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Abstract. Analysis of a network in terms of vulnerability is one of the most significant prob-

lems. Graph theory serves as a valuable tool for solving complex network problems, and there

exist numerous graph-theoretic parameters to analyze the system’s stability. Among these param-

eters, the closeness parameter stands out as one of the most commonly used vulnerability metrics.

Its definition has evolved to enhance the ease of formulation and applicability to disconnected

structures. Furthermore, based on the closeness parameter, vertex residual closeness, which is a

newer and more sensitive parameter compared to other existing parameters, has been introduced

as a new graph vulnerability index by Dangalchev. In this study, the outcomes of the closeness

and vertex residual closeness parameters in Harary Graphs have been examined. Harary Graphs

are well-known constructs that are distinguished by having n vertices that are k-connected with

the least possible number of edges.
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1. Introduction

Network analysis is one of the most important problems in the development of computer science. The

key point in network analysis is to determine centrality. In other words, it is to determine which node

has a critical place in the network. This is directly related to the reliability of the structure. Graph

theory has many solution techniques and approaches in this regard. There are many studies on this

analysis in the literature, and these studies provide links between graph theory and computer science

and its applications. Therefore, graph theory plays an important role in the analysis of the robustness

of networks.

There are many graph-theoretic parameters related to the analysis of complex networks. Among

the parameters associated with centrality, closeness stands out and has undergone various interpre-

tations over the years. The initial closeness approach, when first introduced, could not provide an

interpretation for disconnected structures [1]. However, later, through the concept introduced by La-

tora and Marchiori [2], the possibility of its application to disconnected structures emerged. Building

on these definitions, in [3], Dangalchev proposed a formulae for closeness. This approach provides

ease in terms of formulation. In this paper, we will utilize them. Dangalchev’s useful closeness for-

mula for vertex i is C(i) =
∑

j 6=i

1
2d(i,j)

where d(i, j) represents the distance between vertices i and j.

Additionally, the concept of residual closeness, a more sensitive parameter based on this definition of

closeness, also emerged simultaneously from Dangalchev again [3]. The key point here is to deter-

mine how the removal of a vertex from the graph impacts the graph’s vulnerability. To calculate the

closeness value after the removal of vertex k, denoted as Ck, we use the equation Ck =
∑

i

∑

j 6=i

1
2dk(i,j)

where dk(i, j) is the distance between vertices i and j after the removal of vertex k. Moreover, the

vertex residual closeness, denoted as R, is defined as R = min
k

{Ck}. We refer readers to [3–16] for

more detailed information and advanced knowledge about closeness and residual closeness parame-

ters. Both closeness and residual closeness parameters are based on the concept of distance in graphs,

and these measurements are usable in disconnected structures. The term residual closeness mentioned

throughout this study should be understood as vertex residual closeness.

For notation and terminology, we utilized two books [17] and [18]. In this paper, the graph G is

considered a simple, finite, and undirected graph with vertex set V (G) and edge set E(G). The open

neighborhood of any vertex in V (G), denoted by N(v) = {u ∈ V | (uv) ∈ E(G)}. The degree of a

vertex v denoted by deg(v), is the number of its neighborhood. The distance between two vertices u
and v is several edges in the shortest path between them (also it is called u-v geodesic), abbreviated by

d(u, v). In addition, three of the most important parameters of distance in the graph are eccentricity,

diameter, and radius. In a connected graph, the eccentricity, ǫ(v), of a vertex v is the greatest distance

between v and any other vertex. The diameter of a graph G is the maximum eccentricity of any vertex

in the graph. It can be symbolized by diam(G) = max
v∈V (G)

ǫ(v) = max
v∈V (G)

max
u∈V (G)

d(u, v) and the radius

of a graph G, rad(G), is the minimum eccentricity of any vertex.

As the number of edges increases, so does the connectivity. This can have negative economic

implications in practical applications. This circumstance has had an impact on the emergence of the

Harary Graph. Harary Graph concept was introduced in 1962 by F. Harary [19]. It is a k-connected
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graph on n vertices that has a degree of at least k and ⌈kn2 ⌉ edges. Harary Graph structure constructs

in three cases depending on k and n parities. For 2 < k < n, the Harary Graph denoted by Hk,n

on n vertices is defined as follows using the expression of West [20]. For n equally spaced vertices

are placed around a circle. If k is even, Hk,n is formed by joining each vertex to the nearest k/2
vertices in each direction around the circle. If k is odd and n is even, Hk,n is obtained by joining

each vertex to the nearest (k − 1)/2 vertices in a clockwise and counterclockwise direction around

the circle and to the diametrically opposite vertex (n/2). For these two cases, Hk,n is k−regular and

there is an automorphism between any two vertices u, v ∈ V. In other words, the graph is vertex-

transitive. If both k and n are odd, Hk,n is structured as follows. The vertex set of Hk,n is labeled

by 0, 1, ..., n − 1 and Hk,n is formed from Hk−1,n by joining vertex i to vertex i +(n − 1)/2 for

0 ≤ i ≤ (n − 1)/2. According to this construction, vertex (n− 1)/2 is adjacent to both vertex 0 and

vertex n− 1. Therefore, the graph is not vertex-transitive for the case where both k and n are odd. In

an Harary Graph, when k is even, if we visit node (i+ k/2) or (i− k/2) for (mod n) from vertex i
, then it is called a city-tour; when k is odd, if we visit node (i + (k − 1)/2) or (i − (k − 1)/2) for

(mod n) from vertex i , then it is called a city-tour, otherwise it is called a village-tour [21]. Also, the

diameter of Harary Graphs Hk,n is given as follows [21].

• If k is even then

diam(Hk,n) =











⌊

n
k

⌋

, if n ≡ 1 (mod k)

⌈

n
k

⌉

, otherwise

• Let n be even and k > 3 be odd then

diam(Hk,n) =























⌈

n
2k−2

⌉

+1, if diam(Hk−1,n) is even

and n 6≡ 2 (mod (k − 1))

⌈

n
2k−2

⌉

, otherwise

• Let n be even and k = 3 then

diam(H3,n) =
⌈n

4

⌉

• Let n be odd and k = 3 then

diam(H3,n) =

⌈

n+ 1

4

⌉

• If both n and k > 3 are odd then

diam(Hk,n) =















⌈

n
2k−2

⌉

+ 1, if (n− k − 1) ≡ 1 (mod 2(k − 1))

⌈

n
2k−2

⌉

, otherwise.
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Now, we can define the Consecutive Circulant Graph as follows. Let [l] = {1, 2, ..., l}. The

Consecutive Circulant Graph, Cn,[ℓ] is the set of n vertices such that vertex v is adjacent to vertex

v ± i mod n for each i ∈ [ℓ]. Notice that Cn,[1] is equivalent to Cn and Cn,⌊n/2⌋ is equivalent to the

complete graph Kn. [22]. In the next section, we construct a link between the Harary Graph and the

Consecutive Circulant Graph then we will provide the closeness value.

In this study, we begin by examining the closeness values of both Harary Graphs and their specific

form known as Consecutive Circulant Graphs. Due to the form of Harary Graphs, this calculation

discussed under three main thoughts according to whether k and n are odd or even numbers. Further-

more, under these main ideas, the subcases of diameters greater than or less than 2 are also considered.

After calculating the closeness value of the Consecutive circulant Graphs, the second part of the paper

is completed. In the third part, the vertex residual closeness of Harary Graphs is taken up. As was

done when computing the closeness values, the cases were handled individually, taking into account

the parity relationships between k and n.

Additionally, let us provide the geometric series sum formula and its derivative as preliminary

information, which serves as a useful tool frequently used in proofs:

h
∑

k=1

aXk−1 = a(X0 + ...+Xh−1) =
a(1−Xh)

1−X
(1)

h
∑

k=2

a(k − 1)Xk−2 = a · [
hXh−1

X − 1
−

Xh − 1

(X − 1)2
]. (2)

2. Closeness of Harary Graphs

In this section, we evaluated the closeness value of a Harary Graph, denoted as C(Hk,n). Additionally,

by examining the relationship between the Harary Graph and Consecutive Circulant Graph structures,

we will reveal the connection between the closeness values.

Theorem 2.1. Let Hk,n be a Harary Graph on n vertices where k is even, then

C(Hk,n) =

{

n(k + (12 )
diam(Hk,n)(t− 2k)) , if (n− 1) ≡ t (mod k)

n(k − (12 )
diam(Hk,n)k) , if(n− 1) ≡ 0 (mod k).

Proof:

Let the vertices of the graph be labeled as {0, 1, ..., (n − 1)}. It should be considered in two cases

according to the value of (n − 1) in (mod k). If k is even then the graph is vertex-transitive, it refers

to all vertices having the same closeness value. Therefore, without loss of generality, we can take

vertex 0 as the originator and evaluate the closeness value of vertex 0.

If (n − 1) ≡ t(mod k), t 6= 0 then the distance between 0 and vertex k
2 · (diam(Hk,n) − 1) and

vertex n− k
2 ·(diam(Hk,n)−1) at a clockwise and counterclockwise, respectively, is (diam(Hk,n)−1).
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Thus, the remaining t vertices from 0 is (diam(Hk,n) − 1) city-tour plus 1 unit or diam(Hk,n) city-

tour distance. Hence, there are k vertices in the distance 1, 2, ..., (diam(Hk,n)− 1) from vertex 0 and

there are t vertices at distance diam(Hk,n) =
⌈

n
k

⌉

. Thus, we get

C(0) =

diam(Hk,n)−1
∑

i=1

k(
1

2
)i + (t)(

1

2
)diam(Hk,n).

Using geometric series formula (1), we have

C(0) = k + (
1

2
)diam(Hk,n)(t− 2k).

Therefore, the closeness value of a graph with n vertices where n− 1 ≡ t (mod k) is

C(Hk,n) = n(k + (
1

2
)diam(Hk,n)(t− 2k)).

If (n − 1) ≡ 0 (mod k) then there are k vertices in distance 1, 2, ..., diam(Hk,n) from vertex

0 where diam(Hk,n) =
⌊

n
k

⌋

for this case. The closeness formula for this case for vertex 0 can be

obtained as

C(0) =

diam(Hk,n)
∑

i=1

k(
1

2
)i.

Using geometric series summation, we have

C(0) = k − (
1

2
)diam(Hk,n)(k).

Therefore, the closeness value of a graph with n vertices where (n− 1) ≡ 0 (mod k) is

C(Hk,n) = n(k − (
1

2
)diam(Hk,n)k).

Thus, the theorem holds. ⊓⊔

Theorem 2.2. Let Hk,nbe a Harary Graph on n vertices where k is odd, n is even and diam(Hk,n)≤2.

Then,

C(Hk,n) =

{

n(n−1)
2 , if diam(Hk,n) = 1

n(k2 + (n−k−1)
22 ) , if diam(Hk,n) = 2

Proof:

The graph is vertex-transitive for the case k is odd and n is even. For diam(Hk,n) = 1, the distance

of n vertices to (n − 1) vertices is one. Thus, we have

C(Hk,n) =
n(n− 1)

2
.
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For diam(Hk,n) = 2, let choose vertex 0 as an originator. Therefore, there are k vertices at the

distance one, and the remaining vertices (n− k − 1) are at the distance two to any vertex from vertex

0 in the graph. Therefore, we get

C(Hk,n) = n(
k

2
+

(n − k − 1)

22
).

Thus, the proof is completed. ⊓⊔

Remark 2.3. When the value of k is even, the structure of the Harary Graph is in a simpler form.

Even in the calculation of the diameter, different cases arise when k is odd. Therefore, to facilitate the

expression of the number of city-tours and distances between vertices for the case where k is odd, we

will utilize the Hk−1,n graph forms. Consequently, employing the value diam(Hk−1,n) in expressing

the theorems will be useful in reducing complexity in proofs.

Theorem 2.4. Let Hk,n be a Harary Graph on n vertices where k > 3 is odd n is even and

diam(Hk,n) > 2 and n ≡ t (mod (k − 1)), t 6= 0, 2. Then,

• if diam(Hk−1,n) is odd, then

C(Hk,n) =
nk

2
+ n(k − 1)(1 −

1

2diam(Hk,n)−2
) +

n((k + t− 3))

2diam(Hk,n)

• if diam(Hk−1,n) is even, then

C(Hk,n) =
nk

2
+ n(k − 1)(1 −

1

2diam(Hk,n)−2
) +

n(t− 2)

2diam(Hk,n)
.

Proof:

Let n ≡ t (mod (k − 1)) and diam(Hk,n) > 2. Assume that vertices of Hk,n are labeled as

0, ..., (n − 1). In order to construct Hk,n when k is odd, join vertex 0 and n/2 in the form of Hk−1,n.
In this situation, there are k−3

2 + 1 options for t such as t = 0, 2, 4, ..., (k − 3).
Let us consider the values of t 6= 0, 2. Since the graph is vertex-transitive for this case, without

loss of generality, we can choose vertex 0 as the origin vertex in order to find the closeness value

of a vertex. In the form of Hk−1,n, the distance between 0 and vertex k−1
2 · (diam(Hk,n) − 1)

in clockwise direction and using the diametrically opposite direction between vertex 0, and vertex
n
2 −

k−1
2 · (diam(Hk,n)− 2) is (diam(Hk,n)− 1). Analogously, we get the same results for the coun-

terclockwise direction from vertex 0. Therefore, the distance between for the total remaining (t − 2)
vertices in both directions and vertex 0 is (diam(Hk,n)− 1) city-tour plus 1 unit or diam(Hk,n) city-

tour that is diam(Hk−1,n) =
⌈

n
k−1

⌉

away from vertex 0. When vertices 0 and n/2 join to get Hk,n,

diam(Hk,n) =
⌈

n
2k−2

⌉

+ 1, see [21].

If diam(Hk−1,n) is odd, there are (k − 1) + 1 = k vertices one distance from vertex 0, there are

2(k − 1) vertices at most (diam(Hk,n) − 1) distance and at least 2 distance from vertex 0 and there
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are (k − 1) + (t− 2) vertices diam(Hk,n) distance from vertex 0. Thus, the total value for n vertices

is

C(Hk,n) = n[k
1

2
+ 2(k − 1)

1

22
+ ...+ 2(k − 1)

1

2diam(Hk,n)−1
+

(k − 1) + (t− 2)

2diam(Hk,n)
]

=
nk

2
+ n(k − 1)(1 −

1

2diam(Hk,n)−2
) +

n((k + t− 3)

2diam(Hk,n)
.

If diam(Hk−1,n) is even, there are (k − 1) + 1 = k vertices one distance from vertex 0, there are

2(k−1) vertices in 2, 3,...,(diam(Hk,n)−1) distance from 0 and there are (t−2) vertices diam(Hk,n)
distance from vertex 0. Thus, the total value for n vertices is

C(Hk,n) = n[k
1

2
+ 2(k − 1)

1

22
+ ...+ 2(k − 1)

1

2diam(Hk,n)−1
+

(t− 2)

2diam(Hk,n)
]

=
nk

2
+ n(k − 1)(1 −

1

2diam(Hk,n)−2
) +

n(t− 2)

2diam(Hk,n)
.

Thus, the result is obtained. ⊓⊔

Theorem 2.5. Let Hk,n be a Harary Graph on n vertices where k > 3 is odd, n is even, and

diam(Hk,n) > 2 and n ≡ 2 (mod (k − 1)). Then,

• if diam(Hk−1,n) is odd, then

C(Hk,n) =
nk

2
+ n(k − 1)(1 −

3

2diam(Hk,n)
)

• if diam(Hk−1,n) is even, then

C(Hk,n) =
nk

2
+ n(k − 1)(1 −

1

2diam(Hk,n)−1
).

Proof:

Let n ≡ 2 (mod (k − 1)). Therefore, diam(Hk−1,n) =
⌈

n
k−1

⌉

∈ Z. Similar to the proof of

Theorem 2.4, without loss of generality, let us consider the vertex 0 as originated. Constructing

Hk−1,n, there are exactly (diam(Hk−1,n )− 1) city- tour plus one unit to reach vertex n/2.

If diam(Hk−1,n) is odd then there are exactly even numbers of the city-tours between vertices

0 and n/2 in graph Hk−1,n. Since (n − 2) ≡ 0 (mod (k − 1)), in the form of Hk,n, 0 and n/2
are diametrically opposite vertices. Thus, for the vertex 0, there are k adjacent vertices, and there are

2(k−1) vertices in 2, 3, ..., diam(Hk,n−1) distance, and there are k vertices at diam(Hk,n) distance.

Hence, the total value for n vertices is

C(Hk,n) = n[
k

2
+

2(k − 1)

22
+ ...+

2(k − 1)

2diam(Hk,n)−1
+

(k − 1)

2diam(Hk,n)
]

=
nk

2
+

n(k − 1)

2
[1 +

1

2
+ ...+

1

2diam(Hk,n)−3
] +

n(k − 1)

2diam(Hk,n)

=
nk

2
+ n(k − 1)[1 −

3

2diam(Hk,n)
].
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If diam(Hk−1,n) is even, then there are exactly an odd number of city-tours between vertex 0
and n/2 in graph Hk−1,n. Since n − 2 ≡ 0 (mod (k − 1)), in the form of Hk,n, 0 and n/2 are

diametrically opposite vertices and there are exactly 2(k−1) vertex in every distance except one from

vertex 0. Thus, the total value for n vertices is

C(Hk,n) = n[k
1

2
+ 2(k − 1)

1

22
+ ...+ 2(k − 1)

1

2diam(Hk,n)−1
+ 2(k − 1)

1

2diam(Hk,n)
]

=
nk

2
+ n(k − 1)(1 −

1

2diam(Hk,n)−1
).

Therefore, the proof is completed. ⊓⊔

Theorem 2.6. Let Hk,n be a Harary Graph on n vertices where k > 3 is odd, n is even, and

diam(Hk,n) > 2 and n ≡ 0 (mod (k − 1)). Then,

• if diam(Hk−1,n) is odd, then

C(Hk,n) =
nk

2
+ n(k − 1)(1−

1

2diam(Hk,n)−2
) +

2n(k − 2)

2diam(Hk,n)

• if diam(Hk−1,n) is even, then

C(Hk,n) =
nk

2
+ n(k − 1)(1 −

1

2diam(Hk,n)−2
) +

n(k − 3)

2diam(Hk,n)
.

Proof:

Let n ≡ 0 (mod (k − 1)). Therefore, diam(Hk−1,n ) =
n

k−1 ∈ Z. Similar to the proof of Theorem

2.4, without loss of generality, let’s consider the distance of vertex 0 from all other vertices. According

to form of Hk−1,n, there are n
k−1 city-tour from vertex 0 to vertex n/2. Vertices 0 are n/2 diametrically

opposite in Hk,n, we get diam(Hk,n) =
⌈

n
2k−2

⌉

+1. Thus, there are 2 · ( (k−1)
2 − 1) = k− 3 vertices

occur diametrically distance from vertex 0 utilizing (diam(Hk−1,n )− 1) city-tour and one unit.

If diam(Hk−1,n) is odd there are (k − 1) + 1 = k vertices one distance from vertex 0, there are

2(k − 1) vertices at most diam(Hk,n)− 1 distance and at least 2 distance from vertex 0 and there are

(k− 1) + (k− 3) vertices diam(Hk,n)−distance from vertex 0. Thus, the total value for n vertices is

C(Hk,n) = n[k
1

2
+ 2(k − 1)

1

22
+ ...+ 2(k − 1)

1

2diam(Hk,n)−1
+

(k − 1) + (k − 3)

2diam(Hk,n)
].

If diam(Hk−1,n) is even, there are (k − 1) + 1 = k vertices one distance from vertex 0, there are

2(k − 1) vertices at 2, 3, ..., (diam(Hk,n)− 1) distance from 0, and there are totally (k − 3) vertices

diam(Hk,n) distance from vertex 0 in both directions. Thus, the total value for n vertices is

C(Hk,n) = n[k
1

2
+ 2(k − 1)

1

22
+ ...+ 2(k − 1)

1

2diam(Hk,n)−1
+

(k − 3)

2diam(Hk,n)
].

Then the proof is completed. ⊓⊔
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Corollary 2.7. Let Hk,n be a Harary Graph on n vertices where k = 3 and n is even, and

diam(Hk,n) > 2.

• if diam(H2,n) is odd, then

C(Hk,n) =
7n

2
−

6n

2diam(Hk,n)

• if diam(H2,n) is even, then

C(Hk,n) =
7n

2
−

2n

2diam(Hk,n)−1
.

Proof:

If k = 3 then n ≡ 0 (mod (k − 1)). However, for diam(H2,n) is even, this corollary is not a special

case of the previous theorem due to the calculation of diameter.

If diam(H2,n) is odd there are three vertices one distance from vertex 0, there are four vertices at

most (diam(Hk,n) − 1) distance and there are two vertices at diam(Hk,n)−distance from vertex 0.

Thus, the total value for n vertices is

C(Hk,n) =
3n

2
+ 4n[

1

22
+ ...+

1

2diam(Hk,n)−1
] +

2

2diam(Hk,n)

=
3n

2
+ 2n(1−

3

2diam(Hk,n)
)

=
7n

2
−

6n

2diam(Hk,n)
.

If diam(Hk−1,n) is even, there are three vertices at one distance from vertex 0, there are four

vertices at 2, 3, ...,(diam(Hk,n) distance from 0. Thus, the total value for n vertices is

C(Hk,n) =
3n

2
+ 4n[

1

22
+ ...+

1

2diam(Hk,n)
]

=
3n

2
+ 2n(1−

1

2diam(Hk,n)−1
)

=
7n

2
−

2n

2diam(Hk,n)−1
. ⊓⊔

Theorem 2.8. Let Hk,n be a Harary Graph on n vertices where k is odd n is odd and

diam(Hk,n) ≤ 2. Then,

C(Hk,n) =







n(n−1)
2 , if diam(Hk,n) = 1

n2+nk−n+1
4 , if diam(Hk,n) = 2

.

Proof:

If diam(Hk,n) = 1 then the distance of n vertices to n− 1 vertices is 1. Thus, we have,

C(Hk,n) =
n(n− 1)

2
.
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Let diam(Hk,n) = 2. For the vertex labeled by (n − 1)/2, there are (k + 1) vertices that are

adjacent to (n− 1)/2, and there are (n− 1)− (k + 1) = n− k − 2 vertices at a distance of two. For

the remaining (n− 1) vertices, there are k adjacent vertices and (n− k− 1) vertices at two distances

to them. Therefore, we have

C(Hk,n) =
k + 1

2
+

n− k − 2

22
+ (n+ 1)[

k

2
+

n− k − 1

22
]

=
n2 + nk − n+ 1

4
.

Thus, the theorem holds. ⊓⊔

Theorem 2.9. Let Hk,n be a Harary Graph on n vertices where k ≥ 3 is odd, n is odd, and

diam(Hk,n) > 2. Then,

C(Hk,n) =
A+ kn+ 1

2
+

nt−A− 1

2diam(Hk,n)
+ (k − 1)(nB −

diam(Hk,n)− 3

2
− (

1

2
)diam(Hk,n)−1)

where (n−k−1) ≡ t (mod 2(k−1)), A = (diam(Hk,n)−2)(k−1) and B = 1−(12 )
diam(Hk,n)−2.

Proof:

In this case, the graph is not vertex-transitive [21]. Let V (Hk,n) = {0, 1, ..., n − 1} be the vertex

set of the graph. The closeness value is obtained as different as the value of the diameter in the

graph. The first type of closeness belongs to vertex v = n−1
2 , the other types of closeness come

from vertices v = n−1
2 ± ((k−1

2 )j + i), for 0 ≤ j ≤ (diam(Hk,n) − 3) and 1 ≤ i ≤ (k−1
2 ) .

This means that there are (diam(Hk,n) − 2) vertex groups include (k − 1) vertices with the same

closeness value on both sides of the vertex n−1
2 . The other closeness value gets from remaining

n − (k − 1)(diam(Hk,n) − 2) − 1 vertices. In addition, we can create a set, denoted by RM, that

includes these remaining n − (k − 1)(diam(Hk,n) − 2) − 1 vertices. Here, there are t vertices at

distance diameter to vertices in the set RM where (n− k − 1) ≡ t(mod 2(k − 1)).
Let us choose vertex 0 from RM. Since there are (n − k − 1) vertices in the graph at 2, 3, ...

diam(Hk,n) distances from vertex 0 and we can make 2, 3, ...(diam(Hk,n)− 1) city-tour from vertex

0, each city-tour covers 2(k − 1) vertices. Therefore remaining t number of vertices can be reached

by diam(Hk,n)− 1 city-tour plus one village tour.

For the vertex v = n−1
2 , there are k + 1 vertices in distance one, there are 2(k − 1) vertices in

each distance 2, 3, ..., (diam(Hk,n) − 1) and since there are two diametrically opposite vertices of

v = n−1
2 , there are t− 1 vertices at distance diam(Hk,n). Hence, the closeness value of v = n−1

2 is

C(v) =
k + 1

2
+

diam(Hk,n)−1
∑

i=2

2(k − 1)

2i
+

t− 1

2diam(Hk,n)
. (3)

Using the eqution (1), we have

C(
n− 1

2
) =

k + 1

2
+ (k − 1)(1− (

1

2
)diam(Hk,n)−2) +

t− 1

2diam(Hk,n)
. (4)
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For each index j where 0 ≤ j ≤ (diam(Hk,n) − 3), the vertices v = n−1
2 ± ((k−1

2 )j + i) for

1 ≤ i ≤ (k−1
2 ), each j group is ( 1

2j+1 − 1
2j+2 ) less than the closeness value of the vertex n−1

2 . Then,

there are (diam(Hk,n)− 2) group with (k− 1) vertices. Thus, the total closeness value of these kinds

of vertices

C(v) = (k − 1)[C(
n− 1

2
)− (

1

2
−

1

22
)] + (k − 1)[C(

n − 1

2
)− (

1

2
−

1

22
)

− (
1

22
−

1

23
)]+ ...+(k − 1)[C(

n − 1

2
)− (

1

2
−

1

22
)− ...−(

1

2diam(Hk,n)−2
−

1

2diam(Hk,n)−1
)]

= (k − 1)[(diam(Hk,n − 2)C(
n− 1

2
)

− ((diam(Hk,n − 2))
1

4
− (diam(Hk,n − 3))

1

8
− ...−

1

2diam(Hk,n)−1
)].

Then, we get

C(v) = (k − 1)[(diam(Hk,n − 2)C(
n− 1

2
)−

diam(Hk,n)−1
∑

i=2

diam(Hk,n)− i

2i
].

Using formula (2) for X = 1/2 and h = diam(Hk,n), then we have

C(v) = (k − 1)[(diam(Hk,n − 2)C(
n − 1

2
)− (k − 1)(

diam(Hk,n)− 3

2
+

1

2diam(Hk,n)−1
) (5)

For the remaining vertex in the set RM , there are k vertices at distance one, there are 2(k − 1)
vertices at each distance 2, 3, ..., (diam(Hk,n) − 1) and there are t vertices at distance diam(Hk,n).
We can choose vertex v in RM as vertex 0. Thus, the closeness value of a vertex v in RM is

C(0) =
k

2
+

diam(Hk,n)−1
∑

i=2

2(k − 1)

2i
+

t

2diam(Hk,n)
. (6)

Applying the formula (1), we have

C(0) =
k

2
+ (k − 1)(1 − (

1

2
)diam(Hk,n)−2) +

t

2diam(Hk,n)
. (7)

Also, there are n− (k − 1)(diam(Hk,n)− 2)− 1 vertices of this type in the graph. Therefore, using

equations (4),(5) and (7) the closeness value of Hk,n can be expressed as for odd values of k and n

C(Hk,n) = C(
n− 1

2
)

+ (n− (k − 1)(diam(Hk,n)− 2)− 1)C(0)

+ (k − 1)(diam(Hk,n − 2))C(
n − 1

2
) (8)

− (k − 1)[(
(diam(Hk,n)− 3)

2
) +

1

2diam(Hk,n)−1
].
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In order to get rid of burden in equation (8) in terms of notation, we can take A = (diam(Hk,n) −
2)(k− 1) and B = 1− (12 )

diam(Hk,n)−2 and substitute A and B into the (4), (5) and (7). Thus, we can

express closeness value

C(Hk,n) =
A+ kn+ 1

2
+

nt−A− 1

2diam(Hk,n)
+ (k − 1)(nB −

diam(Hk,n)− 3

2
− (

1

2
)diam(Hk,n)−1).

The closeness value is yield. ⊓⊔

Before considering the closeness value of the Consecutive Circulant Graph, the connection can be

made with the Harary Graph. Consecutive Circulant Graph definition corresponds to Harary Graph

structure when k is even. Thus the following result can be obtained from Theorem 2.1.

Corollary 2.10. Let Cn,[ℓ] be Consecutive Circulant Graph and (n − 1) ≡ t (mod2ℓ) then closeness

of Cn,[ℓ]

C(Cn,[ℓ] ) =







n · (2l + (12 )
diam(Cn ,[ℓ])(t− 4l)) , if t 6= 0

2nl · (1−
1

2diam(Cn ,[ℓ])
) , if t = 0

where diam(Cn,[ℓ] ) =
⌈

n
2l

⌉

when t 6= 0 and diam(Cn,[ℓ] ) =
⌊

n
2l

⌋

when t = 0.

Proof:

The definition of Consecutive Circulant Graph overlaps the definition of Harary Graph when k = 2l.
Therefore, the Consecutive Circulant Graph is a Harary Graph for k is even case. Thus, substitute 2l
into the k and diam(Hk,n) = diam(Cn,[ℓ] ) into the Theorem 2.1. We get

C(Cn,[ℓ] ) =







n · (2l + (12 )
diam(Cn,[ℓ])(t− 4l)) , if t 6= 0

2nl · (1−
1

2diam(Cn ,[ℓ])
) , if t = 0

.

⊓⊔

3. Vertex residual closeness of Harary Graphs, Hk,n

In this section, we will calculate the (vertex) residual closeness value of the Harary Graph for each

situation, which is denoted as R. This value corresponds to the minimum value of Ck which represents

the closeness value after removal of vertex k. As a result, we will identify the most sensitive node in

the graph for each specific case.

Theorem 3.1. Let Hk,n be a Harary Graph on n vertices where k > 2 is even and diam(Hk,n) > 2.
Then, residual closeness value of Hk,n

• If n ≡ 1 (mod k), then

R =
n− 2

n
C(Hk,n)− 1 + (

1

2
)diam(Hk,n) · (1 + diam(Hk,n))
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• If n 6≡ 1 (mod k), then

R =
n− 2

n
C(Hk,n)− 1 + (

1

2
)diam(Hk,n)−1 · diam(Hk,n)

where C(Hk,n) is closeness value for k is even.

Proof:

Since k is even the Hk,n is vertex transitive. Therefore, removing any vertex from the graph will have

the same effect on the closeness value. Without loss of generality, let the vertex 0 be deleted from the

graph. Thus,

C0 = C(Hk,n)− 2
∑

j 6=0

1

2d(0,j)
−D0

=
n− 2

n
· C(Hk,n)−D0

where D0 denotes changes in closeness value of C(Hk,n) after deleting 0 and also C(Hk,n) =
n
∑

j 6=0

1
2d(0,j)

for k is even. The value of C(Hk,n) is calculated in Theorem 2.1. Let evaluate value

of D0 in terms of value of n in (mod k).

Observation 1. for D0:

If n ≡ 1 (mod k) then there are k vertices at distance 1, 2, 3, ..., diam(Hk,n) where diam(Hk,n) =
⌊

n
k

⌋

. When vertex 0 is deleted, the distances between for each vertex k
2 .(j − 1) and n − k

2 i where

1 ≤ i ≤ (diam(Hk,n)− j+1) and 2 ≤ j ≤ diam(Hk,n) increase by 1. Hence, D0 =
diam(Hk,n)

∑

i=2

i−1
2i

.

The summation can be expanded as

diam(Hk,n)
∑

i=2

i− 1

2i
= (

1

22
+

2

23
+ ...+

diam(Hk,n)− 1

2diam(Hk,n)
)

and the summation can be modified as

=
1

22
(1 +

2

2
+

3

22
+ ...+

diam(Hk,n)− 1

2diam(Hk,n)−2
) (9)

and the summation result in (9) is obtained by using equation (2), substituting X = 1
2 and h =

diam(Hk,n) into the equation. Thus, we get

=
1

22
(
diam(Hk,n) ·

1
2

(diam(Hk,n)−1)

(1/2) − 1
−

1
2

diam(Hk,n) − 1

((1/2) − 1)2
) (10)

Thus, we get
diam(Hk,n)

∑

i=2

i− 1

2i
= 1− (diam(Hk,n) + 1)(

1

2
)diam(Hk,n)) (11)
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Observation 2. for D0:

If n 6≡ 1 (mod k) then there are k vertices at distance 1, 2, 3, ..., diam(Hk,n)−1 where diam(Hk,n)=
⌈

n
k

⌉

and there are (n − 1 − (diam(Hk,n) − 1)k) vertices at distance diam(Hk,n). If the vertex 0 is

deleted, the distances between for each vertex k
2 (j − 1) and the vertices n − k

2 i where 1 ≤ i ≤
(diam(Hk,n)− j) and 2 ≤ j ≤ diam− 1 increase by 1. Thus,

D0 =
diam(Hk,n)−1

∑

i=2

i−1
2i

. Using equation (11), we can express the summation as

diam(Hk,n)−1
∑

i=2

i− 1

2i
= 1− diam(Hk,n)(

1

2
)diam(Hk,n)−1. (12)

Hence, utilizing equations (11) and (12)

If n ≡ 1 (mod k)

R =
n− 2

n
C(Hk,n)− 1 + (

1

2
)diam(Hk,n) · (1 + diam(Hk,n))

If n 6≡ 1 (mod k)

R =
n− 2

n
C(Hk,n)− 1 + (

1

2
)diam(Hk,n)−1 · diam(Hk,n)

where C(Hk,n) is closeness value for k is even. Therefore, the proof is completed. ⊓⊔

Remark 3.2. For k = 2, the Harary Graph corresponds to the cycle graph. Therefore, the residual

closeness value of Cn is obtained in [13]. Additionally, when k is even and the diameter is 2, in the

case of n ≡ 1 (mod k), Theorem 3.1 yields the correct result. However, when k is even and either

n 6≡ 1 (mod k) or the diameter is 1, Theorem 3.1 does not apply. In these situations, the D0 value

vanishes. Therefore, the residual closeness value R = n−2
n C(Hk,n) is obtained.

Theorem 3.3. Let Hk,n be a Harary Graph on n vertices where k > 3 is odd and n is even and

diam(Hk,n) > 2. Then, residual closeness value of Hk,n can be expressed as follows:

• If n = (k − 1)(2diam(Hk,n)− 1) + 2, then

R =
n− 2

n
C(Hk,n)− (1−

(1 + diam(Hk,n))

2diam(Hk,n)
)

• If n 6= (k − 1)(2diam(Hk,n)− 1) + 2, then

R =
n− 2

n
C(Hk,n)− (1−

diam(Hk,n)

2diam(Hk,n)−1
).

where C(Hk,n) closeness value of Harary Graph for k is odd and n is even.
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Proof:

As in the previous theorem, the graph is vertex transitive. However, there are two observations in this

case after removing a vertex from the graph. Without loss of generality, let the vertex 0 be deleted

from the graph. Thus, similar to the case when k is an even number,

C0 = C(Hk,n)− 2
∑

j 6=0

1

2d(0,j)
−D0

=
n− 2

n
C(Hk,n)−D0

where D0 denotes changes in closeness value of C(Hk,n) after deleting 0 and also, C(Hk,n) =
n
∑

j 6=0

1
2d(0,j)

for k is odd, n is even. It can be observed that when n 6= (k− 1)(2.diam(Hk,n)− 1)+2,

we can make city-tours with diam(Hk,n) moves and visiting first vertex n/2 traverse through city-

tours with diam(Hk,n) moves from vertex 0. The vertex diam(Hk,n)(
k−1
2 ) covered in diam(Hk,n)

th

city-tour at most from both direction. Nevertheless, when n = (k − 1)(2.diam(Hk,n) − 1) + 2, we

can reach the vertex diam(Hk,n)(
k−1
2 ) with diam(Hk,n) + 1 moves visiting diametrically opposite

vertex first. Therefore, we can examine the situation in two cases:

Case 1. for D0: Let n 6= (k− 1) · (2diam(Hk,n)− 1)+ 2. When vertex 0 is deleted, the diameter

of the graph stays the same. Also, the distances between for each vertex that are
(k−1)(j−1)

2 and the

vertices n − (k−1)
2 i where 1 ≤ i ≤ (diam(Hk,n) − j) and 2 ≤ j ≤ diam(Hk,n) − 1 increase by 1.

Therefore, changes in closeness value are

D0 =

diam(Hk,n)−1
∑

i=2

i− 1

2i

= 1− diam(Hk,n)(
1

2
)diam(Hk,n)−1

from equation (12).

Case 2. for D0: Let n = (k − 1) · (2diam(Hk,n) − 1) + 2. When the vertex 0 is deleted, the

diameter of the graph increases by 1. Also, the distances between for each vertex (k − 1)(j − 1)/2

and the vertices n− (k−1)
2 i where 1 ≤ i ≤ (diam(Hk,n)− j + 1) and 2 ≤ j ≤ diam(Hk,n) increase

by 1. Hence, chances in closeness value is

D0 =

diam(Hk,n)
∑

i=2

i− 1

2i

= 1− (diam(Hk,n) + 1)(
1

2
)diam(Hk,n))

from equation (11). Thus, the proof is done. ⊓⊔

Corollary 3.4. Let Hk,n be a Harary Graph on n vertices where k = 3 and n is even and

diam(Hk,n) > 2. Then, residual closeness value of Hk,n is
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• If n 6= 4diam(Hk,n)

R =
n− 2

n
C(Hk,n)−

3

2
(1− diam(Hk,n)(

1

2
)(diam(Hk,n)−1)).

• If n = 4diam(Hk,n)

R =
n− 2

n
C(Hk,n)−

3

2
+

2diam(Hk,n) + 1

2diam(Hk,n)
.

where C(Hk,n) closeness value of Harary Graph for k = 3 and n is even.

Proof:

As proof of the previous theorem, when a vertex is removed from the graph, two situations are ob-

served for k = 3. Without loss of generality, let delete the vertex 0 from the graph. Therefore, the

total closeness value of a graph after removing vertex 0 is

C0 = C(Hk,n)− 2
∑

j 6=0

1

2d(0,j)
−D0

=
n− 2

n
C(Hk,n)−D0

where D0 denotes changes in closeness value of C(Hk,n) after deleting 0 and also C(Hk,n) =
n
∑

j 6=0

1
2d(0,j)

for k = 3, n is even. It can be observed that when n 6= (4diam(Hk,n)), we can

make city-tours with diam(Hk,n) moves and visiting first vertex n/2 traverse through city-tours with

diam(Hk,n) moves from vertex 0. The vertex diam(Hk,n) covered in diam(Hk,n)
th city-tour from

both direction. Nevertheless, when n = (4diam(Hk,n), we can reach the vertex diam(Hk,n) with

diam(Hk,n) + 1 moves visiting diametrically opposite vertex first. Therefore, the residual closeness

value can be obtained in the following two cases:

Case 1. for D0: Let n be distinct from (4diam(Hk,n)). When vertex 0 is deleted, the distances

between for each vertex i and (n− j) where 1 ≤ i ≤ (diam(Hk,n)− 2) and 1 ≤ j ≤ diam(Hk,n)−
i− 1 are increased by 2. Hence, changes in closeness value are

D0 = 2(

diam(Hk,n)−1
∑

i=2

i− 1

2i
−

1

4

diam(Hk,n)−1
∑

i=2

i− 1

2i
)

=
3

2

diam(Hk,n)−1
∑

i=2

i− 1

2i

=
3

2
(1− diam(Hk,n)(

1

2
)(diam(Hk,n)−1)).

the result of D0 is obtained from equations (12).
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Case 2. for D0: Let n = (4diam(Hk,n)) . When vertex 0 is deleted, the distances between for

each vertices i and (n − j) where 1 ≤ i ≤ (diam(Hk,n)− 1) and 1 ≤ j ≤ diam(Hk,n)− i− 1 are

increased by 2. Additionally, distance between vertices i and n − diam(Hk,n) + i, where 1 ≤ i ≤
(diam(Hk,n)− 1), is increased by 1. Hence, changes in closeness values are

D0 = 2 · [

diam(Hk,n)−1
∑

i=2

i− 1

2i
−

1

4

diam(Hk,n)−1
∑

i=2

i− 1

2i
+ (

diam(Hk,n)− 1

2diam(Hk,n)
−

diam(Hk,n)− 1

2diam(Hk,n)+1
)]

=
3

2
·

diam(Hk,n)−1
∑

i=2

i− 1

2i
+

diam(Hk,n)− 1

2diam(Hk,n)

=
3

2
· (1− diam(Hk,n)(

1

2
)(diam(Hk,n)−1)) +

diam(Hk,n)− 1

2diam(Hk,n)

=
3

2
−

2diam(Hk,n) + 1

2diam(Hk,n)
.

the result of D0 is obtained from equations (12). Thus, the proof is done. ⊓⊔

Theorem 3.5. Let Hk,n be a Harary Graph on n vertices where k > 3 and n are odd and

diam(Hk,n) > 2. Then, residual closeness value of Hk,n

R = C(Hk,n)− 3k − 2 + (
4k − 3− t+ 3diam(Hk,n)

2diam(Hk,n)−1
).

where (n − k − 1) ≡ t(mod (2(k − 1))) and C(Hk,n) is closeness value of Harary Graph for k and

n is odd.

Proof:

In this case, graph is not vertex transitive. We want to get a minimum closeness value of
∑

i 6=v,
∀i∈V (Hk,n)

Cv(i)

when vertex v removed from the graph. Let us consider the closeness values after removing the vertex

according to the types.

Observation 1. If v = n−1
2 removed from the graph, then

Cv(i) = C(Hk,n)− 2C(v)−Dv

where Dv denotes changes in the closeness value when v = n−1
2 removed from the graph. When

vertex v is deleted, the distances of vertices
(n−1)

2 − (k−1
2 )i and

(n−1)
2 + (k−1

2 )i to vertices (k−1
2 )j,

n − (k−1
2 )j − 1 increased by 1, respectively where 1 ≤ i ≤ (diam(Hk,n) − 2) and 0 ≤ j ≤

(diam(Hk,n)−(i+2)). In addition, the distances between vertices
(n−1)

2 −(k−1
2 )i and

(n−1)
2 +(k−1

2 )j
where 1 ≤ i ≤ (diam(Hk,n) − 2) and 1 ≤ j ≤ (diam(Hk,n) − (i + 1)) are also increased by 1.

Therefore, changing is expressed as
diam(Hk,n)−1

∑

i=2

i−1
2i

. If we consider these three kinds of situations
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then the total closeness value 6
diam(Hk,n)−1

∑

i=2

i−1
2i

modifies to 1
2 · 6

diam(Hk,n)−1
∑

i=2

i−1
2i

. Therefore, the

changes in closeness value can be expressed as

Dv = 3
diam(Hk,n)−1

∑

i=2

i−1
2i

. Hence we have,

Cv(i) = C(Hk,n)− 2C(
n− 1

2
)− 3

diam(Hk,n)−1
∑

i=2

i− 1

2i

Using equation (12), we get

= C(Hk,n)− 2C(
n− 1

2
)− 3(1 − diam(Hk,n)(

1

2
)diam(Hk,n)−1). (13)

Observation 2. If one of the v = n−1
2 ± i, 1 ≤ i ≤ k−1

2 vertices removed from the graph then two

situations will be appeared.

Cv(i) = C(Hk,n)− 2C(v)−Dv

where Dv denotes changes in the closeness value when the vertex v is removed from the graph. This

observation can be separated into two cases:

Case 1. When one of the v = n−1
2 ± i, 1 ≤ i ≤ k−3

2 removed from the graph:

Assume that for i = 1 the corresponding vertex v = n−1
2 + 1 = n+1

2 is deleted. After the vertex

v = n+1
2 is removed from the graph; the distances between vertices v + (k−1

2 )m and v − (k−1
2 )j

which are connected with 2, 3, ..., (diam(Hk,n) − 1) city-tour, where 1 ≤ m ≤ diam(Hk,n) − 2

and 1 ≤ j ≤ diam(Hk,n) − (m + 1), are increased by 1. Therefore, the value
diam(Hk,n)−1

∑

i=2

i−1
2i

is

half-modified.

Analogously, the distance between vertices v− (k−1
2 )m and (v+ n−1

2 ) mod (n−1)+(k−1
2 )j where

1 ≤ m ≤ diam(Hk,n)− 2 and 0 ≤ j ≤ diam(Hk,n)− (m+ 1) are increased by 1. Here, the vertex

(v + n−1
2 ) mod (n−1) is diametrically opposite vertex of v. Therefore, the value

diam(Hk,n)−1
∑

i=2

i−1
2i

is

half-modified. This implies that

Cv(i) = C(Hk,n)− 2C(
n+ 1

2
)− 2

diam(Hk,n)−1
∑

i=2

i− 1

2i
. (14)

The same modification should be considered for the reverse order of vertex pairs that have increased

the distance between them by 1. Therefore, the coefficient of variation was multiplied by 4. Equation

(12) can be substituted as
diam(Hk,n)−1

∑

i=2

i−1
2i

= (1− diam(Hk,n)(
1
2)

diam(Hk,n)−1) in equation (14).

Cv(i) = C(Hk,n)− 2C(
n+ 1

2
)− 2(1 − (diam(Hk,n) · (

1

2
)diam(Hk,n)−2)).
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Case 2. When one of the v = n−1
2 ± k−1

2 removed from the graph:

Assume that the vertex v = n−1
2 − k−1

2 is deleted. After the vertex v is removed from the graph, the dis-

tances between vertices v+(k−1
2 )m and v−(k−1

2 )j which are connected with 2, 3, ..., (diam(Hk,n)−
1) city-tour, where 1 ≤ m ≤ diam(Hk,n) − 2 and 1 ≤ j ≤ diam(Hk,n) − (m + 1), are increased

by 1. Therefore, the value
diam(Hk,n)−1

∑

i=2

i−1
2i

is half-modified.

Analogously, the distance between vertices v−(k−1
2 )m and (v+ n−1

2 ) mod (n−1)+(k−1
2 )j, where

1 ≤ m ≤ diam(Hk,n) − 3 and 0 ≤ j ≤ diam(Hk,n) − (m + 2), is increased by 1. Therefore, the

value
diam(Hk,n)−1

∑

i=2

i−1
2i

is half-modified. This implies that; the distance between vertices v + k−1
2 and

v− k−1
2 is increased by 1. Since the distance between the vertex v− (k−1

2 ) and vertex 0 is three before

removing the vertex v. This implies that

Cv(i) = C(Hk,n)− 2C(
n− 1

2
−

k − 1

2
)−

diam(Hk,n)−1
∑

i=2

i− 1

2i
−

diam(Hk,n)−1
∑

i=3

i− 1

2i
(15)

Using geometric sum formula (1) and its derivative (2), the equation (15) evaluated as in equation (12)

Cv(i) = C(Hk,n)− 2C(
n− 1

2
−

k − 1

2
)− (1− (diam(Hk,n)(

1

2
)diam(Hk,n)−2)) +

1

4
. (16)

Observation 3. If v ∈ RM removed from graph, then

Cv(i) = C(Hk,n)− 2C(v)−Dv

where Dv denotes changes in the closeness value when v is removed from the graph. Let the vertex

0 is removed from the graph. The distance between vertices k−1
2 m and (k−1

2 ) mod n + (k−1
2 )j where

1 ≤ m ≤ diam(Hk,n)− 2 and 1 ≤ j ≤ diam(Hk,n)− (m+ 1), is increased by 1. This implies that

Cv(i) = C(Hk,n)− 2C(0) −

diam(Hk,n)−1
∑

i=2

i− 1

2i

Using summation (12), the following equation can be expressed as

= C(Hk,n)− 2C(0) − (1− (diam(Hk,n)(
1

2
)diam(Hk,n)−1)) (17)

for any vertex v in the set of RM. In order to get minimum residual value of Hk,n when k and n are

odd, it is needed to compare closeness value of vertices labeled by n−1
2 , n−1

2 ± i , for 1 ≤ i ≤ k−1
2

and remaining vertices in the set RM first. We have the closeness value of a vertices from equations

(4), (5), and (7) where (n − k − 1) ≡ t mod 2(k − 1). It can be said from proof of Theorem 2.9

that C(n−1
2 ) is the maximum closeness value among other closeness values of vertices. In order to

obtain minimum value after a vertex is removed from the graph, let us compare the values of equations
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(13), (15), (16), and (17). If we compare the change values after removing the vertex, denoted by Dv,
Cv(

n−1
2 ) corresponds to residual closeness value due to the maximum closeness value comes from

C(n−1
2 ). Therefore, we get

R = C(Hk,n)− 2C(
n− 1

2
)− 3(1 − diam(Hk,n)(

1

2
)diam(Hk,n)−1)

where

C(
n− 1

2
) =

k + 1

2
+ (k − 1)(1 − (

1

2
)diam(Hk,n)−2) +

t− 1

2diam(Hk,n)
.

Hence, we obtain the residual value simply as

R = C(Hk,n)− 3k − 2 + (
4k − 3− t+ 3diam(Hk,n)

2diam(Hk,n)−1
).

Then, the proof is completed. ⊓⊔

If k = 3, this case will be considered separately due to the distinct changes in distances when a vertex

is removed from the graph. Relying on the proof of Theorem 3.5, the smallest residual value for the

special case of k = 3 will also be obtained by removing the vertex v = n−1
2 . The result for the case

k = 3 is as follows:

Corollary 3.6. Let Hk,n be a Harary Graph on n vertices where k = 3 and n are odd, diam(Hk,n) >
3, and (n− 4) ≡ t(mod 4) Then, residual closeness value of Hk,n:

If t = 3, then

R = C(Hk,n)− 11, 75 +
8diam(Hk,n) + 11

2diam(Hk,n)
.

If t = 1, then

R = C(Hk,n)− 11, 75 +
9diam(Hk,n) + 13

2diam(Hk,n)
.

where C(Hk,n) is closeness value of Harary Graph for k and n is odd.

Proof:

In this case, graph is not vertex transitive. We want to get minimum closeness value of
∑

i 6=v,
∀i∈V (Hk,n)

Cv(i)

when vertex v = n−1
2 removed from the graph as in the proof of Theorem 3.5. Additionally, we will

examine the case for k = 3 in two different scenarios based on whether the value of t is equivalent to

1 or 3:

Case 1. Let (n− 4) ≡ 3(mod 4)

Cv(i) = C(Hk,n)− 2C(v)−Dv

where Dv denotes changes in the closeness value when v = n−1
2 removed from the graph. When

vertex v is deleted, the distances of vertices
(n−1)

2 − i and
(n−1)

2 + i to the vertices j, n − j − 1 is
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increased by 1 where 1 ≤ i ≤ (diam(Hk,n)−2) and 0 ≤ j ≤ (diam(Hk,n)−(i+2)). Therefore, the

total closeness value before vertex removal can be expressed as
diam(Hk,n)−1

∑

i=2

i−1
2i

for each indicated

vertex pairs. If we consider these four kinds of situations then total change between vertices can be

calculated as follows:

Total closeness value (4
diam(Hk,n)−1

∑

i=2

i−1
2i

) modifies to (12 · 4
diam(Hk,n)−1

∑

i=2

i−1
2i

). Therefore, the

total changes in closeness value can be expresses as (2
diam(Hk,n)−1

∑

i=2

i−1
2i

).

In addition, the distances between vertices
(n−1)

2 − i and
(n−1)

2 +j where 1 ≤ i ≤ (diam(Hk,n)−
2) and 1 ≤ j ≤ (diam(Hk,n)− (i+ 1)) also increases. The changing can be evaluated as follows:

Before removal, the total closeness value between indicated vertex pairs can be expressed as

(2
diam(Hk,n)−1

∑

i=2

i−1
2i

) and after removal, the total closeness value between indicated vertex pairs can

expressed as (2 · (
diam(Hk,n)−2

∑

i=2

i−1
2i+3 +

diam(Hk,n)−2

2
diam(Hk,n)+1 )). Thus, the Dv = (154

diam(Hk,n)−1
∑

i=2

i−1
2i

)−

(
diam(Hk,n)−2

2
diam(Hk,n)+1 ) value is obtained.

Hence, using equation (12)

Cv(i) = C(Hk,n)− 2C(
n− 1

2
)− (

15

4
−

16diam(Hk,n)− 2

2(diam(Hk,n)+1)
)

Substituting the equation (4) of the form k = 3 and t = 3, we obtain the residual closeness value as:

= C(Hk,n)− 11, 75 +
8diam(Hk,n) + 11

2diam(Hk,n)
. (18)

Case 2. Let (n− 4) ≡ 1(mod 4)

Cv(i) = C(Hk,n)− 2C(v)−Dv

where Dv denotes changes in the closeness value when v = n−1
2 removed from the graph. When

vertex v is deleted, as in Case 1, the distances of vertices
(n−1)

2 − i and
(n−1)

2 + i to the vertices j,

n− j− 1 are increased by 1 where 1 ≤ i ≤ (diam(Hk,n)− 2) and 0 ≤ j ≤ (diam(Hk,n)− (i+2)).

Therefore, the total closeness value before vertex removal can be expressed as
diam(Hk,n)−1

∑

i=2

i−1
2i

for

each indicated vertex pairs. If we consider these four kinds of situations then total change between

vertices can be calculated as follows:
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Total closeness value between indicated pairs (4
diam(Hk,n)−1

∑

i=2

i−1
2i

) modify to

(12 · 4
diam(Hk,n)−1

∑

i=2

i−1
2i

). Therefore, the total changes in closeness value can be expressed as

(2
diam(Hk,n)−1

∑

i=2

i−1
2i

).

In addition, the distances between vertices
(n−1)

2 − i and
(n−1)

2 +j where 1 ≤ i ≤ (diam(Hk,n)−
2) and 1 ≤ j ≤ (diam(Hk,n)− (i+ 1)) also increases. The changing can be evaluated as follows:

Before removal, the total closeness value between indicated vertex pairs can be expressed as

(2
diam(Hk,n)−1

∑

i=2

i−1
2i

), and after removal, the total closeness value between indicated vertex pairs can

expressed as (2 · (
diam(Hk,n)−2

∑

i=2

i−1
2i+3 +

diam(Hk,n)−2

2
diam(Hk,n) )). Thus, Dv = (154

diam(Hk,n)−1
∑

i=2

i−1
2i

) −

(
3diam(Hk,n−6)

2
diam(Hk,n)+1 ) value is obtained.

Hence, using equation (12), we get

Cv(i) = C(Hk,n)− 2C(
n− 1

2
)− (

15

4
−

9diam(Hk,n)− 3

2diam(Hk,n)
)

Substituting the equation (4) of the form k = 3 and t = 1, we obtain the residual closeness value as:

R = C(Hk,n)− 11, 75 +
9diam(Hk,n) + 13

2diam(Hk,n)
. (19)

⊓⊔

Remark 3.7. Due to the constraints established in the proof of Corollary 3.6, the diameter value was

considered to be greater than 3. Thus, for odd values of n and k = 3, residual closeness values for

diameter values 2 and 3 were not formulated. To ensure completeness in the calculations, we can

provide the residual closeness values for the remaining four specific small Harary Graph structures as

follows: R(H3,5) = 5, R(H3,7) = 11, R(H3,9) = 17.5, R(H3,11) = 24.875.
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