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Abstract. Foucaud et al. recently introduced and initiated the study of a new graph-theoretic
concept in the area of network monitoring. Given a graph G = (V (G), E(G)), a set M ⊆ V (G)
is a distance-edge-monitoring set if for every edge e ∈ E(G), there is a vertex x ∈ M and a
vertex y ∈ V (G) such that the edge e belongs to all shortest paths between x and y. The smallest
size of such a set in G is denoted by dem(G). Denoted by G − e (resp. G\u) the subgraph of
G obtained by removing the edge e from G (resp. a vertex u together with all its incident edges
from G). In this paper, we first show that dem(G− e)− dem(G) ≤ 2 for any graph G and edge
e ∈ E(G). Moreover, the bound is sharp. Next, we construct two graphs G and H to show that
dem(G)−dem(G\u) and dem(H \v)−dem(H) can be arbitrarily large, where u ∈ V (G) and
v ∈ V (H). We also study the relation between dem(H) and dem(G), where H is a subgraph
of G. In the end, we give an algorithm to judge whether the distance-edge-monitoring set still
remain in the resulting graph when any edge of a graph G is deleted.
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†Corresponding author: Université de Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR 5800, Talence, France.

Received May 2023; accepted December 2023.

ar
X

iv
:2

30
1.

02
50

7v
4 

 [
cs

.D
M

] 
 1

0 
M

ay
 2

02
4



142 Ch. Yang et al. / Perturbation Results for Distance-edge-monitoring Numbers

1. Introduction

In 2022, Foucaud et al. [10] introduced a new graph-theoretic concept called distance-edge-monitoring
set (DEM for short), which means network monitoring using distance probes. Networks are naturally
modeled by finite undirected simple connected graphs, whose vertices represent computers and whose
edges represent connections between them. When a connection (an edge) fails in the network, we
can detect this failure, and thus achieve the purpose of monitoring the network. Probes are made up
of vertices we choose in the network. At any given moment, a probe of the network can measure its
graph distance to any other vertex of the network. Whenever an edge of the network fails, one of
the measured distances changes, so the probes are able to detect the failure of any edge. Probes that
measure distances in graphs are present in real-life networks. They are useful in the fundamental task
of routing [7, 11] and are also frequently used for problems concerning network verification [1, 3, 4].

In a network, we can put as few detectors as possible to monitor all the edges, a natural question
is whether the detectors placed in the original graph are still sufficient and need to be supplemented
or reduced when some nodes or edges in the original graph are subjected to external interference and
damage, we refer to [8, 9, 14, 15, 18]. This kind of problem is usually called perturbation problem.

Graphs considered are finite, undirected and simple. Let G = (V (G), E(G)) be a graph with
vertex set V (G) and edge set E(G), whose cardinality are denoted by |V (G)| and e(G), respec-
tively. The neighborhood set of a vertex v ∈ V (G) is NG(v) = {u ∈ V (G) |uv ∈ E(G)}. Let
NG[v] = NG(v) ∪ {v} be the closed neighborhood set of a vertex v. The degree of a vertex v in G is
denoted d(v) = |NG(v)|. Let δ(G) and ∆(G) be the minimum and maximum degree of a graph G,
respectively. For any subset X of V (G), let G[X] denote the subgraph of G induced by X; similarly,
for any subset F of E(G), let G[F ] denote the subgraph induced by F . We use G \X to denote the
subgraph of G obtained by removing all the vertices of X together with the edges incident with them
from G; similarly, we use G−F to denote the subgraph of G obtained by removing all the edges of F
from G. If X = {v} and F = {e}, we simply write G\v and G−e for G−{v} and G−{e}, respec-
tively. For an edge e of G, we denote by G+ e the graph obtained by adding an edge e ∈ E(G) to G.
The Cartesian product G□H of two graphs G and H is the graph whose vertex set is V (G)× V (H)
and whose edge set is the set of pairs (u, v)(u′, v′) such that either uu′ ∈ E(G) and v = v′, or
vv′ ∈ E(H) and u = u′. Let G∨H be a join graph of G and H with V (G∨H) = V (G)∪V (H) and
E(G∨H) = {uv |u ∈ V (G), v ∈ V (H)} ∪E(G)∪E(H). We denote by dG(x, y) the distance be-
tween two vertices x and y in graph G. For an edge uv and a vertex w ∈ V (G), the distance between
them is defined as dG (uv,w) = min{dG (u,w) , dG (v, w)}. A x-y path with length dG(x, y) in G is
a x-y geodesic. Let Pn, Cn and Kn be the path, cycle and complete graph of order n, respectively.

1.1. DEM sets and numbers

Foucaud et al. [10] introduced a new graph-theoretic concept called DEM sets, which is relevant to
network monitoring.

Definition 1.1. For a set M of vertices and an edge e of a graph G, let P (M, e) be the set of pairs
(x, y) with a vertex x of M and a vertex y of V (G) such that dG(x, y) ̸= dG−e(x, y). In other words,
e belongs to all shortest paths between x and y in G.



Ch. Yang et al. / Perturbation Results for Distance-edge-monitoring Numbers 143

Definition 1.2. For a vertex x, let EM(x) be the set of edges e such that there exists a vertex v in
G with (x, v) ∈ P ({x}, e), that is EM(x) = {e | e ∈ E(G) and ∃v ∈ V (G) such that dG(x, v) ̸=
dG−e(x, v)} or EM(x) = {e | e ∈ E(G)and P ({x}, e) ̸= ∅}. If e ∈ EM(x), we say that e is
monitored by x.

Finding a particular vertex set M and placing a detector on that set to monitor all edge sets in G
have practical applications in sensor and network systems.

Definition 1.3. A vertex set M of the graph G is distance-edge-monitoring set (DEM set for short) if
every edge e of G is monitored by some vertex of M , that is, the set P (M, e) is nonempty. Equiva-
lently, ∪x∈MEM(x) = E(G).

Theorem 1.4. [10] Let G be a connected graph with a vertex x of G and for any y ∈ N(x), then, we
have xy ∈ EM(x).

One may wonder to know the existence of such an edge detection set M . The answer is affirmative.
If we take M = V (G), then it follows from Theorem 1.4 that

E(G) ⊆ ∪x∈V (G) ∪y∈N(x) {xy} ⊆ ∪x∈V (G)EM(x).

Therefore, we consider the smallest cardinality of M and give the following parameter.

Definition 1.5. The distance-edge-monitoring number (DEM number for short) dem(G) of a graph
G is defined as the smallest size of a distance-edge-monitoring set of G, that is

dem(G) = min {|M || ∪x∈M EM(x) = E(G)} .

Furthermore, for any DEM set M of G, M is called a DEM basis if |M | = dem(G).

The vertices of M represent distance probes in a network modeled by G. The DEM sets are very
effective in network fault tolerance testing. For example, a DEM set can detect a failing edge, and it
can correctly locate the failing edge by distance from x to y, because the distance from x to y will
increases when the edge e fails.

Foucaud et al. [10] showed that 1 ≤ dem(G) ≤ n − 1 for any G with order n, and graphs with
dem(G) = 1, n− 1 was characterized in [10].

Theorem 1.6. [10] Let G be a connected graph with at least one edge. Then dem(G) = 1 if and only
if G is a tree.

Theorem 1.7. [10] dem(G) = n− 1 if and only if G is the complete graph of order n.

Theorem 1.8. [10] For a vertex x of a graph G, the set of edges EM(x) induces a forest.

In a graph G, the base graph Gb of a graph G is the graph obtained from G by iteratively removing
vertices of degree 1.
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Observation 1.1. [10] Let G be a graph and Gb be its base graph. Then we have dem(G) =
dem(Gb).

A vertex set M is called a vertex cover of G if M ∩ {u, v} ≠ ∅ for uv ∈ E(G). The minimum
cardinality of a vertex cover M in G is the vertex covering number of G, denoted by β(G).

Theorem 1.9. [10] In any graph G of order n, any vertex cover of G is a DEM set of G, and thus
dem(G) ≤ β(G).

Ji et al. [12] studied the Erdős-Gallai-type problems for distance-edge-monitoring numbers. Yang
et al. [16] obtained some upper and lower bounds of P (M, e), EM(x), dem(G), respectively, and
characterized the graphs with dem(G) = 3, and gave some properties of the graph G with dem(G) =
n− 2. Yang et al. [17] determined the exact value of distance-edge-monitoring numbers of grid-based
pyramids, M(t)-graphs and Sierpiński-type graphs.

1.2. Progress and our results

Perturbation problems in graph theory are as follows.

Problem 1. Let G be a graph, and let e ∈ E(G) and v ∈ V (G). Let f(G) be a graph parameter.
(1) The relation between f(G) and f(G− e);
(2) The relation between f(G) and f(G \ v).

Chartrand et al. [6] studied the perturbation problems on the metric dimension. Monson et al. [14]
studied the effects of vertex deletion and edge deletion on the clique partition number in 1996. In 2015,
Eroh et al. [9] considered the effect of vertex or edge deletion on the metric dimension of graphs. Wei
et al. [15] gave some results on the edge metric dimension of graphs. Delen et al. [8] study the effect
of vertex and edge deletion on the independence number of graphs.

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G), in which case we
write H ⊑ G. If V (H) = V (G), then H is a spanning subgraph of G. If H is a subgraph of a graph
G, where H ̸= G, then H is a proper subgraph of G. Therefore, if H is a proper subgraph of G, then
either V (H) ⊂ V (G) or E(H) ⊂ E(G).

We first consider the existence of graphs with given values of DEM numbers.

Problem 2. Let r, s, n be three integers with 1 ≤ r, s ≤ n− 1.
(1) Is there a connected graph G of order n such that dem(G) = r?
(2) Let G be a connected graph of order n. Is there a connected subgraph H in G such that

dem(H) = s and dem(G) = r?

In Section 2, we give the answers to Problem 2.

Proposition 1.10. For any two integers r, n with 1 ≤ r ≤ n− 1, there exists a connected graph G of
order n such that dem(G) = r.
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Corollary 1.11. Given three integers s, t, n with 1 ≤ s ≤ t ≤ n − 1, there exists a connected graph
H ⊑ G such that dem(H) = s and dem(G) = t.

In Section 3, we focus on Problem 1 (1) and study the difference between dem(G − e) and
dem(G).

Theorem 1.12. Let G be a graph. For any edge e ∈ E(G), we have

dem(G− e)− dem(G) ≤ 2.

Moreover, this bound is sharp.

Let G be a graph and E ⊆ E(G). Denote by G + E the graph with V (G + E) = V (G) and
E(G+ E) = E(G) ∪ E. We construct graphs with the following properties in Section 3.

Theorem 1.13. For any positive integer k ≥ 2, there exists a graph sequence {Gi | 0 ≤ i ≤ k}, with
e(Gi) − e(G0) = i and V (Gi) = V (Gj) for 0 ≤ i, j ≤ k, such that dem(Gi+1) − dem(G0) = i,
where 1 ≤ i ≤ k − 1. Furthermore, we have dem(G0) = 1, dem(G1) = 2 and dem(Gi) = i, where
2 ≤ i ≤ k.

A feedback edge set of a graph G is a set of edges such that removing them from G leaves a
forest. The smallest size of a feedback edge set of G is denoted by fes(G) (it is sometimes called the
cyclomatic number of G).

Theorem 1.14. [10] If fes(G) ≤ 2, then dem(G) ≤ fes(G) + 1. Moreover, if fes(G) ≤ 1, then
equality holds.

Theorem 1.14 implies the following corollary, and its proof will be given in Section 3.

Corollary 1.15. Let Tn be a tree of order n, where n ≥ 6. For edges e1, e2 ∈ E(Tn), we have
(1) dem(Tn + e1) = dem(Tn) + 1.
(2) dem(Tn + {e1, e2}) = 2 or 3.

The following result shows that there exists a graph G and an induced subgraph H such that the
difference dem(G)− dem(H) can be arbitrarily large; see Section 4 for proof details. In addition, we
also give an answer to the Problem 1 (2).

Theorem 1.16. For any positive integer k, there exist two graphs G1, G2 and their non-spanning
subgraphs H1, H2 such that

dem(G1)− dem(H1) = k and dem(H2)− dem(G2) = k.

Furthermore, dem(G)− dem(H) can be arbitrarily large, even for H = G \ v.

Theorem 1.17. For any positive integer k, there exist two graphs G,H and two vertices u ∈ V (G),
v ∈ V (H) such that

(1) dem(G)− dem(G \ u) ≥ k;
(2) dem(H \ v)− dem(H) ≥ k.
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For a connected graph G of order n, where n is fixed, the difference between dem(G) and dem(G\
v) can be bounded.

Proposition 1.18. For a connected graph G with order n (n≥ 2) and v ∈V (G), if G \ v contains at
least one edge, then dem(G) − dem(G \ v)≤ n − 2. Moreover, the equality holds if and only if G
is K3.

Theorem 1.19. Let G be a connected graph with order n ≥ 4 and dem(G) = 2. Let E ⊆ E(G). If
dem(G) = dem(G− E), then |E| ≤ 2n− 6. Furthermore, the bound is sharp.

For H ⊑ G, the DEM set of H in G is a set M ⊆ V (H) such that E(H) ⊆
⋃

x∈M
EM(x).

Definition 1.20. For H ⊑ G, the restrict-DEM number dem(G|H) of a graph G is defined as the
smallest size of a DEM set of H in G, that is,

dem(G|H) = min
{
|M |

∣∣∣E(H) ⊆ ∪x∈MEM(x),M ⊆ V (H)
}
.

Figure 1. The blue edges are those of trees T1 and T2 in K4.

Example 1.21. Let G = K4 with V (G) = {v0, v1, v2, v3} and E(G) = {vivj | 0 ≤ i < j ≤ 3}. Let
T1 and T2 be the subgraphs of G with E(T1) = {v0v1, v0v2, v0v3} and E(T2) = {v0v3, v3v1, v1v2}.
Then, dem(K4|T1) = 1 and dem(K4|T2) = 2. The DEM set of subgraph Ti (i = 1, 2) in K4 is shown
in Figure 1, where the blue vertices form the set M . The reason as follows.
Let M1 = {v0}. Since v0v1, v0v2, v0v3 ∈ EM(v0), it follows that dem(K4|T1) ≤ 1. Obviously,
dem(K4|T1) ≥ 1, and hence dem(K4|T1) = 1. Then, we prove that dem(K4|T2) = 2. Since
dG(v0, v1) = dG−v1v2(v0, v1) = 1 and dG(v0, v2) = dG−v1v2(v0, v2) = 1, it follows that v1v2 /∈
EM(v0). Similarly, v1v3 /∈ EM(v0). Therefore, v1v2, v1v3 /∈ EM(v0). By a similar argument, we
have v0v3 /∈ EM(v1), v1v3, v0v3 /∈ EM(v2) and v1v2 /∈ EM(v3), and hence dem(K4|T2) ≥ 2. Let
M = {v1, v3}. Then, v1v2, v1v3 ∈ EM(v1), v1v3, v0v3 ∈ EM(v3), and hence dem(K4|T1) ≤ 2.
Therefore, we have dem(K4|T2) = 2, and so dem(K4|Ti) = i (i = 1, 2).

Theorem 1.22. Let T be a spanning tree of Kn. Then 1 ≤ dem(Kn|T ) ≤ ⌊n/2⌋. Furthermore, the
bound is sharp.

In Section 5, we focus on the following problem and give an algorithm to judge whether the DEM
set is still valid in the resulting graph when any edge (or vertex) of a graph G is deleted.
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Problem 3. For any graph G, if some edges or vertices in G is deleted, we want to know whether the
original DEM set can monitor all edges.

2. Results for Problem 2

A kite K(r, n) is a graph obtained from the complete graph Kr+1 and a path Pn−r by attaching a
vertex of Kr+1 and one end-vertex of Pn−r; see an example of K(7, 12) in Figure 2.

Figure 2. The graph K(7, 12)

We first give the proof of Proposition 1.10.

Proof of Proposition 1.10: Let G = K(r, n) with V (G) = {ui | 0 ≤ i ≤ n − 1} and E(G) =
{uiuj | 0 ≤ i < j ≤ r} ∪{ur+sur+s+1 | 0 ≤ s ≤ n − r − 2}. From Observation 1.1 and Theorem
1.7, we have dem(G) = dem(Gb) = dem(Kr+1) = r. In fact, for the above G, the path Pn−r−1 can
be replaced by Tn−r−1, where Tn−r−1 is any tree of order n− r − 1. ⊓⊔

Proposition 1.10 shows that Corollary 1.11 is true. For three integers s, t, n with 1 ≤ s ≤ t ≤ n−
1, let G = K(t, n) and H = K(s, n) ⊑ G. From Proposition 1.10, dem(G) = t and dem(H) = s.
Therefore, there exists a connected graph H ⊑ G such that dem(H) = s and dem(G) = t.

This gives an answer about Problem 2, see Corollary 1.11. One might guess that if H is a subgraph
of G, then dem(H) ≤ dem(G), however we will show in the next section that there is no monotonicity
for the DEM number.

3. The effect of deleted edge

The following observation is immediate.

Observation 3.1. Let G1, G2, ..., Gm be the connected components of G. Then

dem(G) = dem (G1) + · · ·+ dem (Gm) .

Furthermore, we suppose that the DEM number of K1 is 0.
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Proposition 3.1. For any uv ∈ E(G), uv /∈ EM(w) for w ∈ (NG(u) ∪NG(v)) \ {u, v} if and only
if uv is only monitored by u and v.

Proof:
Since w ∈ (NG(u) ∪NG(v)) \ {u, v} and uv /∈ EM(w), it follows that dG(w, u) = dG−uv(w, u)
and dG(w, v) = dG−uv(w, v). For any x ∈ V (G) − NG[u] ∪ NG[v], the path from x to u must
through w1, where w1 ∈ (NG(u) ∪NG(v)) \ {u, v}. Then dG(x, u) = dG(x,w1) + dG(w1, u) =
dG(x,w1) + dG−uv(w1, u) = dG−uv(x,w1) + dG−uv(w1, u) = dG−uv(x, u). Similarly, dG(x, v) =
dG−uv(x, v). For any x ∈ V (G)− {u, v}, we have uv /∈ EM(x). From Theorem 1.4, uv ∈ EM(u)
and uv ∈ EM(v), and hence uv is only monitored by the vertex in {u, v}.

Conversely, if uv is only monitored by u and v, then uv /∈ EM(w) for any w ∈ V (G) \ {u, v},
Especially, since (NG(u) ∪NG(v)) \ {u, v} ⊆ V (G) \ {u, v}, it follows that uv /∈ EM(w) for
w ∈ (NG(u) ∪NG(v)) \ {u, v}, as desired. ⊓⊔

Then, we give the proof of Theorem 1.12.

Proof of Theorem 1.12: If G is a disconnected graph, then the edge e must be in some connected
component G1 of G for any e ∈ E(G), and hence e can only be monitored by the vertex in V (G1).
Therefore, we just need consider the graph G which is connected. Let M be a DEM set of G with
|M | = dem(G) and e = uv ∈ E(G). If M is also a DEM set of G− e, then dem(G− e) ≤ dem(G).
Otherwise, let M ′ = M ∪ {u, v}. It suffices to show that M ′ is a DEM set of G− e.

If G− e has two components, say G1 and G2, then e is a cut edge of G and from Observation 3.1,
we have dem(G− e) = dem (G1) + dem (G2). Without loss of generality, assume that u ∈ V (G1)
and v ∈ V (G2).

Fact 3.2. dem (G1) ≤ |(M ∩ V (G1)) ∪ {u}| and dem (G2) ≤ |(M ∩ V (G2)) ∪ {v}|.

Proof:
For any edge e1 = x1y1 ∈ E (G1), if there exists a vertex w ∈ V (G1) ∩M such that e1 ∈ EM(w),
then we are done. Otherwise, there exists a vertex w ∈ V (G2) ∩ M such that dG−e1 (x1, w) ̸=
dG (x1, w) or dG−e1 (y1, w) ̸= dG (y1, w). Without loss of generality, we suppose that dG−e1 (y1, w) ̸=
dG (y1, w) and dG (w, e1) = dG (w, x1). Since dG (y1, w) = dG (y1, x1) + dG (x1, u) + dG(u,w),
dG−{e,e1} (x1, u) = dG−e1 (x1, u) and dG−{e,e1} (y1, x1) > dG−e (y1, x1), it follows that

dG−{e,e1} (u, y1) =dG−{e,e1} (u, x1) + dG−{e,e1} (x1, y1)

=dG−{e,e1} (u, x1) + dG−e (x1, y1)

>dG−e (u, x1) + dG−e (x1, y1)

=dG−e (u, y1)

and hence dG−{e,e1} (y1, u) ̸= dG−e1 (y1, u). Therefore, e1 is monitored by (M ∩ V (G1)) ∪ {u} in
graph G − e. This implies that dem (G1) ≤ |(M ∩ V (G1)) ∪ {u}|. Similarly, we can obtain that
dem (G2) ≤ |(M ∩ V (G2)) ∪ {v}|. ⊓⊔

From Fact 3.2, we have dem(G− e) ≤ |M ′| = |M ∪ {u, v}| ≤ |M |+ 2 = dem(G) + 2.
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Suppose that G − e is connected. If M is also a DEM set of G − e, then dem(G − e) ≤ |M | =
dem(G) and we are done. Otherwise, there exists e1 = xy ∈ E(G − e) such that the edge e1 is not
monitored by M in G−e. Since M is a distance- edge-monitoring set of G, it follows that there exists a
vertex z ∈M such that dG−e1(x, z) ̸= dG(x, z) or dG−e1(y, z) ̸= dG(y, z). In addition, since e1 is not
monitored by M in G−e, it follows that the distance from z to x or y is not changed after removing the
edge e1 in G−e, which means that dG−{e,e1} (y, z) = dG−e (y, z) and dG−{e,e1} (x, z) = dG−e (x, z).
If dG (e1, z) = dG(x, z), then the edge e lies on every z−y geodesic in G for z ∈M and xy ∈ EM(z)
in G, otherwise there exists z∗ ∈M and xy ∈ EM(z∗) such that e does not appear in z∗−y geodesic
in G, that is dG−e (x, z

∗) = dG (x, z∗) and dG−{e,e1} (x, z
∗) ̸= dG (x, z∗), which contradicts to the

fact that M is not the DEM set of graph G− e.

Claim 3.3. If a geodesic in G from z to y traverses the edge e in the order u, v, then each geodesic in
G from z to y traverses e in the order u, v.

Proof:
Assume, to the contrary, that there exists two z − y geodesics P g

1 and P g
2 , where P g

1 = z . . . uv . . . y
and P g

2 = z . . . vu . . . y. The z−y geodesic P g
1 implies that d(u, v)+d(v, y) = d(u, y), and the z−y

geodesic P g
2 implies that d(v, u) + d(u, y) = d(v, y), and hence d(u, v) = 0, a contradiction. ⊓⊔

From Claim 3.3, without loss of generality, we may assume that every geodesic in G from z to
y traverses the edge e in the order u, v. Thus, we have dG(z, y) = dG(z, v) + dG(v, y). We now
show that xy can be monitored by v in G − e. Note that dG−e1(z, y) ̸= dG(z, y), dG−e(v, y) =
dG(v, y) and dG−e(x, y) = dG(x, y). Then dG−{e,e1} (v, y) = dG−{e,e1} (v, x)+ dG−{e,e1} (x, y)
= dG−e1 (v, x)+ dG−e1 (x, y) > dG (v, x)+ dG (x, y) = dG−e (v, x)+ dG−e (x, y) ≥ dG−e(v, y).
Since dG−e(v, y) > dG−{e,e1}(v, y), it follows that e1 can be monitored by v. Since e1 ∈ EM(u) or
e1 ∈ EM(v), it follows that M ′ = M ∪ {u, v} is a distance edge-monitoring-set of G − e, and thus
dem(G− e) ≤ dem(G) + 2, as desired. ⊓⊔

Li et al. [13] got the following result about DEM numbers of Ck□Pℓ.

Theorem 3.4. [13] Let ℓ and k be two integers with ℓ ≥ 3 and k ≥ 2. Then

dem (Ck□Pℓ) =

{
k if k ≥ 2ℓ+ 1,

2ℓ if k < 2ℓ+ 1.

To show the sharpness of Theorem 1.12, we consider the following proposition.

Proposition 3.5. There exist two connected graphs G1, G2 of order n such that dem(G1 − e) −
dem(G1) = 2 and dem(G2)− dem(G2 − e) = 2.

Proof:
Firstly, we consider the graph G1 (|V (G1)| = n ≥ 8) with vertex set V (G1) = {vi|1 ≤ i ≤ n− 8} ∪
{ui|1 ≤ i ≤ 8} and edge set E(G1) = {uivi | 1 ≤ i ≤ 8} ∪ {uiui+1 | 1 ≤ i ≤ 7} ∪ {vivi+1 | 1 ≤
i ≤ 7} ∪ {u1u8} ∪ {u1u5} ∪ {v1v8} ∪ {v1v9} ∪ {vivi+1 | 9 ≤ i ≤ n − 9}. Let G∗

8 = Gb(G1).
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Figure 3. dem(G∗
8) = 6 Figure 4. dem(G∗

8 − u1u5) = 8

Obviously, G∗
8 is the base graph of G1, which is obtained by removing the all edge in the edge set

{v1v9} ∪ {vivi+1 | 9 ≤ i ≤ n − 9}. The graphs G∗
8 and G∗

8 − u1u5 are shown in Figures 3 and 4,
respectively.

Let M1 = {u2, u4, v3, v6, u7, v8}. Note that {u1u5, u5v5, u2v2, u2u1, u2u3} ⊆ EM(u2), {v1u1,
u4u3, u4u5, u4v4} ⊆ EM(u4), {v3u3, v2v3, v4v3, v5v4, v2v1} ⊆ EM(v3), {v8v1, u8v8, v8v7} ⊆
EM(v8), {u7u8, u8u1, u6u7, u6u5, u7v7} ⊆ EM(u7) and {v5v6, v6v7, u6v6} ∈ EM(v6). There-
fore, E(G∗

8) = ∪x∈M1EM(x), and hence dem(G∗
8) ≤ |M1| = 6.

Let M be a DEM set of G∗
8 with the minimum cardinality. For the edge uivi, where 2 ≤ i ≤ 8

and i ̸= 5, and any w ∈ (N(ui) ∪ N(vi)) \ {ui, vi}, we have dG−uivi(w, ui) = dG(w, ui) and
dG−uivi(w, vi) = dG(w, vi), and hence uivi /∈ EM(w). From Proposition 3.1, the edge uivi (2 ≤
i ≤ 8 and i ̸= 5) is only monitored by {ui, vi}, and hence M ∩ {ui, vi} ≠ ∅ for 2 ≤ i ≤ 8 and i ̸= 5,
and so dem(G∗

8) ≥ 6. Therefore, dem(G∗
8) = 6.

Since G∗
8−u1u5 ∼= C8□P2, it follows from Theorem 3.4 that dem(G∗

8−u1u5) = dem(C8□P2) =
8. From Observation 1.1, dem(G1−u1u5)−dem(G1) = dem(G∗

8−u1u5)−dem(G∗
8) = 8−6 = 2,

as desired.

Figure 5. dem(G′
6) = 4 Figure 6. dem(G′

6 − v3v4) = 2
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Next, we consider the graph G2 (|V (G2)| = n ≥ 6) with vertex set V (G2) = {vi | 1 ≤ i ≤ n} and
edge set E(G2) = {v1v2, v3v4, v5v6, v1v3, v1v5, v2v4, v2v6, v3v5, v4v6} ∪ {vivi+1 | 6 ≤ i ≤ n− 1}.
Let G′

6 be the base graph of G2, that is, Gb(G2) = G′
6. The graphs G′

6 and G′
6 − v1v3, are shown in

Figure 5 and Figure 6, respectively. From Observation 1.1, dem(G2) = dem(G′
6).

Take M ′
1 = {v2, v3, v4, v5}. Note that {v1v2, v6v2, v4v2} ⊆ EM(v2), {v1v3, v5v3, v4v3} ⊆

EM(v3), {v6v4} ⊆ EM(v4), {v5v1, v6v5} ⊆ EM(v5), and hence E(G′
6) = ∪x∈M ′

1
EM(x), it

follows that M ′
1 is a DEM set of G′

6, and hence dem(G′
6) ≤ |M ′

1| = 4. Let M ′ be a DEM set of G′
6

with the minimum cardinality. For the edge v2i−1v2i (1 ≤ i ≤ 3) and w ∈ (N(v2i−1) ∪N(v2i)) \
{v2i−1v2i}, we have dG−v2i−1v2i(w, v2i−1) = dG(w, v2i−1) and dG−v2i−1v2i(w, v2i) = dG(w, v2i),
and so v2i−1v2i /∈ EM(w). From Proposition 3.1, the edge v2i−1v2i (1 ≤ i ≤ 3) is monitored by
the vertex in {v2i−1, v2i}, and hence M ′ ∩ {v2i−1, v2i} ̸= ∅ (1 ≤ i ≤ 3). All sets M ′ ∈ V (G′

6) with
|M ′| = 3 are shown in Table 1. Therefore, all sets M ′ with |M ′| = 3 are not DEM sets of G′

6, and
hence dem(G′

6) ≥ 4. Therefore, we have dem(G′
6) = 4.

Table 1. The edges are not monitored by M ′(|M ′| = 3).

M ′ E(G′
6)− ∪x∈M ′EM(x)

v1, v3, v6 v2v4

v1, v4, v5 v2v6

v1, v4, v6 v3v5

v2, v3, v5 v4v6

v2, v3, v6 v1v5

v2, v4, v5 v1v3

v1, v3, v5 v2v6, v2v4, v4v6

v2, v4, v6 v1v3, v1v5, v3v5

For the graph G′
6 − v3v4, let M3 = {v2, v5}. Note that {v1v2, v6v2, v4v2, v1v3} ⊆ EM(v2)

and {v5v1, v6v5, v3v5, v6v4} ⊆ EM(v5). Since E(G′
6 − v3v4) = ∪x∈M3EM(x), it follows that M3

is a DEM set of G′
6, and hence dem(G′

6 − v3v4) ≤ 2. Since G′
6 − v3v4 is not a tree, it follows

from Theorem 1.6 that dem(G′
6 − v3v4) ≥ 2, and so dem(G′

6 − v3v4) = 2. From Observation 1.1,
dem(G2)− dem(G2 − v3v4) = dem(G′

6)− dem(G′
6 − v3v4) = 4− 2 = 2, as desired. ⊓⊔

The friendship graph, Fr(n), can be constructed by joining n copies of the complete graph K3

with a common vertex, which is called the universal vertex of Fr(n). Next, we give the proof of
Theorem 1.13.

Proof of Theorem 1.13: Let k, i be integers with 1 ≤ i ≤ k. The graph Gi is obtained by iteratively
adding an edge uivi to the graph Gi−1. Without loss of generality, let G0 be the graph with V (G0) =
{c} ∪ {uj | 1 ≤ j ≤ k} ∪ {vj | 1 ≤ j ≤ k} and E(G0) = {cuj , cvj | 1 ≤ j ≤ k}, and Gi be the graph
with V (Gi) = V (Gi−1) and E(Gi) = E(Gi−1) ∪ {uivi}, where 1 ≤ i ≤ k. Since G0 is a tree, it
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follows from Theorem 1.6 that dem(G0) = 1. Note that the base graph of G1 is a complete graph K3.
From Observation 1.1 and Theorem 1.7, we have dem(G1) = dem(K3) = 2.

Let G = Gi, where 2 ≤ i ≤ k. Then Gb = Fr(i). Let M = {ut | 1 ≤ t ≤ i}. From Theorem 1.4,
we have {utvt, cut | 1 ≤ t ≤ i} ⊆ ∪x∈MEM(x). Since 2 = dG(u1, vt) ̸= dG−cvt(u1, vt) = 3 for
2 ≤ t ≤ i, it follows that cvt ∈ EM(u1) for 2 ≤ t ≤ i. Suppose that t = 1. Since 2 = dG(u2, v1) ̸=
dG−cv1(u2, v1) = 3, it follows that cv1 ∈ EM(u2), and hence E(G) ⊆ ∪x∈MEM(x), and so
dem(G) ≤ i. Let M be a DEM set of G with the minimum cardinality. Note that (N(uj) ∪N(vj)) \
{uj , vj} = {c}. Since dG(c, uj) = dG−ujvj (c, uj) and dG(c, vj) = dG−ujvj (c, vj) it follows that
ujvj /∈ EM(c), where 1 ≤ j ≤ k. From Proposition 3.1, the edge ujvj is only monitored by uj or
vj , and hence M ∩ {uj , vj} ≠ ∅ for 1 ≤ j ≤ k, Therefore, dem(G) ≥ i, and so dem(G) = i. Thus,
there exists a graph sequence {Gi | 0 ≤ i ≤ k}, with e(Gi) − e(G0) = i and V (Gi) = V (Gj) for
0 ≤ i, j ≤ k, such that dem(Gi+1)− dem(G0) = i, where 1 ≤ i ≤ k − 1. ⊓⊔

Foucaud et al. [10] obtained the following result.

Theorem 3.6. [10] Let ℓ1 and ℓ2 be two integers with ℓ ≥ 2 and ℓ2 ≥ 2. Then

dem (Pℓ1□Pℓ2) = max{ℓ1, ℓ2}

In the end of this section, we give the proof of Corollary 1.15.
Proof of Corollary 1.15: For any tree Tn, Tn + e1 is an unicyclic graph and Tn + {e1, e2} is a
tricyclic graph. From Theorems 1.6 and 1.14, we have dem(Tn + e1) = dem(Tn) + 1 = 2 and
dem(Tn + {e1, e2}) = 2 or 3. ⊓⊔

4. The effect of deleted vertex

A kipas K̂n with n ≥ 3 is the graph on n + 1 vertices obtained from the join of K1 and Pn, where
V (K̂n) = {v0, v1, . . . , vn} and E(K̂n) = {v0vi | 1 ≤ i ≤ n} ∪ {vivi+1 | 1 ≤ i ≤ n− 1}.

Proposition 4.1. For n ≥ 7, we have dem(K̂n) = ⌊n/2⌋.

Proof:
Let Pn be the subgraph of K̂n with vertex set {vi | 1 ≤ i ≤ n} and edge set {vivi+1 | 1 ≤ i ≤ n− 1}.
First, we prove that dem(K̂n) ≥ ⌊n/2⌋. Let M be a DEM set of K̂n with the minimum cardinality.
For any vertices vi, vj ∈ V (K̂n), we have

d
K̂n

(vi, vj) =

{
1, if i = 0 or j = 0 or |i− j| = 1;

2, if 1 ≤ i, j ≤ n and |i− j| ≥ 2.

For any edge vivi+1 (2 ≤ i ≤ n− 2), we have (NG(vi) ∪NG(vi+1)) \ {vi, vi+1} = {vi−1, v0, vi+2}.
Since dG(vi, v0) = dG−vivi+1(vi, v0) = 1, dG(vi+1, v0) = dG−vivi+1(vi+1, v0) = 1, dG−vivi+1(vi,
vi−1) = dG(vi, vi−1) = 1, dG−vivi+1(vi+1, vi−1) = dG(vi+1, vi−1) = 2, dG−vivi+1(vi+1, vi+2)
= dG(vi+1, vi+2) = 1, and dG−vivi+1(vi, vi+2) = dG(vi, vi+2) = 2, it follows that vivi+1 /∈
EM(vi+2) ∪ EM(vi−1) ∪ EM(v0). From Proposition 3.1, the edge vivi+1 can only be monitored
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by the vertex in {vi, vi+1}. Similarly, the edge vivi+1 is only monitored by the vertex in {vi, vi+1},
where i = 1, n − 1. Therefore, M ∩ {vi, vi+1} ≠ ∅ for 1 ≤ i ≤ n − 1, that is, M is a vertex cover
set of Pn. Note that the vertex covering number of G is β(G). Since β(Pn) = ⌊n/2⌋, it follows that
dem(K̂n) ≥ ⌊n/2⌋.

Next, we prove that dem(K̂n) ≤ ⌊n/2⌋. Let M = {vi | i ≡ 0 (mod 2), 1 ≤ i ≤ n}. For
any edge e ∈ E(Pn) ∪ {v0vi | i ≡ 0 (mod 2), 1 ≤ i ≤ n}, it follows from Theorem 1.4 that e is
monitored by the vertex in M . In addition, for any edge v0vi ∈ {v0vi | i ≡ 1 (mod 2), 1 ≤ i ≤ n},
since n ≥ 7, it follows that there exists j such that dG(vi, vj) = 2 and dG−v0vi(vi, vj) = 3, where
j = i+3 for 1 ≤ i ≤ n− 4 and j = 2 for n− 3 ≤ i ≤ n, and hence v0vi ∈ EM(vj). Since any edge
v0vi ∈ E(K̂n) can be monitored by the vertex in M , it follows that dem(K̂n) ≤ ⌊n/2⌋, and hence
dem(K̂n) = ⌊n/2⌋. ⊓⊔

Proof of Theorem 1.16 Note that K̂2k+2 = K1 ∨ P2k+2, where V (K1) = {v0}. From Theorem
1.6, we have dem(P2k+2) = 1. From Lemma 4.1, we have dem(K̂2k+2) = k + 1, and hence
dem(K̂2k+2) − dem(K̂2k+2 − v0) = dem(K̂2k+2) − dem(P2k+2) = k. Let G1 = K̂2k+2 and
H1 = P2k+2. Then dem(G1) − dem(H1) = dem(K̂2k+2) − dem(P2k+2) = k, where H1 is not a
spanning subgraph of G1.

Let G2k+3 be a graph with vertex set V (G2k+3) = {ui | 1 ≤ i ≤ k + 1} ∪ {vi | 0 ≤ i ≤ k + 1}
and edge set E(G2k+3) = {v0ui | 1 ≤ i ≤ k + 1} ∪ {uivi | 1 ≤ i ≤ k + 1}. Obviously, we have
G2k+3 \ v0 ∼= (k + 1)K2. From Observation 3.1 and Theorem 1.7, we have dem(G2k+3 − v0) =
dem((k + 1)K2) = (k + 1) dem(K2) = k + 1. Since G2k+3 is a tree, it follows from Theorem
1.6 that dem(G2k+3) = 1, and hence dem(G2k+1 \ v0) − dem(G2k+1) = k. Let G2 = G2k+1 and
H2 = (k+ 1)K2. Then dem(H2)− dem(G2) = dem((k+ 1)K2)− dem(G2k+1) = k, where H2 is
not a spanning subgraph of G2, as desired. ⊓⊔

Note that G2k+3 \ v0 ∼= (k + 1)K2 is disconnected graph. For the connected graphs, we can also
show that there is a connected subgraph H such that dem(H)− dem(G) can be arbitrarily large; see
Theorem 4.5.

The conical graph C(ℓ, k) is a graph obtained by taking adjacency from a center vertex c to the
first layer of Cartesian product of Pℓ and Ck, where ℓ ≥ 1 and k ≥ 3.

Let the vertex set V (C(ℓ, k)) = {c}∪ {uji | 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ} and the edge set E(C(ℓ, k)) =
(∪ℓi=1E(Ci)) ∪ (∪ki=1E(Pi)), where E(Ci) = {uikui1} ∪ {uijuij+1 | 1 ≤ j ≤ k − 1} (1 ≤ i ≤ ℓ),
E(Pi) = {cu1i } ∪ {u

j
iu

j+1
i | 1 ≤ j ≤ ℓ − 1} (1 ≤ i ≤ k). The conical graph C(3, 8) is shown in

Figure 7.

For ℓ = 1, the graph C(1, k) is the wheel graph Wk, which is formed by connecting a single vertex
c to all the vertices of cycle Ck. It is clear that |V (C(ℓ, k))| = kℓ+ 1 and e(C(ℓ, k)) = 2kℓ.

Lemma 4.2. Let n ≥ 3 be an integer. For v ∈ V (Cn), we have

|EM(v) ∩ E(Cn)| =

{
n− 1 if n is odd,
n− 2 if n is even.
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Figure 7. The conical graph C(3, 8)

Proof:
Let G = Cn be cycle with V (G) = {vi | 1 ≤ i ≤ n} and E(G) = {vivi+1 | 1 ≤ i ≤ n− 1}∪{vnv1}.
Without loss of generality, let v = v1. Suppose that n is odd and e1 = v⌊n/2⌋+1v⌊n/2⌋+2. Since
dG(v1, v⌊n/2⌋+1) = dG−e1(v1, v⌊n/2⌋+1) and dG(v1, v⌊n/2⌋+2) = dG−e1(v1, v⌊n/2⌋+2), it follows that
e1 /∈ EM(v1). For any e ∈ {vivi+1 | 1 ≤ i ≤ ⌊n/2⌋}, since dG(v1, vi+1) ̸= dG−e(v1, vi+1), it
follows that e ∈ EM(v1). For any e ∈ {vivi+1 | ⌊n/2⌋ + 2 ≤ i ≤ n − 1}, since dG(v1, vi) ̸=
dG−e(v1, vi), it follows that e ∈ EM(v1). From Theorem 1.4, we have vnv1 ∈ EM(v1). There-
fore, EM(v1) = {v1v2, v2v3, . . ., v⌊n/2⌋v⌊n/2⌋+1, v1vn, vnvn−1, . . ., v⌊n/2⌋+3v⌊n/2⌋+2}, and hence
|EM(v) ∩ E(Cn)| = n− 1. Similarly, if n is even, then |EM(v) ∩ E(Cn)| = n− 2. ⊓⊔

Theorem 4.3. For k ≥ 9 and ℓ ≥ 2, we have

dem(C(ℓ, k)) =


∑ℓ

i=1 ⌈k/(4i− 2)⌉, if ℓ ≤ ak;∑ak
i=1 ⌈k/(4i− 2)⌉+ 2(ℓ− ak), if ℓ ≥ ak + 1,

where ak = ⌊k/4 + (1 + (−1)k+1)/8⌋.

Proof:
Let G = C(ℓ, k) with V (G) = {c} ∪ {uji | 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ} and E(G) = (∪ℓi=1E(Ci)) ∪
(∪ki=1E(Pi)), where E(Ci) = {uikui1} ∪ {uijuij+1 | 1 ≤ j ≤ k − 1}, E(Pi) = {cu1i } ∪ {u

j
iu

j+1
i | 1 ≤

j ≤ ℓ− 1}. Let M be a DEM set of G with M = dem(C(ℓ, k)).

Fact 4.4. For any vertex v ∈ V (Ci), we have

|EM(v) ∩ E(Ci)| =


4i− 2, if 1 ≤ i ≤ ak;

k − 2, if k is even and i ≥ ak + 1;

k − 1, if k is odd and i ≥ ak + 1.

and |EM(v) ∩ E(Cj)| = 0, where 1 ≤ j ̸= i ≤ ℓ. Furthermore, we have |EM(c) ∩ E(Ci)| = 0.
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Proof:
For any vertices uis, u

i
t ∈ V (Ci), where 1 ≤ s, t ≤ k and 1 ≤ i ≤ ℓ, since there exists a path

uis . . . , u
1
scu

1
t . . . u

i−1
t uit from uis to uit, it follows that dG(uis, u

i
t) ≤ 2i. It is easy to see that there are

two possible types of shortest paths Pui
su

i
t

from uis to uit:

Type 1: If dCi(u
i
s, u

i
t) ≥ 2i, then Pui

su
i
t
= uis . . . , u

1
scu

1
t . . . u

i−1
t uit;

Type 2: If dCi(u
i
s, u

i
t) < 2i, then the shortest path Pui

su
i
t
⊑ Ci, where Ci is subgraph of G.

Therefore, dG(uis, u
i
t) = min{2i, dCi(u

i
s, u

i
t)}. Suppose that 1 ≤ i ≤ ak. For s − 2i + 1 ≤ t ≤

s − 1, since dCi(u
i
s, u

i
t) < 2i, it follows that dG(uis, u

i
t) = min{2i, dCi(u

i
s, u

i
t)} = dCi(u

i
s, u

i
t),

and hence dG(u
i
s, u

i
tu

i
t+1) = dCi(u

i
s, u

i
t+1). Thus, dG(uis, u

i
tu

i
t+1) = dG−ui

tu
i
t+1

(uis, u
i
tu

i
t+1) and

dG−ui
tu

i
t+1

(uis, u
i
t) > dCi(u

i
s, u

i
t+1) + 1 = dG(u

i
s, u

i
t), and so uitu

i
t+1 ∈ EM(uis).

Similarly, for any edge uitu
i
t+1 ∈ E(Ci), where s ≤ t ≤ s + 2i − 2, since dG(u

i
s, u

i
t+1)) ̸=

dG−ui
tu

i
t+1

(uis, u
i
t+1), it follows that uitu

i
t+1 ∈ EM(uis). Therefore, {uituit+1 | s − 2i + 1 ≤ t ≤

s+ 2i− 2} ⊆ EM(uis), where the subscripts are taken modulo k, that is, uik+1 = ui1.

For any uiju
i
j+1∈E(Ci)−

(
{uituit+1 | s− 2i+ 1 ≤ t ≤ s+ 2i− 2}∪{uis−2iu

i
s−2i−1, u

i
s+2i+1u

i
s+2i}

)
,

since d(uis, u
i
j) = d(uis, u

i
j+1) = 2i and dG−ui

ju
i
j+1

(uis, u
i
j) = dG−ui

ju
i
j+1

(uis, u
i
j+1) = 2i, it fol-

lows that uiju
i
j+1 /∈ EM(ui). In addition, let e1 = uis−2iu

i
s−2i−1 and e2 = uis+2i−1u

i
s+2i. Then,

dG(u
i
s, e1) = dG(u

i
s, u

i
s−2i−1) = 2i and dG(u

i
s, e2) = dG(u

i
s, u

i
s+2i−1) = 2i. Since dG−e1(u

i
s, u

i
s−2i)

= dG(u
i
s, u

i
s−2i) = 2i and dG−e2(u

i
s, u

i
s+2i) = dG(u

i
s, u

i
s+2i) = 2i, it follows that e1, e2 /∈ EM(ui),

and hence |EM(uis) ∩ E(Ci)| = |{uituit+1 | s − 2i + 1 ≤ t ≤ s + 2i − 2}| = 4i − 2 for any vertex
uis ∈ V (Ci), where the subscripts are taken modulo k.

Suppose that i ≥ ak + 1. For i ≥ ak + 1 and 1 ≤ s, t ≤ k, if uis, u
i
t ∈ V (Ci), then dG(u

i
s, u

i
t) =

dCi(u
i
s, u

i
t). For any cycle Ci with length k, if k is even, then it follows from Lemma 4.2 that

|EM(v)∩E(Ci)| = k−2. If k is odd, then it follows from Lemma 4.2 that |EM(v)∩E(Ci)| = k−1,
as desired.

For any vertex uis ∈ V (Ci) and any edge e = ujmujm+1 ∈ E(Cj), where 1 ≤ j ̸= i ≤ ℓ and
1 ≤ m ≤ k, since dG−e(u

i
s, u

j
m) = dG(u

i
s, u

j
m) and dG−e(u

i
s, u

j
m+1) = dG(u

i
s, u

j
m+1), it follows that

e /∈ EM(uis), and hence |EM(uis) ∩ E(Cj)| = 0.

For any edge e3 = uisu
i
s+1 ∈ E(Ci), we have dG(c, u

i
s) = dG(c, u

i
s+1) = i, and hence

dG−e3(c, u
i
s) = dG−e3(c, u

i
s+1) = i, and so e3 /∈ EM(c). Therefore, |EM(c) ∩ E(Ci)| = 0. ⊓⊔

Suppose that ℓ ≥ ak + 1. Since e(Ci) = k, it follows from Fact 4.4 that |M ∩ E(Ci)| ≥
2 for ak + 1 ≤ i ≤ ℓ and |M ∩ E(Ci)| ≥ ⌈k/(4i − 2)⌉ for 1 ≤ i ≤ ak, and so dem(G) ≥∑ak

i=1 ⌈k/(4i− 2)⌉+ 2(ℓ− ak).
Let M = ∪i=k

i=1Mi, where

Mi =

{
{uij | 1 ≤ j ≤ k, j ≡ 1 mod (4i− 2)}, if i ≤ ak;

{ui1, ui⌈k/2⌉}, if ak + 1 ≤ i ≤ ℓ.
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Therefore, e ∈ ∪x∈MiEM(x) ⊆ ∪x∈MEM(x) for any edge e ∈ E(Ci), where 1 ≤ i ≤ ℓ. It suffices
to prove that e ∈ ∪x∈MEM(x) for each edge in E(Pi), where 1 ≤ i ≤ k. For some vertex u1i ∈ M1

and any u1j ∈ V (G), where 1 ≤ i ̸= j ≤ k, if j ∈ {1, 2, . . . , i− 3, i+3, . . . , k}, where the subscripts
are taken modulo n, then dG(u

1
i , u

1
j ) ̸= dG−cu1

j
(u1i , u

1
j ), and hence cu1j ∈ EM(u1i ). Similarly, for

1 ≤ t ≤ ℓ−1, since dG(u1i , u
t
j) ̸= dG−ut

ju
t−1
j

(u1i , u
t
j) for j ∈ {1, 2, . . . , i−3, i+3, . . . , k}, it follows

that utju
t−1
j ∈ EM(u1i ), and hence EM(u1i ) = {u1iu1i+1, u

1
iu

1
i−1, cu

1
i }∪{cu1j | j ∈ {1, 2, . . . , i−3, i+

3, . . . , k}}∪{up−1
j upj | 2 ≤ p ≤ ℓ− 1, j ∈ {1, 2, . . . , i− 3, i+3, . . . , k}}. Without loss of generality,

let u11 ∈ M . Then ∪i∈{1,4,...,k−2}E(Pi) ⊆ EM(u11). Since EM(u1i ) = {u1iu1i+1, u
1
iu

1
i−1, cu

1
i } ∪

{cu1j | j ∈ {1, 2, . . . , i−3, i+3, . . . , k}}∪{up−1
j upj | 2 ≤ p ≤ ℓ−1, j ∈ {1, 2, . . . , i−3, i+3, . . . , k}}

and k ≥ 9, it follows that E(P2) ⊆ EM(u1k−3), E(P3) ⊆ EM(u1k−3), E(P2) ⊆ EM(u1k−2),
E(P3) ⊆ EM(u1k−2), E(Pk) ⊆ EM(u13) and E(Pk−1) ⊆ EM(u13)

For any edge e ∈ E(Pi), where i ∈ {2, 3, k, k− 1}, if k is even, then e ∈ EM(u13)∪EM(u1k−3);
if k is odd, then e ∈ EM(u13) ∪EM(u1k−2). Therefore, e ∈ ∪x∈MEM(x) for any e ∈ E(Pi), where
1 ≤ i ≤ k, and so dem(G) ≤

∑ak
i=1 ⌈k/(4i− 2)⌉+2(ℓ−ak). Thus, dem(G) =

∑ak
i=1 ⌈k/(4i− 2)⌉+

2(ℓ− ak). For ℓ ≤ ak, it is similar to the case that ℓ ≥ ak + 1, as desired. ⊓⊔

Theorem 4.5. For any positive integer k ≥ 9, there exists a connected graph G such that such that

dem(G \ v)− dem(G) = ⌊k/2⌋ − ⌈k/6⌉,

where v ∈ V (G).

Proof:
Let G = C(2, k), where ℓ = 2 and k ≥ 5. Note that G \ v0 = Ck□K2. From Theorem 3.4, we have
dem(G\v0) = dem(Ck□K2) = k. From Theorem 4.3, we have dem(C(2, k)) =

∑2
i=1 ⌈k/(4i− 2)⌉

= ⌈k/2⌉ + ⌈k/6⌉, and hence dem(G − v) − dem(G) = k − ⌈k/2⌉ − ⌈k/6⌉ = ⌊k/2⌋ − ⌈k/6⌉, as
desired. ⊓⊔

Let G = C(ℓ, k) and H = Ck□Pℓ. From Theorems 4.3 and 3.4, if ℓ≫ k, then dem(G)/ dem(H)
≈ 1. From Theorems 4.3 and 3.4, if k = 402 and ℓ = 100, then dem(G)/ dem(H) ≈ 0.561453.

Corollary 4.6. There exist two connected graphs H and G such that

dem(G)

dem(H)
≈ 0.561453,

where H is an induced subgraph of G.

Proof of Theorem 1.17: Let G = K̂2k+2. From Proposition 1.16, there exists a vertex u ∈ V (G)
such that dem(G)− dem(G \ u) = k. Note that G \ u = P2k+2 is a connected graph. In addition, let
H = C(2, t), k = ⌊t/2⌋ − ⌈t/6⌉ and v ∈ V (H). From Theorem 4.5, we have dem(C(2, t) \ v) −
dem(C(2, t)) = k, where C(2, t) \ v = Ct□K2 is a connected graph.

In fact, G \ v is a subgraph of G. From Theorem 1.17, for any positive integer k ≥ 3, there exists
a graph G such that dem(G \ v)− dem(G) ≥ k. ⊓⊔
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Let G = C(2, t) and H1 = C(2, t) \ v, where t ≥ 8. From Theorem 1.17, dem(H1) ≥ dem(G).
Note that G is not tree, it follows from Theorem 1.6 that dem(G) ≥ 2. Let H2 be a tree satisfying
H2 ⊑ G. From Theorem 1.6, we have dem(H2) = 1, and hence dem(H2) ≤ dem(G), and so
Corollary 4.7 holds.

Corollary 4.7. There exists a connected graph G and two non-spanning subgraphs H1, H2 ⊑ G such
that dem(H1) ≥ dem(G) and dem(H2) ≤ dem(G).

Proof of Proposition 1.18: For any graph G with order n and G \ v with at least one edge, we have
dem(G) ≤ n− 1 and dem(G \ v) ≥ 1, and hence dem(G)− dem(G \ v) ≤ n− 2. Furthermore, let
G = K3, then dem(G)−dem(G\ v) = n−2, and hence the upper bound is sharp. Conversely, since
dem(G)−dem(G\v) = n−2, it follows that dem(G) = n−1 and dem(G\v) = 1. From Theorem
1.6, G \ v is a tree. Suppose that |V (G)| ≥ 4. Since dem(G) = n − 1, it follows from Theorem 1.6
that G = Kn, and hence G \ v = Kn−1 which contradicts to the fact that G \ v is a tree. Suppose
that |V (G)| ≤ 3. Since dem(G) = n − 1, it follows that G = Kn, where n ≤ 3. If G = K2, then
G \ v = K1, which contradicts to the fact that G \ v contains at least one edge. Therefore, G = K3,
as desired. ⊓⊔

Next, we consider the subgraph H of G. If H is a proper subgraph of G satisfying dem(H) ≤
dem(G), then what is the relation between H and G? A natural question is what is the maximum
number of edges we can delete from G without changing the number of distance-edge monitoring?
We give a partial answer as follows.

Recall that the base graph Gb is a subgraph of G with dem(G) = dem(Gb). Therefore, we can
give a lower bound for the edge set E such that dem(G) = dem(G− E).

Observation 4.1. Let G be a connected graph, and let E1 = E(G) − E(Gb). For E ⊆ E(G), if
dem(G) = dem(G− E) and G− E is a connected graph with order at least 2, then |E| ≥ |E1|.

Proof of Theorem 1.19: Let E ⊆ E(G) satisfying dem(G) = dem(G − E) and M = {u, v} be
a DEM set of G with |M | = dem(G) = 2. From Theorem 1.8, we have |EM(u)| ≤ n − 1 and
|EM(v)| ≤ n− 1. If uv ∈ E(G), then e(G) ≤ 2(n− 1)− 1. Since dem(G) = dem(G−E) = 2, it
follows from Theorem 1.6 that G−E must contain a cycle, and hence |E| ≤ 2(n−1)−1−3 = 2n−6.

Suppose that uv ̸∈ E(G). If |EM(u) ∩ EM(u)| ≥ 1, then |E| ≤ 2n− 6, which is similar to the
case that uv ∈ E(G). If EM(u) ∩ EM(v) = ∅, it follows from Theorem 1.8 that e(G) ≤ 2(n− 1).
Since dem(G−E) = 2, then it follows from Theorem 1.6 that G−E must contain a cycle, and hence
|E| ≤ 2(n− 1)− 3 = 2n− 5. Furthermore, we give the following claim.

Claim 4.8. |E| ≤ 2n− 6.

Proof:
Assume, to the contrary, that |E| = 2n − 5. Since dem(G − E) = 2, it follows from Theorem
1.6 that G − E = C3. Without loss of generality, let V (G − E) = {v1, v2, v3}. In addition, from
Theorem 1.8, the subgraph induced by the edge set EM(u) and EM(v) are the spanning trees of G.
If u, v ∈ {v1, v2, v3}, then uv ∈ E(G), a contradiction. Thus, u /∈ {v1, v2, v3} or v /∈ {v1, v2, v3}.
Without loss generality, suppose that u /∈ {v1, v2, v3}.
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If dG(u) = 1, then |N(u)| = 1. Let N(u) = {w}. Since the subgraph induced by the edge
set EM(u) and EM(v) are the spanning trees of G, it follows that uw ∈ EM(u) ∩ EM(v), which
contradicts to the fact that EM(u)∩EM(v) = ∅. Therefore, dG(u) ≥ 2. Since the subgraph induced
by the edge set EM(v) is a spanning tree of G, it follows that there exists a vertex u1 ∈ N(u) such
that uu1 ∈ EM(v). From Theorem 1.4, we have uu1 ∈ EM(u), and hence uu1 ∈ EM(u)∩EM(v),
which contradicts to the fact that EM(u) ∩ EM(u) = ∅. ⊓⊔

From Claim 4.8, we have |E| ≤ 2n − 6. Furthermore, let G = (n − 2)K1 ∨ K2 with vertex set
V (G) = {vi | 1 ≤ i ≤ n} and edge set E(G) = {v1v2}∪{v1vi, v2vi|3 ≤ i ≤ n}. Then, dem(G) = 2.
Let E = {v1vi, v2vi | 4 ≤ i ≤ n} ⊆ E(G). From Observation 3.1, dem(G − E) = dem(K3)
+(n − 1) dem(K1) = 2, and hence there exists an edge set E1 such that dem(G − E) = 2 and
|E| = 2n− 6, as desired. ⊓⊔

In the end of this section, we give the proof of Theorem 1.22 as follows.

Proof of Theorem 1.22: Let G = Kn with vertex set {vi | 1 ≤ i ≤ n} and edge set {vivj | 1 ≤
i < j ≤ n}. Let T be a spanning tree in Kn. For any edge uv ∈ E(T ) and vertex w ∈
((NG(u) ∪NG(v)) \ {u, v}) ∩ V (T ), we have dG(w, u) = dG(w, v) = 1 and dG−uv(w, u) =
dG−uv(w, v) = 1, and hence uv /∈ EM(w). From Proposition 3.1, any edge uv ∈ E(T ) is only
monitored by u or v, and hence dem(Kn|T ) ≥ β(T ). From Theorem 1.9, dem(Kn|T ) ≤ β(T ), and
hence dem(Kn|T ) = β(T ). Since T is tree with order n, it follows that T is a bipartite graph. Without
loss of generality, let V (T ) = U ∪ V (|U | ≤ |V |), which is a bipartite partition of V (T ). From the
pigeonhole principle, we have |U | ≤ ⌊n2 ⌋. For any uv ∈ E(T ), we have {u, v} ∩ U ̸= ∅, and hence
β(T ) ≤ ⌊n2 ⌋. In addition, T contains at least one edge, and hence β(T ) ≥ 1, and so 1 ≤ β(T ) ≤ ⌊n2 ⌋.

Suppose that T = Sn with vertex set {vi | 1 ≤ i ≤ n} and edge set E(Sn) = {v1vi | 2 ≤ i ≤ n}.
Then {v1} is the vertex cover set of Sn, and hence β(T ) = 1, and so the lower bound is sharp. Suppose
that T = Pn with vertex set {vi | 1 ≤ i ≤ n} and edge set E(Pn) = {vivi+1 | 1 ≤ i ≤ n− 1}. Then,
{vi | i ≖ 0 (mod 2), 1 ≤ i ≤ n} is a minimum vertex cover set of Pn, and hence β(T ) = ⌊n2 ⌋, and
so the upper bound is sharp. ⊓⊔

Similar to Theorem 1.22, we have the following corollary.

Corollary 4.9. Let H be a subgraph of G with |V (H)| = p. Then,

1 ≤ dem(G|H) ≤ p− 1.

Furthermore, the bounds are sharp.

Theorem 4.10. If H is a connected induced subgraph of graph G, then

dem(G)− dem(G|H) ≤ |V (G)| − |V (H)|.

Moreover, if G and H are both complete graphs, then the bound is sharp.
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Proof:
For any graph G and H , where H is an induced subgraph of G. Let M1 ⊆ V (H) be a restrict-
DEM set of H in G with |M1| = dem(G|H). Let M = (V (G) − V (H)) ∪ M1. We will prove
that dem(G) ≤ |M |. For any edge uv ∈ E(G), if u or v in V (G) − V (H), then it follows from
Theorem 1.4 that e is monitored by the vertex in V (G) \ V (H). For any edge e ∈ E(H), since
M1 is a restrict-DEM set, it follows that e is monitored by the vertex in M1, and hence M is a
DEM set in G. Since |M | = |M1| + (|V (G)| − |V (H)|) = |V (G)| − |V (H)| + dem(G|H), it
follows that dem(G) ≤ |M | = dem(G|H) + (|V (G)| − |V (H)|), and so dem(G) − dem(G|H) ≤
(|V (G)| − |V (H)|). Furthermore, let G = Kn and H = Km (3 ≤ m ≤ n). From Theorem 1.7,
dem(G) = n − 1. For any uv ∈ E(H) and w ∈ (N(u) ∪N(v)) \ {u, v}, we have dG(w, u) =
dG(w, v) = 1 and dG−uv(w, u) = dG−uv(w, v) = 1, and hence uv /∈ EM(w). From Proposition
3.1, any edge uv ∈ E(H) is only monitored by u or v, and so dem(Kn|Km) ≥ β(Km) = m − 1.
From Theorem 1.9, dem(Kn|Km) ≤ β(Km) = m− 1, and hence dem(Kn|Km) = m− 1. Therefore,
dem(G)− dem(G|H) = (n− 1)− (m− 1) = |V (G)| − |V (H)|, as desired. ⊓⊔

5. Perturbation results for some known graphs

Firstly, we study the change of DEM numbers for some well-known graphs when any edge (or vertex)
of the graph is deleted.

5.1. Deleting one edge or vertex from some known graphs

Let NVi(G) = {v | dG(v) = i, v ∈ V (G)} and NEa,b(G) = {uv |uv ∈ E(G), dG(u) = a, dG(v) =
b}. Note that E(Pn) = NE1,2(Pn) ∪ NE2,2(Pn). If e ∈ NE1,2(Pn), then dem (Pn − e) = 1,
and hence dem (Pn) − dem (Pn − e) = 0. If e ∈ NE2,2(Pn), then dem (Pn − e) = 2, and hence
dem (Pn)− dem (Pn − e) = −1.

Corollary 5.1. Let Pn be a path of order n, where n ≥ 2. For any e ∈ E(Pn), we have

dem(Pn − e) =

{
dem(Pn), if e ∈ NE1,2(Pn);
dem(Pn) + 1, if e ∈ NE2,2(Pn).

Foucaud et al. [10] obtained the DEM numbers of complete bipartite graph Kℓ1,ℓ2 .

Theorem 5.2. [10] Let ℓ1 and ℓ2 be two integers with ℓ ≥ 1 and ℓ2 ≥ 1. Then

dem (Kℓ1,ℓ2) = min{ℓ1, ℓ2}.

The following corollary is immediate.

Corollary 5.3. Let n ≥ 3 be an integer. Then,
(i) for any edge e ∈ E(Cn), dem(Cn − e) = dem(Cn)− 1 = 1;
(ii) for any edge e ∈ E(Kn), dem(Kn − e) = dem(Kn)− 1 = n− 2;
(iii) for any edge e ∈ E(Kn,n), dem(Kn,n − e) = dem(Kn,n) = n.
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Proof:
(i) From Theorem 1.6, we have dem(Cn − e) = dem(Pn) = 1. Since dem(Cn) = 2, it follows

that dem(Cn − e) = dem(Cn)− 1 = 1.

(ii) Let G = Kn. From Theorem 1.7, we have dem(G) = n−1 and dem(G−uv) ≤ n−2 for any
edge uv ∈ E(G). Then, we prove that dem(G−uv) ≥ n−2. Suppose that dem(G−uv) ≤ n−3. Let
M be a DEM set of G− uv with the minimum cardinality. For any edge xy ∈ E(G− uv) and vertex
w ∈ (NG(x)∪NG(y))\{x, y}, we have dG(w, x) = dG−xy(w, x) and dG(w, y) = dG−xy(w, y), and
hence xy /∈ EM(w). From Proposition 3.1, any edge xy ∈ E(G − uv) is only monitored by x and
y, and hence M ∩ {x, y} ≠ ∅. If u, v ∈M , then there exist two vertices v1, v2 ∈ V (G) \ {u, v} such
that v1, v2 /∈M , and hence v1v2 /∈ ∪x∈MEM(x), which contradicts to the fact that ∪x∈MEM(x) =
E(G − uv). Suppose that u or v /∈ M . Without loss of generality, let u /∈ M . Then there exists a
vertex v1 ∈ V (G)\{u, v} such that v1 /∈M , and hence uv1 /∈ ∪x∈MEM(x), which contradicts to the
fact that ∪x∈MEM(x) = E(G−uv). Therefore, dem(G−uv) ≤ n−2, and so dem(G−uv) = n−2.
This implies that dem(Kn − e) = dem(Kn)− 1 = n− 2.

(iii) Let G = Kn,n with vertex set V (G) = {ui | 1 ≤ i ≤ n} ∪{vi | 1 ≤ i ≤ n} and edge
set E(G) = {uivj | 1 ≤ i, j ≤ n}. From Theorem 5.2, we have dem(Kn,n) = n. Without loss of
generality, let G1 = G − u1v1. Firstly, we prove that dem(G1) ≥ n. Suppose that M is a DEM
set of G1 with |M | = n − 1. Then, there exists two vertices up, vq /∈ M with upvq ∈ E(G1). For
any u ∈ M ∩ {ui | 1 ≤ i ≤ n}, we have dG1−upvq(u, up) = dG1(u, up) = 2 and dG1−upvq(u, vq) =
dG1(u, vq) = 1, and hence upvq /∈ EM(u). Similarly, upvq /∈ EM(v) for any v ∈ M ∩ {vi | 1 ≤
i ≤ n}, and hence upvq /∈ ∪x∈MEM(x), which contradicts to the fact that ∪x∈MEM(x) = E(G1).
Therefore, dem(G1) ≥ n. Then, we prove that dem(G1) ≤ n. Let M = {ui | 1 ≤ i ≤ n}. Then
M is a vertex cover set of G1. From Theorem 1.9, dem(G1) ≤ |M | = n, and hence dem(G1) = n.
Therefore, dem(Kn,n − e) = dem(Kn,n) = n. ⊓⊔

There exist three graphs G1, G2, G3 and v∈ V (G) such that dem(G1)>dem(G1−v), dem(G2)=
dem(G2 − v), dem(G3) < dem(G3 − v), respectively.

The following corollary is immediate.

Corollary 5.4. Let n ≥ 3 be an integer. For any v ∈ v(G), we have

(i) dem(Cn \ v) = dem(Cn)− 1 = 1;
(ii) dem(Kn \ v) = dem(Kn)− 1 = n− 2;
(iii) dem(Kn,n \ v) = dem(Kn,n)− 1 = n− 1.

Proposition 5.5. Let Pn be a path with vertex set {vi | 1 ≤ i ≤ n} and edge set {vivi+1 | 1 ≤ i ≤
n− 1}, where n ≥ 5. For any v ∈ V (Pn), we have

dem(Pn \ v) =

{
dem(Pn), if v ∈ {v1, v2, vn−1, vn};
dem(Pn) + 1, if v ∈ {vi | 3 ≤ i ≤ n− 2}.
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Proof:
From Theorem 1.6, we have dem (Pn) = 1. If v ∈ {v1, vn}, then dem (Pn \ v) = 1. If v ∈
{v2, vn−1}, then dem (Pn \ v) = dem (Pn−1) + dem (K1) = 1, where V (K1) = {v1} or V (K1) =
{vn}, and hence dem (Pn)−dem (Pn \ v) = 0. If v ∈ {vi | 3 ≤ i ≤ n− 2}, then dem (Pn − v) = 2,
and hence dem (Pn)− dem (Pn \ v) = −1. ⊓⊔

Proposition 5.5 shows that there exists a graph G and v ∈ V (G) such that dem(G) = dem(G \ v)
or dem(G) < dem(G \ v).

5.2. Whether the DEM set is still applicable?

Foucaud et al. proved in [10] that the problem DEM SET is NP -complete. For any graph G, a natural
question is whether the original DEM set can monitor all edges if some edges or vertices in G are
delated. We design the Algorithm 1 and the time complexity is polynomial.

WHETHER THE DEM SET IS STILL APPLICABLE?
Instance: A graph G = (V,E), an edge e ∈ E(G) and a DEM set M of G.
Question: Whether M is still a DEM set for the graph G− e?

Given a graph G, a DEM set M , and an edge e ∈ E(G), our goal is to determine whether the
original DEM set M is still valid in the resulting graph G−e. The algorithm is shown in Algorithm 1.

Algorithm 1 The algorithm for determining M is or not monitor set for G− e

Input: A graph G, M ⊆ V (G) and e ∈ E(G);
Output: E(G− e) ⊆ ∪x∈MEM(x) is TRUE or FALSE;
1: M1← E(G− e)
2: for each vertex v ∈M do
3: M1←M1 − EM(v)
4: end for
5: if M1 = ∅ then return E(G− e) ⊆ ∪x∈MEM(x) is TRUE;
6: else return E(G− e) ⊆ ∪x∈MEM(x) is FALSE;
7: end if

The algorithm of how to compute the edge set EM(x) from G is polynomial by the breadth-first
spanning tree algorithm. Hence the time complexity of Algorithm 1 is polynomial.

6. Conclusion

In this paper, we studied the effect of deleting edges and vertices in a graph G on the DEM number.
We obtained that dem(G−e)−dem(G) ≤ 2 for any graph G and e ∈ E(G). Furthermore, the bound
is sharp. In addition, we can find a graph H and v ∈ V (H) such that dem(H \ v)− dem(H) can be
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arbitrarily large. This fact gives an answer to the monotonicity of the DEM number. This means that
there exist two graphs H and G with H ⊑ G such that dem(H) ≥ dem(G).

It is interesting to consider the following problems for future work.

(1) Characterize the graphs dem(H) ≥ dem(G) if H ⊑ G.

(2) For a graph G and E ⊆ E(G), what is the maximum value of |E| such that dem(G) =
dem(G− E)?

(3) For any ϵ > 0, whether the ratio dem(G)
dem(H) ≤ ϵ holds, where H is an induced subgraph of G.

In addition, it would be interesting to study distance-edge monitoring sets in further standard graph
classes, including circulant graphs, graph products, or line graphs. In addition, characterizing the
graphs with dem(G) = n − 2 would be of interest, as well as clarifying further the relation of the
parameter dem(G) to other standard graph parameters, such as arboricity, vertex cover number and
feedback edge set number.
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