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Abstract. A set C of vertices in a graph G = (V,E) is an identifying code if it is dominating

and any two vertices of V are dominated by distinct sets of codewords. This paper presents a

survey of Iiro Honkala’s contributions to the study of identifying codes with respect to several

aspects: complexity of computing an identifying code, combinatorics in binary Hamming spaces,

infinite grids, relationships between identifying codes and usual parameters in graphs, structural

properties of graphs admitting identifying codes, and number of optimal identifying codes.
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1. Introduction

The graphs G = (V,E) (V is the vertex set of G and E its edge set) that we shall consider in this article

are undirected and, unless otherwise stated, connected. A code is any subset of V , whose elements

are called codewords. For any integer r > 1, the ball of radius r, or the r-ball, of a vertex v ∈ V
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is the set Br(v) = {u ∈ V : 0 6 d(u, v) 6 r}, where the considered distance d is the one provided

by the length of a shortest path between u and v (for r = 1, B1(v) is the same as the usual closed

neighbourhood N [v]). Two distinct vertices v1 and v2 are said to be r-twins if they share the same

r-ball: Br(v1) = Br(v2).

Definition 1. For any code C ⊆ V and any vertex v ∈ V , the r-identifying set Ir(C; v) of v with

respect to C is defined by Ir(C; v) = Br(v) ∩ C . Furthermore, for any subset S of V , we set:

Ir(C;S) =
⋃

v∈S Ir(C; v).

In other words, Ir(C; v) is the set of codewords which are at distance at most r from v. When

there is no ambiguity, we may write Ir(v) and Ir(S) instead of Ir(C; v) and Ir(C;S) respectively.

Two vertices within distance r from each other are indifferently said to r-dominate or to r-cover

each other. A vertex v is r-dominated or r-covered by a code C if it is r-dominated by at least one

element of C , i.e., if its r-identifying set is not empty: Ir(C; v) 6= ∅. If every vertex is r-dominated by

C , then C is said to be r-dominating or r-covering. Two vertices u and v are r-separated by a vertex

w if we have w ∈ Br(u) and w /∈ Br(v) or if we have w ∈ Br(v) and w /∈ Br(u) (note that w can be

equal to u or v). Two vertices u and v are r-separated by a code C if they are r-separated by at least

one element of C: Ir(C;u) 6= Ir(C; v). If every distinct vertices u and v are r-separated, then C is

said to be r-separating.

The conjunction of the r-domination and of the r-separation properties leads to the definition of

an r-identifying code:

Definition 2. An r-identifying code C ⊆ V , or simply an r-IdC, is an r-dominating and r-separating

code. In other words, C fulfills the following two properties:

• ∀ v ∈ V : Ir(C; v) 6= ∅;

• ∀ v1 ∈ V, ∀ v2 ∈ V with v1 6= v2 : Ir(C; v1) 6= Ir(C; v2).

It is easy to check that a graph G admits an r-IdC if and only if it has no r-twins (then, V itself is

an r-IdC), i.e.:

∀ v1 ∈ V, ∀ v2 ∈ V with v1 6= v2 : Br(v1) 6= Br(v2).

For any r-twin-free graph G, we denote by Idr(G) the smallest possible cardinality of an r-IdC

and we call this the r-identification number of G, or simply the r-Id number of G. An r-IdC with the

smallest possible size, i.e. whose cardinality is equal to Idr(G), is said to be optimal.

Example 1.1. Consider the graphs provided by Figure 1.
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Figure 1. Different graphs and codes. Black vertices represent codewords.
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• For G1: clearly, G1 requires at least two vertices in order to 1-cover all the vertices. But:

(a) {v1, v4} is not 1-identifying since v1 and v4 are not 1-separated; (b) {v1, v3} is not 1-

identifying since v2 and v4 are not 1-separated; so any 1-IdC contains at least three vertices;

(c) {v1, v2, v4} is 1-identifying since all the vertices are 1-covered and any two distinct vertices

are 1-separated. Hence Id1(G1) = 3. For r > 1, all the vertices of G1 are r-twins.

• For G2: v1 and v4 are not 1-separated by the code displayed in (d). Moreover, v1 and v3 are

1-twins: therefore they cannot be 1-separated. For r > 1, all the vertices of G2 are r-twins.

Thus, G2 admits no r-IdC for any r > 1.

• For G3: the code {v1, v3, v5, v7} displayed in (e) is not 1-identifying since v7 and v8 are not

1-separated; but {v1, v3, v5, v6, v7} is 1-identifying. In contrast to the case r = 1, v7 and v8 are

now 2-separated by {v1, v3, v5, v7} (more precisely, by v5), but not v6 and v7. For r > 4, v4
and v5 are r-twins.

A usual illustration of identifying codes comes from fault diagnosis in multiprocessor networks.

Such a network can be represented as a graph whose vertices are processors and edges are links

between processors. Assume that a processor is malfunctioning; we wish to locate the faulty processor.

For this purpose, some processors (which will constitute the r-IdC) will be selected and assigned the

task of testing the vertices at distance at most r. Whenever a selected processor (i.e., a codeword)

detects a fault, it sends a binary message saying that one element in its r-ball is malfunctioning. We

require that we can unambiguously identify the location of the malfunctioning processor, based only

on the information which ones of the codewords sent a message; in this case, an identifying code is

what we need.

The term “identifying code” is used in the 1998 paper [62] by M. G. Karpovsky, K. Chakrabarty

and I. B. Levitin, which certainly marks the starting point for the blossoming of works on this topic,

but the concept is already contained in [78] by N. S. V. Rao in 1993 (for references on identifying

codes, see the ongoing bibliography at [58]).

The aim of this paper, in this issue devoted to Iiro Honkala, is to survey some of Iiro’s contributions

to the study of identifying codes. For this reason, when quoting a reference, we add a star (for instance

[2]*) for denoting that this contribution is authored or co-authored by Iiro. For the same reason, some

aspects of identifying codes are not covered here (for a wider survey on IdCs, see, e.g., [70]).

We consider also a generalization of r-IdCs, which occurs when more than one vertex should be

identified [62]: for a given integer ℓ, an (r,6 ℓ)-identifying code, or simply (r,6 ℓ)-IdC, in a graph

G = (V,E) is an r-dominating code C such that for all X ⊆ V , Y ⊆ V with X 6= Y , 0 < |X| 6 ℓ,
0 < |Y | 6 ℓ, we have:

⋃

u∈X

Ir(C;u) 6=
⋃

v∈Y

Ir(C; v).

As for r-IdCs, we say that an (r,6 ℓ)-IdC is optimal if its size is minimum. Then Id(r,6ℓ)(G) denotes

this minimum size.

This generalization, and other similar ones, have been studied mostly in the n-cube and in the

grids; we refer to, e.g., [26], [27], [36], [37], [44]*, [50]*, [62], [63], [73].

The following theorem provides a general property fulfilled by r-twin-free graphs.
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Theorem 1.2. ([1])

Let r > 1 be any integer. Any r-twin-free graph G with at least one edge admits P2r+1, the path on

2r + 1 vertices, as an induced subgraph. As a consequence, G has order n > 2r + 1 and the only

r-twin-free graph with order n = 2r + 1 and with at least one edge is the path P2r+1.

Theorem 1.3 gathers a lower bound from [62] and an upper bound from [5] for Idr(G), both sharp

(see also [17] and [38]).

Theorem 1.3. For any r > 1 and any connected r-twin-free graph G = (V,E) of order n > 2r + 1:

⌈log2(n+ 1)⌉ 6 Idr(G) 6 n− 1.

In what follows, the structure of the paper is explained. In Section 2, the computational complex-

ity of determining an r-identifying code of a given size. Then, in Section 3, we proceed with various

results concerning binary Hamming spaces. In Section 4, the results for infinite grids — the square, tri-

angular, king and hexagonal grids — are summarized. As the existence of an identifying code requires

the underlying graph to be twin-free, the structural properties of such graphs are studied in Section 5.

Although the question of determining an optimal identifying code in a graph is already rather difficult,

its natural extension of calculating the number of optimal codes has also been previously studied as

examined in Section 6. Finally, in Section 7, some variants and closely related concepts of identifying

codes are briefly discussed.

2. Complexity for general graphs

The decision problem associated with the computation of Idr(G) is NP-complete for any fixed r > 1,

as stated by Theorem 2.1.

Theorem 2.1. ([21]* for r = 1, [16] for r > 1) For any fixed r > 1, the following problem is

NP-complete:

Name: r-IdC

Instance: A graph G = (V,E) and an integer k 6 |V |.
Question: Does G admit an r-IdC of size at most k?

The proof of Theorem 2.1 for r = 1 is based on a polynomial transformation from the NP-complete

problem 3-SAT. Let (U ;C1, C2, ..., Cm) be any instance of 3-SAT, where U denotes the set of Boolean

variables and where C1, C2, ..., Cm are the clauses, each clause containing three literals. The trans-

formation uses two kinds of components. The first one, associated with each Boolean variable xj
(1 6 j 6 |U |), contains six vertices named xj , xj , aj , bj , cj and dj and the six edges {aj , bj}, {bj , xj},

{bj , xj}, {cj , dj}, {cj , xj}, {cj , xj}. The second one, associated with each clause Ci (1 6 i 6 m),

contains two vertices named αi and βi and the edge {αi, βi}. Extra edges reflect the composition

of any clause: if Ci contains the three literals xj , xh and xk, we add the edges {αi, xj}, {αi, xh},

{αi, xk}. Figure 2 illustrates this transformation by specifying a part of the graph thus obtained.

By setting k = 3|U |+m, it is proved in [21]* that the instance of 3-SAT is satisfiable if and only

if there exists a 1-IdC of size at most k in the constructed graph (in fact the size is then exactly k and
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Figure 2. The subgraph induced by a clause Ci = xj ∨ xh ∨ xk for the transformation from 3-SAT to 1-IdC.

such a code can be provided by all the vertices αi with 1 6 i 6 m, the vertices xj or xj according to

the Boolean value taken by the variable associated with xj and xj for 1 6 j 6 |U |, and all the vertices

bj and cj for 1 6 j 6 |U |). This construction is generalized in [16] to any integer r.

The NP-completeness of the problem r-IdC involves that, given G and r, determining Idr(G) or

finding an optimal r-IdC of G are NP-hard problems (for other results related to complexity issues,

see [3], [32], [33], [55] and [56]).

Specific families of graphs have been studied, including the binary Hamming spaces considered in

the next section. For complexity results dealing with identification in these graphs, see [52]* and [53]*

and, below, Subsection 3.1.

3. Binary Hamming spaces

For the whole section, let n be a positive integer. The binary Hamming space Fn is the n-fold Cartesian

product of the binary field F = {0, 1}. The 2n elements of Fn, i.e. vectors with n binary coordinates,

are called words. A subset of Fn is called a code of length n. Let x and y be words belonging to F
n;

the Hamming distance d(x,y) between words x and y is the number of coordinate places in which

they differ. The Hamming ball of radius r centred at x is denoted by Br(x) and consists of the words

that are within Hamming distance r from x.

The Hamming space may also be seen as a graph (observe then that n does not denote the number

of vertices of the graph, but still the length of the Hamming space): F
n is the vertex set; if x and y

are words belonging to F
n (i.e. two vertices of the associated graph), there is an edge between x and

y if x and y differ by one coordinate, i.e. if their Hamming distance is equal to 1. As this graph

is completely defined by F
n, we will denote it by F

n, omitting its edge set. In F
n, the shortest path

distance is the same as the Hamming distance and, thus, the Hamming ball of radius r is the same as

the r-ball defined in Section 1. Hence the same notation is used in this section for the distance d and

the ball Br as in Section 1.

The set of non-zero coordinates of the word x is called the support of x and is denoted by supp(x).
The weight of x is the cardinality of the support of x and is denoted by w(x).

The size of a Hamming ball of radius r in F
n does not depend on the choice of the centre and it is

denoted by V (n, r). Furthermore, we have:

V (n, r) =
r
∑

i=0

(

n

i

)

.
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Assuming x = (a1, a2, . . . , an) = a1a2 · · · an and y = (b1, b2, . . . , bm) = b1b2 · · · bm, we can

define the concatenation (x,y) of the words x and y as follows:

(x,y) = (a1, a2, . . . , an, b1, b2, . . . , bm) = a1a2 · · · anb1b2 · · · bm.

The sum of the words x = (a1, a2, . . . , an) and y = (b1, b2, . . . , bn) is defined as

x+ y = (a1 + b1, a2 + b2, . . . , an + bn)

where the sum ai + bi (1 6 i 6 n) is performed modulo 2.

If C1 ⊆ F
n and C2 ⊆ F

m are codes, then their direct sum

C1 ⊕ C2 = {(x,y) | x ∈ F
n,y ∈ F

m} ⊆ F
n+m

is defined as a code in F
n+m. The following well-known lemma, which considers the intersections of

balls of radius 1 in F
n, is often quite useful.

Lemma 3.1. For x ∈ F
n and y ∈ F

n:

|B1(x) ∩B1(y)| =











n+ 1, if d(x,y) = 0.

2, if 1 6 d(x,y) 6 2.

0, if 2 < d(x,y).

Furthermore, the intersection of three distinct Hamming balls of radius 1 contains at most one word.

Note that (r,6 ℓ)-IdCs do not exist for all lengths n. For ℓ > 1, the existence of an (r,6 ℓ)-IdC

is discussed in the following theorem.

Theorem 3.2. ([48]*)

Let r(n,K) denote the smallest radius r such that there exists an r-covering code in F
n with cardinal-

ity K . If 1 6 ℓ < 2n and r > r(n, ℓ), then there exists no (r,6 ℓ)-IdC in F
n.

Extensive coverage of the values r(n,K) can be found in [19]*. For example, if ℓ = 1, then an

r-IdC in F
n exists if and only if n > r + 1. Based on these results, we also obtain that there exists no

(1,6 2)-IdC of length smaller than 4 and no (2,6 2)-IdC of length smaller than 6.

In the rest of this section, we first focus on complexity issues for Hamming spaces. Then, in

Subsection 3.2, various lower bounds on r-IdCs are considered. In Subsection 3.3, we proceed with the

constructions of r-IdCs leading to the best known upper bounds. In Subsection 3.4, we discuss some

natural conjectures concerning identification in binary Hamming spaces and consider the progress

made towards them. Finally, in Subsections 3.5 and 3.6, we study codes identifying sets of vertices,

and briefly discuss some other variants of (usual) (r,6 1)-IdCs.
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3.1. Complexity issues for binary Hamming spaces

As stated in Section 2, the problem of deciding whether there exists an r-IdC in a general graph with

at most k codewords is NP-complete. The problem remains algorithmically difficult when we restrict

ourselves to binary Hamming spaces. More precisely, the following theorem is proved in [53]* thanks

to a polynomial transformation from 3-SAT.

Theorem 3.3. ([53]*)

The following problem is NP-complete:

Name: Not r-IdC

Instance: An integer n, a list of binary codewords of length n, forming a code C; an integer r.

Question: Are there distinct words x and y belonging to F
n with Br(x) ∩ C = ∅ or with

Br(x) ∩ C = Br(y) ∩ C?

Observe that, for the binary Hamming spaces, it is not necessary to encode the graph by its adja-

cency matrix, as usually done for an arbitrary graph. Indeed, the specification of the length n suffices

to characterize F
n. In fact, even the problem of deciding whether a given code is r-identifying in F

n

is co-NP-complete.

3.2. Lower bounds

In this subsection, we discuss various lower bounds concerning r-IdCs in F
n. The first one of these

lower bounds presented in the following theorem is based on the simple fact that if C ⊆ F
n is an

r-IdC, then there are at most |C| words r-covered by exactly one codeword and all the other words of

F
n have to be r-covered by at least two codewords.

Theorem 3.4. ([62])

We have Idr(F
n) >

2n+1

V (n, r) + 1
.

This lower bound can be further refined by observing that if C ⊆ F
n is an r-IdC, then the number

of words r-covered by exactly k codewords is restricted by the binomial coefficient
(|C|

k

)

. This result

has been originally presented in [62] and then later revisited in [29], where the case r > n/2 has also

been efficiently handled.

Theorem 3.5. ([29], [62])

Let C ⊆ F
n be an r-IdC as well as s and s′ be the largest integers such that

s
∑

i=1

(

|C|

i

)

6 2n and

s′
∑

i=0

(

|C|

i

)

6 2n.

(i) If r < n/2, then the cardinality of C satisfies

|C| · V (n, r) >
s
∑

i=1

i

(

|C|

i

)

+ (s+ 1)

(

2n −
s
∑

i=1

(

|C|

i

)

)

.
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(ii) If n/2 6 r 6 n− 1, then the cardinality of C satisfies

|C| · V (n, n− r − 1) >

s′
∑

i=1

i

(

|C|

i

)

+ (s′ + 1)

(

2n −
s′
∑

i=0

(

|C|

i

)

)

.

Although the previous lower bounds are rather simple, they are still viable when the length n is small

compared to the radius r as we will later see in Subsection 3.3. Notice also that the lower bounds do

not hold only for the binary Hamming spaces, but they can be generalized for all graphs for which the

cardinality of a ball of radius r does not depend on the chosen centre.

For the radius r = 1, the previous lower bounds can be improved by further restricting the number

of words covered by exactly two codewords: if C ⊆ F
n is a 1-IdC and x ∈ F

n such that x is covered

by exactly k (> 2) codewords, then there exist at most
(

k
2

)

vertices y satisfying |I1(C;y)| = 2 and

I1(C;y) ⊆ I1(C;x) (see also Lemma 3.1). The result was originally presented in [62] and later a

more convenient proof was provided in [8]*. Besides a few sporadic lengths n, the following lower

bound is the best currently known one.

Theorem 3.6. ([8]*, [62])

We have Id1(F
n) >

n2n

V (n, 2)
.

For the radius r > 1, the first efforts to improve the lower bounds of Theorems 3.4 and 3.5 were

made in [31]. This approach was further refined in [29].

3.3. Upper bounds

Concerning the upper bounds, we first focus on the ones related to the radius r = 1. The exact values

of Id1(F
n) are known for n ∈ {2, 3, . . . , 7} as explained in the following.

• By Theorem 3.6, we have Id1(F
2) > 3, Id1(F

3) > 4 and Id1(F
5) > 10. Moreover, the lower

bounds can be attained by the constructions given in [62].

• In [8]*, the lower bounds Id1(F
4) > 6 and Id1(F

7) > 31 of Theorem 3.6 are respectively

improved to 7 and 32. Moreover, 1-IdCs attaining the improved lower bounds are also given.

• In [8]*, a 1-IdC in F
6 with 19 codewords is presented. By Theorem 3.6, it is known that

Id1(F
6) > 18 and later, in [31], it is shown, based on extensive computer searches, that

Id1(F
6) = 19.

For n > 8, the smallest cardinalities of 1-IdCs remain unknown: the best known lower bounds

follow by Theorem 3.6 and the best constructions have been given in [9]. For an efficient method of

constructing 1-IdCs, we require the following definition of µ-fold coverings.

Definition 3. Let µ be an integer. If C ⊆ V is a code such that |Ir(C;u)| > µ for all u ∈ V , then we

say that C is a µ-fold r-covering. Furthermore, if |Ir(C;u)| = µ for all u ∈ V , then we say that C is

a perfect µ-fold r-covering.
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New 1-identifying codes can now be constructed based on 1-IdCs with the additional property that

the code is also 2-fold 1-covering. The method is based on the classical π(u)-construction discussed,

for example, in [19, Section 3.4]*. For all u ∈ F
n, the parity-check bit π(u) is defined as

π(u) =

{

0 if w(u) is even

1 if w(u) is odd.

Theorem 3.7. ([30])

If C ⊆ F
n is a 2-fold 1-covering and a 1-IdC in F

n, then

C ′ = {(π(u),u,u+ c) | u ∈ F
n, c ∈ C} (⊆ F

2n+1)

is a 2-fold 1-covering and a 1-IdC in F
2n+1.

For the radius r > 1, we have the rather simple result from [7]* stating that

Idr(F
r+1) = 2r+1 − 1. (1)

For larger radii, other exact values of Idr(F
n) are rather scarcely known. In what follows, we focus

more closely on the exact values for the radii r = 2 and r = 3.

• In [7]*, it has been shown that Id2(F
4) = 6; besides giving a 1-IdC with 6 codewords, the

authors also improve the lower bound of Theorem 3.5 from 5 to 6. In the same paper, the

constructions with 6 and 8 codewords are presented to attain the lower bounds Id2(F
5) > 6 and

Id2(F
6) > 8 of Theorem 3.5, respectively.

• In [30], a 2-IdC in F
7 with 14 codewords is given. Furthermore, it is shown by an exhaustive

computer search that smaller 2-IdCs in F
7 do not exist.

• In [39]*, a 3-IdC in F
5 with 10 codewords is given. Furthermore, in [29], the lower bound

Id3(F
5) > 9 of Theorem 3.5 is improved to 10 by a careful analysis of the proof of the theorem

in that particular case.

• In [9], 3-IdCs in F
6 and F

7 with 7 and 8 codewords have been presented to attain the lower

bounds Id3(F
6) > 7 and Id3(F

7) > 8, respectively.

For larger radii, the best known lower bounds mostly follow by Theorem 3.5 (and its refinement

in [29]), when n is large enough. The best known constructions are mainly due to [9], although

progress has also been made in [28] and [31]. In addition, a construction with the asymptotically

smallest possible cardinality is presented in the following theorem from [52]*.

Theorem 3.8. ([52]*)

Let 0 6 ρ < 1 and let H(x) = −x log2 x− (1− x) log2(1− x) denote the binary entropy function.

Then: lim
n→∞

log2 Id⌊ρn⌋(F
n)

n
= 1−H(ρ).
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3.4. Conjectures in binary Hamming spaces

In this subsection, we consider three conjectures concerning identifying codes in binary Hamming

spaces. In what follows, we first introduce the following (rather plausible) conjectures.

(i) In [72], it has been shown that Id1(F
n) 6 Id1(F

n+1) for all n > 2. It is also stated as an

open question whether the same monotonicity result also holds for larger radii r > 1. However,

in [70], it has been noted that, for example, Id5(F
6) = 63 (by (1)) and 31 6 Id5(F

7) 6 32
(by [9]). Hence, the monotonicity does not hold for all n, but it still seems plausible that there

exists an integer n(r) such that Idr(F
n) 6 Idr(F

n+1) for all n > n(r). However, no progress

towards this conjecture has been made.

(ii) In [8]* and [62], it has been conjectured that Idr+t(F
n+m) 6 Idr(F

n)Idt(F
m). Although

there is definite evidence that the conjecture should hold, no proof has been presented; even the

significantly simpler statement Id1(F
n+1) 6 2Id1(F

n) still remains open.

(iii) In the seminal paper [62], the monotonicity of the size of an optimal r-IdC in F
n with respect

to the radius r is discussed. In [27], it has been shown that there exists an integer nr such that

Idr+1(F
n) 6 Idr(F

n) when n > nr. However, the requirement for nr is rather crude and

improvements on that seem plausible.

In what follows, we concentrate more closely on Conjecture (ii). We first present some results

concerning the weaker formulation Id1(F
n+1) 6 2Id1(F

n) of the conjecture. In [6]* and [8]*, first

attempts towards this goal have been presented.

Theorem 3.9. ([8]*)

Let C be a 1-IdC in F
n.

(1) The direct sum C ⊕ F is a 1-IdC in F
n+1 if and only if for all codewords c ∈ C there exists

another codeword c
′ ∈ C such that d(c, c′) = 1.

(2) The direct sum C ⊕ F
2 is a 1-IdC in F

n+2. In particular, we have Id1(F
n+2) 6 4Id1(F

n).

In the following theorem (by [28]), it is shown that Id1(F
n+1) 6 (2+ εn)Id1(F

n), where εn → 0
as n → ∞.

Theorem 3.10. ([28])

Assume that n > 2. Then we have Id1(F
n+1) 6

(

2 +
1

n+ 1

)

Id1(F
n).

Next we focus on the general formulation Idr+t(F
n+m) 6 Idr(F

n)Idt(F
m) of the conjecture.

In [28], various weaker versions of the conjecture have been proved. In particular, it has been shown

that Idr+1(F
n+m) 6 4Idr(F

n)Id1(F
m). Furthermore, in [27], it has been proved that the conjecture

holds when m is relatively small in comparison to n.
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Theorem 3.11. ([27])

Let r and t be integers such that r > 2 and t > 2, and let n > 2(t+ r). If

2t ≤ a ≤
2n

9(t+ r)

(

2r+3(t− 1)!(r − 1)!

9(9(t + r))r

)

1
t

,

then we have

Idr+t(F
n) 6 Idt(F

a)Idr(F
n−a).

The following theorem, which has been presented in [30], is also closely related to the generalized

formulation of Conjecture (ii).

Theorem 3.12. ([30])

Let r and ni be positive integers. Then we have

Idr(F
n1+n2+···+nr) 6

r
∏

i=1

Id1(F
ni).

3.5. Identifying sets of vertices

In this subsection, we study (r,6 ℓ)-IdCs in binary Hamming spaces.

First efforts on identifying sets of vertices in F
n were already made in the seminal paper [62]. In

what follows, we first focus on the case with the radius r = 1. The following theorem states that

a (1,6 ℓ)-IdC is always a (2ℓ − 1)-fold 1-covering. The theorem was presented in the case ℓ = 2
in [48]* and later generalized to the case ℓ > 2 in [68]. Its proof is based on an insightful application

of Lemma 3.1.

Theorem 3.13. ([48]*, [68])

If C is a (1,6 ℓ)-IdC, then C is also a (2ℓ− 1)-fold 1-covering. This further implies that

Id(1,≤ℓ)(F
n) >

⌈

(2ℓ− 1)
2n

n + 1

⌉

. (2)

Inequality (2) of the previous theorem follows from [19, Chapter 14]*. The converse of the previ-

ous theorem also holds for ℓ > 3 as shown in [63] (based again on Lemma 3.1).

Theorem 3.14. ([63])

Let ℓ be an integer such that ℓ > 3. A code C ⊆ F
n is (1,6 ℓ)-identifying if and only if it is a

(2ℓ− 1)-fold 1-covering.

Determining the cardinalities of µ-fold t-coverings in F
n is a well-studied problem. Combining

the results of [19, Chapter 14]* with the previous theorem, the following corollary is obtained.

Corollary 3.15. ([63])

Let ℓ be an integer such that ℓ > 3. Then Id(1,≤ℓ)(F
n) = (2ℓ − 1)

2n

n + 1
if and only if there exist

integers i > 0 and µ0 > 0 such that µ0 divides 2ℓ− 1, and 2ℓ− 1 6 2iµ0, and n = µ02
i − 1.
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Notice that the requirement ℓ > 3 is essential for Theorem 3.14. Indeed, in [77]*, it has been

shown that there exists an infinite family of 3-fold 1-covering codes which are not (1,6 2)-identifying.

However, in the same paper, optimal constructions for (1,6 2)-IdCs have been presented based on the

so-called π(u)-construction already applied in Theorem 3.7.

Theorem 3.16. ([77]*)

If C ⊆ F
n is a (1,6 2)-IdC, then

C ′ = {(π(u),u,u+ c) | u ∈ F
n, c ∈ C} (⊆ F

2n+1),

where π(u) denotes the parity-check bit of u, is a (1,6 2)-IdC in F
2n+1. This further implies that

Id(1,≤2)(F
2n+1) 6 2nId(1,≤2)(F

n).

In [77]*, it has been proved that there exist (1,6 2)-IdCs C1 ⊆ F
5 and C2 ⊆ F

7 with 16 and

48 codewords, respectively. Hence, the codes C1 and C2 attain the lower bound of Theorem 3.13

implying that C1 and C2 are also perfect 3-fold 1-coverings. Applying the previous theorem to the

codes C1 and C2, we obtain two infinite families of (1,6 2)-IdCs which are perfect 3-fold 1-coverings

attaining the lower bound of Theorem 3.13. Hence, an optimal (1,6 2)-IdC is obtained for lengths

n > 5 for which a perfect 3-fold 1-covering also exists (see [19, Theorem 14.2.4]*). More precisely,

an optimal (1,6 2)-IdC in F
n is obtained for the lengths n = 3 · 2k − 1 and n = 2k+2 − 1, where k

is a positive integer.

To find (1,6 ℓ)-IdCs for the lengths other than the ones with perfect (2ℓ − 1)-fold 1-coverings,

the direct sum construction of the following theorem may be used; for ℓ = 2, the result is due to [48]*,

and for ℓ > 2, the result is presented in [63].

Theorem 3.17. ([48]*, [63])

Let ℓ be an integer such that ℓ > 2. If C ⊆ F
n is a (1,6 ℓ)-IdC, then so is the direct sum C ⊕ F ⊆

F
n+1. In particular, we have Id(1,≤ℓ)(F

n+1) 6 2Id(1,≤ℓ)(F
n).

Note that the theorem proves, for ℓ > 2, the issue similar to the conjecture Id1(F
n+1) 6 2Id1(F

n)
mentioned in Subsection 3.4. The generalized conjecture Idr+t(F

n+m) 6 Idr(F
n)Idt(F

m) can also

be approached for ℓ > 2. In fact, the conjecture has been partially solved in the case ℓ > r+3 in [28].

Theorem 3.18. ([28])

If ℓ > r + 3, then Id(r+1,≤ℓ)(F
n+m) 6 Id(1,≤ℓ)(F

n)Id(r,≤ℓ)(F
m).

Next, we consider lower bounds on (r,6 ℓ)-IdCs when the radius r > 2. Firstly, a lower bound

similar to the one of Theorem 3.5 has been provided in [29, Theorem 3.4]. It gives the best known

lower bounds on (r,6 ℓ)-IdCs when r > 2 and n is relatively small compared to r and ℓ. For larger

lengths n, the best known lower bounds are given by the following theorem due to [29] and [31].

Theorem 3.19. ([29], [31])

For r > 2 and ℓ > 2, we have

Id(r,≤ℓ)(F
n) >

⌈

(2ℓ− 2)2n
(

n
r

)

⌉

and Id(r,≤ℓ)(F
n) >

⌈

(2ℓ− 1)2n
(

n
r

)

+
(

n
r−1

)

⌉

.
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In what follows, we continue with the constructions of (r,6 ℓ)-IdCs when the radius r > 2. As

discussed earlier, the cardinalities Id(r,≤ℓ)(F
n) are rather well-known for r = 1 and ℓ > 2. Hence,

the approach of the following theorem by [31], which generalizes Theorem 3.12, is quite effective for

constructing (r,6 ℓ)-IdCs.

Theorem 3.20. ([31])

For r > 1 and ℓ > 2, we have Id(r,≤ℓ)(F
n1+n2+···+nr) 6

r
∏

i=1

Id(1,≤ℓ)(F
ni).

Another approach for constructing (r,6 ℓ)-IdCs is based on a generalization of the direct sum

construction of Theorem 3.17. This approach is studied in the following theorem, which has been

presented in [29].

Theorem 3.21. ([29])

Let ℓ be an integer such that ℓ > 2.

(1) If 1 6 r 6 2 and C is an (r,6 ℓ)-IdC in F
n, then C ⊕ F

r is an (r,6 ℓ)-IdC in F
n+r. In

particular, we have Id(r,≤ℓ)(F
n+r) 6 2rId(r,≤ℓ)(F

n).

(2) If r > 3 and C is an (r,6 ℓ)-IdC in F
n, then C ⊕ F

r+1 is an (r,6 ℓ)-IdC in F
n+r+1. In

particular, we have Id(r,≤ℓ)(F
n+r+1) 6 2r+1Id(r,≤ℓ)(F

n).

Most of the best known (r,6 ℓ)-IdCs are due to Theorems 3.20 and 3.21. However, some incre-

mental improvements have been made in [25]. In addition, an asymptotic result similar to Theorem 3.8

for ℓ = 1 has been proved in [57].

Theorem 3.22. ([57])

Let ℓ > 1 be fixed and let ρ ∈ [0, 1/2). If r/n → ρ as n → ∞, then

lim
n→∞

log2 Id(r,≤ℓ)(F
n)

n
= 1−H(ρ),

where H(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy function.

3.6. Other variants

Finally, we briefly discuss some variants of (r,6 ℓ)-IdCs. We first consider a situation where, with

respect to the illustration proposed in Section 1, a malfunctioning processor may incorrectly report

whether a problem occurs in its ball. Formally, that leads to the following definition (by [49]*), which

is in view of Section 7 presented for general graphs G = (V,E).

Definition 4. ([49]*)

Let C ⊆ V be a code in G = (V,E), and r and ℓ be nonnegative integers. For X ⊆ V , we define

Ir(X) = {U | Ir(X) \ (X ∩ C) ⊆ U ⊆ Ir(X)}. If for all distinct X1,X2 ⊆ V with |X1| 6 ℓ and

|X2| 6 ℓ we have Ir(X1) ∩ Ir(X2) 6= ∅, then we say that C is a strongly (r,6 ℓ)-IdC.
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For strongly (1,6 ℓ)-IdCs in binary Hamming spaces, similar results as the ones described in the

case of (usual) (1,6 ℓ)-IdCs have been derived in [49]*, [64] and [69]. Their proofs are also based on

a careful analysis of the µ-fold 1-covering properties of the codes. Besides strongly identifying codes,

various robust identifying codes, which are able to withstand additions and/or deletions of edges in

the underlying graph, have been considered for binary Hamming spaces in [45]*, [47]*, [65] and [67].

Recall that (r,6 ℓ)-IdCs can locate up to ℓ faulty processors in the considered network. However,

if more than ℓ faulty processors are attempted to be located using an (r,6 ℓ)-IdC, then errors may

occur and we might even be unaware that the set of faulty processors indicated by the code is incorrect.

This issue has been addressed in [46]*, where a new class of so-called (r,6 ℓ)+-IdCs has been

introduced. These codes can locate up to ℓ faulty processors and detect if more than ℓ faulty processors

exist in the network. In particular, for the binary Hamming spaces Fn, it has been shown in [46]* that

C ⊆ F
n is a (1,6 ℓ)+-IdC if and only if C is a (2ℓ+ 1)-fold 1-covering.

4. Infinite grids

We survey now results related to infinite grids. The four infinite 2-dimensional grids GS (square),

GT (triangular), GK (king), and GH (hexagonal) have Z × Z as their vertex sets. They are partially

represented in Figure 3 and are formally defined in the next subsections.

brick wall

(d)(c)(a) (b)

honeycomb

Figure 3. Partial representations of the four grids: (a) the square grid GS ; (b) the triangular grid GT : black

vertices are codewords (cf. Theorem 4.3); (c) the king grid GK ; (d) the hexagonal grid GH (with two possible

representations: as a honeycomb or as a brick wall).

Because these grids are infinite graphs, we consider here the density of a code C instead of the

cardinality of C . Let G denote one of these grids. For any integer q, let Qq denote the set of vertices

(x, y) ∈ Z × Z with |x| 6 q and |y| 6 q. The density of a code C in G is defined by ∂(C,G) =

lim supq→∞
|C ∩Qq|
|Qq|

. Then we define the minimum density ∂Id
r (G) of G as the minimum of ∂(C,G)

over the set of the r-IdCs C of G. Thus, the problem considered in this section consists in computing

the values of ∂Id
r (G) for r > 1 and for G belonging to {GS , GT , GK , GH}.

Figure 4. A periodic 5-IdC in the square grid GS , of density 2/25; codewords are in black.
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In the following subsections, we give lower and upper bounds for ∂Id
r (G), for r > 1 and G ∈ {GS ,

GT , GK , GH}. Several constructions of codes are obtained by heuristics searching for small subcodes

inside tiles that will be repeated periodically, as done in [15] (see Figure 4 for such an example dealing

with the square grid and r = 5). These constructions provide upper bounds for ∂Id
r (G).

4.1. The square grid

The square grid, GS , has vertex set VS = Z×Z and edge set ES = {{u, v} : u−v ∈ {(1, 0), (0, 1)}}.

The exact minimum density is known for r = 1, as stated by Theorem 4.1. The value 7/20 as an upper

bound for ∂Id
1 (GS) comes from [18]* and from [4] as a lower bound. Figure 5 displays a construction

providing the upper bound.

Theorem 4.1. ([4], [18]*)

For r = 1, ∂Id
1 (GS) =

7
20 .

Figure 5. A periodic 1-IdC in the square grid GS , of density 7/20; codewords are in black.

For r > 2, Theorem 4.2 specifies bounds for ∂Id
r (GS). The lower bound for r = 2 comes

from [59]; the general lower bound for r > 3 comes from [10]*; all the upper bounds come from [51]*.

Theorem 4.2. (a) For r = 2, 6
35 ≈ 0.17143 6 ∂Id

2 (GS) 6
5
29 ≈ 0.17241.

(b) For r > 3, 3
8r+4 6 ∂Id

r (GS) 6

{

2
5r : r even

2r
5r2−2r+1

: r odd.

When r increases, these bounds are close to 3
8r = 0.375

r and 2
5r = 0.4

r . The previous upper bounds

have been improved in [15], using heuristics, for r ∈ {3, 4, 5, 6} (with respectively 1/8 = 0.125,

8/85 ≈ 0.094, 2/25 = 0.08 and 3/46 ≈ 0.065).

4.2. The triangular grid

The triangular grid, or square grid with one diagonal, GT , has vertex set VT = Z × Z and edge set

ET = {{u, v} : u− v ∈ {(1, 0), (0, 1), (1,−1)}}.

As for the square grid, the exact minimum density is known for r = 1:

Theorem 4.3. ([62])

For r = 1, ∂Id
1 (GT ) =

1
4 .
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This minimum value is provided by the construction displayed in Figure 3(b), which has the prop-

erty that every codeword is dominated by exactly one codeword (itself) and every non-codeword is

dominated by exactly two codewords (either horizontally or vertically or diagonally). This proves that

the code is indeed 1-identifying, and moreover that it is best possible. Anyway, it is shown in [21]*

that this property cannot stand for r > 1. We have instead the following results for the triangular grid.

Theorem 4.4. (a) ([10]*) For r > 2, 2
6r+3 6 ∂Id

r (GT ) 6

{

1
2r+2 : r ∈ {1, 2, 3} mod 4
1

2r+4 : r = 0 mod 4.

(b) ([15]) We have ∂Id
3 (GT ) 6

2
17 ≈ 0.11765 and ∂Id

5 (GT ) 6
1
13 ≈ 0.07692.

4.3. The king grid

The king grid, or square grid with two diagonals, GK , has vertex set VK = Z × Z and edge set

EK = {{u, v} : u − v ∈ {(1, 0), (0, 1), (1,−1), (1, 1)}}. Its name comes from the fact that, on an

infinite chessboard, the r-ball of a vertex v is the set of vertices that a king, starting from v, can reach

in at most r moves.

It is remarkable that the best density is known for all r > 1, thanks to a sharp analysis of the neigh-

bourhoods of the vertices. In the following theorem, the value 2/9 as the lower bound on ∂Id
1 (GK)

comes from [22]* and from [15] as the upper bound.

Theorem 4.5. (a) ([15], [22]*) For r = 1, ∂Id
1 (GK) = 2

9 ≈ 0.22222.

(b) ([11]*) For r > 1, ∂Id
r (GK) = 1

4r .

Figure 6 displays a 1-IdC with minimum density 2/9 on the left and a 3-IdC with minimum density

1/12 on the right. In fact, for r > 2, the periodic pattern of the r-IdC is similar to the one displayed

here for r = 3: a rectangle with two rows and 2r columns, with only one codeword, located in the

bottom left corner; the patterns are concatenated horizontally and then the resulting strip is replicated

vertically with a shift of two columns. It is shown in [11]* that this construction is optimal.

Figure 6. A periodic 1-IdC (left) and a periodic 3-IdC (right) in the king grid GK , of density 2/9 and 1/12

respectively; codewords are in black.



O. Hudry et all. / On Iiro Honkala’s Contributions to Identifying Codes 181

4.4. The hexagonal grid

The hexagonal grid, GH , has vertex set VH = Z × Z and edge set EH = {{u, v} : u = (i, j) and

u− v ∈ {(0, (−1)i+j+1), (1, 0)}}. It is the grid with the sparsest and weakest results.

For r = 1, the following upper bound is from [81], improving the one provided by [20]* (equal to

3/7 ≈ 0.42857), the lower bound is from [23].

Theorem 4.6. ([23], [81])

For r = 1, 5
12 ≈ 0.41667 6 ∂Id

1 (GH) 6 53
126 ≈ 0.42063.

In addition, it should be mentioned that an improvement 23/55 ≈ 0.41818 to the lower bound has

been claimed in the manuscript [85].

The minimum density is known for r = 2, as specified by the next theorem. In this one, the lower

bounds in (a) and (b) come from [61] and [71], respectively, and both upper bounds from [15]; the

general lower bounds in (c) and (d) come from [10]*, and the upper bounds from [84].

Theorem 4.7. ([10]*, [15], [61], [71], [84])

(a) For r = 2, ∂Id
2 (GH) = 4

19 ≈ 0.21053.

(b) For r = 3, 3
25 = 0.12 6 ∂Id

3 (GH ) 6 1
6 ≈ 0.16667.

(c) For r even with r > 4, 2
5r+3 6 ∂Id

r (GH) 6 5r+3
6r(r+1) .

(d) For r odd with r > 5, 2
5r+2 6 ∂Id

r (GH) 6 5r2+10r−3
(6r−2)(r+1)2 .

When r increases, these bounds are close to 2
5r and 5

6r ≈ 0.83333
r . Better upper bounds, close to

1/(r+4) for r even or to 1/(r+5) for r odd, are known for several values of r with r 6 30, obtained

in [15] by the use of heuristics.

5. Structural properties of twin-free graphs

We shall now review some works related to the study of structural problems. First (Subsection 5.1), we

consider some classic parameters of graphs, and we investigate the following question: what are the

extremal values that these parameters can achieve when we restrict ourselves to r-twin-free graphs?

In Subsection 5.2, we study the question when it is possible to remove a vertex from an r-twin-free

graph while keeping the property of being r-twin-free, leading to the notion of terminal graph. Then,

we study the effects of removing a vertex (Subsection 5.3) or an edge (Subsection 5.4) on the r-Id

numbers.

For S ⊂ V , we denote by G\S the graph obtained from G by deleting the vertices of S. Similarly,

for an edge e of G, we note by G \ {e} the graph obtained from G by removing e.

5.1. Extremal values of usual parameters in twin-free graphs

In this subsection, we investigate the extremal values that different usual parameters of graphs can

achieve in a connected r-twin-free graph. In accordance with [2]*, we consider the following para-

meters: the size ε (i.e., the number of edges), the minimum degree δ, the radius ρ, the diameter D, the

size α of a maximum independent set (see [70] for references dealing with other parameters).
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More precisely, if π stands for such a parameter, we search for the smallest value, fπ(r, n), that π
can reach over the set of connected and r-twin-free graphs with exactly n vertices (n > 2r + 1):

fπ(r, n) = min{π(G) : G connected, r-twin-free with n vertices}.

We also consider the largest value that π can reach, leading to the quantity Fπ(r, n):

Fπ(r, n) = max{π(G) : G connected, r-twin-free with n vertices}.

• Number of edges ε
For any connected graph with n vertices, the size is at least n − 1. The path Pn on n vertices meets

this bound. Thus, for any r > 1 and n > 2r + 1, fε(r, n) = n− 1.

The maximum number of edges possible for r-twin-free graphs with n vertices is known for r = 1,

and can be achieved only by the complete graph Kn minus a maximum matching [24].

Theorem 5.1. ([24]) For r = 1 and n > 3, Fε(1, n) =
n(n−1)

2 − ⌊n2 ⌋.

For r > 1, we are close to the exact value.

Theorem 5.2. ([2]*) (a) For r = 2 and n large enough, n2

2 − 2n log2 n . Fε(2, n) .
n2

2 − 1
2n log2 n.

(b) For r > 2 and n large enough with respect to r,
n2

2 − rn log2 n . Fε(r, n) .
n2

2 − 0.63(r − 0.915)n log2 n.

• Minimum degree δ
The path Pn provides the value of fδ(r, n) for any r and any n > 2r + 1: the minimum of δ for

a connected and r-twin-free graph is equal to 1. Case (b) below relies on the fact that the complete

graph minus a maximum matching is 1-twin-free (cf. Theorem 5.1). On the other hand, the minimum

degree cannot be too large with respect to the ratio n/r, otherwise there will be r-twins; Theorem 5.3

specifies bounds stated thanks to this ratio.

Theorem 5.3. ([2]*) (a) For r > 1 and n > 2r + 1, fδ(r, n) = 1.

(b) For r = 1 and n > 3, Fδ(1, n) = n− 2.

(c) For r = 2 and n > 5, Fδ(2, n) = ⌊n−2
2 ⌋.

(d) For r > 3, Fδ(r, 2r + 1) = 1.

(e) For r > 3 and n > 2r + 2, set k = ⌊n−2
r ⌋. Then:

(e1) k − 1 6 Fδ(r, n) if k is odd, and k 6 Fδ(r, n) if k is even;

(e2) for 3 6 r 6 5, Fδ(r, n) 6
n

⌊ r
2
⌋+1 − 1;

(e3) for r > 6, Fδ(r, n) 6 min
{

n
⌊ r
2
⌋+1 − 1, 3n−r+2

2(r−5)

}

.

It is conjectured in [2]* that Fδ(r, n) is equal to ⌊n−2
r ⌋ for any r > 1 and any n > 2r + 1.

• Radius ρ
In any connected graph of order n, the radius is between 1 (the complete graph, the star) and ⌊n2 ⌋ (the

path, the cycle). The study of the radius in r-twin-free graphs is easy, the results are complete.
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Theorem 5.4. ([2]*) (a) For r > 1 and n > 2r + 1, fρ(r, n) = r.

(b) For r > 1 and n > 2r + 1, Fρ(r, n) = ⌊n2 ⌋.

• Diameter D
The results on the diameter in r-twin-free graphs are also complete. Once again, Case (a) and Case (c)

are related to the path P2r+1, which is the only connected and r-twin-free graph on 2r + 1 vertices,

and more generally to the path Pn. Figure 7 illustrates Case (b).

    

Figure 7. The case n = 15, r = 3 of Theorem 5.5, Case (b); this graph is 3-twin-free and has diame-

ter r + 1 = 4.

Theorem 5.5. ([2]*) (a) For r > 1, fD(r, 2r + 1) = 2r.

(b) For r > 1 and n > 2r + 2, fD(r, n) = r + 1.

(c) For r > 1 and n > 2r + 1, FD(r, n) = n− 1.

• Size α of a maximum independent set

In any connected graph of order n which is not the complete graph, α lies between 2 and n − 1 (the

star). Theorem 1.2 above, from [1], contributes to Case (b) and to the lower bound of Case (c) in the

following theorem.

Theorem 5.6. ([2]*) (a) For r = 1 and n > 3, fα(1, n) = 2.

(b) For r > 2, fα(r, 2r + 1) = r + 1.

(c) For r > 2 and n > 2r + 2, set k = ⌊n−2
r ⌋. Then: r + 1 6 fα(r, n) 6

{

2n
k+2 for k even
2n
k+1 for k odd.

The star gives Case (a) in Theorem 5.7.

Theorem 5.7. ([2]*) (a) For r = 1 and n > 3, Fα(1, n) = n− 1.

(b) For r > 2 and n > 2r + 1, let k be the largest integer with k + r⌈log2 k⌉ 6 n − 1. Then:

max
{

⌈n2 ⌉, k + ⌈log2 k⌉⌊
r
2⌋
}

6 Fα(r, n) 6 n− r.

If n is large with respect to r, then k + ⌈log2 k⌉⌊
r
2⌋ behaves approximately like n− r

2 log2 n, and

so behaves also the lower bound of Fα(r, n) in Case (b).
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5.2. Terminal graphs

We need a new definition in this section: the one of an r-terminal graph.

Definition 5. If G = (V,E) is r-twin-free, then we say that G is r-terminal if for all v ∈ V , G \ {v}
is not r-twin-free.

In other words, G is not r-terminal if there exists a vertex v ∈ V such that G \ {v} is also

r-twin-free. We are interested in the structure and number of r-terminal graphs, if they exist.

Observe that, for r > 1, P2r+1 (which is 1-twin-free, see Theorem 1.2) is r-terminal: indeed,

removing any vertex from P2r+1 leaves a graph with r-twins. For r = 1, the case of P3 is particular:

removing the middle vertex yields two isolated vertices, constituting a 1-twin-free graph. This leads

us to address the following questions:

• (a) Are there 1-terminal graphs?

• (b) For r > 1, are there r-terminal graphs other than P2r+1? If so, how many are there?

As detailed below, the answer to (a) is negative. The answer to (b) is multifold: it is negative if we

restrict ourselves to trees. But it is positive for r > 3 otherwise; the case r = 2 remains open.

• The case r = 1

There is no 1-terminal graph. Indeed, as observed above, for n = 3, P3 is not 1-terminal. For

n > 4, consider a vertex v such that V \ {v} is a 1-IdC of G (by Theorem 1.3, such a vertex does

exist). Then we can show that the graph G \ {v}, which may be connected or not, is still 1-twin-free

and, hence, G is not 1-terminal.

The following theorem sharpens this result with respect to connectivity.

Theorem 5.8. ([12]*) Let n > 4 and G = (V,E) be any connected 1-twin-free graph of order n.

Then there exists v ∈ V such that G \ {v} is 1-twin-free and connected.

• The case of trees

For r = 1, the previous result shows that there is no 1-terminal tree. For r > 1, P2r+1 is the only

r-terminal tree, as specified by the next theorem.

Theorem 5.9. ([12]*) Let r > 1, n > 2r + 2 and T = (V,E) be any r-twin-free tree of order n.

Then there exists a leaf v ∈ V such that T \ {v} is r-twin-free (and connected). Consequently, the

only r-terminal tree for r > 1 is the path P2r+1.

• The case r > 3
We now come back to general graphs. Then, for r > 3, P2r+1 is not the only r-terminal graph. One

possible construction in order to obtain another r-terminal graph is the following: take a cycle of

length 2r and add a neighbour to each vertex of the cycle but one; Figure 8 illustrates this construction

for r = 3. Theorem 5.10 is more specific:
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Figure 8. A 3-terminal graph.

Theorem 5.10. ([12]*) For r > 3, P2r+1 is not the only r-terminal graph. For r > 6, there are

infinitely many r-terminal graphs.

Observe that the construction of Theorem 5.10 does not work for r = 2; the problem remains

open:

Open problem 1. Apart from P5, do 2-terminal graphs exist?

Another open problem is the situation for r ∈ {3, 4, 5}:

Open problem 2. For r ∈ {3, 4, 5}, is the number of r-terminal graphs finite or infinite?

5.3. Removing a vertex

The problem considered now is the following: given an r-twin-free graph G = (V,E) and a vertex

v ∈ V , and assuming that the graph G \ {v} is r-twin-free, what can be said about Idr(G \ {v}) with

respect to Idr(G)? It is easy to observe that removing a vertex may increase Idr(G). For instance,

removing a vertex from the cycle C7 on 7 vertices increases Id2 by 1: Id2(C7) = 4 and Id2(P6) = 5
(see Figure 9).

Figure 9. Optimal 2-IdCs for C7 and P6; codewords are in black.

• The case r = 1
It is known from [34] that, if G and G \ S are 1-twin-free, then we have Id1(G)− Id1(G \ S) 6 |S|.
In particular, for v ∈ V , Id1(G) − Id1(G \ {v}) 6 1; moreover, the two inequalities are tight. Thus,

removing one vertex cannot imply a large decrease of Id1: at most 1.

But removing a vertex may imply a large increase of Id1, as shown in [13]*.
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Theorem 5.11. ([13]*)

There exist (connected) graphs G with n vertices and a vertex v of G with Id1(G \ {v})− Id1(G) ≈
0.5n − 1.5 log2 n and Id1(G \ {v})/Id1(G) ≈ 0.5n/ log2 n.

The graphs involved in this theorem are built in the following way (see Figure 10 for a partial repre-

sentation of them). They are connected and bipartite. We start with k vertices ci (1 6 i 6 k), which

will be, as well as the vertex v, the codewords of G. Then, for each subset I ⊆ {1, 2, ..., k} of indices

with at least two elements (|I| > 2), we create two vertices yI and zI : yI is linked to v and to all the

vertices ci with i ∈ I , while zI is linked to all the vertices ci with i ∈ I but not to v. Thus, we obtain a

graph G with n = 2(2k − k− 1)+ k+1 = 2k+1− k− 1 vertices. As the subsets I are not singletons,

C = {v, c1, c2, ..., ck} is a 1-IdC of G, with about log2 n codewords. But, if we remove v, then yI
and zI become almost twins for every I: the only way to separate them is to select one of them as a

codeword, which, finally, requires to select about at least n/2 codewords.

Figure 10. A partial representation (for I = {2, 3, k−1}) of the graphs involved in the proof of Theorem 5.11;

codewords are in black.

M. Pelto provided a sharper result in [75] (with graphs which are not necessarily connected):

Theorem 5.12. ([75]) Let n be the order of G, S a proper subset of V and v ∈ V .

(a) If n > 2|S|−1, then Id1(G \ S)− Id1(G) 6 n− 2|S| −

⌊

n− |S|

2|S|

⌋

; the inequality is tight for

n sufficiently large with respect to |S|.

(b) For |S| = 1: Id1(G \ {v})− Id1(G) 6
⌊n

2

⌋

− ε, with ε = 2 for n ∈ {2, 4, 5, 6, 8} and ε = 1

otherwise; the inequality is tight.

(c) If G is bipartite, then Id1(G \ {v}) − Id1(G) 6

⌊

n− log2(n− log2 n)

2

⌋

− 1; the inequality

is tight.

So, for r = 1, if one vertex is deleted, the identification number cannot drop by more than one,

and can increase by a quantity close to n/2.

• The case r > 2
Now both Idr(G \ {v})− Idr(G) and Idr(G)− Idr(G \ {v}) can be large: Idr(G \ {v}) − Idr(G)

can increase to approximately n
4 (for even r) and

n(3r−1)
12r (for odd r), or

n(2r−2)
2r+1 , according to whether

we want the graphs to be connected or not, and Idr(G)− Idr(G \ {v}) to approximately
n(r−1)

r .
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Theorem 5.13. ([13]*) (a) Let r > 2. There exist connected graphs G of order n and a vertex v of G

with Idr(G \ {v})− Idr(G) >
(n− 1)(2r − 2)

2r + 1
− 2r.

(b) Let r > 2 be even. There exist connected graphs G of order n and a vertex v of G such that

G \ {v} is connected and Idr(G \ {v}) − Idr(G) >
n

4
− (r + 1).

(c) Let r > 3 be odd. There exist connected graphs G of order n and a vertex v of G such that

G \ {v} is connected and Idr(G \ {v}) − Idr(G) >
n(3r − 1)

12r
− r.

Theorem 5.14. ([13]*) There exist connected graphs G of order n with n = 2 mod r and a vertex v

of G such that G \ {v} is connected and Idr(G)− Idr(G \ {v}) >
(n− 3r − 1)(r − 1) + 1

r
.

The proof of this theorem is based on graphs obtained by a collection of paths Pr plus two extra

vertices, including v, linked to the two extremities of each path; Figure 11 illustrates Theorem 5.14

for n = 17, r = 3.

v

G G−v    

Figure 11. Illustration of Theorem 5.14 for r = 3: in both graphs, the black vertices form an optimal 3-IdC;

Id3(G)− Id3(G \ {v}) = 13− 8 = 5.

5.4. Removing an edge

Let G be a graph and e an edge of G. The problem considered here is similar to the previous one, but

with the deletion of an edge instead of a vertex: given an r-twin-free graph G = (V,E) and an edge

e ∈ E, and assuming that the graph G \ {e} is r-twin-free, what can be said about Idr(G \ {e}) with

respect to Idr(G)?

• The case r = 1

Theorem 5.15. ([14]*)

If G and G \ {e} are 1-twin-free, then Id1(G) − Id1(G \ {e}) ∈ {−2,−1, 0, 1, 2} and these values

can be reached by pairs of connected graphs G and G \ {e}.

• The case r > 2
Now the differences Idr(G)− Idr(G \ {e}) and Idr(G \ {e})− Idr(G) can be large, and we obtain

results which slightly vary with r.

Theorem 5.16. ([14]*)

Let k > 2 be an arbitrary integer.

(a1) Let r > 2. There exist a graph G with (r + 1)k + r⌈log2(k + 2)⌉ + 2r vertices and an edge e
of G with Idr(G) > k and Idr(G \ {e}) 6 r⌈log2(k + 2)⌉ + r + 3.
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(a2) Let r > 5. There exist a graph G with (2r − 2)k + r⌈log2(k + 2)⌉+ r + 3 vertices and an

edge e of G with Idr(G) > k and Idr(G \ {e}) 6 r⌈log2(k + 2)⌉+ r + 1.

(b1) For r = 2, there exist a graph G with 3k + 2⌈log2(k + 2)⌉ + 5 vertices and an edge e of G
with Id2(G \ {e}) > k and Id2(G) 6 2⌈log2(k + 2)⌉ + 5.

(b2) Let r > 3. There exist a graph G with (2r − 2)k + r⌈log2(k + 2)⌉ + r + 2 vertices and an

edge e of G with Idr(G \ {e}) > k and Idr(G) 6 r⌈log2(k + 2)⌉+ r + 1.

Closely related results can be obtained if we require that G \ {e} is connected.

Note that k can be chosen arbitrarily and is linked to the order n of G and G \ {e} by the relation

n = (c1r + c2)k + r⌈log2(k + 2)⌉ + (c3r + c4) where the integer quadruple (c1, c2, c3, c4) takes

different values in (a1), (a2), (b1) and (b2) above. This means, roughly speaking, that k is a fraction,

depending on r, of n; therefore, Theorem 5.16 implies that, given r > 2, there is an infinite collection

of graphs G of order n and two positive constants α and β with Idr(G) > αn and, after deletion

of a suitable edge e, Idr(G \ {e}) 6 β log2 n (or the other way round: Idr(G) 6 β log2 n and

Idr(G\{e}) > αn). We can see that adding or deleting one edge can lead to quite a drastic difference

for the identification numbers.

We studied above what the identification numbers can become when adding or deleting vertices

or edges. But we can also be interested in what an existing (optimal) code becomes when edges

or vertices are deleted or added. This leads to the notion of robustness: an r-Id code C is t-edge-

robust [43]* in G if C remains an r-IdC in all the graphs obtained from G by adding or deleting

edges, with a total amount of additions and deletions at most t. This issue is dealt with, among others,

in [45]* and in [66]. Different definitions exist for t-vertex-robust codes, see [43]* or [79].

6. Number of optimal codes

In this section, we are interested in graphs with many optimal codes. In his PhD thesis [74] under

Iiro Honkala’s supervision, M. Pelto worked on the notion of completely different optimal identifying

codes in infinite grids. During his PhD defense the following question arose: how large can the number

of optimal r-IdCs be? Considering once again our example of the location of a faulty processor in a

multiprocessor network, this means that we want not only to use the smallest possible number of

controllers, but also to have a large number of choices for their locations.

Let νr(n) be the maximum number of optimal (labelled) r-IdCs that a graph on n vertices may

have. It is easy to observe that νr(n) can be exponential with respect to n. Indeed, consider a cycle

C2r+2 on 2r+2 vertices. Any set of 2r+1 vertices is an optimal r-IdC of C2r+2 and there are 2r+2
such sets. Replicating C2r+2 k times provides a (disconnected) graph on k(2r + 2) vertices and with

(2r+2)k optimal r-IdCs. Hence the lower bound (2r+2)k 6 νr(k(2r+2)), i.e., when n is divisible

by 2r + 2, (2r + 2)n/(2r+2) = 2n log2(2r+2)/(2r+2) 6 νr(n). In particular, for r = 1, we obtain the

lower bound 2n/2 6 ν1(n) when n is divisible by 4.

In order to obtain a larger number of optimal 1-IdCs, the notion of separating-only code is defined

in [41]* as follows for r = 1:
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Definition 6. Let G = (V,E) be a graph. A subset C of V is said to be a separating-only code (SOC)

of G if:

• ∃ v0 ∈ V : I1(C; v0) = ∅;

• ∀ v1 ∈ V, ∀ v2 ∈ V with v1 6= v2 : I1(C; v1) 6= I1(C; v2).

Let σ(G) denote the size of a minimum SOC of G and let µ(G) denote the number of optimal

SOCs of G.

Remarks.

1. Some 1-twin-free graphs do not admit any SOC (for instance, the path on three vertices).

2. In a SOC C , the vertex v0 with I1(C; v0) = ∅ in Definition 6 is unique (with respect to C).

3. Since adding the vertex v0 of Definition 6 to the associated SOC leads to a 1-IdC, we have the

inequalities Id1(G)− 1 6 σ(G) 6 Id1(G).

The following discussion is based on [41]*. Consider the binary Hamming space F
3, with 8

vertices. Figure 12 displays the two non-isomorphic unlabelled optimal SOCs of F3, each requiring

three codewords: σ(F3) = 3. There are 24 (respectively 8) labelled SOCs isomorphic to the SOC on

the left (respectively right) of Figure 12: µ(F3) = 32.

Figure 12. The two non-isomorphic optimal SOCs of F3; the three black vertices are the codewords.

On the other hand, Figure 13 displays the four non-isomorphic unlabelled optimal 1-IdCs of F3:

Id1(F
3) = 4. There are 6 labelled 1-IdCs isomorphic to the first unlabelled model, 24 to the second,

24 to the third and 2 to the fourth: ν1(F
3) = 56.

Figure 13. The four non-isomorphic optimal 1-IdCs of F3; the black vertices are the codewords.

Now, consider three copies of F3 and add an extra vertex linked to the 24 vertices of these three

copies (see Figure 14). We obtain the first graph, G1, of a series of graphs Gq described below. In

order to construct optimal 1-IdCs of G1, we consider the following two constructions:

• combine optimal 1-IdCs of each F
3;
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• or select the extra vertex, choose one copy of F3 and select an optimal SOC in it, then combine

them with optimal 1-IdCs inside the other two copies of F3.

Figure 14. The graph G1; only some edges are represented between the vertices of the three copies of F3 and

the extra vertex at the bottom.

In both cases, all the vertices, including the extra vertex, are covered and separated from the others.

More precisely, we obtain optimal 1-IdCs of G1. Observe that G1 has 25 vertices with ν1(G1) =
56× 56× 56+3× 32× 56× 56 = 476 672. Replicating G1 k times provides a (disconnected) graph

with n = 25k vertices and 476 672k = 2n log2(476 672)/25 ≈ 20.7545n optimal 1-IdCs.

In fact, this result is improved in [41]* by designing a series of connected graphs Gq defined in

a similar way as G1: for q > 2, Gq is obtained from Gq−1 by replicating Gq−1 three times and by

adding an extra vertex linked to the vertices of the three copies of Gq−1 (see Figure 15).

Figure 15. The scheme of the graph Gq (q > 3).

Finally, based on the graphs Gq, we obtain the following theorem:

Theorem 6.1. ([41]*) For an infinite number of integers n, there exist connected graphs of order n
admitting approximately 20.770n different optimal 1-IdCs.

For r > 1, other constructions, based on trees admitting many optimal r-IdCs, are proposed, leading

to the next theorem, where
1+log2 5

2 is approximately equal to 0.664.

Theorem 6.2. ([41]*) Let r > 1 be an integer and ε > 0 be a real. For an infinite number of integers

n, there exist connected graphs of order n admitting 2

(

1+log2 5

2
−ε

)

n
different optimal r-IdCs.



O. Hudry et all. / On Iiro Honkala’s Contributions to Identifying Codes 191

Note that a study of the set of the optimal r-identifying codes in twin-free graphs can also be found

in [42]*.

7. Variants and related concepts

We have tried to give an overview of several contributions by Iiro Honkala on identifying codes. Some

variants could have been considered too.

For instance, with respect to the context exposed in Section 1, we could discuss the situation when

a processor cannot control itself, i.e., when we consider the open neighbourhood Nr(v) = Br(v) \ {v}
instead of the whole ball Br(v) for any vertex v, leading to the concept of open neighbourhood iden-

tification. This was introduced in [49]* (see also [82]). This definition is one of several definitions

for so-called fault-tolerant codes, where different scenarii are considered for the alarms given by the

codewords.

The strongly (r,6 ℓ)-IdCs (of Definition 4) are also related to open neighbourhoods. Indeed, for

ℓ = 1, the definition can be reformulated as follows: a code C is strongly (r,6 1)-identifying if for all

v1 ∈ V , v2 ∈ V with v1 6= v2, the sets {Br(v1)∩C,Nr(v1)∩C} and {Br(v2)∩C,Nr(v2)∩C} are

disjoint. See [40]*, where the best density for a strongly (1,6 1)-IdC in the triangular grid is proved

to be 6/19 ≈ 0.3158, or [64] and [69].

A more drastic variant consists in adopting other patterns instead of the r-balls, as in [54]* (see

also, e.g., [35], [60] or [80]), especially for the grids defined in Z × Z where the patterns may be no

longer isotropic (for example, we may adopt a horizontal path centred – or not... – on v instead of

Br(v)).

But surely the most studied variant of r-IdCs is the one of r-locating-dominating codes (see [70]).

They are defined as follows:

Definition 7. An r-locating-dominating code C of a graph G = (V,E) is a subset of V fulfilling the

two properties:

• ∀ v ∈ V : Ir(C; v) 6= ∅;

• ∀ v1 ∈ V \ C, ∀ v2 ∈ V \ C with v1 6= v2 : Ir(C; v1) 6= Ir(C; v2).

So, with respect to r-IdCs, the difference is that the r-separation property must be fulfilled only by

non-codewords (thus, any r-IdC is also an r-locating-dominating code). Locating-dominating codes

were introduced by P. J. Slater in 1983 [83] (for a more easily accessible source, see [76]). Since this

date, they have been extensively studied (see [70] and, for updated references, the ongoing bibliogra-

phy [58]), and Iiro Honkala contributed much to their study. But summarizing Iiro’s contributions to

that topic would require another article...
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