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Abstract. The study of networks characteristics is an important subject in different fields, like

math, chemistry, transportation, social network analysis etc. The residual closeness is one of

the most sensitive measure of graphs’ vulnerability. In this article we calculate the link residual

closeness of Harary graphs.
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1. Introduction

One important characteristic of networks is their robustness, studied in many different fields of the sci-

ence. One of the most sensitive measures of network’s vulnerability is residual closeness, introduced

in [1] - Dangalchev proposed to measure the closeness of a graph after removing a vertex or a link

(edge). The definition for the closeness of a simple undirected graph, introduced in [1], is:

C(G) =
∑

i

∑

j 6=i

2−d(i,j).

In the above formula, d(i, j) is the standard distance between vertices i and j. The advantages of

the above definition are that it can be used for not connected graphs and it is convenient for creating

formulae for graph operations.
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Let r and s be a pair of connected vertices of graph G and graph Gr,s be the graph, constructed by

removing link (r, s) from graph G. Let d′(i, j) be the distance between vertices i and j in graph Gr,s.

Using the above formula, with distances d′(i, j) instead of d(i, j), we can calculate the closeness of

graph Gr,s. The link residual closeness R is defined in [1] as:

R(G) = min
r,s

{C(Gr,s)}.

If we remove a vertex, instead of a link, we can define vertex residual closeness. The vertex residual

closeness is more important for the social network analysis, while the link residual closeness is studied

in transportation, utility networks, etc. In this article we will consider only the link residual closeness.

To find the difference between the closeness and the residual closeness we have to compare distances

d(i, j) and d′(i, j).

Harary graphs are introduced in [2] by F. Harary as graphs that are k-connected, having n vertices

with the least number of edges. The notation Hk,n for Harary graphs, where 2 ≤ k < n is used in

West [3]. A simple construction of Harary graphs is: Let us place n vertices in a circle and name

them 1, 2, 3, ..., n. In case of k = 2p even, every vertex is connected to nearest p vertices in each

direction. In case of k = 2p + 1 odd and n = 2q even, Hk,n is created by connecting every vertex to

the nearest p vertices in each direction and to the diametrically opposite vertex (adding links (i, i+q)).
In these two cases there is an automorphism between any two vertices. In case of k = 2p + 1 odd

and n = 2q + 1 odd, the Harary graph is created by connecting every vertex to the nearest p vertices

in each direction and for vertices i ∈ [1, q + 1] are added links (i, i + q). This way every vertex is

connected to k = 2p+1 other vertices, except for vertex q+1, which is connected to 2p+2 vertices:

in addition to the 2p links to the neighbors, there are 2 more links - (1, q + 1) and (q + 1, 2q + 1).

The relative impact of a failure of a link can be seen in normalized residual closeness NR ([1]) of

graph G: NR(G) = (C(G) − R(G))\C(G). In this article we will calculate the difference between

the closeness and the link residual closeness of Harary graphs. The closeness and the vertex residual

closeness of some Harary graphs are given in [4]. We can determine the link residual closeness using

the results of this article and the closeness from [4]. Throughout this article we will use the term

“residual closeness” instead of “link residual closeness”. More information on closeness, residual

closeness, and additional closeness can be found in [5-25].

2. Residual closeness of H2,n

Graph H2,n is cycle graph Cn. After deleting any link of H2,n we receive path graph Pn. Using

formulae for closenesses of cycle graphs (given in [4]) and path graphs (in [1]) we can prove:

Theorem 2.1. The residual closeness of Harary graph H2,n is:

R(H2,2k) = C(H2,2k)− 4 + 22−2k + 3k21−k,

R(H2,2k+1) = C(H2,2k+1)− 4 + 21−2k + (2k + 1)21−k.
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Proof:

The formulae for closeness of cycle graphs, given in [4] are:

C(C2k) = 4k − 6k2−k,

C(C2k+1) = 2(2k + 1)− 2(2k + 1)2−k.

The formula for closeness of path graphs, given in [1] is:

C(Pn) = 2n − 4 + 22−n.

Replacing in the last formula n with 2k and 2k + 1, and subtracting it from the upper two formulae,

we prove the theorem. ⊓⊔

3. Residual closeness of H2p,n

We will consider all cases where p > 1. In graph H2p,n vertex 1 is connected to vertices 2,...,p+ 1 as

well as to n,...,n− p+1. Because of the automorphism between any two vertices of the graph we will

consider only deleting links starting from vertex 1.

By deleting link (1, 2), distance d(1, 2) is changed from 1 to 2. The new distance is d′(1, 2) =
d(1, 3) + d(3, 2) = 2. The same is the change of the distances (from 1 to 2) when deleting links

(1, 3),...,(1, p + 1), because d′(1, j) = d(1, 2) + d(2, j) = 2. No other distances are changed when

n ≤ 4p. Every change of a distance should be counted twice, e.g. for distance d(1, 2) and for

distance d(2, 1). In this case the difference ∆1 between the closeness and the residual closeness is

∆1 = 2 · 2−1 − 2 · 2−2 = 0.5 and:

R(H2p,n) = C(H2p,n)− 0.5, n ≤ 4p.

Deleting links (1, 2),...,(1, p) cannot result in any changes between different vertices. For example,

if i, ...1, s, t, ...j is a path with the shortest distance between vertices i and j, where s ∈ [2, p], then

the same distance is given by path i, ...1, s + 1, t, ...j.

When n = 4p + 1 deleting link (1, p + 1) will change, in addition to distance d(1, p + 1), also

distance d(1, 2p + 1) from 2 to 3. The same will be the change for distance d(n − p + 1, p + 1).
Deleting any other link will not have bigger change in closenesses. The new difference is ∆2 =
∆1 + 2(2 · 2−2 − 2 · 2−3) = 1. The same (∆2) is the difference when n = 4p+ 2, ..., 6p.

When n = 6p+1 deleting link (1, p+1) will change additionally distance d(1, 3p+1) from 3 to

4. The same will be the change for 2 other distances: d(n− p+ 1, 2p+ 1) and d(n− 2p+ 1, p+ 1).
The new difference ∆3 = ∆2 + 3(2 · 2−3 − 2 · 2−4) = ∆2 + 3 · 2−3 = 1.375. The same (∆3) is the

difference when n = 6p + 2, ..., 8p. Using the floor function c = ⌊a
b
⌋, where c is the integer part of

the division of a by b, we can prove:

Theorem 3.1. The residual closeness of Harary graph H2p,n is:

R(H2p,n) = C(H2p,n)− 2 + (k + 2)2−k,

where k = ⌊n−1
2p ⌋ and p > 1.
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Proof:

In general:

∆k = ∆k−1 + k2−k = 2−1 + 2 · 2−2 + 3 · 2−3 + ...+ k2−k.

in Appendix A is proven formula(1):

3 · 2−2 + ...+ k21−k = 2− (k + 2)21−k . (1)

Dividing formula (1) by 2 and adding 1 we receive: ∆k = 2− (k+2)2−k , which proves the theorem.

⊓⊔

4. Residual closeness of H3,2n

There is automorphism between any two vertices of graph H3,2n - instead of deleting link (i, i + 1)
we will delete link (1, 2); instead of deleting link (i, i+ n) we will delete link (1, n + 1);

H3,4 is a complete graph and d′(1, 2) = d(1, 3) + d(3, 2) = 2. No other distances are changed.

We have ∆2 = 2 · 2−1 − 2 · 2−2 = 0.5 and:

R(H3,4) = C(H3,4)− 0.5.

For n ≥ 3 we have to consider 2 cases.

Case 1 - Deleting link (1, n + 1):
Distance d(1, n + 1) is changed from 1 to 3:

d′(1, n + 1) = d(1, 2) + d(2, n + 2) + d(n + 2, n+ 1) = 3.

This is the only changed distance. For example: d(1, n + 2) = d(1, n + 1) + d(n + 1, n + 2) and

d′(1, n + 2) = d(1, 2) + d(2, n + 2). The difference in closenesses is: ∆ = 2(2−1 − 2−3) = 0.75.

Case 2 - Deleting link (1, 2):

A) Distance d(1, 2) is changed from 1 to 3:

d′(1, 2) = d(1, n + 1) + d(n + 1, n+ 2) + d(n + 2, 2) = 3.

This is true when n ≥ 3. When n = 3 this is the only changed distance, hence:

∆3 = 2 · 2−1 − 2 · 2−3 = 0.75,

R(H3,6) = C(H3,6)−∆3 = C(H3,6)− 0.75.

B) When n = 4 two more distances are changed from 2 to 3. Distance: d′(1, 3) = d(1, 5) +
d(5, 4) + d(4, 3) = 3. The same is the situation with distance d′(2, 8), hence:

∆4 = ∆3 + 2(2 · 2−2 − 2 · 2−3) = 1.25.

R(H3,8) = C(H3,8)−∆4 = C(H3,8)− 1.25.
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C) When n ≥ 5, distance d(1, 3) is changed from 2 to 4:

d′(1, 3) = d(1, n + 1) + d(n + 1, n+ 2) + d(n + 2, n+ 3) + d(n+ 3, 3) = 4.

The same is situation with distance d(2, 2n). When n = 5 these are the only changed distances and:

∆5 = ∆3 + 2(2 · 2−2 − 2 · 2−4) = 1.5,

R(H3,10) = C(H3,10)−∆5 = C(H3,10)− 1.5.

D) In general, when n = 2k distance d(1, k + 1) is changed from k to k + 1:

d′(1, k + 1) = d(1, n + 1) + d(n + 1, 2k) + ...+ d(k + 2, k + 1) = k + 1,

or the closeness is changed with ∆ = 2 · 2−k − 2 · 2−k−1 = 2−k. The same is true for other k − 1
distances: d(2n, k),d(2n − 1, k − 1),...,d(2n − k + 2, 2). The difference in closenesses is:

∆2k = ∆2k−1 + k2−k.

The residual closeness is:

R(H3,4k) = C(H3,4k)−∆2k = C(H3,4k)−∆2k−1 − k2−k.

E) Distance d(1, k + 1), when n ≥ 2k + 1, is changed from k to k + 2:

d′(1, k + 1) = d(1, n + 1) + d(n + 1, n+ 2) + d(n + 2, 2) + ...+ d(k, k + 1) = k + 2

The closeness is changed with 2 · 2−k − 2 · 2−k−2 = 3 · 2−k−1. The same is the situation with the

other k − 1 distances: d(2n, k), d(2n − 1, k − 1),...,d(2n− k + 2, 2).

The difference and the residual closeness are:

∆2k+1 = ∆2k−1 + 3k2−k−1.

R(H3,4k+2) = C(H3,4k+2)−∆2k−1 − 3k2−k−1.

We can prove now:

Theorem 4.1. The residual closeness of Harary graph H3,2n is:

R(H3,4k) = C(H3,4k)− 3 + (2k + 3)2−k,

R(H3,4k+2) = C(H3,4k+2)− 3 + 3(k + 2)2−1−k.

Proof:

From:
∆2k+1 = ∆2k−1 + 3k2−k−1

we receive:

∆2k+1 = ∆5 + 3 · 3 · 2−4 + ...+ 3k2−k−1.
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Multiplying formula (1) by 3
4 gives:

3(3 · 2−4 + ...+ k2−1−k) = 3
(

2−1 − (k + 2)2−1−k
)

.

∆2k+1 = ∆5 + 3
(

2−1 − (k + 2)2−1−k
)

.

∆2k+1 = 3− 3(k + 2)2−1−k.

From ∆2k = ∆2k−1 + k2−k we receive:

∆2k = 3− 3(k + 1)2−k + k2−k = 3− (2k + 3)2−k,

which are exactly the formulae for the residual closeness of H3,2n. ⊓⊔

5. Residual closeness of H5,2n

Graph H5,6 is a complete graph and deleting any link will result in change of the distance from 1 to

2: ∆1 = 0.5 and R(H5,6) = C(H5,6)− 0.5. Graph H5,8 has also plenty of links and by deleting any

link, only one distance is changed from 1 to 2: R(H5,8) = C(H5,8)−∆1 = C(H5,8)− 0.5.

For the bigger graphs we have to consider 3 cases:

Case 1 - Deleting link (1, 2):

Distance d(1, 2) is always changed from 1 to 2: d′(1, 2) = d(1, 3) + d(3, 2). No other distances are

changed.

Case 2 - Deleting link (1, n + 1):

When n > 4 distance d(1, n + 1) is changed from 1 to 3:

d′(1, n + 1) = d(1, 2) + d(2, n + 2) + d(n+ 2, n + 1),

or the change is ∆ = 2 · 2−1 − 2 · 2−3 = 0.75. No other distances are changed.

Case 3 - Deleting link (1, 3):

By deleting link (1, 3), distance d(1, 3) is changed from 1 to 2 and this is the only changed distance

when n ≤ 6. Hence we receive ∆ = 0.75 and :

R(H5,10) = C(H5,10)− 0.75, R(H5,12) = C(H5,12)− 0.75.

When n = 7, other distances start changing. Not only d(1, 3) is changed from 1 to 2, but also d(1, 5)
and d(3, 13) are changed from 2 to 3. The residual closeness is:

R(H5,14) = C(H5,14)− 0.5− 2(2 · 2−2 − 2 · 2−3) = C(H5,14)− 1.

The difference between the closeness and the residual closeness, when n = 8, 9, 10, is also ∆2 = 1.0.

Now we can prove:
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Theorem 5.1. The residual closeness of Harary graph H5,2n is:

R(H5,2n) = C(H5,2n)− 2 + (k + 2)2−k,

where k = ⌊n+1
4 ⌋ and n ≥ 7.

Proof:

When n = 4k− 1, not only the previous distances are changed, but new k distances are changed from

k to k+1: d(1, 1+2k), d(2n−1, 2k−1),..., d(3, 2n−2k+3). The difference between the closeness

and the residual closeness ∆k is:

∆k = ∆k−1 + k(2 · 2−k − 2 · 2−k−1) = ∆k−1 + k2−k.

∆k = ∆2 + 3 · 2−3 + ...+ k2−k.

The residual closeness is:

R(H5,8k−2) = C(H5,8k−2)−∆k.

The difference in closenesses ∆k is the same for n = 4k, 4k + 1, 4k + 2. Dividing formula (1) by 2

we receive:

3 · 2−3 + ...+ k2−k = 1− (k + 2)2−k.

For the difference ∆k we receive:

∆k = 1 + 1− (k + 2)2−k = 2− (k + 2)2−k,

which proves the theorem. ⊓⊔

6. Residual closeness of H2p+1,2n

We will follow the previous section. When n ∈ [p + 1, 2p], by deleting any link, the distance is

changed from 1 to 2: ∆1 = 0.5.

When n ∈ [2p + 1, 3p], by deleting link (1, n + 1), distance d(1, n + 1) is changed from 1 to 3
and ∆ = 0.75. This is the biggest decrement for n in this range.

When n > 3p, by deleting link (1, p + 1), distance d(1, p + 1) is changed from 1 to 2. Also

d(1, 2p + 1) and d(p+ 1, 2n− p+ 1) are changed from 2 to 3. No other distances are changed when

n ∈ [3p + 1, 5p] and the decrement is: ∆2 = 1.

In general, when n = (2k − 1)p + 1 and k ≥ 2, by deleting link (1, p + 1), not only the previous

distances are changed, but new k distances (d(1, 1+ p.k),..., d(p+1, 2n− p(k− 1)+1)) are changed

from k to k + 1. The differences is:

∆k = ∆k−1 + k2−k.

Similarly to Theorem 4 we can prove:
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Theorem 6.1. The residual closeness of Harary graph H2p+1,2n is:

R(H2p+1,2n) = C(H2p+1,2n)− 2 + (k + 2)2−k,

where k = ⌊n+p−1
2p ⌋, p > 1, and n ≥ 3p+ 1.

Proof:

The difference ∆k is:

∆k = ∆2 + 3 · 2−3 + ...+ k2−k.

Dividing formula (1) by 2 we receive:

3 · 2−3 + ...+ k2−k = 1− (k + 2)2−k.

Using ∆2 = 1, we receive:

C(H2p+1,2n)−R(H2p+1,2n) = ∆k = 2− (k + 2)2−k,

which proves the theorem. ⊓⊔

7. Residual closeness of H3,2n+1

All vertices are connected to 3 other vertices, only vertex n+1 is connected to 4 vertices: 1, n, n+2,

and 2n+ 1.

Deleting any vertex of graph H3,5 changes only this distance from 1 to 2 and the difference be-

tween the closeness and the residual closeness is ∆2 = 0.5.

When n > 2 we have to consider 4 cases.

Case 1 - Deleting link (1, n + 1):
Distance d(1, n + 1) is changed from 1 to 2:

d′(1, n + 1) = d(1, 2n + 1) + d(2n + 1, n + 1) = 2.

When n = 3, this is the only changed distance and the difference in closenesses is 0.5. When n > 3,

deleting link (1, n + 1) does not supply the residual closeness.

Case 2 - Deleting link (2, n + 2):
When n ≥ 3, distance d(2, n + 2) is changed from 1 to 3:

d′(2, n + 2) = d(2, 1) + d(1, n + 1) + d(n + 1, n+ 2) = 3.

This is the only changed distance and the difference in closenesses is 0.75.

Case 3 - Deleting link (1, 2):
When n ≥ 3, distance d(1, 2) is changed from 1 to 3:

d′(1, 2) = d(1, n + 1) + d(n + 1, n+ 2) + d(n + 2, 2) = 3.
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Distance d(2, 2n + 1) is changed from 2 to 3 when n = 3: d′(2, 2n + 1) = d(2, n + 2) + d(n + 2,
n+ 1) + d(n+ 1, 2n + 1) = 3. The residual closeness, when n = 3, is:

∆3 = 2(2−1 − 2−3) + 2(2−2 − 2−3) = 1.

R(H3,7) = C(H3,7)−∆3 = C(H3,7)− 1.

The only cases when deleting link (1, 2) supplies the residual closeness are n = 2, 3.

Case 4 - Deleting link (n, n+ 1):

A) Distance d(n, n + 1) is changed from 1 to 3:

d′(n, n+ 1) = d(n, 2n) + d(2n, 2n + 1) + d(2n + 1, n + 1) = 3.

When n = 3 this is the only changed distance. The difference is less than the difference in case 3:

2(2−1 − 2−3) = 0.75 < ∆3.

B) When n ≥ 4 distance d(1, n) is changed from 2 to 3 :

d′(1, n) = d(1, 2n + 1) + d(2n + 1, 2n) + d(2n, n) = 3.

When n = 4 distance d(n− 1, n + 1) is changed from 2 to 3:

d′(3, 5) = d(3, 7) + d(7, 6) + d(6, 5) = 3.

When n = 4 distance d(n, n+ 2) is also changed from 2 to 3:

d′(4, 6) = d(4, 8) + d(8, 7) + d(7, 6) = 3.

These are the only changed distances when n = 4 and:

∆4 = 2(2−1 − 2−3) + 3.2(2−2 − 2−3) = 1.5.

R(H3,9) = C(H3,9)−∆4 = C(H3,9)− 1.5.

C) When n > 4, two of the changed (from 2 to 3) distances in subcase B have bigger changes

(from 2 to 4). Distance d(n− 1, n + 1) is changed from 2 to 4:

d′(n− 1, n + 1) = d(n− 1, 2n − 1) + d(2n − 1, 2n) + d(2n, 2n + 1) + d(2n + 1, n + 1).

Distance d(n, n+ 2) is also changed from 2 to 4:

d′(n, n+ 2) = d(n, 2n) + d(2n, 2n + 1) + d(2n+ 1, n + 1) + d(n+ 1, n + 2).

These are the only changes when n = 5 and:

∆5 = 2(2−1 − 2−3) + 2(2−2 − 2−3) + 2 · 2(2−2 − 2−4) = 1.75.

R(H3,11) = C(H3,11)−∆5 = C(H3,11)− 1.75.
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D) In general, when n ≥ 2p, new p−1 distances d(1, n−p+2),d(2, n−p+3),...,d(p−1, n)
are changed from p to p + 1, e.g. from path 1, n + 1, n, n − 1, ..., n − p + 2 to path 1, 2n + 1, 2n, n,
n− 1, ..., n − p+ 2.

When n = 2p another p distances d(n− p+1, n+1),d(n− p+2, n+2),...,d(n− 1, n+ p+1)
are changed from p to p+1 . e.g. from path n+1, n, n−1, ..., n−p+1 to path n+1, n+2, ..., 2n−
p+ 1, n− p+ 1. The distance between vertices n+ 1 = 2p+ 1 and 2n− p+ 1 = 3p+ 1 is equal to

p. These are the only new changes when n = 2p and:

∆2p = ∆2p−1 + (p− 1)2(2−p − 2−p−1) + p2(2−p − 2−p−1) = ∆2p−1 + (2p − 1)2−p.

R(H3,4p+1) = C(H3,4p+1)−∆2p.

E) When n > 2p the p distances d(n−p+1, n+1),d(n−p+2, n+2),...,d(n−1, n+p+1)
from subcase D are changed from p to p + 2, e.g. from path n + 1, n, n − 1, ..., n − p + 1 to path

n+ 1, 2n + 1, 2n, n, n − 1, ..., n − p+ 1.

These are the only new changes when n = 2p+ 1 and:

∆2p+1 = ∆2p − p2(2−p − 2−p−1) + p2(2−p − 2−p−2) = ∆2p + p2−p−1.

R(H3,4p+3) = C(H3,4p+3)−∆2p+1.

Now we can prove:

Theorem 7.1. The residual closeness of Harary graph H3,2n+1 is:

R(H3,4p+1) = C(H3,4p+1)− 4 + (3p + 4)2−p,

R(H3,4p+3) = C(H3,4p+3)− 4 + (5p + 8)2−p−1,

where p > 1.

Proof:

∆2p = ∆2p−1 + (2p− 1)2−p = ∆2p−2 + (p − 1)2−p + (2p − 1)2−p

∆2p = ∆2p−2 + (3p − 2)2−p. (2)

Formula (1) for k = p, divided by 2, becomes:

3 · 2−3 + ...+ p2−p = 1− (p+ 2)2−p.

Formula (1) for k = p− 1 divided by 2, becomes:

3 · 2−3 + ...+ 2(p − 1)2−p = 1− (p + 1)21−p.

Adding both equation we receive:

6 · 2−3 + ...+ (3p − 2)2−p = 2− (3p + 4)2−p. (3)
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The first items of the sum for ∆2p are not added in the formula above. To determine linear component

L (the first items of the sum) we use:

1.5 = ∆4 = L+ 2− 10 · 2−2 = L− 0.5,

or L = 2. Then the difference ∆2p becomes:

∆2p = 4− (3p + 4)2−p.

For the next difference ∆2p+1 we receive:

∆2p+1 = ∆2p + p2−p−1 = 4− (5p+ 8)2−p−1,

which proves the theorem. ⊓⊔

8. Residual closeness of H5,2n+1

A) Deleting any link (i, j) of graph H5,7 changes distance d(i, j) from 1 to 2. The same is the

situation with graph H5,9. Hence:

R(H5,2n+1) = C(H5,2n+1)− 0.5, when n = 3, 4.

B) For graph H5,11, deleting link (2, n+2) changes distance d(2, n+2) from 1 to 3. Deleting

a link, connecting nodes with closer numbers, like (1, 2) or (1, 3), changes the distance from 1 to 2.

The same change in the distance (from 1 to 2) causes deleting link (1, n + 1). Hence :

R(H5,11) = C(H5,11)− 2(2−1 − 2−3) = C(H5,11)− 0.75.

C) For graph H5,13, deleting link (1, 2n) changes distance d(1, 2n) from 1 to 2 and distances

d(1, 2n − 2) and d(3, 2n) from 2 to 3:

R(H5,13) = C(H5,13)− 2(2−1 − 2−2)− 2.2(2−2 − 2−3) = C(H5,13)− 1.

D) For graph H5,2n+1, n > 6, deleting link (n, n+ 2) changes distance d(n, n+ 2) from 1 to

2: d′(n, n + 2) = d(n, n + 1) + d(n + 1, n + 2). Distance d(2, n) = d(2, n + 2) + d(n + 2, n) is

changed from 2 to 3: d′(2, n) = d(2, n+2)+ d(n+2, n+1)+ d(n+1, n). The same is for distance

d(n + 2, 2n). Distance d(n − 2, n + 2) = d(n − 2, n) + d(n, n + 2) is also changed from 2 to 3:

d′(n− 2, n+2) = d(n− 2, n)+ d(n, n+1)+ d(n+1, n+2). The same is for distance d(n, n+4).
No other distance is changed when n = 7, 8, 9, 10 and:

∆2 = 2(2−1 − 2−2) + 4.2(2−2 − 2−3) = 1.5,

R(H5,2n+1) = C(H5,2n+1)− 1.5, when n = 7, 8, 9, 10.

E) In general, when n = 2k + 1, k ∈ {4p− 1, 4p, 4p + 1, 4p + 2}, deleting link (n, n+ 2) of

graph H5,2n+1, in addition to the previous changed distances, 3p − 2 distances are changed from p to

p+ 1. The change in closeness ∆p = C(H5,2n+1)−R(H5,2n+1) is:

∆p = ∆p−1 + (3p − 2).2(2−p − 2−p−1) = ∆p−1 + (3p − 2)2−p. (4)

We can prove now:
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Theorem 8.1. The residual closeness of Harary graph H5,2n+1 is:

R(H5,2n+1) = C(H5,2n+1)− 4 + (3p + 4)2−p,

where p = ⌊n+1
4 ⌋ and p > 1.

Proof:

Formula (4) is the same as formula (2) from Theorem 6. Using formula (3) from Theorem 6, we

determine linear component L:

1.5 = ∆2 = L+ 2− 10 · 2−2 = L− 0.5,

or L = 2. Then the difference ∆p becomes:

∆p = 4− (3p + 4)2−p,

which proves the theorem. ⊓⊔

9. Residual closeness of H2m+1,2n+1

We will consider the cases m > 2 similar to H5,2n+1. The differences in closenesses of Harary graphs

H2m+1,2n+1 for the smaller numbers n are: ∆ = 0.5, when m + 1 ≤ n ≤ 2m; ∆ = 0.75, when

2m+ 1 ≤ n < 3m; and ∆ = 1, when n = 3m.

When n = 3m+1, deleting link (n, n+m) of graph H2m+1,6m+3, changes distance d(n, n+m)
from 1 to 2 and 4 more distances (d(m,n), d(n+m, 2n), d(n−m,n+m), and d(n, n+2m)) from

2 to 3. The difference in closenesses ∆2 is:

∆2 = 2(2−1 − 2−2) + 4 · 2(2−2 − 2−3) = 0.5 + 1 = 1.5,

C(H2m+1,6m+3)−R(H2m+1,6m+3) = ∆2 = 1.5.

In general, when n ∈ {m(2p− 1)+1,m(2p− 1)+2, ...,m(2p+1)}, deleting link (n, n+m) of

graph H2m+1,2n+1, in addition to the previous changed distances, new 3p − 2 distances are changed

from p to p+ 1. The difference in closenesses ∆p is:

∆p = ∆p−1 + (3p− 2)2(2−p − 2−p−1) = ∆p−1 + (3p − 2)2−p. (5)

We can prove now:

Theorem 9.1. The residual closeness of Harary graph H2m+1,2n+1 is:

R(H2m+1,2n+1) = C(H2m+1,2n+1)− 4 + (3p + 4)2−p,

where p = ⌊n+m−1
2m ⌋ and p > 1.
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Proof:

Formula (5) is the same as formulae (2) and (4). Similarly to the proof of Theorem 6 we have:

∆p = L+ 2− (3p + 4)2−p,

where L is a linear component, corresponding to the first terms of the sum of ∆p. Using ∆2 = 1.5,

we determine L:

1.5 = ∆2 = L+ 2− 10 · 2−2 = L− 0.5,

or L = 2. Then the difference ∆p becomes:

∆p = 4− (3p + 4)2−p,

which proves the theorem. ⊓⊔

10. Conclusion

The link residual closeness is one of the most sensitive indicators for robustness of networks. In this

article we consider Harary graphs Hk,n. The residual closeness of H2,n (cycle graph) is supplied by

path graph Pn (both with known closenesses). When k > 2 we have calculated the difference between

the closeness and the link residual closeness of Harary graphs Hk,n.

11. Appendix A. Proof of Formula 1.

Proof:

We start with:

Y = X +X2 +X3 + ...+Xk.

Y (1−X) = X −Xk+1,

or:

X +X2 +X3 + ...+Xk =
X −Xk+1

(1−X)
.

Differentiating both sides of equation, we receive:

1 + 2 ·X1 + 3 ·X2 + ...+ kXk−1 =
1− (k + 1)Xk

(1−X)
+

X −Xk+1

(1−X)2
.

Replacing X with 1
2 we receive:

1 + 2 · 2−1 + 3 · 2−2 + ...+ k21−k =
1− (k + 1)2−k

2−1
+

2−1 − 2−k−1

2−2
.

1 + 2 · 2−1 + 3 · 2−2 + ...+ k21−k = 4− 21−k − (k + 1)21−k .

3 · 2−2 + ...+ k21−k = 2− (k + 2)21−k ,

which is exactly Formula (1). ⊓⊔
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