¢ — 1 we have I(Q)y; = I(Q)in_c(aé(vt_l)é(t)*l) =€y, , —

ey, = T, which implies that
I(Q)B = [I(Ay), 1, - s L1, =Tp—1, L1, —x 1, 201] = 1(Q),
2dc$umns
by Remark [L.12{(a).

Step 2. We have BI(Q")®™ = I(QT)t*. Indeed, using Remark [.12/(b) and Lemma L4 we get

/—1 d
St
BI(Q"e; = Bl,= > +Zdt+2 ay_y —di) + > (Y1 — yea)
v=1,...m j=1
VFVL,..., Vg
_ - = _ .+ _ o+ o+
= Z ay ==y, | =0, =0, =ay,
v=1,....m
VFEVE—1
since vy = 0. Moreover, for v € {1,...,m} — {v; + 1};—1,._, we have

BI(@T)trev = —Bey,_1 =—a, | = ag.r(v_l) =aq
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If v = v + 1 for some ¢t € {1,...,¢— 2}, we have (recall that z; := e,, + €,,_14¢ for
t=1,...,0—1),
BI(QT)trev = —BZt = —B(eyt71 + em_1+t) = —dt - (a;t_l — dt)
_ - _ o+ _ o+ o+
= Ty T ey, T Oy T Gy
Finally,
n
BI(Q" ey, 11 = —Bz_i— Z Be;

j=m+L—1
d
= —B(ey_ , +emtr—2) Z Yo—1 — Yo—1)
]=1
_ _ _ o+
= —dg-1 —(a, Ayy_y —dg1) = ve_p E(W—z) = Qyp_y+1-
We conclude that BI(Q1)*e, = a = I(QT)e, forall 1 < v < m, by Lemmal4(ii). o

Example 1.15. Let us apply Proposition [I.14] (keeping the notation of its proof) to the running Exam-
ple First we take the descending structural walks of quiver Q':

aél(l) — 471271’ 9 1 11
ag(2) =317 B = ! 9 0 9
- g+1g+lg+1q+1 01 11
an(?)): 3727 T 700 0

The cycle type of Q! has length £(ct(Q')) = 1 (cf. Example . Then the matrix B] obtained in
Proposition [[L14] given by B} = [a], a5, —a5 ,a5 |, is shown explicitly above. On the other hand,
the cycle type of Q° has length £(ct(Q)) = 3, and its descending structural walks are given by

0450(1) = 4Flotly+l 0 0 1 9
aéO(Q) — 4—13—12—1’ B6 _ 01 1 /1\
2 o 00 11

We need arbitrary walks 6(¢) : vy — v; + 1in Q" fort = 1,...,¢ — 1 = 2, which we choose to be
§(1) =271 and §(2) = 4! (note that vg = 3, v; = 2, v3 = 1 and v3 = 0, since ct(Q°) = (1,1, 1)).
The matrix B, obtained in Proposition[[.T4] given by Bj, = [d2, d1, a3 —di, a5 —dz], is shown above.
A direct computation shows that I(Q?) B} = I1(Q") and I((Q")")(B))* = 1((Q")") fori = 1,0, see
Example [[.11] for the description of quivers @ and their inverses.

2. Radicals and invertibility assumption
In this section we analyze some strong Gram invariants within the radical of a non-negative unit form

(Lemmas 2.3] and 2.4) in order to prove our invertibility-correction algorithm Proposition 2. 10! (see
Algorithm [3)).
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2.1. The reduced radical

Recall that a subgroup X of Z™ is called pure if whenever ax € X for some x € Z™ and some
non-zero a € 7Z, then x € X. For any unit form ¢ consider the following subgroups of Z",

rad(q) = {reZ"|y*Gyr =0forallyinZ"} = {x € Z" | G,z = 0},
rad,.(¢q) = {xerad(q) | ytréq:c = 0 forall y € rad(q)}.

These are pure subgroups of Z™. The group rad(q) is called the radical of ¢, and we will refer to
rad,.(q) as the reduced radical of g. The rank cork,.(q) of the reduced radical rad,.(q) of g will
be called reduced corank of g. The restriction of the standard morsification IBq to the radical of q is
denoted by T,. To be precise, let k : rad(q) — Z" be the inclusion of the radical of ¢ in Z", and take

Fo(z,y) = Dy(k(z), k(y)) for z,y € rad(q).

Clearly, Ty is a skew-symmetric bilinear form. In particular, its rank is an even non-negative number,
rk(f,) := 2d for some d > 0 (cf. [24, XI, §4]), and we call d,, := d the degree of degeneracy of ¢.
Note that

cork(q) = 2dy + cork,.(q). (13)

Observe also that the reduced corank cork,.(q) and the degree of degeneracy d, are strong Gram
invariants of ¢ (see Lemmal4.7 below). To the best of the author’s knowledge, these notions are new
in the literature on integral bilinear and quadratic forms. Fixing a Z-basis of rad(q) we get matricial
forms K of k and W, of T, given by

W, = K¥G, K. (14)

Let us illustrate these notions.
Example 2.1. Consider the quadratic forms ¢' and ¢° of Example A basis of the radical rad(g;)

is given in the columns of the matrix K; below, and the restriction Ty, of the standard morsification of
g; to its radical, under such basis, is given by the matrix W, as in {1, fori = 0,1,

11

1 0 0 1 k =0
Ky — 7 w, - (° 7 cork,.(q1) = 0,

1 0 1 0 dg = 1.

01

11

10 0 0 k =2
KO _ , qu _ ’ cor re(q0) )

0 1 0 0 dg = 0.

1 0

Being the nullity of W, , the respective reduced coranks are given by cork,.(¢;) = 0 and cork,.(qo) =
2, and by the corresponding degrees of degeneracy are d,, = 1 and dg, = 0.
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Recall that 1,,, denotes the vector in Z™ with all entries equal to 1.

Lemma 2.2. Let () be a connected loop-less quiver with m vertices. Then the image of the incidence
matrix I(Q), as a linear transformation I(Q) : Z™ — Z'™, is the set

Im/(Q) = {z e Z™ | 1&2 = 0},
which is a pure subgroup of Z™.

Proof:

Assume first that () is a tree, that is, that () has m — 1 arrows. By [33] Propositions 3.13 and 3.8], there
is a Z-invertible (m — 1) x (m — 1) matrix B such that I(Q)) = I(S)B, where S is a maximal star
with center a vertex v, that is, the columns of I(S) are given by +(e, —e,/) forv’ € {1,...,m}—{v}.
These columns are a basis of the group C := {z € Z™ | 1%z = 0}, which shows that ImI(Q) = C.

Now, take an arbitrary loop-less quiver ) with m vertices. Since 17 7(Q) = 0, we have ImI(Q) <
C'. Choose a spanning tree Q of Q. Clearly, the image of I(Q) is a subset of the image of I(Q), since
1 (@) is obtained from (@) by deleting those columns indexed by the elements of the set )1 — @1.
Thus, by the first part of the proof, we have C' € ImI(Q), hence ImI(Q) = C. Clearly, if ax € C
for some non-zero a € Z, then 1t (ax) = a(1%z) = 0. Since a # 0, we have = € C, that is, C'is a

pure subgroup of Z™. m]

The following is a useful characterization of the reduced radical in case of non-negative unit forms
of Dynkin type A,.

Lemma 2.3. Let Q be a connected loop-less quiver with inverse quiver QT, Coxeter-Gram matrix %)
and Coxeter-Laplacian A¢. Then

rad(qg) = {reZ"| q)gac = 1},
{I(QT)try eZ" |yeZ™ and Agy =y}

rad,. (QQ)

Proof:
The first identity is easy to verify, since Gox = (éQ + ég)x = 0 if and only if éQx = —ég, that
is, if and only if x = @8:&.

For the second identity, recall from (8) that 7(QT) = T (Q)éél, and observe that if Agy = y then
I@I(QN"y = (Id — AG)y =0,
that is, 1(Q1)ty € KerI(Q). Moreover, for any = € rad(qg) = KerI(Q) we have
@ 1@QNTwe = 27Gol(@Q")y = —a"GEIQN™y
= —[(@NGqx]™y = —[1(Q)z]™y = 0,

which means that 1(Q")*"y € rad,.(qq).
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On the other hand, take an arbitrary z in rad,.(g¢g) and choose a kernel matrix K of I(()). Then

xtréQK = 0, and since ImI(Q) is pure (Lemma [2.2), by Remark [4.2e) below there is a vector
y € Z™ such that
xtI‘GQ = y"I(Q), thatis, z = I(QT)try‘

Moreover, we have I(Q)z = 0, which implies that (Id — Af)y = I(Q)I(Q")*y = 0. We conclude
that 2 = I(QT)*"y for some y € Z™ with Agy = . O

2.2. Bases for the reduced radical

Let v%, . ,vl} be representative vertices of the £, -orbits in (), with orbit sizes w1 = mo = ... = mp.
The cycle type of @, as given in (3), is the partition ct(Q)) = (m1,...,m) of the integer m = |Qo|
(cf. [34, Definition 4.2]). For ¢t = 1, ..., £ consider the concatenated walks

B = ag(v))ag(vf) -+~ ag(vf"), (15)

where v/ ! = {oop) forr = 1,. — 1, and v} = {o(vy*). This is indeed a walk, since
tlag(vy)) = &ovf) = vf ™' = s(aQ(v{H)) if1<r<m. Alternatlvely, taking 1) as the vector in

Z™ with entry in position v given by 1 if v is in the £Q -orbit of v}, and 0 otherwise (fort = 1,..., /),
then using Lemma[[.4{(7, i7) we have

inc(f) = —1(QN" 1y, fort=1,....L (16)

Lemma 2.4. The set S{to} := {inc(Bi1),...,inc(Bi,—1),inc(B,+1),---,inc(Be)} is a basis of
rad,.(qg) for any ¢ty € {1,...,¢}.

Proof:
First observe that the vectors 1yyp, ..., 1 of Z™ are a basis of the eigenspace of Ag corresponding

to the eigenvalue 1, since A is the permutation matrix of 5{2, see (9). Hence, by (16), Lemma[2.3]
and since

¢
ZL B) = —1(Q"*"1,,, =0,

the set 5{to} generates rad,.(qq), for any tg € {1,...,¢}.

Take now integers Aq,..., Ay such that Zle Minc(By) = 0. That is, if y := Zle Atlp then
0 = y*I1(Q"). In particular, Zle Aeinc(B;) = 0 if and only if all \; are equal, since the left null
space of I(Q1) is generated by 1FF (see [34] Theorem 3.3(ii)]). This shows that if A}, = 0, and

Z )\ inc(f4;) = Z)\ inc(fy),

i=1,...,0 t=1
t#to

then A} = 0 fort = 1,..., ¢, which completes the proof. |
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Example 2.5. Recall the description of the Coxeter-Laplacians Ay and Ao of the quivers Q' and
Q" of Example[L.3] given in Example [LT1l In the first case we have Afry =y iff y = al; for some
a € 7, and in this case

I(QYN™y = aG I 1(Q") ™13 = 0.

By Lemma 2.3] we have rad,.(¢q1) = 0 (see Example 2.I). In the second case Agoy = y for all
y € Z3. Following the procedure (I3)), we find the walks

Bi = ag(l) = gtighly+l Bo = ao(2) = 471371271 and g5 = ag(3) = 31—t

(cf. Example [LT5). Alternatively, consider the inverse quiver (Q°)' of (Q°) given in Example [LT1]
and observe that the columns of the matrix —I((Q°)")*" are precisely the incidence vectors inc(3;)
of the walks (31, (2, 33, see (16). Note that the basis of rad(gg) = rad,.(qo) chosen in Example 2.1]
(as columns of K() corresponds to the basis 5{2} = {inc(),inc(33)} of Lemmal[2.4l

As direct consequence of Lemma[2.4] we have the following results.

Corollary 2.6. Let g be a connected non-negative unit form of Dynkin type A, corank ¢ and cycle
type ct(q). Then the reduced corank of ¢ is cork,.(q) = ¢(ct(q)) — 1, and the degree of degeneracy
of gis dg = 1[c — £(ct(q)) + 1].

Proof:
By Lemmal[2.4] the rank of rad,.(q), the so-called reduced corank of ¢, is cork,.(q) = ¢(ct(q)) — 1.
Then the claim on the degree of degeneracy follows from (13)). m]

Corollary 2.7. The degree of degeneracy of the standard (7, d)-extension of ga, , is d.

Proof:
Take § := A% [x] for a partition  of o > 2, and d > 0. By Remark [ the form ¢ := 45
has cycle type ct(¢) = 7 and corank cork(q) = ¢(m) + 2d — 1. By Corollary [2.6| we have d, =
$[cork(q) — £(m) + 1] = d, as claimed. o
Recall that in the text, matrices, linear transformations and their images and kernels are taken over
Z. A matrix or linear transformation M will be called pure if so is the group Im(M). Similarly,
a bilinear form b : Z" x Z™ — Z will be called pure if so is the adjoint transformation x —
[b(x,—) : Z™ — Z], or equivalently, if its Gram matrix G, is pure (under any choice of basis).
The following result is a simple and important observation: the upper triangular bilinear form of any
standard extension of qu, has pure restriction to its radical. After completing the proof of our main
results we will be able to prove that this observation holds for any connected non-negative unit form
of Dynkin type A, (Corollary [4.8)).

Lemma 2.8. The standard morsification of every standard extension of a unit form of Dynkin type A,
(r = 1) has pure restriction to its radical.
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Proof:

Consider a standard quiver Q = A% [7r] with 7 a partition of m > 2 with length ¢ = ¢(), and take
q= 45 Then q is a connected non-negative unit form of Dynkin type A, inn =m+£+2(d—1)
variables with corank cork(q) = 2d + ¢ — 1 (Corollary [L.7) and reduced corank cork,.(q) = ¢ —1
(Lemma[2Z.4). We fix a kernel matrix K = [K’, K”] of I(Q) in the following way. Take the 7 x (—1)
matrix K” whose columns are a basis of rad,.(q), see for instance Lemma If d = 0, then
K = K”.If d > 0, observe that the last 2d + 1 arrows of the standard quiver @ determine the inverse
Kronecker quiver K; d1- Consider the inclusion ¢ : 724+1 . 77 of 729+ into the last 2d + 1 entries
of Z™, and take the n x 2d matrix K’ = [t(c1),...,t(coq)] With ¢1, . .., cq the vectors constructed in
Remark [L.13(b), where we showed the second equahty identity in (I'7) below (the first identity can be
easily shown, since K2 1 18 a subquiver of Q)

~

. d /0 1
(K’)trGQ(K’):[cl,...,cd]trGKT [01,...,Cd]:@< > (17)

Then the subspace of Z™ generated by the columns of K’ has zero intersection with the reduced radical
of ¢, which implies that the n x cork(q) matrix K is indeed a kernel matrix of 1(Q).

Now, relative to the fixed basis /&, the restriction T, of Uﬁv)q to the radical rad(q) has Gram matrix
W, = K™G QK , see (I4). Since the kernel of T, is the reduced radical of ¢, see (L3)), the quotient of

I, by its kernel has Gram matrix (K’ )tré(j(K '), which is Z-invertible by (I7). That is, I is a pure
bilinear form, as claimed. O

2.3. Adding for invertibility

Here we show how to correct the non-invertibility of the matrices obtained in Proposition [L.14l We
need the following preliminary observation.

Lemma 2.9. Let () and @ be connected loop-less quivers with m vertices and n arrows. Assume
that Ag = A, and that there is a matrix B such that I(Q")B®™ = I(Q"). Then B restricts to an
isomorphism Bl|yad,., : radre(q@) — rad,(qq).

Proof:
Since Aq = Ag, and since the matrix [ (Q1)* has as columns the vectors 1nc(aQ( v)) forv € Qo

(see Lemma [[4(ii)), by Lemma 23] and (I6), the equation BI(QT)** = I(Q!)t* implies that the
transformation B sends the bases for radre(qé) constructed in Lemma 2.4] to the corresponding
bases of rad,.(qq). Hence the claim. =

For a slightly more general version of the following proposition, see Remark 4.9 below.

Proposition 2.10. Let () be a connected loop-less quiver. If there is a square matrix B such that

IQB=1@) ad 1(@QHB"=1@Q")
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where @ is a standard quiver with same number of vertices and arrows as (), then there is a matrix M
such that B + M is Z-invertible and satisfies

IQIB+M =1(Q) and  I(GH[B+M" = 1(QD).

Proof:

Let K be a kernel matrix for I(Q), and assume that K = [K’, K”| where the last £ — 1 columns
K" of K are a basis of the reduced radical rad,.(qq). Take similarly a kernel matrix K of 1(Q)
written as K = [K’, K”], and define Kt := GoK and Kt := GQ»K , which are kernel matrices of

(QT) and I(Q") respectively. Since 1 (Q)(BK ) =1 (Q)K = 0, there is a unique matrix L such that
BK = KL. The matrices L and W = K trG <K have the following shapes

L . _)/
L= 1 0 and W = weo ,
Lo Ls 0 0

where L3 is Z-invertible (Lemma [2.9)), and by (I7) in the proof of Lemma 2.8] W' is a Z-invertible
skew-symmetric matrix (since it corresponds to the restriction of Ibqé to its radical, modulo its kernel:

the reduced radical). Define M = K Y K for some matrix Y = <§; 2 ), and notice that

I@Q)(B+ M) =I1(Q)B + (QKYK™ = 1(Q),

and
1@Y(B + M) = I(G"B™ + I(QNKTY" K™ = 1(Q").

~

Since KTtr — —I?ter?Q and KTt — _ [t G ~K = —W, we have

. . N - Li—YiW' 0
(B+ M)K = BK + KYEWE = k(L —-yW)=xKk " ' .
Ly—YoW' Ly

Taking Y7 = (L1 — Id)(W’ y"land Vs = LQ(W/ )~1 (with Y3 and Y} arbitrary, say equal to zero), we
get
(B+ MK = K(L—YW),

with (L — YW) = (% 2 ) a Z-invertible matrix. Then the restriction
(B+ M)|rad : rad(qé) — rad(qq),
is an isomorphism, which implies that (B + M) is Z-invertible by Corollary [4.6|(i7). =

Example 2.11. Consider the quivers Q° of Example and the matrices B satisfying the assump-
tions of Proposition [2.10} as given in Example [L13] (for ¢ = 1,0). Observe that det(B]) = 0 and
det(By) = 1, so we apply Proposition 2.10/only for the case i = 1. Besides the kernel matrix K of



J.A. Jiménez Gonzdlez | A Strong Gram Classification of Non-negative Unit Forms of Dynkin Type A, 43

I(Q1) given in Example [2.1] we fix the following kernel matrix for the corresponding standard quiver

—»

Q' (cf. Example [[L11),

o 0 0
., BE =K (0 o) - K\ L.

=

Il
O = = O
=) =) o O

Observe that Biff 1 = 0, and therefore the matrix L (using the notation of the proof of Proposi-
tion 2.10) is the 2 x 2 zero matrix. Note also that W := K trG@j{‘ ( 0) Then, as defined in

the proof of Proposition 210, the matrix Y is given by Y = (L — Idy)W 1 = —W* = W. Taking
My := K1Y (K])® where K| := G5, K1, we get

0101 001 2
0011 1011
My = ~ and By := Bi + M, = ~ ~
0011 01 2 2
0110 1110

Note that det(B;) = =+1, as claimed in Proposition 2.0l In fact, a direct computation shows that
Bl g
q1 =7 q1.

3. A model for pseudo-endomorphisms

In this section we provide a method to modify a Z-invertible matrix satisfying the equations of Propo-
sition (called pseudo-morphisms) into a strong Gram congruence. It depends on a special decom-
position of skew-symmetric matrices, presented first in Lemma[3.1}(b).

3.1. Decompositions of skew-symmetric matrices

Recall that if Z is a skew-symmetric ¢ x ¢ matrix, then there exists a Z-invertible matrix P such that
Pt Z P is in canonical form, that is, there are positive integers d1, ds, . . ., d, such that

PtrZP:dl (Plé)@dQ(Plé)®®dr (91(1])@0,

for a square zero matrix 0 of size ¢ — 2r, and where d; divides d;,1 fort = 1,...,r — 1 (see for
instance [48, Theorem IV.1]). Such expression is usually called the skew normal form of . Observe
that Z is pure if and only if dy = 1 fort =1,...,r

Lemma 3.1. Let Z and W be skew-symmetric ¢ X ¢ matrices.
a) If W is Z-invertible, then there is a matrix Y such that Z = YWY
b) If W is pure, then there is a matrix Y such that Z = Y — Y + Y¥*WY.
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Proof:

Take W = R W R for some Z-invertible matrix R. If claims (a) and (b) hold for W and arbitrary
Z, then they also h01£1 for W and arbitrary Z. Indeed, if Z := R~1ZR*r then for each case (a) or
(b) there is a matrix Y such that either

Z=Y"WY, or Z=Y-Y" V"WYY,
respectively. Take Y := RYR'™. ThenY = R-!YR %, and

(a) Z = RZR'"™ = R[Y"WY|RY" = Y*WY,

(b) Z =RZR™ =R[Y —Y" + Y*"WY|RY" =Y — V¥ 4 YOWY.
Therefore, we may assume that W is in skew normal form. In particular, if W is Z-invertible then
WW™ = W)W =1d, = -WW.

To show (a), observe that if W is Z-invertible then ¢ = 2r for some r > 1 and W = @;_, W1,
where Wy = (% (). Take a Z-invertible matrix P such that P**ZP = @._, d;W; (not necessarily
in skew normal form), and consider the diagonal ¢ x ¢ matrix S = diag(1,d;,1,ds,...,1,d,). Then

T
PYZP =@ d;Wy = SWS, thatis, Z=Y"WY whereY =SSP
i=1

To show (b), assume first that W is Z—Ninvertible ang takeNE :=~Z + W, which isN also skew-
symmetric. By part (a) there is a matrix Y such that Z = Y¥WY. Taking Y := Y — W, we
get

Z = Z-W=¥+WEWY +W)-W
= YUWY +Y"WW + WEWY + WYWW — W
= YY" L YUWy,

w0
as wanted. In the pure case, W = ( 0 0) where W' is Z-invertible (since W is in its skew normal

Z, =7t Y1 O
Z.= (7" 2 and V.= (! :
Zy s Yo Y3
Yl o Y'ltr + Y'ltrw/y'l 7Y2tr
Y2 Yg _ Y’gtr
of (b), since Z; is skew-symmetric and W’ is Z-invertible, we may find Y; such that Z; = Y] —

Y + YW'Y;. Take Yo = Z5, and take any matrix Y3 such that Z3 = Y3 — Y})tr. Then Z =
Y — Y'Y £ Y¥IWY, which completes the proof. m]

form). Taking

then Y — Y + YWY = ( ) . Using the first part of the proof

3.2. Pseudo-morphisms

Let us formalize some of the notions already used in the paper.



J.A. Jiménez Gonzdlez | A Strong Gram Classification of Non-negative Unit Forms of Dynkin Type A, 45

Definition 3.2. Consider connected loop-less quivers () and @ with m vertices and n arrows.
a) A square matrix B satisfying
QB=1Q) ad I1@QHB™=1@Q"),

is referred to as pseudo-morphism from Qto Q These relations are expressed with the notation
Q= Q or simply by @) = Q if such matrix B exists.

b) IfQ =8 Qwecall Ba pseudo-endomorphism of (). The set of pseudo-endomorphisms of )
will be denoted by End_ (Q), that is,

End-(Q) = {B e M,(Z) | I(Q)B = I1(Q) = I(Q)B*}, where B* := G5! B G, see §).
¢) For matrices Z, Z' and W in M.(Z) we will use the notation
ZewZ =2+7 —IWZ'.
Remark 3.3. Let Quiv denote the set of connected loop-less quivers with at least two vertices.
For @ and @ in Quiv, denote by Hom_- (@, Q) the set of pseudo-morphisms from @ to (). Then

(Quiv, Hom_ ), together with the product of matrices, is a category. Moreover, the following hold if
(@ and @ have the same number of vertices and arrows.

a) If Q = @ then Ag = A@.

b) If Q =% Q then Q =5* Q, where B* = éélBtréQ.
In particular, = is an equivalence relation on the set Quiv.
Proof: N
Let Q =B @ and @ =C CNQ be pseudo-morphisms. Then

[(Q)(BC) = (I(Q)B)C = 1(Q)C = 1(Q),
and - ~
L@ (BC)™ = (1(QN)C™)B* = 1(Q")B™ = 1(Q"),

that is, () =BC CNQ Note that the identity matrix serves as neutral element of the monoid Hom - (Q, Q),
and the associativity of the matrix product shows that (Quiv, Hom . ) is a category.

To show (a), assume that @) = Q for a matrix B. By definition of A 5 G- see @), and since
1(Q1) = I(@)éél, see (8), we have
Ay = Td—IQHI@)" - 1d - 1(@N[I(Q)B]"
— 1d- [1QHBIIQ)T = 1d - I(QWI(Q)" = Aq.
To prove (b), using (8) we get
I(Q)B* = Q"G4 (G 1BtrGQ) = I(Q"B¥Gq = 1(Q")Gq = 1(Q)-
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Moreover, using (a), (8) and Remark[L.3|(¢), we have

IQNY(B*)™ = I(Q)G,' (GEBG

That is, @ B Q.

Note that = is a reflective relation since ) ~1d @, and it is transitive by the first part of the proof.
Since the symmetry of = was shown in (b), we conclude that = is an equivalence relation. i

With the notation introduced in Definition [3.2] Propositions [[.14]and 2.10] may be summarized as
follows:

Corollary 3.4. If () is a connected loop-less quiver with Ag = AQ for a standard quiver Q with the

same number of arrows as (), then there is a Z-invertible matrix B such that () =B Q

Lemma 3.5. Let () be a connected loop-less quiver with m vertices and n arrows, fix a kernel matrix
K for I(Q), and take KT := GoK.1f ¢ := n — m + 1, then the function

T

M. (Z) End-(Q)

Zr————="(Z):=1d + KZK'tr

is a bijection, with inverse denoted by Z. Moreover, if B and B’ are pseudo-endomorphisms of Q,
and W := KtrGQK, then

a) Z(BB') = Z(B) ®w E(B’), where ®yy is as in Definition 3.2](¢).

b) We have Z(Id,,) = 0, and B is Z-invertible if and only if there is a matrix Z with Z(B)®w Z =
0 (or equivalently, Z @y Z(B) = 0).

Proof:
Let ¢ = n — m + 1 be the corank of gg. Then K and K are n x ¢ matrices, and for any Z € M.(Z),
we have

[(Q)T(2) = (Q)Id + KZK'™] = I(Q) + [(QK(ZK™™) = 1(Q),
and
HQNY(2)™ = 1@ + K27 K™] = 1(Q") + 1(QNK (2" K™) = 1(Q"),
since 1(Q1) = I(Q)éél and KT = éQK. This shows, as claimed, that Y(Z) belongs to End - (Q).

Now, if B is a pseudo-endomorphism of (), then B may be expressed uniquely as

B=1d + KZK"r = 1(2),
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for a ¢ x ¢ matrix Z. Indeed, we have I(Q)(B — Id) = 0, which implies that there is a unique ¢ x n
matrix L such that B — Id = KL (since the kernel matrix K of I((Q)) has rank ¢). On the other
hand, (KL)I(QN)* = (B — Id)I(Q")* = 0 implies that LI(QT)* = 0 since the columns of K
are linearly independent, thus there is a unique matrix Z such that L = ZK . Then the mapping
E(B) := Z is well defined, by the uniqueness of Z. Thatis, Z(Y(Z)) = Z, and clearly

T(Z(B)) = Id + KE(B)K™ = B,
which proves that T is a bijection with inverse =.
To show (a) take =(B) := Z and =(B’) := Z'. Then
BB' = Y(2)Y(Z')=(I1d+ KZK™)(Id + KZ'KT™)
— Id+K[Z+Z + ZK"WKZ'|K™™ —1d + K[Z + Z' — ZW Z'|KT*
= Id+ K[Z®w Z'|K',

since K"K = (Ktrég)K = —W (recall that (éQ + Cv?g)K = 0). Claim (b) follows from the
uniqueness of Z(—), since clearly Z(Id) = 0. =

Remark 3.6. Let @ be a connected loop-less quiver, and take a kernel matrix K for [(Q). If W :=
K*™GgK, then the binary operation @y : M.(Z) x M.(Z) — M,(Z) given in Definition B.2|(c)
makes (M.(Z), ®y ) a monoid with identity element the zero matrix 0 € M. (Z).

Proof:
Use the associativity of End. () (Remark[3.3) and apply Lemma[3.3}(a, b). =

3.3. Multiplying for strong Gram congruence
For a pseudo-morphism @ =B @ we have often considered the matrix B* := Cvr’@,lB”Cv?Q (see for
instance Theorem M.1i(i7) or Remark [3.3]). Here we consider further properties of this star operation,

(=)*

Hom_ (Q, @) Homé(éa Q) ,

see Remark 3.3(b).

Lemma 3.7. Let (Q and @ be connected loop-less quivers with the same number of vertices and ar-

~

rows. Assume that () =B @, and take B* := GélBtrGQ.

a) If Q = @ then we have Z(B*) = (—1)Z(B)*".
b) Both matrices =(B*B) and Z(BB*) are skew-symmetric.

¢) If B is Z-invertible then @ =B @ and
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Proof: N
To show (a) assume that ) = @, and take Z := Z(B). Note that

B* = Gg'B"™Gq=Gg'Id+ KZK"™)" G
= Id+Gg'KTZ" K" G = 1d + K (—2") K™ = 1 (-2'),
that is, Z(B*) = E(T(-Z(B)tr)) = —Z(B)*".
To show (b) take Z := E(B*B). Since B*B = Id + K ZK* and KT = G5 K, we have

[1]

K'ZK" = G5 KZK'™ = G5(B*B —1d) = B"GoB — G,
and therefore,
K-thrk’rtr _ (K-TZ[?Ttr)tr _ BtrégB i étf
o

~

Since I(Q)B = I(Q) we get
K'[Z + Z2"]K™" = B¥GoB - G5 = (I(Q)B)™ (1(Q)B) — I(Q)™I(Q) = 0.
In particular, Z + Z* = 0 since the columns of Kt are linearly independent. The case BB™ can be

shown in a similar way.

For (c), using that I(Q)B = 1(Q) and I(QT)B* = I(Q"), if B is Z-invertible then

~

QB =1(Q) and QB =1(Q"),
that is, Q =B Q. The last claim of (c) is immediate. =
For a more general version of the following proposition, see Remark 4.9 below.

Proposition 3.8. Let () be a connected loop-less quiver. If there is a Z-invertible matrix B such that
I(@B=1@Q) and I1(@"HB" =1(Q"),

where Q is a standard quiver with same number of vertices and arrows as (), then there is a matrix C
such that I(Q)[BC] = I(Q) and [BC]*[BC] = Id.

Proof:
With the notation of Definition 3.2] we have Q =% (. Fix kernel matrices K and K of I (Q) and

—

1(Q), respectively.
Take B := B*B, Z := Z(B) and Z := E(E)_l), where = is the function constructed in
Lemma [3.5] with respect to K. By Lemma[3.5(a), we have Z ®;, Z = 0 where W = K t‘”GQK .

By Lemma[37(b, ¢), the matrices Z and Z are skew-symmetric. By Lemma B.I)(b), there is a matrix
Y such that Z = (—Y*) @3, Y, since W is a pure skew-symmetric matrix by Lemma 2.8} cf. (I4).
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Consider the pseudo-endomorphism C' = Y(-Y*) = Id — KY*t KT of @, which is Z-invertible
by Lemma[3.5](b), since

(YN ey Yoy 2l = (YN ey Y]ey Z=Z26; Z =0,
using the associativity of ®; (Remark [3.6). Observe that
BC = (BC)*(BC) = C*(B*B)C = C*BC.

In particular, BC =Idifand only if (CC *)ﬁ = Id since C is Z-invertible. Applying Lemmal[3.3(a, b)
we get
E[(CCHBl=[(-Y™) @y Y@y Z=2@; Z =0,

since 2(C) = (—=Y'*r), and 2(C*) = Y by LemmaB.7(a). Thus, we have BC' = (BC)*(BC) = 1d,
as wanted. i

Example 3.9. We now apply Proposition 3.8 to the quiver Q° of Example (recall from Exam-
ple 2111 that we have already found a matrix By such that ¢; ~B1 q1). Consider the Z-invertible
matrix By := B) given in Example [T3] satisfying Q° ="° (°. Following the notation of the proof
of Proposition 3.8 we get

0010 1110 1110
0111 . 1011 . 1211
By = |, Bo= ~ X and By'=|~
00 11 1121 1101
100 2 01 1 1 0111
TakingZ = ((1]3) we have
10
. . Lo 0o 1|/0o 1\ /1 1 1
Bl =(Z)=1d, + Ko ZK[** = .
0 (2) 4T R0eRo o 1|\1 o/\o 1 0
10

By Lemma [3.1(b), there is a matrix Y such that W = (—Y'tr) @y Y. Indeed, note that W =
Kgrééol?o = 0, therefore (—Y*) @y, ¥ = Y — Y™, so we may simply take Y := (0 §). Asin the
proof above, we take

11 1 0 0010

. . 01 0 0 0001
C:=T(-Y®") =1d, — KoY K[™ = and ByC = o
00 1 0 0121

01 -1 1 1112

A direct calculation shows that gg ~5°C gp, as claimed in Proposition 3.8l
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4. Main proofs, concluding remarks and algorithms

This section collects all preliminary results to prove the main technical theorem of the paper (Theo-
rem , which connects the Coxeter-Laplacian with the existence of strong Gram congruences, and
suggests implementable algorithms to solve Simson’s Problem 2(ii). The section ends with those re-
sults of general interest used along the paper, and with some comments on generalizations and future
work.

4.1. Main results

The following is a combinatorial version of Theorem [2lin terms of the Coxeter-Laplacian of a quiver.

Theorem 4.1. The following are equivalent for connected loop-less quivers () and CNQ with the same
number of vertices and arrows:

i) The Coxeter-Laplacians of ) and @ coincide, Ag = AQ.

ii) There is a (not necessarily Z-invertible) matrix B such that ) =B @
iii) There is a (Z-invertible) matrix B such that I(Q)B = I(Q) and é@ — B GgB.

Proof:
Assume first that B satisfies (iii) and recall that I(QT) = I (Q)Cv?él for any connected loop-less quiver

Q, see (8). Since 1 = det(é@) = det(Bter?QB) = det(B)?, then B is Z-invertible and
H(QNB™ = 1(Q)[G5 B¥GqlGy' = 1(Q)B7'G = 1(Q)G,' = 1(QY).

That is, Q =% @, and (i7) holds. That (7i) implies (i) was shown in Remark B3(a).
Assume that Ag = A@. By Remark [LIQ] there is a standard quiver @ with the same number

of vertices and arrows as @, and such that ct(Q) = ct(@). By permuting the vertices of Q and
@ if necessary, we may assume that Ag = AQ» = AC) (see Remarks and recall that in

Definition [.6 we fixed linear orders on Qg and Q).

By Proposition there is a matrix B’ such that Q) =B C_j, and by Proposition there is a
matrix M such that B’ + M is Z-invertible and Q =% ™ . Moreover, using Proposition 3.8 we
find a matrix C such that if B := (B’ + M)C, then I(Q)B = I(Q)) and B*B = Id. Similarly, since

Ay = Ag. we may find a matrix B such that I(Q)B = I(Q) and B*B = Id (in particular, B is

Z-invertible since it is a square matrix with det(é) = #1). This means that CVJQ = BtréQB and

Gg = étrééé, and therefore, 1(Q)(BB~!) = I(Q) and

Gy = (BB )"Go(BE),

which completes the proof. m|
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Let us now derive Theorems[I], 2] and 3] from Theorem

Proof of Theorem [k

Let g be a connected non-negative unit form in n > 1 variables and of Dynkin type A, for r > 1.
Using Theorem we find a connected loop-less quiver () with m = r + 1 vertices and n arrows
such that ¢ = g¢g. Consider the cycle type ct(¢) = ct(Q) and degree of degeneracy d, of g. Take
Q = AY4[ct(q)], which is also a connected loop-less quiver with m = r + 1 vertices and n arrows
(see Definition [[6). Since ct(Q) = ct(Q) by Remark [] we may assume that Ag = A5 (by
replacing @) by the quiver p - ) for some permutation p of the set of vertices QO, see Remark . By
Theorem E1] there is a matrix B such that I(Q)B = I(Q) and G < = B“GQB Taking ¢ := qg.

by definition we have éQ = éq and G = Cvlq, and therefore, ¢ ~” ¢, The uniqueness of ¢ follows

from the uniqueness of the standard quiver Q with cycle type ct(q), m vertices and n arrows, cf.
Corollary [L.9(b). O

Proof of Theorem 2
Let ¢ and g be weakly Gram congruent connected non-negative unit forms in n variables and of Dynkin
type A,. If g and q are strongly Gram congruent, then ¢, = ¢z, see for instance [33, Lemma 4.6].

Assume conversely that ¢, = ¢g. Since ¢ ~ ¢, then ¢ and ¢ have the same corank ¢ = cork(q) =
cork(q). Using Theorem [L.2] we find quivers ) and ) such that ¢ = g and ¢ = qg» both of which
have m = r + 1 vertices and n arrows. By Remark [[.3[(b) we have

i) = (A= 1 pag () = (A= 1) pa, (V) = 0 (V).

Therefore, the Coxeter-Laplacians Ag and A@ are co-spectral. By Lemmal4.3]below, the matrices Ag
and A are conjugate, that is, there is a permutation matrix P(p) such that Ay = P(p)**AgP(p).
Thus, by Theorem [L.2](7) and replacing @ by p - @ if necessary, we may assume that Ag = Ay, see

Remark [.Tl We conclude that ¢ ~ ¢ by Theorem [[.2(7i4), and using the equivalence of (i) and (i)
in Theorem 4,11 o

Proof of Theorem 3t

The construction of the cycle type ct is given in [34] Definition 4.2], see also () above, where it is
shown that ct : [UQuad§(n)/ ~] — P{(m) is well-defined and surjective. The injectivity of ct is
direct consequence of Theorem [2] and the properties (i — iii) were shown in [34] Theorem 6.3 and
Corollary 6.4]. Claim (iv) is clear from definition, see Lemma[2.3]

That the reduced corank of ¢ is cork,.(q) = ¢ — 1, where ¢ is the length of ct(q), was shown in
Corollary That the multiplicity of 1 as a root of ¢, is ¢ + (¢ — 1) can be easily derived from the
shape of ¢, cf. [34, Remark 7.1(b)]. That is, the algebraic multiplicity of 1 as eigenvalue of ®, is
cork(q) + cork,.(q), which shows (v). O

4.2. Some general results

On pure subgroups and orthogonal matrices

We collect some well-known facts about pure subgroups, giving a sketch of the proofs.
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Lemma 4.2. The following are equivalent for a subgroup X of Z™.
a) The group X is pure.
b) The quotient Z"™/X is free.
¢) There is a subgroup Y of Z™ such that Z™ = X @Y.
d) The canonical inclusion X < Z™ has a left inverse.

e) If f: A — Z™ is any morphism of abelian groups with Im(f) = X, then for any morphism
h : A — B of abelian groups with h(Ker(f)) = 0 there is a morphism g : Z™ — B (not
necessarily unique) such that h = gf.

Proof:

Assume that X is pure. If § := y+ X € Z"/X satisfies ay = 0 for some non-zero a € Z, then ay € X,
hence y € X, that is, ¥ = 0. This shows that Z™ /X is a torsion free (finitely generated) abelian group,
thus free. Assume that Z™/X is free, and fix a basis ¢, ...,y of Z™/X with g, = y; + X and
yr€ Z™fort = 1,...,d. Take Y = (y1,...,yq) the subgroup of Z™ generated by 1, ...,yq, and
verify that Z™ = X @Y. Assume that Z™ = X @Y, and take the inclusion ox : X — Z™. Then the
projection mx : X @Y — X satisfies mxox = Idx, thatis, ox is left invertible. Assume that ox
has a left inverse 7 : Z™ — X, and that ax € X for a non-zero a € Z. Then ax = w(azx) = an(x),
which implies that z = 7(z), that is, z € X, and X is a pure subgroup of Z™. These arguments show
that the statements (a — d) are equivalent.

Assume now that (d) holds, and take functions f and h as in claim (e). Denote by f the restriction
of f toits image, f: A — Im(f). Then f = UXjN’, and therefore jN’: wf,where ox : X — Z™is the
canonical inclusion, and 7 is a left inverse of ox. Since jN’is a cokernel of the inclusion Ker(f) — A,
there is b : Im(f) — B such that h = Lf. Then the following diagram is commutative,

Ker(f)C A d z
N
Im(f)
h ifl
B

Take g := hr and observe that gf = hrf = hf = h, as wanted. Finally, assume that (e) holds,
and take f = ox and h = Idx. Since Ker(f) = 0 then h(Ker(f)) = 0, and by hypothesis there
isg: Z™ — X such that Idx = gf = fox. This shows the equivalence of claims (d) and (e),
completing the proof. m|

Recall that two permutation matrices P and P’ are called conjugate if there is a permutation
matrix R such that P’ = R** PR.
Lemma 4.3. The following are equivalent for permutations £ and & of the set {1,...,m}.

i) P(&) and P(¢’) are conjugate permutation matrices.

ii) The matrices P(¢) and P(&’) are co-spectral.
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iii) The cycle types ct(£) and ct(£’) coincide.

iv) £ and £’ are conjugate permutations.

Proof:
If P(£) and P(¢’) are conjugate permutation matrices, then they are similar matrices and their spectra
coincide. Recall that the characteristic polynomial of P(¢) is given by

¢
pre)(N) = 1_[()\7” -1),
t=1
where ™ = (71, ..., ) is the cycle type ct(§) = 7 of £ (cf. [54, §2.2] or [34])). If P() and P(¢') are
co-spectral, then the cycle types of £ and &’ coincide (cf. [34, Algorithm 2 and Remark 7.4]). In this
case, & and £’ are conjugate permutations (see [54] Proposition 2.33]), which in turn shows that P(¢)
and P(¢’) are conjugate permutation matrices. O

On non-negative integral quadratic forms

Let Z be a free finitely generated abelian group. By integral quadratic form ¢ on Z we mean a
function ¢ : Z — Z satisfying q(ax) = a®q(x) for any a € Z and = € Z, and such that its polarization
b, : Z x Z — 7, given by by(z,y) := q(z +y) — q(x) — q(y), is a (symmetric) bilinear form. The
symmetric matrix of b, with respect to a fixed basis of Z is denoted by G,. Since the determinant of
G, is independent of the chosen basis, it is referred to as determinant det(q) of ¢. The radical of ¢
is the kernel (or right null space) of Gy. Since ¢(x) = 0 for any z € rad(g), the induced function
q/rad(q) : Z/rad(q) — Z is well defined.

Lemma 4.4. Let g : Z7 — Z be an integral quadratic form.
i) The form ¢ has zero radical (that is, rad(q) = 0) if and only if det(q) # 0.

i) If Z is a free finitely generated abelian group, and B : 7 — Z is a linear transformation, then
qB : Z — 7 1is an integral quadratic form.

iii) If Z is a free finitely generated abelian group, ¢ : Z — Zisafunctionand B : Z — Zisa
surjective linear transformation such that ¢ = ¢B, then § is an integral quadratic form.

iv) The radical rad(q) is a pure subgroup of Z, and the function ¢/rad(q) : Z/rad(q) — Z is an
integral quadratic form with radical zero.

v) If ¢ is non-negative, then = € Z is a radical vector of ¢ if and only if ¢(x) = 0.

Proof:

Fix a basis (eq, ..., ey,) of Z, and let G, be the Gram matrix of b, with respect to such basis. Then
det(G4) = 0 if and only if there is a trivial integral linear combination of the rows of G, that is, if
there is a vector z = (21,...,2y) € Z" such that G,z = 0 (indeed, use Gaussian elimination over the

rational numbers, then multiply any solution by a common multiple of the denominators to get integer
coefficients). Then claim (¢) is clear, since x = >"_| z;e; € Z is a radical vector of q.
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For (ii) take ¢ := ¢B. The polarization of ¢ is given by by(Z,9) = by(BT, By) for vectors
Z,9 € Z. Then the bilinearity of by follows from the linearity of B and the bilinearity of b,. Moreover,
foranyae Zand T € Z we have

q(aZ) = q(Ba) = q(aB¥) = a*q(B¥) = a*§(%),

since B is linear and ¢ is an integral quadratic form.

~

To show (i77) observe that the polarization of ¢ has the following shape, for vectors 7,y € Z and
vectors x,y € Z such that Bx = T and By = v,

by (%, %) = by(Bz, By) = by(z,y).

Then a standard calculation, using that B is linear and surjective and that by, is bilinear, shows that by

is bilinear. Moreover, for arbitrary a € Z and ¥ € Z, there is z € Z such that Bz = (since Bis
surjective), and we have

4(a?) = q(aBx) = §(B(ax)) = q(az) = a*q(z) = a’q(Bz) = a*§(2),
since ¢ is a quadratic form and B is linear.

To show (iv), since rad(q) is the kernel of b, then it is a pure subgroup of Z. Moreover, observe
that = € rad(q) if and only if ¢(x + y) = ¢(y) for any y € Z, which shows that the induced function
q/rad(q) is well defined. If B : Z — Z/rad(q) is the canonical surjection, then ¢ = (¢/rad(q))(B)
and ¢ is an integral quadratic form by (i73).

The proof of (v) is a simple generalization of [33] Lemma 2.1(b)]. Indeed, if € rad(q) then
q(z) = %xtqum = 0 (here we identify the elements z € Z with their coordinate vectors in Z™ in the
fixed basis). Conversely, if ¢ is non-negative and ¢(x) = 0, then for an arbitrary m € Z and a basis
ey,...,e, of Z we have

0 < g(mx + e;) = mby(x,e;) + q(e;).

Since m is arbitrary, then b,(x, e;) = 0, and this holds for any i € {1,...,n}. Thatis, x € rad(q).
O

Lemma4.5. Let ¢ : Z — Z be a non-negative integral quadratic form, B : Z — Z a linear trans-
formation, and take ¢ := ¢B. Then B is an isomorphism if and only if the following conditions
hold,

a) the transformation B restricts to an isomorphism B|yaq : rad(q) — rad(q);

b) the determinants of ¢/rad(q) and ¢/rad(q) coincide.

Proof:

By Lemma [4.4{(i7), ¢ = ¢B is an integral quadratic form, which is clearly non-negative. By non-
negativity, B restricts to a transformation B|yaq : rad(q) — rad(q). Indeed, if € rad(q) then
q(B(Z)) = q(Z) = 0, and by Lemma [4.4(v) the vector B(Z) is in the radical of ¢. In particular,
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B induces a linear transformation [B] : Z/rad(§) — Z/rad(q) such that the following diagram
commutes,

Z /rad(3)

w\
e

Z/rad(q)

[B] Z.

Assume first that B is an isomorphism. Then ¢ = §B~! and since § is also non-negative, the
restriction B~ !|;aq : rad(q) — rad(q) is inverse of B|yaq. Since rad(q) is a direct summand of
Z, and so is rad(§) of Z (Lemma&2), then [B] is an isomorphism between free finitely generated
abelian groups, which implies that det(g/rad(q)) = det(q/rad(q))det([B]) = det(g/rad(q)).
This shows that (a) and (b) hold.

For the converse, by Lemma [4.4](i, v) we have det(g/rad(q)) # 0 and det(g/rad(q)) # 0. By
(b), this implies that det([B]) = +1, that is, that [ B] is an isomorphism. Assume now that 0 = B¥
for some ¥ € Z. Then [B](Z + rad(§)) = 0, which implies that ¥ € rad(§) since [B] is injective.
Since B|yad is injective by (a), we have T = 0, that is, B is injective. Take now = € Z arbitrary. Since
[B] is surjective, there is ¥ € Z such that B(Z + rad(§)) = = + rad(q), that is, z — B¥ € rad(q)
since B(rad(q)) < rad(q). Using that B|,aq is surjective, again by (a) there is § € rad(q) such that
By =z — B7Z, that is, x = B(Z + g). This shows the surjectivity of B, completing the proof. O

Corollary 4.6. Let ¢ and ¢ be connected non-negative unit forms in the same number of variables.
Then the following hold:

i) The forms ¢ and ¢ have the same Dynkin type if and only if the determinants of g/rad(q) and
g/rad(q) coincide.

ii) If ¢ and ¢ have the same Dynkin type and ¢ = ¢B for an integer matrix B, then B is Z-invertible
if and only if B restricts to an isomorphism B|;aq : rad(q) — rad(q).

Proof:

To show (i) assume first that ¢ and ¢ have the same Dynkin type. Then they are weakly Gram con-
gruent since they have the same number of variables, that is, there is a Z-invertible matrix B with
g = qB. By Lemmal[d.3|(b) the determinants of ¢/rad(q) and §/rad(q) coincide. Conversely, assume
that ¢ and § have different Dynkin types, say A and A. By [3, Theorem 3.15], the forms g/rad(q)
and ga are equivalent, therefore, they have the same determinant. The same holds for g/rad(q) and
qx- Since g and ¢ have the same number of variables, and A # A, then det(ga) # det(gx) (see for
instance [66, Corollary 3.10(b)]), which shows that the determinants of ¢/rad(q) and ¢/rad(q) are
different.

Claim (i7) follows from (¢) and Lemma[.3|(b). =
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Lemma 4.7. Let ¢ and § be non-negative unit forms with ¢ ~® § for a n x n matrix B. Then B
restricts to isomorphisms

Blraa : rad(q) — rad(q),
Blrad,, : radye(q) — rad,.(q).

In particular, the standard morsification b, has pure restriction T, to its radical if and only if by has
pure restriction I to its radical.

Proof:

That B|paq is an isomorphism was shown in Lemma The second isomorphism holds since
by g, y) = b ¢(Bz, By) for any =,y € Z", and B is Z-invertible. The claim on pure restriction
is Clear since both B|yaq and B|yaq,, are isomorphisms, and rad,.(q) is the kernel of the restriction
Iy of 1b to its radical. =

Some consequences

The following technical observation, basic for our work, seems to hold for more general contexts
(for other Dynkin types and for other unimodular morsifications). The author was not able to find any
related results in the literature, nor any more general proofs.

Corollary 4.8. Let ¢ be a connected non-negative unit form of Dynkin type A, for » > 1. Then the
associated upper triangular bilinear form b, (the standard morsification of ¢) has pure restriction to its
radical.

Proof:
Follows from Lemmal4.7, Theorem [Tland Lemma 2.8 o

Remark 4.9. In the proofs of Propositions [2.10] and [3.8 the only needed condition of the standard
quiver Q is that the upper triangular bilinear form qu _ has pure restriction to its radical (Lemma 2.§]).
As consequence of Corollary [4.8] the same constructlons of Propositions 2.10] or [3.§] hold when re-
placing Q for an arbitrary quiver Q satisfying ) = Q for a square or a Z-invertible matrix B,
respectively.

Observe that a loop-less qulver Q and its 1nverse Q' have the same Coxeter polynomial. Indeed,
using that 1(QT) = I (Q)GQ and that GQT = Q L (cf. [33] Proposition 4.4]), a direct calculation
yields % = P 1. Then the following result, consequence of Theorem 2] helps us find explicit con-
gruences between the upper and lower triangular Gram matrices for the class of unit forms considered
in this paper (see [31] for related problems).

Corollary 4.10. Let g be a connected non-negative unit form of Dynkin type A, for some r > 1,
consider the upper triangular Gram matrix G, and take q" = qG, —1. Then ¢ is a connected unit form
with ¢ ~ ¢. Moreover, any strong Gram congruence ¢ ~” ¢ determines a congruence

CG,0 = b,

by taking C' = Béq.
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Proof:
By Theorem [[.2] there is a connected loop-less quiver @ such that ¢ = gg. Taking QT as in (§), that

is, 1(Q") = I(Q)Gg'. then

1 1 > ~
101 (#) = 5 1QN = SITQ)G' | = aa(Cg'e) = ¢! (a).

Therefore, using again Theorem [[2] ¢' is a non-negative connected unit form of Dynkin type A.
Clearly q ~Ca qT and since G is upper triangular then so is its inverse, which shows that G
Gq . Note that

_ _étré—Tl _ _é—tré _ (_étré—l)tr _ q);r
In partlcular the Coxeter polynomlals of ¢ and ¢ coincide. Then ¢ ~ ¢ by Theorem 2l Finally, if
g ~P ¢' and we take C' = BGq, then

~

C*G,C = G BYG,BG, = GGG, = G,
as claimed. |

We end this section with a numerical strong Gram classification of non-negative connected unit
forms of Dynkin type A, and some comments on the number of corresponding classes. Recall that
UQuad{ (n) denotes the set of connected non-negative unit forms on n > 1 variables having Dynkin
type A,,_. and corank ¢ > 0.

Corollary 4.11. Let ¢, ¢’ : Z"™ — Z be non-negative connected unit forms of Dynkin type A,., r > 1.
Then ¢ ~ ¢’ if and only if ct(q) = ct(¢’). Moreover,

1, ifc =0,

[UQuad{ (n)/ ~ | = |2], ife=1,

[%J’ ife= 2.

Proof:

Observe first that cork(q) = cork(q’) = n — r, and since Dyn(q) = Dyn(q') = A,, then ¢ and ¢
are weakly Gram congruent (cf. [6]). Then the main claim follows directly by Theorem 3] where it is
shown that

[[UQuad{(n)/ ~]| = |Pi(m)|, where Pi(m):={rt+m|0<c— ({(r)—1)=0 mod 2}.
Denoting by py(m) the number of partition of m having exactly ¢ parts, then

le/2]

|Pi(m)| = Z Pe—2d+1(m (18)

Using that p;(m) = 1 and pa(m) = |m/2| for all m > 2, and that m = n — ¢ + 1, we get the claimed
values of [UQuad$ (n)/ ~ | forc = 0,1. If ¢ = 2 then [P?(m)| = p3(n — 1) + p1(n — 1). It can be
easily shown that this coincides with the number of partitions of n — 1 into 3 or fewer distinct parts, a
number known to be given by |(n — 1)2/12 + 5/4], cf. entry A014591 in [71]). o
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In general, the value of [P{(m)| can be found using (I8)) and the well-known recursive formula
for pg(m), see for instance [1}, pp. 345-348],

pe(m) = pr—1(m — 1) + pe(m — ),
subject to the starting conditions py(0) = 1 and py(m) = 0if £ <0, m < O0and £ +m < 0.

Comments on generalizations and future work

Following Simson’s work, there are many interesting problems to consider in the setting of non-
negative unit forms of arbitrary corank, for instance: the computation of isotropy mini-groups and
Weyl group actions, the description of morsifications, Coxeter-translation quivers and mesh geome-
tries, and applications to quadratic forms associated to posets. The combinatorial framework explored
here is certainly useful for the analysis of such problems, at least for the class of connected non-
negative unit forms of Dynkin type A,..

As already mentioned in [32], the ideas presented here may be generalized to cover the Dynkin
type D, for s > 4, replacing loop-less quivers by certain loop-less bidirected graphs (in the sense
of Zaslavsky [74], see also [73]]), satisfying certain cycle condition (cf. [32 §8]). Most of the con-
structions and results are similar to those for quivers, the main challenge now being the choice of an
adequate family of representatives of strong Gram congruence (the corresponding standard unit forms
of Dynkin type D). By admitting loops we include semi-unit forms, as well as a class of non-unitary
connected non-negative quadratic forms to be classified yet. The seminal paper by Cameron, Goethals,
Seidel and Shult [15]], connecting classical root systems with the spectral analysis of signed graphs,
contains fundamental ideas suitable for further generalizations (see also [73]]).

In the following lemma we consider some of the ideas that originated the results of this paper,
presented in a slightly more general context.

Lemma 4.12. Let ¢,q : Z"™ — Z be non-negative connected unit forms with cork(q) < 1. Then the
following are equivalent for a matrix B € M, (Z),

a) B is Z-invertible and g ~” §;
b) B satisfies § = ¢ and G3B* B = Gy, where B* := G B% G,

Proof:

Note first that if (a) holds then § = ¢B and, by definition of ¢ ~” §, we have B*B = Id. Assume
now that (b) holds, which does not require the matrix B to be Z-invertible. Note that § = ¢B implies
that B¥G,B = G, which shows that the matrix M := BtréqB — Cvlg is skew-symmetric (recall that
Gy = (v}’q + (v}'gr and similarly for ¢). Hence, the rank of M is a non-negative even number (cf. [24] XI,
841]). Since (v}’q is Z-invertible, then the rank of N := Cvr’glM = B*B — 1d, is also a non-negative
even number. However, the condition GzB*B = G} guarantees that the columns of IV are radical

vectors of g, since
GyN = G4[B*B —1d,] = 0.

Then rk(N) < cork(q) < 1, which shows that N = 0 = M, that is, B¥*G,B = G. In particular,
det(B) = +1 and ¢ ~ §, as claimed. O
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In our context of Dynkin type A, via connected loop-less quivers, any matrix B satisfying the

condition (a) of Definition namely Q =P (), satisfies aQ5G = qoB and G@B*B = GQ. In

particular, if cork(qé) < 1, then B determines a strong Gram congruence ¢g ~B G- as claimed in
the introduction (see comments after Step 1 on page 22J).

4.3. Hints for an implementation

We end the paper with some ideas and suggestions for an implementation of our main results, solving
Problem 2(i3) for the class of connected non-negative unit forms of Dynkin type A,.. All algorithms
are straightforward, and make use of well-known methods as least squares and depth-first
search. The main construction is presented in Algorithm[Il(resp. Algorithm[2), where for a connected
non-negative unit form of Dynkin type A,,_; (resp. a connected loop-less quiver on m vertices) we
compute a matrix that determines a strong Gram congruence to the corresponding standard unit form
(resp. standard quiver) representative of class, see Theorem [I]and Definition This construction is
based on the correction Algorithms [3]and 4] corresponding to Propositions and [3.8] respectively,
and on further auxiliary methods given in Algorithms[3][6land[Zl An algorithmic approach to the skew
normal form may be found in [72] or [48, Theorem IV.1].

Algorithm 1. Standard solution for quadratic forms.

Input: A connected non-negative unit form ¢ in n variables and of Dynkin type A, for r > 1.
Output: A n x n matrix B such that

Gy =B"G,B,
where ¢'is the standard non-negative unit form weakly congruent to ¢ and satisfying g = ¢.

Step 1. Find a quiver ) with n arrows and m = r + 1 vertices such that ¢ = qg (see [34}
Algorithm 1]).
Step 2. Apply Algorithm 2] below to find a matrix B satisfying GQ = BY(@,.oB, where Q is a

standard quiver and p is a permutation such that A, = A5 (cf. Remark [LI). Since éq = (v}’Q, then
B is the wanted strong Gram congruence matrix, by taking ¢ := 45- Return matrix B.

Algorithm 2. Standard solution for quivers.

Input: A connected loop-less quiver () with n > 1 arrows and m > 2 vertices.
Output: A permutation p of Qo = {1,...,m} and an x n matrix B such that I(p-Q)B = I1(Q),
and 5 5
Gg= B¥™GoB,
where @ is the standard quiver with ct(Q) = ct(Q) and same number of arrows as Q.
Step 1. Compute the permutation of vertices fé of ). [Hint: determine the structural walks g (v)
forv =1,...,m, see definition (3)), or compute directly the Coxeter-Laplacian A¢ of @) using (9)].

Step 2. Compute the cycle type ct(Q) of @ by considering the cardinalities of the orbits of 56_2
(see also [34], Algorithm 2]), and let £ be the length of ct(Q).
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Step 3. Consider the degree of degeneracy d = %(c — ¢+ 1) of gg, where ¢ = n — m + 1is the
corank of qg, and take the standard quiver @ := A ct(Q)]. B

Step 4. Determine a permutation p such that gé op=¢&(Q).

Step 5. Take Q := p-Q By Step 4 we have A5 = A 5. Find a matrix B’ such that I(Q)B’ = 1(Q)
and [(@)(B’)* = I(CNQ), that is, Q@ =" @ [Hint: using the structural walks of Step 1 and apply
equations (II)) and (I2)) from the proof of Proposition [L.14} we also need to find arbitrary connecting

walks §(t), for which we may use, for instance, a depth-first search algorithm].
Step 6. Apply Algorithm Blbelow to the matrix B’ of Step 5 to find a matrix M such that B’ + M

—

is Z-invertible and Q =% *M .
Step 7. Apply Algorithm [l below to the matrix B" + M of Step 6 to find a matrix C such that if

B := (B + M)C, then I(Q)B = I(Q) and [B]*[B] = Id, as wanted. Return the pair (p, B).
Using Corollary the following correction Algorithms [3and [4] based on the proofs of Propo-

sitions and [3.8] respectively, work for arbitrary connected loop-less quivers ) and () with same

number of vertices and arrows (see Remark [4.9)).

Algorithm 3. Invertible pseudo-morphism.

Input: Two connected loop-less quivers () and CNQ with the same number of arrows n, and an x n
matrix B such that () =B @

Output: A n x n matrix M such that B + M is Z-invertible and Q) =B+M CNQ

Step 1. Fix kernel matrices K and K of I(Q) and I(Q) respectively, and consider the skew-
symmetric matrices W = K G K and W = f(tré@[?.

Step 2. Make sure that the kernel matrix K has the shape K = [K', K”], where K" is a kernel
matrix of the reduced radical radre(qQ),Nand assume that K has a similar shape K = [K’, K"].

Step 3. Find a matrix L such that BK = KL (for instance, using a least squares algorithm).
As indicated by the partitions K = [K’, K”] and K = [K’, K"], the matrices L and W have the

following shapes,
L ~ (W
L= (" %) e wo (V9.
Lo L3 0 O

By Corollary the matrix W is Z-invertible.

Y, 0

M:= KYK Tt where Kt.=¢ @f( . Then B + M satisfies the claim, as in Proposition [2.10l Return
matrix M.

oy = Yi 0
Step 4. Take Yy := (Ly — Id)(W')~" and Y3 := Lp(W')"!. Take also V' := ( 1 > and

Algorithm 4. Strong congruence matrix.

Input: Two connected loop-less quivers @ and @ with the same number of arrows n, and a Z-
invertible n x n matrix B such that ) =B Q. N

Output: A Z-invertible n x n matrix C such that /(Q)(BC) = I(Q) and (BC)*(BC) = 1d.
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Step 1. Fix kernel matrices K and K of I(Q) and I(Q) as in Steps 1 and 2 of Algorithm 3|

Step 2. Take B* := Cvr’élB“Cv?Q, and use Algorithm [3] below to compute Z := Z=(B*B) and
Z = 2((B*B)™). N

Step 3. Apply Algorithm [6] below to the matrix Z of Step 2 in order to find a matrix Y such that

Z=Y-Y"+Y"WY,

where W := IN(ter?@f{.

Step 4. Define C' := Id — KY® KT where Y is the matrix of Step 3, and Kt .= é@f( Then
BC satisfies the claim as in the proof of Proposition 3.8l Return matrix C.

The following are auxiliary constructions for Algorithm 4l

Algorithm 5. Construction of the bijection = of Lemma[3.5]

Input: A connected loop-less quiver ) with n arrows, a fixed n x ¢ kernel matrix K of (@), and
a pseudo-endomorphism B of Q).
Output: A ¢ x ¢ matrix Z := Z(B) such that B = Id + KZK ', where KT := GgK.

Step 1. Find a solution L to the equation B — Id = K L (for instance, using a least squares
algorithm).

Step 2. Find similarly a solution Z to the equation L = ZK " where L is the matrix of Step 1.
Return matrix Z.

Algorithm 6. Special decomposition of a skew-symmetric matrix.

Input: A pair (Z, W) of skew-symmetric ¢ x ¢ matrices, where W is pure and in skew normal
form.
Output: A ¢ x ¢ matrix Y such that Z = Y — Y 4+ Y®WY.,

Step 1. Assume first that W is Z-invertible and take Z:=Z7Z+W. Using Algorithm [7] below we
find a matrix Y such that Z = Y"WY, and take Y := YV — W (see the first part of the proof of
Lemma[3.1{(b)).

Step 2. Assume now that W is not Z-invertible. Then W = W’ @ 0 for a Z-invertible skew-
symmetric matrix W’ and 0 a zero matrix of adequate size, and Z has the following shape

7 _ Zy =7 '
Zy s
Step 3. Since Z; and W' are skew-symmetric, and W’ is Z-invertible, using Step 1 we find a

matrix Y7 such that 77 = Y; — Yl“ + YltrW’ Y.
Step 4. Take Yz := Z», and let Y3 be the upper triangular part of Z3 (so that Z3 = Y3 — Y4¥, since

Zs3 is also skew-symmetric). Take
Y1 0
Y = ! .
Y, Y3

Then Y satisfies the claim, as in the proof of Lemma[3.1l Return matrix Y.




62

J.A. Jiménez Gonzdlez | A Strong Gram Classification of Non-negative Unit Forms of Dynkin Type A,

Algorithm 7. Direct factorization of a skew-symmetric matrix.

Input: A pair (Z, W) of skew-symmetric ¢ x ¢ matrices, where W is Z-invertible and in skew
normal form.
Output: A ¢ x ¢ matrix Y such that Z = YWY,

Step 1. Since W is Z-invertible then ¢ = 27 for some 7 > 0. Find a matrix P such that

~ 0 1 0 1
PYZp = D ,
1 <1 0> D..0f <1 0>

for integers f1, ..., f. (the product Pt Z P not necessarily in skew normal form).
Step 2. Consider the 2r x 27 matrix S = diag(1,dy,1,ds,...,1,d,) and return Y := SP~1,
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