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Abstract. The problems of determining the minimum-sized identifying, locating-dominating and
open locating-dominating codes of an input graph are special search problems that are challenging
from both theoretical and computational viewpoints. In these problems, one selects a dominating
set C of a graph G such that the vertices of a chosen subset of V (G) (i.e. either V (G) \ C or
V (G) itself) are uniquely determined by their neighborhoods in C. A typical line of attack for
these problems is to determine tight bounds for the minimum codes in various graph classes. In
this work, we present tight lower and upper bounds for all three types of codes for block graphs
(i.e. diamond-free chordal graphs). Our bounds are in terms of the number of maximal cliques (or
blocks) of a block graph and the order of the graph. Two of our upper bounds verify conjectures
from the literature — with one of them being now proven for block graphs in this article. As for
the lower bounds, we prove them to be linear in terms of both the number of blocks and the order
of the block graph. We provide examples of families of block graphs whose minimum codes
attain these bounds, thus showing each bound to be tight.

Keywords: identifying code, locating-dominating code, open locating-dominating code, block
graph

*Also works: Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park, 2006,
South Africa
†Address for correspondence: LIMOS, 1 rue de la Chebarde, Campus des Cézeaux, 63178 Aubière Cedex, France
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1. Introduction

For a graph G that models a facility or a multiprocessor network, detection devices can be placed at
its vertices to locate an intruder (like a faulty processor, a fire or a thief). Depending on the features
of the detection devices, different types of dominating sets can be used to determine the optimum
distributions of these devices across the vertices of G. In this article, we study three problems arising
in this context, namely the three types of dominating sets — called the identifying codes, locating-
dominating codes and open locating-dominating codes — of a given graph. Each of these problems
has been extensively studied during the last decades (see the bibliography maintained by Lobstein [1]).
These three types of codes are among the most prominent notions within the larger research area of
identification problems in discrete structures pioneered by Rényi [2], with numerous applications, for
example in fault-diagnosis [3], biological testing [4] or machine learning [5].

Let G = (V (G), E(G)) be a graph, where V (G) and E(G) denote the set of vertices (also
called the vertex set) and the set of edges (also called the edge set), respectively, of G. The (open)
neighborhood of a vertex u ∈ V (G) is the set NG(u) of all vertices of G adjacent to u; and the set
NG[u] = {u} ∪ NG(u) is called the closed neighborhood of u. A subset C ⊆ V (G) is called an
identifying code [6] (or an ID-code for short) of G if

• NG[u] ∩ C ̸= ∅ for all vertices u ∈ V (G) (i.e. C is said to be a dominating set of G, or is said
to possess the property of domination in G); and

• NG[u]∩C ̸= NG[v]∩C for all distinct vertices u, v ∈ V (G) (i.e. C is called a closed-separating
set of G, or is said to possess the property of closed-separation in G).

See Figure 1a for an example of an ID-code. A graph G admits an ID-code if and only if G has no
closed-twins (i.e. a pair of distinct vertices u, v ∈ V with NG[u] = NG[v]). Said differently, a graph
G admits an ID-code if and only if G is closed-twin-free.

A subset C ⊆ V (G) is called a locating-dominating code [7, 8] (or an LD-code for short) of G if

• NG[u] ∩ C ̸= ∅ for all vertices u ∈ V (G) (i.e. C is a dominating set of G); and

• NG(u) ∩ C ̸= NG(v) ∩ C for all distinct vertices u, v ∈ V (G) \ C (i.e. C is called a locating
set of G, or is said to possess the property of location in G).

See Figure 1b for an example of an LD-code. Note that every graph has an LD-code.

Finally, a subset C ⊆ V (G) is called an open locating-dominating code [9] (or an OLD-code for
short) of G if

• NG(u) ∩ C ̸= ∅ for all vertices u ∈ V (G) (i.e. C is called an open-dominating set of G, or is
said to possess the property of open-domination in G)1; and

1The property of open-domination is often called total-domination in the literature. See for example [10]
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(a) (b) (c)

Figure 1: Examples of (a) an ID-code, (b) an LD-code and (c) an OLD-code. The set of black vertices
in each of the three graphs constitute the respective code of the graph.

• NG(u) ∩ C ̸= NG(v) ∩ C for all distinct vertices u, v ∈ V (G) (i.e. C is called an open-
separating set of G, or is said to possess the property of open-separation in G).

See Figure 1c for an example of an OLD-code. A graph G admits an OLD-code if and only if G
has neither isolated vertices nor open-twins (i.e. a pair of distinct vertices u, v ∈ V (G) such that
NG(u) = NG(v)). Again, said differently, a graph G admits an OLD-code if and only if G has no
isolated vertices and is open-twin-free.

A graph with neither open- nor closed-twins is simply referred to as twin-free.
For the rest of this article, we often simply use the word code to mean any of the above three ID-,

LD- or OLD-codes without distinction. Given a graph G, the identifying code number γID(G) (or ID-
number for short), the locating-dominating number γLD(G) (or LD-number for short) and the open
locating-dominating number γOLD(G) (or OLD-number for short) of a graph G are the minimum
cardinalities among all ID-codes, LD-codes and OLD-codes, respectively, of G. In other words, for
simplicity, for any symbol X ∈ {ID, LD, OLD}, we have the X-number: γX(G) = min{|C| :
C is an X-code of G}. In the case that all three codes are addressed together as one unit anywhere in
the text, i.e. any specific symbol for X ∈ {ID, LD, OLD} is irrelevant to the context, we then simply
refer to the X-numbers as the code numbers of G.

Given two sets A and B, the set A△B = (A \ B) ∪ (B \ A) is called the symmetric difference
of A and B. For a subset C ⊂ V (G) and distinct vertices u, v ∈ V (G), if there exists a vertex
w ∈ (NG(u) ∩ C)△(NG(v) ∩ C) (resp. (NG[u] ∩ C)△(NG[v] ∩ C)), then w and C are said to
open-separate (resp. closed-separate) the vertices u and v in G.

1.1. Known results

Given a graph G, determining γID(G) or γLD(G) is, in general, NP-hard [11] and remains so for sev-
eral graph classes where other hard problems become easy to solve. These include bipartite graphs [11]
and two subclasses of chordal graphs, namely split graphs and interval graphs [12]. In fact, for both
bipartite and split graphs, it is NP-hard to even approximate the ID-number and LD-number within
a factor of log |V (G)| [13]. Determining γOLD(G) is also, in general, NP-hard [9] and remains so
for perfect elimination bipartite graphs [14] and interval graphs [12]. On the other hand, determining
γOLD(G) becomes APX-complete for chordal graphs with maximum degree 4 [14].



200 D. Chakraborty et al. / On Three Domination-based Identification Problems in Block Graphs

As these problems are computationally very hard, a typical line of attack is to determine bounds
on the code numbers for specific graph classes. Closed formulas for these parameters have so far
been found only for restricted graph families (e.g. for paths and cycles [8, 9, 15], for stars [16], for
complete multipartite graphs [17, 18] and for some subclasses of split graphs including thin headless
spiders [19]). Lower bounds for all three code numbers for several graph classes like interval graphs,
permutation graphs, cographs [20] and lower bounds for ID-numbers for trees [21], line graphs [22],
planar graphs [23] and many others of bounded VC-dimension [24] have been determined. As far as
upper bounds for the code numbers are concerned, for certain graph classes, upper bounds for ID-
codes (see [25, 26, 27]), LD-codes (see [25, 28, 29]) and OLD-codes (see [30]) have been obtained.

1.2. Our work

In this paper, we consider the family of block graphs, defined by Harary in [31], see also [32] for
equivalent characterizations. A block graph is a graph in which every maximal 2-connected subgraph
is complete. In a block graph, every maximal complete subgraph is called a block. Equivalently,
block graphs are diamond-free chordal graphs [33]. Linear-time algorithms to compute all three code
numbers in block graphs have been presented in [34]. In this paper, we complement these results
by determining tight lower and upper bounds for all three code numbers for block graphs. We give
bounds using (i) the number of vertices, i.e. the order of a graph, as has been done for several other
classes of graphs; and (ii) the number of blocks of a block graph, a quantity equally relevant to block
graphs. In doing so, we also prove the following conjecture.

Conjecture 1.1. ([35, Conjecture 1])
The ID-number of a closed-twin-free block graph is bounded above by the number of blocks in the
graph.

In addressing LD-codes for twin-free block graphs, we prove (for block graphs) the following
conjecture posed by Garijo et al. [29] and reformulated in a slightly stronger form by Foucaud et al.
[28].

Conjecture 1.2. ([28, Conjecture 2])
Every twin-free graph G with no isolated vertices satisfies γLD(G) ≤ |V (G)|

2 .

A short version of this article has also been published in the conference proceedings of CALDAM
2023 [36].

1.3. Notations

For a block graph G, we let K(G) denote the set of all blocks of G, i.e. the set of all maximal cliques
of G. Noting that any two distinct blocks K and K ′ of G intersect at at most a single vertex, any vertex
x ∈ V (G) such that {x} = V (K) ∩ V (K ′) is called an articulation vertex of both K and K ′. We
define art(K) to be the set of all articulation vertices of a block K ∈ K(G). For a connected block
graph, we fix a root block K0 ∈ K(G) and define a system of assigning numbers to every block of G
depending on “how far” the latter is from K0. So, define a layer function f : K(G) → Z on G by:
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f(K0) = 0, and for any other K (̸= K0) ∈ K(G) (also called a non-root block), define inductively
f(K) = i if V (K) ∩ V (K ′) ̸= ∅ for some block K ′ (̸= K) ∈ K(G) such that f(K ′) = i− 1. For a
pair of blocks K,K ′ ∈ K(G) such that f(K) = f(K ′) + 1, define art−(K) = V (K) ∩ V (K ′); and
for the root block K0, define art−(K0) = ∅. Note that for a block K ∈ K(G) such that f(K) ≥ 1, we
have |art−(K)| = 1, and the only vertex in art−(K) is called the negative articulation vertex of the
block K. In contrast to the negative articulation vertices of G, define art+(K) = art(K) \ art−(K)
to be the set of all positive articulation vertices of the block K and art(K) = V (K) \ art(K) to be
the set of all non-articulation vertices of K. Any block K with |art(K)| = 1 is called a leaf block
and all blocks that are not leaf blocks are called non-leaf blocks. Note that a block graph always has
leaf-blocks. For simplicity, we also denote the set f−1({i}) by f−1(i). Then, for each i ≥ 0, f−1(i) is
called the i-th layer of G and each block K ∈ f−1(i) is said to be in the i-th layer of G. See Figure 2
for an illustration of the layers and the related concepts in a connected block graph.

Layer 0

Layer 1 (leaf)

Layer 1
Layer 2
(leaf)

Articulation
vertices

Non-articulation
vertices

1

Figure 2: Example of different layer numbers, articulation vertices (grey) and non-articulation vertices
(white) of a connected block graph.

1.4. Structure of the paper

Our results on the upper bounds for the code numbers are contained in Section 2 of this paper, whereas
Section 3 is dedicated to the lower bounds for the code numbers. Section 2 is further subdivided into
three subsections with each of the latter containing the results for a particular code. We conclude in
Section 4.

2. Upper bounds

In this section, we establish upper bounds on the ID-, LD- and OLD-numbers for block graphs. Two
of these upper bounds are in fact proving Conjectures 1.1 and 1.2. All our results in this section are
for connected block graphs. However, applying the results to each connected component of a block
graph, the results of Theorem 2.1, 2.2 and 2.4 hold equally well for all block graphs.
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2.1. Identifying codes

The number of blocks is, structurally speaking, a quantity as relevant for block graphs as is the number
of vertices for trees. In the next result, we prove Conjecture 1.1 to provide an upper bound for γID(G)
for a block graph G in terms of its number of blocks.

Theorem 2.1. Let G be a connected closed-twin-free block graph and let K(G) be the set of all blocks
of G. Then γID(G) ≤ |K(G)|.

Proof:
Assume by contradiction that there is a closed-twin-free block graph G of minimum order such that
γID(G) > |K(G)|. We also assume that G has at least four vertices since it can be easily checked that
the theorem is true for closed-twin-free block graphs with at most three vertices (which are only P1

and P3). Suppose that K ∈ K(G) is a leaf-block of G. Due to the closed-twin-free property of G, one
can assume that V (K) = {x, y} and, without loss of generality, that x and y are the non-articulation
and the negative articulation vertices, respectively, of K. Let G′ = G − x be the graph obtained by
deleting the vertex x ∈ V (G) (and the edge incident on x) from G. Then G′ is a block graph with
|K(G′)| = |K(G)| − 1. We now consider the following two cases.

Case 1. (G′ is closed-twin-free)
By the minimality of the order of G, there is an ID-code C ′ of G′ such that |C ′| ≤ |K(G′)| =
|K(G)|− 1. First, assume that y /∈ C ′. Then by the property of domination of C ′, there exists a vertex
z ∈ V (G′) such that z ∈ NG′(y) ∩ C ′. We claim that C = C ′ ∪ {x} is an ID-code of G. First of all,
that C is a dominating set of G is clear from the fact that C ′ is a dominating set of G′. To prove that C
is a closed-separating set of G, we see that x is closed-separated in G from all vertices in V (G′) \ {y}
by itself and is closed-separated in G from y by the vertex z ∈ C ′. Moreover, all other pairs of distinct
vertices are closed-separated by C ′ are also closed-separated by C. Thus, C, indeed, is an ID-code of
G. This implies that γID(G) ≤ |C| ≤ |K(G)|, contrary to our assumption.

We therefore assume that y ∈ C ′. If again, there exists a vertex z ∈ NG′(y)∩C ′, then by the same
reasoning as above, C = C ′ ∪ {x} is an ID-code of G. Otherwise, we have N [y] ∩ C ′ = {y}. Now,
since G is connected, we have degG(y) > 1 and therefore, there exists a vertex w ∈ NG(y) \ {x}.
Then C = C ′ ∪ {w} is an ID-code of G. This is because, first of all, C still closed-separates every
pair of distinct vertices in V (G′). The vertex x is closed-separated from y by the vertex w ∈ C; and
from w by w itself. Moreover, for any vertex v in V (G′) \ {y, w}, v is closed-separated from y in G′

by some vertex uv ∈ NG′ [v] ∩ C ′. Then x is closed-separated from all such v in V (G′) \ {y, w} by
the vertices uv ∈ C ′. Moreover, C is clearly also a dominating set of G. Hence, this leads to the same
contradiction as before.

Case 2. (G′ has closed-twins)
Assume that vertices u, v ∈ V (G′) are a pair of closed-twins of G′. Since u and v were not closed-
twins in G, it means that x is adjacent to, say, u, without loss of generality. This implies that u = y.
Note that v is then unique with respect to being a closed-twin with y in G′. This is because, if u and
some vertex v′(̸= v) ∈ V (G′) were also closed-twins in G′, then it would mean that v and v′ were
closed-twins in G, contrary to our assumption. Now, let G′′ = G′ − v. We claim the following.
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Claim 2A. G′′ is closed-twin-free.

Proof of Claim 2A. Toward a contradiction, if vertices z, w ∈ V (G′′) were a pair of closed-twins
in G′′, it would then mean that the vertex z ∈ NG′(v), without loss of generality. This would, in
turn, imply that z ∈ NG′(y) (since the vertices y and v are closed-twins in G′). Or, in other words,
y ∈ NG′′(z). Now, since z and w are closed-twins in G′′, we have y ∈ NG′′(w), i.e. w ∈ NG′(y).
Again, by virtue of y and v being closed-twins in G′, we have w ∈ NG′(v). This implies that z and w
are closed-twins in G which is a contradiction to our assumption. ♦

We also note here that the vertices y and v must be from the same block, as the two are adjacent on
account of being closed-twins in G′. Thus, G′′ is a connected closed-twin-free block graph. Therefore,
by the minimality of the order of G, there is an ID-code C ′′ of G′′ such that |C ′′| ≤ |K(G′′)| < |K(G)|.
If y /∈ C ′′, then we claim that C = C ′′ ∪ {x} is an identifying code of G. This is true because, firstly,
C is a dominating set of G (note that, by the property of domination of C ′′ in G′′, there exists a vertex
z ∈ NG′′(y) ∩ C ′′; and since y and v are closed-twins in G′, we have z ∈ NG(v) ∩ C). Moreover, x
is closed-separated in G from every other vertex in V (G) \ {y} by x itself; and the vertices x and y
are closed-separated in G by some vertex in NG′′(y)∩C ′′ that dominates the vertex y. The vertex y is
closed-separated from all the vertices in V (G) \ {y, x} by x and; since y and v have the same closed
neighborhood in G′, v is closed-separated in G from all vertices in V (G′′) \ {y} because y is by C ′′.
Finally, any two distinct vertices closed-separated by C ′′ still remain so by C. Thus, C, indeed, is an
ID-code of G. This implies that γID(G) ≤ |C| ≤ |K(G)|; again a contradiction.

Let us, therefore, assume that y ∈ C ′′. This time, we claim that C = (C ′′ \ {y}) ∪ {x, v} is an
ID-code of G. That C is a dominating set of G is clear. So, as for the closed-separating property of
C is concerned, as before, x is closed-separated in G from every other vertex in V (G) \ {y} by x
itself; vertices x and y are closed-separated in G by v; the vertices y and v are closed-separated in
G by x and the vertices v and x are closed-separated in G by v. Since y and v have the same closed
neighbourhood in G′ and since y is closed-separated in G′′ by C ′′ from every other vertex in V (G′′),
both v and y are also each closed-separated in G from every vertex in V (G′′) \ {v, y}.

Finally, any two distinct vertices of G′′ are closed-separated by C ′′ still remain so by C. This
proves that C is an ID-code of G and hence, again, we are led to the contradiction that γID(G) ≤
|C| ≤ |K(G)|.

This proves the theorem. ⊓⊔

Note that, besides for stars [16], the upper bound in Theorem 2.1 is attained by the ID-numbers of
thin headless spiders [19] which, therefore, serve as examples of cases where the bound in Theorem 2.1
is tight. Noting that blocks are simply the maximal complete subgraphs of a block graph, the statement
of Theorem 2.1 does not hold in terms of the number of maximal complete subgraphs even for chordal
graphs, let alone for graphs in general. A counterexample to the bound in Theorem 2.1 (replacing the
number of blocks by the number of maximal cliques) for chordal graphs is the graph P k−1

2k (the graph
obtained from a path on 2k vertices with edges introduced between all pairs of vertices u, v ∈ V (P2k)
such that dP2k

(u, v) ≤ k − 1) which is closed-twin-free, has only two maximal complete subgraphs,
but needs 2k − 1 vertices in any identifying code [37].
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2.2. Locating-dominating codes

In this subsection, we prove two results on upper bounds for the LD-numbers of block graphs. The
first result is a more general one in which the upper bound is in terms of the number of blocks and
other quantities arising out of the structural properties of a block graph. On the other hand, the second
result is proving Conjecture 1.2 for block graphs. We begin with the more general result.

Theorem 2.2. Let G be a connected block graph and K(G) be the set of blocks in G. Then, we have

γLD(G) ≤ |K(G)|+
∑

K∈K(G),
|art(K)|≥2

(|art(K)| − 2).

Proof:
We define a set C ⊂ V (G) by the following rules.

Rule 1: For every block K ∈ K(G) which does not contain any closed-twins, i.e. with at most one
non-articulation vertex, pick any one vertex from V (K) \ art−(K) in C.

Rule 2: For every block K ∈ K(G) which contains closed-twins, i.e. with at least two non-articulation
vertices, pick any |art(K)| − 1 vertices from art(K) in C.

Note that the vertices added in C by the above rules are all distinct. Therefore, the following is
the size of C.

|C| =
∣∣∣{K ∈ K(G) : |art(K)| ≤ 1}

∣∣∣+ ∑
K∈K(G),
|art(K)|≥2

(|art(K)| − 1)

= |K(G)|+
∑

K∈K(G),
|art(K)|≥2

(|art(K)| − 2).

The result, therefore, follows from proving that C is an LD-code of G.

First of all, we notice that, by the construction of C, for every block K ∈ K(G), there exists a
vertex vK ∈ V (K)∩C. Therefore, C is a dominating set of G. We now show that C is also a locating
set of G. So assume that u, v ∈ V (G) \ C are distinct vertices of G. Then, by the construction of C,
we must have u ∈ V (K) and v ∈ V (K ′) for a distinct pair of blocks K,K ′ ∈ K(G).

Claim A. There exist vertices vK ∈ V (K) ∩ C and vK′ ∈ V (K ′) ∩ C such that vK ̸= vK′ .

Proof of Claim A. On the contrary, if V (K) ∩ C = V (K ′) ∩ C = {vK}, this would imply that vK
is the negative articulation vertex of either K or K ′. Without loss of generality, let us assume that
art−(K) = {vK}. If K does not contain any closed twins, then by Rule 1, there exists a vertex in
K other than vK which belongs to C, a contradiction to V (K) ∩ C = {vK}. Therefore, K contains
closed twins. In other words, |art(K)| ≥ 2. Now, by Rule 2, at least one vertex w, say, of art(K)
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belongs to C. Since art(K) ∩ art−(K) = ∅, we have w ̸= vK and thus, we run into the same
contradiction. This proves the claim. ♦

This implies that at least one of vK and vK′ must open-separate u and v in G and, hence, C is a
locating set of G. ⊓⊔

There is an infinite number of arbitrarily large connected block graphs whose LD-numbers at-
tain the upper bound in Theorem 2.2. One such subclass of block graphs is the following. For
positive integers t ≥ 2 and m1,m2, . . . ,mt with mi ≥ 3 for each i, we define a class of graphs
St(m1,m2, . . . ,mt) by the following rule. Let X be a copy of the complete graph on t vertices and
name its vertices v1, v2, . . . , vt. Also, for all 1 ≤ i ≤ t, let Yi be a copy of the complete graph on
mi vertices. Let St(m1,m2, . . . ,mt) be the block graph obtained by identifying a vertex of Yi with
vi of X for every 1 ≤ i ≤ t. For brevity, we continue to call the identified vertices resulting in
St(m1,m2, . . . ,mt) by the same names of v1, v2, . . . , vt as before. See Figure 3 for an example of the
graph St(m1,m2, . . . ,mt) constructed with t = 5, and m1 = m3 = 4, m2 = m5 = 3 and m4 = 5.
We then show the following.

v1

v2

v3

v4

v5

1

Figure 3: Graph S5(4, 3, 4, 5, 3) whose LD-number attains the upper bound in Theorem 2.2. The black
vertices represent those included in the LD-code C of G as described in the proof of Theorem 2.2.

Proposition 2.3. For t ≥ 2, and m1,m2, . . . ,mt such that mi ≥ 3 for all 1 ≤ i ≤ t, we have

γLD(St(m1,m2, . . . ,mt)) = |K(St(m1,m2, . . . ,mt))|+
∑

K∈K(St(m1,m2,...,mt)),
|art(K)|≥2

(|art(K)| − 2).

Proof:
Let G = St(m1,m2, . . . ,mt). We note here that the number of blocks in G is t + 1; and the only
blocks K ∈ K(G) with |art(K)| ≥ 2 are Y1, Y2, . . . , Yt (as per the notations used in the preceeding
discussion). More precisely, for each 1 ≤ i ≤ t, we have |art(Yi)| = mi − 1. So, the upper bound for
the LD-number of G by Theorem 2.2 is t+ 1 +

∑t
i=1(mi − 3) = 1− 2t+

∑t
i=1mi.

Now, assume that C is a minimum LD-code of G. Let us first assume that V (X) ∩ C = ∅.
Then, since any two vertices in V (Yi) have the same neighborhood in C, it implies that we must
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have |V (Yi) ∩ C| = mi − 1. This further implies that |C| = ∑t
i=1(mi − 1) = −t +

∑t
i=1mi >

1 − 2t +
∑t

i=1mi (since t ≥ 2), the upper bound by Theorem 2.2 resulting in a contradiction.
Therefore, we must have V (X) ∩C ̸= ∅. Thus, let vi ∈ C for some 1 ≤ i ≤ t. Note that vi ∈ V (Yi).
Since any two vertices of V (Yi) \ {vi} are twins in G, we have |V (Yi)∩C| ≥ mi − 1. Moreover, for
1 ≤ j ≤ t such that j ̸= i, again, since any two vertices of V (Yj) \ {vj} are twins in G, we now have
|V (Yj)∩C| ≥ mj−2. Hence, we have |C| ≥ |V (Yi)∩C|+∑t

j=1,j ̸=i |V (Yj)∩C| ≥ 1−2t+
∑t

i=1mi.
⊓⊔

Imposing additional structural constraints on a block graph, one could still limit the number of
vertices one needs to choose from each of its blocks in order to form an LD-code of the graph. Our
next result shows exactly that.

Theorem 2.4. Let G be a connected twin-free block graph. Then γLD(G) ≤ |V (G)|
2 .

Proof:
To prove the theorem, we partition the vertex set of G into two special subsets C∗ and D∗.

Assume that K0 ∈ K(G) is a leaf block of G. Then, |V (K0)| = 2, as G is twin-free. Assign K0

to be the root block of G, i.e. define a layer function f : K(G) → Z on G such that f(K0) = 0. We
then construct the sets C∗ and D∗ by the following rules applied inductively on i ∈ f(K(G)). See
Figure 4 for a demonstration of this construction.

K0

art+(K0)

art(K0)

1

(a) Rule 1

art−(K)

1

(b) Rule 2

art−(K)

1

(c) Rule 3

K

art−(K)

K ′art−(K ′)

1

(d) Rule 4

art−(K)

1

(e) Rule 5

Figure 4: Example of each rule in the proof of Theorem 2.4 for the construction of the sets C∗ or
D∗. In each example, the black vertices represent those picked in C∗ and the white vertices represent
those picked in D∗. The blocks with solid edges represent those blocks (in i-th layer, say) from which
vertices are chosen either in C∗ or D∗. The blocks with dashed edges represent those blocks in the
next layer (the (i + 1)-th) which, inductively, are yet to be analysed for their choices of vertices in
C∗ and D∗; but whose presence in the figure is necessary to determine the positive, negative and the
non-articulation vertices of the block in i-th layer.

Rule 1: Pick the (positive) articulation vertex of the root block K0 in D∗ (i.e. let art+(K0) ⊂ D∗)
and pick the (other) non-articulation vertex of K0 in C∗ (i.e. let art(K0) ⊂ C∗). See Figure
4a for an example.
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Rule 2: For every non-root block K ∈ K(G) with at least one non-articulation vertex (i.e. art(K) ̸=
∅) and whose negative articulation vertex is in D∗ (i.e. art−(K) ⊂ D∗), pick all non-
articulation vertices of K in C∗ (i.e. let art(K) ⊂ C∗); and all positive articulation vertices
of K in D∗ (i.e. let art+(K) ⊂ D∗). See Figure 4b for an example.

Rule 3: For every non-root block K ∈ K(G) with no non-articulation vertices (i.e. art(K) = ∅)
and whose negative articulation vertex is in D∗ (i.e. art−(K) ⊂ D∗), pick one positive
articulation vertex, say, w of K in C∗ and the rest of the positive articulation vertices in D∗

(i.e. let art+(K) \ {w} ⊂ D∗). See Figure 4c for one such case.

Rule 4: For every non-root block K ∈ K(G) with at least one non-articulation vertex (i.e. art(K) ̸=
∅) and whose negative articulation vertex is in C∗ (i.e. art−(K) ⊂ C∗), pick one positive ar-
ticulation vertex (if available), say, w of K in C∗; and pick all other vertices in V (K), except
the vertex w and the negative articulation vertex of K, in D∗ (i.e. let V (K) \ (art−(K) ∪
{w}) ⊂ D∗). See Figure 4d for both examples of when articulation vertices are available
(block K) and when they are not, i.e. in the case of leaf blocks (block K ′).

Rule 5: For every non-root block K ∈ K(G) with no non-articulation vertices (i.e. art(K) = ∅) and
whose negative articulation vertex is in C∗ (i.e. art−(K) ⊂ C∗), pick all positive articulation
vertices of K in D∗ (i.e. art+(K) ⊂ D∗). See Figure 4e for an illustration.

From the construction, C∗ and D∗ are complements of each other in V (G). We claim that both
C∗ and D∗ are LD-codes of G. We first show that both are dominating sets of G.

Claim A. Both C∗ and D∗ are dominating sets of G.

Proof of Claim A. To prove that both C∗ and D∗ are dominating sets of G, it is enough to show that,
for every block K ∈ K(G), both V (K) ∩ C∗ ̸= ∅ and V (K) ∩D∗ ̸= ∅. By Rule 1, the claim is true
for the root block K0. So, assume K ∈ K(G) to be a non-root block. First, suppose that the negative
articulation vertex of K belongs to D∗. Then, by Rules 2 and 3, we have V (K) ∩ C∗ ̸= ∅. Next,
suppose that the negative articulation vertex of K belongs to C∗. Then, by Rules 4 and 5, we have
V (K) ∩D∗ ̸= ∅. ♦

We now show that both C∗ and D∗ are also locating sets of G. We start with C∗.

Claim B. C∗ is a locating set of G.

Proof of Claim B. Assume that u, v ∈ D∗ are distinct vertices of G. Since G is twin-free, there exist
distinct blocks K,K ′ ∈ K(G) such that u ∈ V (K) and v ∈ V (K ′). By the proof of Claim A, there
exist vertices vK ∈ V (K) ∩ C∗ and vK′ ∈ V (K ′) ∩ C∗. If vK ̸= vK′ , then either one of vK and vK′

must locate u and v in G. So, let us assume that no such pairs of distinct vertices vK ∈ V (K) ∩ C∗

and vK′ ∈ V (K ′) ∩ C∗ exist, i.e. V (K) ∩ V (K ′) ⊂ C∗ and that V (K)△V (K ′) ⊂ D∗.

We now claim that either u is an articulation vertex of K or v is an articulation vertex of K ′ (or
both). So, toward contradiction, assume that both u and v are non-articulation vertices of K and K ′,
respectively. Then the following two cases arise.
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Case 1. (K and K ′ belong to different layers)
Without loss of generality, assume that f(K ′) = f(K) + 1. Then, K ̸= K0, or else, by Rule 1, u,
being a non-articulation vertex of K, must belong to C∗, contrary to our assumption. Therefore, K
is a non-leaf block. Now, V (K)△V (K ′) ⊂ D∗ implies that the negative articulation vertex of K
belongs to D∗. Since u is a non-articulation vertex of K, by Rule 2, u ∈ C∗ which is a contradiction
to our assumption.

Case 2. (K and K ′ belong to the same layer)
In this case, K and K ′ cannot both be leaf blocks, or else, G would have twins. So, without loss of
generality, suppose that K is a non-leaf block. Now, the negative articulation vertex of K belongs to
C∗. Since K is a non-leaf block, there exists a positive articulation vertex of K and, hence, by Rule
4, art+(K) ∩ C∗ ̸= ∅ which contradicts the fact that V (K)△V (K ′) ⊂ D∗.

This proves our claim that either u is an articulation vertex of K or v is an articulation vertex
of K ′ (or both). So if, without loss of generality, we assume that u is an articulation vertex of K,
then {u} = V (K) ∩ V (K ′′) for some block K ′′ (̸= K) ∈ K(G). Moreover, K ′′ ̸= K ′, or else,
V (K) ∩ V (K ′) = {u} ⊂ D∗ which contradicts our assumption that V (K) ∩ V (K ′) ⊂ C∗. Hence,
some vertex in V (K ′′) ∩ C∗ (which exists due to the proof of Claim A) must open-separate u and v
in G. This proves our current claim. ♦

We now prove the same for D∗.

Claim C. D∗ is a locating set of G.

Proof of Claim C. Assume that u, v ∈ C∗ are distinct vertices of G. Since G is twin-free, there
exist distinct blocks K,K ′ ∈ K(G) such that u ∈ V (K) and v ∈ V (K ′). By the proof of Claim
A, there exist vertices vK ∈ V (K) ∩ D∗ and vK′ ∈ V (K ′) ∩ D∗. If vK ̸= vK′ , then either one
of vK and vK′ must open-separate u and v in G. So, let us assume that no such pairs of distinct
vertices vK ∈ V (K) ∩ D∗ and vK′ ∈ V (K ′) ∩ D∗ exist, i.e. V (K) ∩ V (K ′) ⊂ D∗ and that
V (K)△V (K ′) ⊂ C∗.

We now claim that either u is an articulation vertex of K or v is an articulation vertex of K ′ (or
both). So, toward contradiction, assume that both u and v are non-articulation vertices of K and K ′,
respectively. Then the following two cases arise.

Case 1. (K and K ′ belong to different layers)
Without loss of generality, assume that f(K ′) = f(K) + 1. If |V (K ′)| ≥ 3, since G is twin-
free and since v is a non-articulation vertex of K ′, then K ′ contains exactly one non-articulation
vertex and thus, art+(K ′) ∩ D∗ ̸= ∅ by Rule 2. This, however, is a contradiction to the fact that
V (K)△V (K ′) ⊂ C∗. So, assume that |V (K ′)| = 2, in which case, K ′ is a leaf block (since, again,
v is a non-articulation vertex of K ′). This implies that K is a non-leaf block, or else, G would have
twins. So, in particular, K ̸= K0, the root block of G. Moreover, V (K)△V (K ′) ⊂ C∗ implies that
the negative articulation vertex of K belongs to C∗. Therefore, since u is a non-articulation vertex of
K, by Rule 4, u ∈ D∗ which is a contradiction to our assumption.



D. Chakraborty et al. / On Three Domination-based Identification Problems in Block Graphs 209

Case 2. (K and K ′ belong to the same layer)
In this case, K and K ′ cannot both be leaf blocks, or else, G would have twins. So, without loss
of generality, assume K to be a non-leaf block. Therefore, |V (K)| ≥ 3, or else, u would be an
articulation vertex of K, contrary to our assumption. The negative articulation vertex of K belongs to
D∗. Therefore, by Rule 2, art+(K) ∩D∗ ̸= ∅ which contradicts V (K)△V (K ′) ⊂ C∗.

This, therefore, proves our claim that either u is an articulation vertex of K or v is an articulation
vertex of K ′ (or both). If, without loss of generality, u is an articulation vertex of K, then {u} =
V (K)∩V (K ′′) for some block K ′′ (̸= K) ∈ K(G). Moreover, K ′′ ̸= K ′, or else, V (K)∩V (K ′) =
{u} ⊂ C∗ which contradicts our assumption that V (K) ∩ V (K ′) ⊂ D∗. Hence, some vertex in
V (K ′′)∩D∗ (which exists due to the proof of Claim A) must open-separate u and v in G. This, again,
proves our current claim. ♦

Combining Claims A, B and C, we find that C∗ and D∗ are both LD-codes of the twin-free block
graph G with no isolated vertices. Moreover, since C∗ and D∗ are complements of each other in
V (G), at least one of them must have cardinality of at most half the order of G. This proves the
theorem. ⊓⊔

Theorem 2.4 therefore proves Conjecture 1.2 for block graphs.

Corollary 2.5. Let G be a twin-free block graph without isolated vertices. Then γLD(G) ≤ |V (G)|
2 .

The trees attaining the bound of Theorem 2.4 were characterized in [28]. There are also arbi-
trarily large twin-free block graphs that are not trees and whose LD-numbers attain the bound given
in Theorem 2.4. To demonstrate this attainment, we look at the following subclass of block graphs
which we denote by Ht: For a fixed integer t ≥ 1, let T1, T2, . . . , Tt be t copies of K3, the com-
plete graph on three vertices. Suppose that V (Ti) = {vi, wi, xi} for each 1 ≤ i ≤ t. Also,
let R,R1, R2, . . . , Rt, R

′
1, R

′
2, . . . , R

′
t be 2t + 1 copies of P2, the path on two vertices. Also, let

V (R) = {u, v} and for all 1 ≤ i, i′ ≤ t, let V (Ri) = {y′i, yi} and V (R′
i′) = {z′i′ , zi′}. We then

identify the vertices v, v1, v2, . . . , vt to a single vertex which we continue to call v; and, for each
1 ≤ i ≤ t, we identify the vertices wi and y′i to a single vertex and the vertices xi and z′i to a single

v

u

x2w2 w3 x3x1w1

z2y2 y3 z3z1y1

1

Figure 5: Graph H3 whose LD-number attains the upper bound in Theorem 2.4. The black vertices
represent those included in the LD-code C∗ of G described in the proof of Theorem 2.4.
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vertex. In the latter two cases, we continue to call the identified vertices wi and xi, respectively. The
new resulting graph is what we call Ht. See Figure 5 for an example of Ht with t = 3. With that, we
now prove the following.

Proposition 2.6. For each integer t ≥ 1, γLD(Ht) =
|V (Ht)|

2 .

Proof:
Notice that the graph Ht is twin-free. Since |V (Ht)| = 4t + 2, we therefore have from Theorem 2.4
that γLD(Ht) ≤ 2t+ 1.

We now prove that γLD(Ht) ≥ 2t+1. Since each of the 2t+1 edges uv, wiyi, xizi (for 1 ≤ i ≤ t)
of Ht contains a vertex of degree 1, therefore any LD-code of Ht, by its property of domination, must
contain at least one endpoint of each of these edges. Since the above edges are all pairwise disjoint,
any LD-code of Ht must contain at least 2t+ 1 vertices of Ht. ⊓⊔

2.3. Open locating-dominating codes

We now focus our attention on upper bounds for OLD-numbers for block graphs. Before we get to
our results, we define the following two special graphs.

1. The 4-path (or P4 in symbol) is a graph defined by its vertex set V (P4) = {p1, p2, p3, p4} and
its edge set E(P4) = {p1p2, p2p3, p3p4}.

2. The bull graph (or B5 in symbol) is a graph defined by its vertex set V (B5) = {b1, b2, b3, b4, b5}
and its edge set E(B5) = {b1b2, b2b3, b3b4, b4b5, b2b4}. See Figure 6 for a depiction of a bull
graph.

b3

b2b4

b1b5

1

Figure 6: The Bull graph B5. The set of black vertices constitute an OLD-code of B5.

q

4-path

1

(a) K4 ▷q P4

q

Bull graph

1

(b) K4 ▷q B5

Figure 7: Examples of G′▷qX , where G′ ∼= K4 and X ∈ {P4, B5}. The vertex q (in grey) is obtained
by identifying a vertex of G′ and an articulation vertex of X .
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We note here that both P4 and B5 are block graphs with articulation vertices p2 and p3 for P4 and
b2 and b4 for B5. For P4, the vertices p1 and p4 are called the leaf vertices; and for B5, the vertices
b1 and b5 are the leaf vertices. Assume G′ to be any graph and X to be a graph which is either a copy
of P4 or B5. For a fixed vertex q ∈ V (G′), we define a new graph G′ ▷q X to be the graph obtained
by identifying the vertex q with an articulation vertex of X (see Figures 6a and 6b for examples of
K4 ▷q P4 and K4 ▷q B5, respectively). As a matter of reference, we call the new vertex in G′ ▷q X
— obtained as a result of identifying two vertices — as the quotient vertex; and continue to refer to
the quotient vertex as q itself. We now turn to our results. Firstly, it is easy to establish the following.

Lemma 2.7. If P is a 4-path, then γOLD(P ) = 4.

Lemma 2.8. If B is a bull graph, then γOLD(B) = 3.

Proof:
Let V (B) = {b1, b2, b3, b4, b5}, where b2 and b4 are the articulation vertices; and b1 and b5 are the leaf
vertices of B. Then it is easy to check that {b2, b3, b4} is an OLD-code of B and hence γOLD(B) ≤ 3.
See Figure 6 for the OLD-code demonstrated with black vertices in the figure.

On the other hand, assume that C is an OLD-code of B. Since b1 and b5 are degree 1 vertices, their
only neighbours, namely b2 and b4, respectively, must be in C for the latter to be an open-dominating
set of B. Moreover, at least one of b1 and b3 must be in C for b2 and b5 to be open-separated in B.
Hence, |C| ≥ 3 and this establishes the result. ⊓⊔

This brings us to our result on the upper bound for OLD-numbers for block graphs.

Theorem 2.9. Let G be a connected open-twin-free block graph with no isolated vertices. Moreover,
let G neither be a copy of P2 nor of P4. Moreover, let mQ(G) be the number of non-leaf blocks of G
with at least one non-articulation vertex. Then γOLD(G) ≤ |V (G)| −mQ(G)− 1.

Proof:
To start with, if G is a copy of the bull graph, then |V (G)| = 5 and mQ(G) = 1. Moreover, by
Lemma 2.8, γOLD(G) = 3 = |V (G)| −mQ(G)− 1 and so, we are done. So, let us assume that G is
not a copy of the bull graph.

We first choose a root block K0 ∈ K(G) according to the following two possibilities.

Possibility 1: G ∼= G′ ▷q X for some block graph G′ and some graph X that is a copy of either
P4 or B5. In such a case, assume that x is the articulation vertex of X which is identified with the
vertex q of G′ to form G. Then, we choose K0 to be the block of G isomorphic to a P2 with vertices
{x, z}, where z is the leaf vertex of X adjacent to x.

Possibility 2: G ̸∼= G′ ▷q X for all block graphs G′ and X that is a copy of either P4 or B5. In
this case, choose K0 ∈ K(G) such that |V (K0)| = min{|V (K)| : K is a leaf block of G}.

Next, we construct a set C ⊂ V (G) by the following rules.

Rule 1: For every non-root leaf block K ∈ K(G), pick all vertices of K in C.
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Rule 2: For every block K ∈ K(G) that is either the root block K0 or is a non-leaf block in K(G) \
{K0}, (i) pick all articulation vertices of K in C; and (ii) pick all but one non-articulation
vertices of K in C.

To compute the size of C, we note that, for the root block and every other non-leaf block K with
at least one non-articulation vertex, exactly one vertex is left out from it in C. This gives |C| =
|V (G)| −mQ(G)− 1. Thus, the upper bound for γOLD(G) in the theorem is established on showing
that C, indeed, is an OLD-code of G; which is what we prove next.

To show that C is an OLD-code of G, we notice first of all that, if the root block K0 is isomorphic
to P2, then the (only) non-articulation vertex of K0 is open-dominated by the articulation vertex of
K0 which belongs to C. In every other case when the root block is not isomorphic to P2, all blocks
K ∈ K(G) have |V (K) ∩ C| ≥ 2. This makes C an open-dominating set of G. Now we show that C
is also an open-separating set of V (G). So, let us assume that u, v ∈ V (G) are distinct vertices of G.
We now consider the following three cases.

Case 1. (u, v ∈ V (K) for some block K ∈ K(G))
We note here that, by the construction of C, for every block K ∈ K(G), at most one vertex of K is
not in C. This implies that at least one of u and v, say u without loss of generality, must be in C. Then
u open-separates u and v in G.

Case 2. (u ∈ V (K), v ∈ V (K ′) for distinct K,K ′ ∈ K(G) and both u, v /∈ V (K) ∩ V (K ′))
In this case, first let us assume that V (K)∩V (K ′) = ∅. Now, both K and K ′ cannot be root blocks of
G. Without loss of generality, let us assume that K is not the root block of G. Since |V (K) ∩C| ≥ 2
by the construction of C, the block K has a vertex x in C other than u. Then, x open-separates u and
v in G. Therefore, assume that V (K)∩V (K ′) = {w} for some vertex w ∈ V (G). Now, if either one
of V (K) and V (K ′), say V (K) without loss of generality, has size at least 4, then |V (K) ∩ C| ≥ 3
and so, at least one vertex in V (K) \ {u,w} belongs to C which open-separates u and v in G. So,
assume that |V (K)| ≤ 3 and |V (K ′)| ≤ 3. We next look at the following two subcases.

Subcase 2.1. (|V (K)| = |V (K ′)| = 2)
Then, at least one of K and K ′ must be a non-leaf block, or else, G would have open-twins. So,
without loss of generality, suppose that K is a non-leaf block. Then {u} = V (K) ∩ V (K ′′) for some
block K ′′ (̸= K,K ′) ∈ K(G). If however, K ′ too is a non-leaf-block, then {v} = V (K ′) ∩ V (K ′′′)
for some block K ′′′ (̸= K ′,K,K ′′) ∈ K(G). Now, at least one of K ′′ and K ′′′ is not the root block.
Without loss of generality, therefore, assume that K ′′ is not the root block. Then there is at least one
vertex in V (K ′′) \ {u} which is in C and, hence, open-separates u and v in G. So, let us assume that
K ′ is a leaf block, i.e. v is a non-articulation vertex of K ′. Now again, if K ′′ is not the root block,
then there is at least one vertex in V (K ′′) \ {u} which is in C and, hence, open-separates u and v
in G. So, now let us assume that K ′′ is the root block. If G satisfies the conditions of Possibility 1,
then |V (K ′′)| = 2. However, if G satisfies the conditions of Possibility 2, then again, since K ′ is a
leaf block and |V (K ′)| = 2, by the minimality in size of the root block, we must have |V (K ′′)| = 2.
So, assume z to be the non-articulation vertex of K0. If P = G[z, u, w, v], we have P ∼= P4 with
u and w being the articulation vertices and z and v being the leaf-vertices of P . Since G ̸∼= P4, we
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must have G ∼= G′ ▷q P for some block graph G′ and some vertex q ∈ {u,w} (note that both z and
v are non-articulation vertices of G). However, by the way we have chosen the root block K0, we
must have q = u. This implies that u is the negative articulation vertex of some K∗ ∈ K(G) such
that K∗ /∈ {K,K0}. This, in turn, implies that u and v are open-separated in G by some vertex in
(V (K∗) ∩ C) \ {u}.

Subcase 2.2. (At least one of V (K) and V (K ′) has size 3)
Without loss of generality, let us assume that |V (K)| = 3. So, assume that K = G[w, u, y] for
some vertex y ∈ V (G). We must have y /∈ C (otherwise y would open-separate u and v). We first
assume that K is the root block. If v is an articulation vertex of K ′, then {v} = V (K ′) ∩ V (K ′′′)
for some block K ′′′ ( ̸= K ′) ∈ K(G). This implies that there exists a vertex in V (K ′′′) \ {v} which
open-separates u and v in G. Moreover, if v is a non-articulation vertex of K ′, then we must have
|V (K ′)| = 3 (or else, K ′ is a leaf block of size smaller than the root block which is a contradiction).
Assume that V (K ′) = {w, v, a} for some vertex a ∈ V (G). If a is also a non-articulation vertex of
K ′, then K ′ is a leaf block that is not a root block and, hence, a ∈ C. If however, a is an articulation
vertex of K ′, then also, a ∈ C. Thus, either way, a open-separates u from v in G. Thus, we are done
in the case that K is the root block of G.

So, let us now assume that K is not the root block of G. Now, if y ∈ C, then y open-separates u
and v in G. So, let us assume that y /∈ C, which implies that y is a non-articulation vertex of K. This,
in turn, implies that u is an articulation vertex of K, or else, K would be a leaf block of G that is not the
root block and so, y ∈ C, contrary to our assumption. So, let {u} = V (K) ∩ V (K ′′) for some block
K ′′ (̸= K) ∈ K(G). If however, v is also an articulation vertex of K ′, then {v} = V (K ′) ∩ V (K ′′′)
for some block K ′′′ ( ̸= K ′) ∈ K(G). Now, at least one of K ′′ and K ′′′ is not the root block. So,
without loss of generality, assume that K ′′ is not the root block. Then, there is at least one vertex
in V (K ′′) \ {u} which is in C and, hence, open-separates u and v in G. So, let us assume that v
is a non-articulation vertex of K ′. Again, if K ′′ is not the root block, then there exists at least one
vertex in V (K ′′) \ {u} which is in C and, hence, open-separates u and v in G. So, now assume K ′′

to be the root block. If |V (K ′′)| ≥ 3, then there exists a vertex of V (K ′′) \ {u} in C and, hence,
open-separates u and v in G. So, let us assume that |V (K ′′)| = 2 and that z is the non-articulation of
K ′′. If |V (K ′)| = 3, then suppose that V (K ′) = {w, v, a} for some vertex a ∈ V (G). If a is also
a non-articulation vertex of K ′, then K ′ is a leaf block that is not a root block and hence, a ∈ C. If
however, a is an articulation vertex of K ′, then also, a ∈ C. Thus, either way, a open-separates u
from v in G and we are done in the case that |V (K ′)| = 3. So, let us finally assume that |V (K ′)| = 2
and that v ∈ V (K ′) is a non-articulation vertex of K ′.

If B = G[z, u, y, w, v], we have B ∼= B5 with u and w being the articulation vertices and z and v
being the leaf-vertices of B. Since by our assumption, G ̸∼= B5, we have G ∼= G′▷qB for some block
graph G′ and some vertex q ∈ {u,w} (note that z, y and v are non-articulation vertices of G). Now,
by the way we have chosen the root block, this implies that we must have q = u. This further implies
that u is the negative articulation vertex of K∗ for some K∗ ∈ K(G) such that K∗ /∈ {K,K0}. Hence,
u and v are open-separated in G by some vertex in V (K∗) ∩ C \ {u}.

This, therefore, proves that C is an OLD-code of G and with that, we prove the theorem. ⊓⊔
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Applying Theorem 2.9 to each connected component of a block graph, one has the following
general result.

Corollary 2.10. Let G be an open-twin-free block graph with k connected components and no iso-
lated vertices. Moreover, let no component of G be either a copy of P2 or of P4. Also, let mQ(G)
be the number of non-leaf blocks of G with at least one non-articulation vertex. Then γOLD(G) ≤
|V (G)| −mQ(G)− k.

Foucaud et al. [38] have shown that, for any open-twin-free graph G, γOLD(G) ≤ |V (G)| −
1 unless G is a special kind of bipartite graph called half-graph (a half-graph is a bipartite graph
with both parts of the same size, where each part can be ordered so that the open neighbourhoods
of consecutive vertices differ by exactly one vertex [39]). Noting that P2 and P4 are the only block
graphs that are half-graphs, Theorem 2.9 can be seen as a refinement of this result for block graphs.

We now show that the upper bound given in Theorem 2.9 is tight and is attained by arbitrarily
large connected block graphs. To prove so, for two non-negative integers k and l such that k + l ≥ 2,
let us define a subclass Gk,l of block graphs by the following rule: Let T1, T2, . . . , Tk be k copies of
K3 with V (Ti) = {ui, vi, wi} for each 1 ≤ i ≤ k. Further, let A1, A2, . . . , Ak are k copies of P2 with
V (Ai) = {ai, bi} for each 1 ≤ i ≤ k, and L1, L2, . . . , Ll be l copies of P3 with V (Lj) = {xj , yj , zj}
for each 1 ≤ j ≤ l. Let Gk,l be the graph obtained by identifying the vertices vi with bi for each
1 ≤ i ≤ k and identifying the vertices ui and zj for all 1 ≤ i ≤ k and 1 ≤ j ≤ l into a single vertex
u, say. See Figure 8 for an example of a construction of Gk,l with k = 2 and l = 3. As a matter of
reference, we continue to call the vertices of Gk,l obtained by identifying vi with bi, for all 1 ≤ i ≤ k,
as vi itself.

u

v2

w2

v1

w1

a2a1

y3y2y1

x3x2x1

1

Figure 8: Graph G2,3 whose OLD-number attains the upper bound in Theorem 2.9. The black vertices
represent those included in the OLD-code C of G as described in the proof of the Theorem 2.9.

Proposition 2.11. For all positive integers k and l with l + k ≥ 2, γOLD(Gk,l) = |V (Gk,l)| −
mQ(Gk,l)− 1.

Proof:
First of all, we have |V (Gk,l)| = 3k + 2l + 1, and mQ(Gk,l) = k. Therefore, by Theorem 2.9, we
have γOLD(Gk,l) ≤ 2(k + l).
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Now, let C be an OLD-code of Gk,l. For C to be an open-dominating set of Gk,l, the only
neighbours vi and yj of the degree 1 vertices ai and xj , respectively, of Gk,l must be in C. Moreover,
u ∈ C for each pair of wi and ai to be open-separated in Gk,l by C. Similarly, at least all but one of
the xi’s must belong to C for each pair of vertices yi and yj , for 1 ≤ i < j ≤ l, to be open-separated
in Gk,l by C. Let us first assume that x2, x3, . . . , ll belong to C, without loss of generality. Then, for
all 1 ≤ i ≤ k, at least one of wi and ai must be in C for the pair y1 and vi, for 1 ≤ i < j ≤ k, to
be open-separated in Gk,l by C. Adding up, therefore, we have |C| ≥ 2(k + l). On the other hand, if
x1, x2, . . . , xl ∈ C, then, to open-separate the vertices vi and vj (for 1 ≤ i < j ≤ k), we need at least
one of wi and ai (for k − 1 such i) to belong to C. Then again, the count adds up to |C| ≥ 2(k + l).
This proves the proposition. ⊓⊔

3. Lower bounds

The general lower bound for the size of an identifying code using the number of vertices is γID(G) ≥
⌈log2(|V (G)|+1)⌉ [6]. However, to reach this bound, a graph needs to have a large VC-dimension [24]
(the VC-dimension of a graph G is the size of a largest shattered set, that is, a set S of vertices such
that for every subset S’ of S, some closed neighbourhood in G intersects S exactly at S′). Indeed, if a
graph has VC-dimension c, then any identifying code has size at least O(|V (G)|1/c) [24]. The value
1/c is not always tight for specific subclasses of graphs of VC-dimension c, see for example the case
of line graphs, which have VC-dimension at most 4 but for which the tight order for the lower bound
is Ω(|V (G)|1/2) [22]. Similar results hold for LD- and OLD-codes, by using the same techniques as
in [24].

Block graphs have VC-dimension at most 2 (one can check that a shattered set of size 3 would
imply the existence of an induced 4-cycle or diamond), and thus, using the result from [24], their ID-
number is lower bounded by Ω(|V (G)|1/2). In this section, we improve this lower bound to a linear
one, and give a tight result.

For the rest of this article, given a block graph G, by Kleaf (G) we shall mean the set of all leaf
blocks of G with at least one edge in the block. Moreover, by the symbol ni(G), we shall mean the
number of vertices of degree i in the graph G.

Lemma 3.1. Let G be a connected block graph with at least one edge and with blocks B1, B2, . . . Bh,
say. Then, there exist distinct vertices v0, v1, v2, . . . , vh of G such that v0, v1 ∈ V (B1) and vi ∈ V (Bi)
for all 2 ≤ i ≤ h.

Proof:
Since G has at least one edge, note that every block of G has at least one edge. The proof is by
induction on h with the base case being h = 1. In the base case, we have G = B1. Since G has at
least one edge v0v1, say, the two distinct vertices are v0 and v1 and we are done. So, let us assume
the induction hypothesis for any connected block graph G′ with at least one edge and with h′ blocks,
where 1 ≤ h′ ≤ h − 1. Therefore, let h ≥ 2. Without loss of generality, let us assume that Bh is
a leaf block of G. Let G′ = G − (V (Bh) \ art−(Bh)). Then G′ is also a connected block graph
on h − 1 blocks. Since G′ contains the block B1, the former has at least one edge. Then by the
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induction hypothesis, there exist distinct vertices v0, v1, v2, . . . , vh−1 of G such that v0, v1 ∈ V (B1)
and vi ∈ V (Bi) for all 2 ≤ i ≤ h − 1. Since Bh has at least one edge, it implies that there exists a
vertex vh ∈ V (Bh) \ art−(Bh). This implies that vh ̸= vi for all 1 ≤ i ≤ h− 1 and hence, the result
holds. ⊓⊔

Lemma 3.2. Let G be a connected block graph with at least one edge. Then we have

|K(G)| ≤ |V (G)| − 1− |Kleaf (G)|+ n1(G).

Proof:
Let L(G) = {L ∈ Kleaf (G) : L ∼= K2} and G∗ be a graph obtained from G by, for each L ∈ L(G),
introducing a new vertex and making it adjacent to both elements of V (L). Thus, G∗ is a block graph
in which every leaf block has at least 3 vertices. We also note here that

(1) |L(G)| = n1(G),

(2) |V (G∗)| = |V (G)|+ |L(G)| = |V (G)|+ n1(G),

(3) |K(G)| = |K(G∗)| and that

(4) |Kleaf (G)| = |Kleaf (G
∗)|.

Now, let |K(G∗)| = h and K(G∗) = {B1, B2, . . . , Bh}. Then, by Lemma 3.1, there exist distinct
vertices v0, v1, v2, . . . , vh of G such that v0, v1 ∈ V (B1) and vi ∈ V (Bi) for all 2 ≤ i ≤ h. Moreover,
since at least one vertex in each leaf block of G∗ is not any of the vertices vi, we have

|K(G)| = |K(G∗)| = h = |{v0, v1, v3, . . . , vh}| − 1 ≤ |V (G∗)| − |Kleaf (G
∗)| − 1

= |V (G)|+ n1(G)− |Kleaf (G)| − 1. ⊓⊔

Corollary 3.3. Let G be a block graph with k connected components. Then, we have

|K(G)| − n0(G) ≤ |V (G)| − k − |Kleaf (G)|+ n1(G).

Proof:
Assume that k = p + q such that G1, G2, . . . , Gp are the connected components of G, each with at
least one edge; and that S1, S2, . . . , Sq are the components of G, each with a single vertex. Then, we
have

|K(G)| =
∑

1≤i≤p

|K(Gi)|+
∑

1≤j≤q

|K(Sj)|

≤ q − p+
∑

1≤i≤p

(
|V (Gi)| − |Kleaf (Gi)|+ n1(Gi)

)
[using Lemma 3.2]

= |V (G)| − k − |Kleaf (G)|+ n1(G) + n0(G) [since q = n0(G)] ⊓⊔

Corollary 3.4. Let G be a block graph with k connected components. Then we have

|K(G)| − n0(G) ≤ |V (G)| − k.
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Proof:
The result follows from Corollary 3.3 and the fact that n1(G) ≤ |Kleaf (G)|. ⊓⊔

Before we come to our results, we define the following notations. For a given code C of a con-
nected block graph G, let us assume that the sets C1, C2, ..., Ck partition the code C such that the
induced subgraphs G[C1], G[C2], . . . , G[Ck] of G are the k connected components of the subgraph
G[C] of G induced by C. Note that each Ci is a block graph (since every induced subgraph of a block
graph is also a block graph).

Definition 3.5. Given a block graph G, its vertex set V (G) is partitioned into the four following parts.

(1) V1 = C,

(2) V2 = {v ∈ V (G) \ V1 : |NG(v) ∩ C| = 1},

(3) V3 = {v ∈ V (G) \ V1 : there exist distinct i, j ≤ k such that NG(v) ∩ Ci ̸= ∅ and
NG(v) ∩ Cj ̸= ∅},

(4) V4 = V (G) \ (V1 ∪ V2 ∪ V3). Note that, for all v ∈ V4, we have NG(v) ∩C ⊂ Ci for some i and
that |NG(v) ∩ Ci| ≥ 2.

We now prove a series of lemmas establishing upper bounds on the sizes of each of the vertex
subsets V1, V2, V3 and V4 of a connected block graph G.

Lemma 3.6. Let G be a connected block graph and C be a code of G. Then the following are upper
bounds on the size of the vertex subset V2 of G.

(1) |V2| ≤ |C| − n0(G[C]) if C is an ID-code.

(2) |V2| ≤ |C| if C is an LD-code.

(3) |V2| ≤ |C| − n1(G[C]) if C is an OLD-code.

Proof:
By definition of V2, each vertex v ∈ V2 has a unique neighbor u in C, i.e. NG(v) ∩ C = {u}. Hence,
there can be at most |C| vertices in V2 and this proves (2).

If C is an ID-code, u cannot be isolated in G[C] (or else, u and v will not be closed-separated in
G by C). Thus, there are at most |C| − n0(G[C]) vertices in V2 and this proves (1).

Finally, if C is an OLD-code and u has a neighbor w ∈ NG(u) ∩ C such that degG[C](w) = 1,
then v and w are not open-separated. Thus, there are at most |C| − n1(G[C]) vertices in V2 and this
proves (3). ⊓⊔

Definition 3.7. Given a connected block graph G and a code C of G, let G[C1], G[C2], . . . , G[Ck]
be all the connected components of G[C], where C1, C2, . . . , Ck are subsets of C. Moreover, let the
vertex set V (G) be partitioned into the subsets V1, V2, V3, V4 as in Definition 3.5. Then, consider the
bipartite graph FC(G), where A = {aj : vj ∈ V3} and B = {ui : G[Ci] is a connected component of
G[C]} are the two parts of V (FC(G)). As for the edge set E(FC(G)), for each vertex vj in V3, we
add an edge between aj and ui if vj is adjacent to a vertex in Ci. The graph FC(G) is called the
auxiliary graph of G.
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Lemma 3.8. For a connected block graph G and a code C of G, the auxiliary graph FC(G) is a forest.

Proof:
If there is a cycle in FC(G), there would be a cycle in G involving two vertices of different connected
components G[Ci] and G[Cj ], say. By the definition of a block graph, the latter cycle in G has to
induce a complete subgraph in G. However, that would imply that G[Ci] and G[Cj ] must be the same
component of G[C] which is a contradiction. Thus, FC(G) is cycle-free and, hence, is a forest. ⊓⊔

Lemma 3.9. Let G be a connected block graph, C be a code of G and G[C1], G[C2], . . . , G[Ck]
be all the connected components of G[C], where C1, C2, . . . , Ck are subsets of C. Then, we have
|V3| ≤ k − 1.

Proof:
By Lemma 3.8, FC(G) is a forest. Let V (FC(G)) = A ⊔ B be as defined above. Then we have
|B| = k. Therefore, FC(G), on account of being a forest, has at most |A|+ k − 1 edges. Also, since
FC(G) is bipartite, its number of edges is

∑
a∈A degFC(G)(a) ≥ 2|A| (the last inequality holds since

any vertex in the part A of V (FC(G)) is adjacent to at least two distinct vertices of B). Thus, the
result follows from the fact that |V3| = |A|. ⊓⊔

Lemma 3.10. Let G be a connected block graph, C be a code of G and G[C1], G[C2], . . . , G[Ck]
be all the connected components of G[C], where C1, C2, . . . , Ck are subsets of C. Then, we have
|V4| ≤ |C| − k. In particular,

(1) |V4| ≤ |K(G[C])| − |Kleaf (G[C])| ≤ |C| − 3k if C is an ID-code;

(2) |V4| ≤ |K(G[C])| ≤ |C| − 2k + n1(G[C]) if C is an OLD-code.

Proof:
Let v be any vertex in V4 and let G[Ci] be the component of G[C] such that NG(v) ∩ C ⊆ Ci.
Moreover, |NG(v) ∩ Ci| ≥ 2. Then, notice that NG(v) ∩ C must be a subset of exactly one block
of G[Ci], or else, G[Ci] would be disconnected, as v /∈ C. This implies that |V4| ≤ |K(G[C])| −
n0(G[C]) ≤ |C| − k, by Corollary 3.4. We now prove the more specific bounds for ID- and OLD-
codes.

(1) First consider the case where C is an ID-code. Let G[Ci] be a connected component of G[C]
such that at least one vertex of V4 is adjacent to some vertices in Ci. In particular, |Ci| ≥ 2 and since
C is a ID-code, G[Ci] is closed-twin-free. We first show the following.

Claim A. No element of V4 is adjacent to the vertices of the leaf blocks of G[Ci].

Proof of Claim A. Suppose that L is a leaf block of G[Ci]. Then we must have L ∼= K2, or else, at least
two vertices in V (L) are not closed-separated in G by C. So, assume that V (L) = {x, y}. Then at
least one of x and y must be a non-articulation vertex of G[Ci]. Without loss of generality, suppose that
y is a non-articulation vertex of G[Ci]. If there exists a vertex v of V4 such that NG(v) ∩ C = V (L),
then v and y would not be closed-separated in G by C which is a contradiction. Hence, no element of
V4 is adjacent to the vertices of the leaf blocks of G[Ci]. ♦
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This implies that the number of vertices of V4 that can be adjacent to the vertices of G[Ci] are at
most |K(G[Ci])| − |Kleaf (G[Ci])|. Now, we must have the following.

Claim B. |Kleaf (G[Ci])| ≥ 2

Proof of Claim B. If, on the contrary, |Kleaf (G[Ci])| = 1, then |Ci| = 1; or else, all pairs of vertices
of G[Ci] are not closed-separated in G by C. This contradicts the fact that |Ci| ≥ 2. ♦

Therefore, by the above two claims and the fact that any vertex of V4 having its neighbors in
a component G[Ci] of G[C] is adjacent to the vertices of exactly one block of G[Ci], the number of
vertices of V4 adjacent to the vertices of G[Ci] is at most |K(G[Ci])|−|Kleaf (G[Ci])| ≤ |K(G[Ci])|−
2 ≤ |Ci| − 3 (the last inequality is by the fact that G[Ci] is connected, that is, k = 1 and n0(Ci) = 0
in Corollary 3.4). Hence,

|V4| ≤
∑

1≤i≤k

(
|K(G[Ci])| − |Kleaf (G[Ci])|

)
≤

∑
1≤i≤k

(
|Ci| − 3

)
= |C| − 3k.

(2) In the case that C is an OLD-code of G, we have n0(G[C]) = 0. So, assume that G[Ci] is a
connected component of G[C] with at least one edge. Then, by Lemma 3.2, we have |K(G[Ci])| ≤
|Ci| − 1− |Kleaf (G[Ci])|+ n1(G[Ci]) ≤ |Ci| − 2 + n1(G[Ci]). This implies that

|V4| ≤ |K(G[C])| =
∑

1≤i≤k

|K(G[Ci])| ≤
∑

1≤i≤k

(
|Ci| − 2 + n1(G[Ci])

)
= |C| − 2k + n1(G[C]).

This proves the lemma. ⊓⊔

Theorem 3.11. Let G be a connected block graph. Then we have

• γID(G) ≥ |V (G)|
3 + 1;

• γLD(G) ≥ |V (G)|+1
3 ; and

• γOLD(G) ≥ |V (G)|+2
3 .

Proof:
Let |V (G)| = n. Assume C to be a code of G and G[C1], G[C2], . . . , G[Ck] be all the connected
components of G[C], where C1, C2, . . . , Ck are subsets of C. Recalling from Definition 3.5 the sets
V1, V2, V3, V4 that partition V (G), we prove the theorem using the relation |V (G)| = |C| + |V2| +
|V3|+ |V4| and the upper bounds for |V2|, |V3| and |V4| in Lemmas 3.6, 3.9 and 3.10, respectively.

If C is an ID-code, then we have

n = |C|+ |V2|+ |V3|+ |V4|
≤ |C|+ |C| − n0(G[C]) + k − 1 + |C| − 3k

≤ 3|C| − 2k − 1 ≤ 3|C| − 3, using k ≥ 1.

Hence, the result holds.
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If C is an LD-code, then
n = |C|+ |V2|+ |V3|+ |V4|

≤ |C|+ |C|+ k − 1 + |C| − k

= 3|C| − 1

and, hence, the result holds.

Finally, if C is an OLD-code, then we have

n = |C|+ |V2|+ |V3|+ |V4|
≤ |C|+ |C| − n1(G[C]) + k − 1 + |C| − 2k + n1(G[C])

= 3|C| − k − 1 ≤ 3|C| − 2, using k ≥ 1.

Hence, the result holds. ⊓⊔

We now look at examples of which connected block graphs are extremal with respect to the
bounds of the previous theorem. To that end, we show that there are infinitely many connected block
graphs whose ID- and LD-numbers reach the first and the second lower bounds, respectively, of The-
orem 3.11. In contrast however, there is exactly one connected block graph whose OLD-number
reaches the last lower bound in Theorem 3.11. In order to calculate the code numbers in the extremal
cases attaining the bounds of Theorem 3.11, the inequalities in the previous calculations in some of
the earlier results leading to the bounds will have to be changed to equalities.

Proposition 3.12. For k ≥ 3, consider a path on vertices u1, u2, . . . , uℓ. For all 1 ≤ i ≤ ℓ, attach a
vertex vi by the edge viui and, for each pair ui, ui+1 for ℓ ≥ 4 and 2 ≤ i ≤ ℓ − 2, attach a vertex
wi by edges wiui and wiui+1. See Figure 9a with ℓ = 6. Then, such graphs are the only ones whose
ID-numbers attain the lower bound in Theorem 3.11.

(a
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)

(c
)
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(a
)
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Figure 9: Extremal cases where the lower bounds in Theorem 3.11 are attained. The black vertices
form a minimum (a) ID-code, (b) LD-code, (c) and (d) OLD-code.



D. Chakraborty et al. / On Three Domination-based Identification Problems in Block Graphs 221

Proof:
For extremal graphs whose ID-numbers attain the lower bound in Theorem 3.11, we have equalities
in the equations in the proof of Theorem 3.11 when C is an ID-code. We therefore have in this case
k = 1 (that is, G[C] is connected) which implies that |V2| = |C|, |V3| = 0 and |V4| = |C|−3. Tracing
back the equality for |V4|, it stems from equality in the statement of Lemma 3.10(1), that is,

|V4| = |K(G[C])| − |Kleaf (G[C])| = |C| − 3k.

This further implies |Kleaf (G[C])| = 2 in Claim B of the proof of Lemma 3.10. Recall that k = 1.
Hence, putting these values in the preceding equation, we have |V4| = |K(G[C])| − 2 = |C| − 3 or
|K(G[C])| = |C| − 1. This implies that G[C] must be a tree and more particularly, a path, since
|Kleaf (G[C])| = 2. Moreover, with the values of |V2| = |C| and |V4| = |C| − 3 coupled with the fact
that no vertex of V4 can have neighbors in leaf blocks of C (Claim A in proof of Lemma 3.10), any
extremal graph with respect to the lower bound for ID-numbers in Theorem 3.11 must be as described
in the statement of the proposition. ⊓⊔

Proposition 3.13. There exist arbitrarily large connected block graphs whose LD-number attains the
lower bound in Theorem 3.11.

Proof:
For any ℓ ≥ 1, consider a path on vertices u1, u2, . . . , uℓ. For all 1 ≤ i ≤ ℓ, attach a vertex vi by the
edge viui and, for each pair ui, ui+1 for ℓ ≥ 2 and 1 ≤ i ≤ ℓ − 1, attach a vertex wi by edges wiui
and wiui+1. We call the graph G. See Figure 9b for an example with k = 6. Then it can be verified
that C = {u1, u2, . . . , uℓ} is a minimum LD-code of G. Since |V (G)| = 3ℓ − 1, the LD-number of
G attains the lower bound. ⊓⊔

Proposition 3.14. (1) Consider the block graph Z consisting of a clique on four vertices, of which
three are support vertices to one leaf each. See Figure 9c. Then Z is the only block graph whose
OLD-number attains the bound in Theorem 3.11.

(2) For any G ̸∼= Z, the bound for the OLD-number in Theorem 3.11 becomes

γOLD(G) ≥ |V (G)|
3

+ 1.

In this case, there are arbitrarily large connected block graphs whose OLD-number attains this lower
bound.

Proof:
For any block graph G whose OLD-number attains the bound in Theorem 3.11, we must have equali-
ties in the equations in the proof of Theorem 3.11 when C is an OLD-code. This implies that we must
have k = 1. Moreover, we must have |V2| = |C| − n1(G[C]), |V3| = 0 and

|V4| = |C| − 2 + n1(G[C]) = |K(G[C])| (using Lemma 3.10 and k = 1)
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(1) The last equation stems from an equality in the statement of Lemma 3.2, which implies that
|Kleaf (G[C])| = 1. This implies that C is a clique. Since C is an OLD-code, we must have |C| ≥ 2.
If |C| = 2, then we have |V4| = n1(G[C]) = 1. This is a contradiction, as |C| = 2 implies that
G[C] ∼= P2 and hence, n1(G[C]) = 2. Thus, we have |C| ≥ 3. This implies that n1(G[C]) = 0 and
so, we get |V4| = |C| − 2 = 1 =⇒ |C| = 3. Moreover, |V2| = 3 determines the graph to be Z.

(2) We now assume that G ̸∼= Z. If k ≥ 2, then putting so in the proof of Theorem 3.11, we get
|V (G)| ≤ 3|C|−3 and hence, the result follows. Therefore, for the rest of this proof, let us assume that
k = 1. In other words, G[C] is a connected subgraph of G. Now, we must have |Kleaf (G[C])| ≥ 2,
or else, if |Kleaf (G[C])| = 1, the same analysis as in (1) would follow and we would have G ∼= Z,
a contradiction. Thus, putting |Kleaf (G[C])| ≥ 2 in the proof of Lemma 3.10(2), we get |V4| ≤
|K(G[C])| ≤ |C| − 3k + n1(G[C]). Feeding this further in the proof of Theorem 3.11 when C is an
OLD-code, we get |V (G)| ≤ 3|C| − 3 and hence, the lower bound holds.

To show that there exist arbitrarily large and infinitely many block graphs whose OLD-numbers
attain this bound, for ℓ ≥ 6, we consider a path on vertices u1, u2, . . . , uℓ. For i = 1, ℓ and 3 ≤
i ≤ ℓ − 2, attach a vertex vi by the edge viui. Moreover, for each pair ui, ui+1 for 1 ≤ i ≤ ℓ − 1,
attach a vertex wi by edges wiui and wiui+1. We call the graph G. See Figure 9d for an example
with ℓ = 6. Then it can be verified that C = {u1, u2, . . . , uℓ} is a minimum OLD-code of G. Since
|V (G)| = 3ℓ− 3, the OLD-number of G attains the lower bound. ⊓⊔

If we now consider the parameter |K(G)|, we can use the relation |V (G)| ≥ |K(G)|+ 1 to obtain
a similar lower bound. But this lower bound can be improved as the next result shows.

Theorem 3.15. Let G be a connected block graph and K(G) be the set of all blocks of G. Then we
have

• γID(G) ≥ 3(|K(G)|+2)
7 ;

• γLD(G) ≥ |K(G)|+2
3 ; and

• γOLD(G) ≥ |K(G)|
2 + 1.

Proof:
Assume C to be a code of G and G[C1], G[C2], . . . , G[Ck] be all the connected components of
G[C], where C1, C2, . . . , Ck are subsets of C. First, we define IG(C) = {K ∈ K(G) : V (L) ⊂
V (K) for some L ∈ K(G[C])}. Moreover, for each 1 ≤ i ≤ k, let IG(Ci) = {K ∈ K(G) : V (L) ⊂
V (K) for some L ∈ K(G[Ci])}. Next, we define the following types of blocks of G.

1. Let KC(G) = {K ∈ IG(C) : V (K) ⊂ C}, i.e. all blocks of G which are also blocks of the
subgraph G[C] (also a block graph) of G.

2. Let KC(G) = K(G) \ IG(C). In other words, the set KC(G) includes all blocks of G which do
not contain any vertices of the code C.

3. For i = 2, 3, 4, let Ki(G) = {K ∈ IG(C) : V (K)∩Vi ̸= ∅} (recall the sets V1, V2, V3, V4 from
Definition 3.5).
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We note here that, K(G) = KC(G) ∪ KC(G) ∪ K2(G) ∪ K3(G) ∪ K4(G). We now have the
following bounds.

Claim A. |K2(G)| ≤ |V2|.
Proof of Claim A. Since each vertex in the set V2 belongs to a unique block K ∈ K2(G), this claim
is true. ♦

We now invoke the auxiliary graph FC(G) of G from Definition 3.7 and assume that there are l
connected components of FC(G). Then we have the following claim.

Claim B. |K3(G)| ≤ 2(k − l).

Proof of Claim B. Since each vertex of FC(G) in the part A is of degree at least 2, we have |E(FC(G))|
≥ 2|A| = 2|V3|. Combining this with the fact that |E(FC(G))| = |V3| + k − l (since FC(G) is a
forest by Lemma 3.8), we have |V3| ≤ k − l. Hence, we have |K3(G)| ≤ |E(FC(G))| ≤ 2(k − l). ♦

Claim C. |KC(G)| ≤ l − 1.

Proof of Claim C. Let F1, F2, . . . , Fl be the l connected components of the auxiliary (bipartite and
forest) graph FC(G) of G. To count |KC(G)|, we first observe that any K ∈ KC(G), does not
contain any non-articulation vertex of K. This is because, as V (K) ∩ C = ∅, any non-articulation
vertex of K will remain non-dominated by the code C, a contradiction. This therefore implies that
K cannot be a leaf block of G (and, in particular, the root-block of G as well). Hence, every block
K ∈ KC(G) has a positive articulation vertex vK , say. Then we have a block K ′ ∈ K(G) with its
layer f(K ′) = f(K) + 1 such that V (K) ∩ V (K ′) = {vK}. Moreover, since V (K) ∩ C = ∅,
for the code C to dominate vK , we may assume, without loss of generality, the block K ′ to be such
that there exists a vertex vK′ of G in V (K ′) ∩ C. For every K ∈ KC(G), therefore, we fix such a
triple (vK ,K ′, vK′) for the rest of this proof. Assume G[Ci] to be the component of G[C] such that
vK′ ∈ Ci. Moreover, let ui (the vertex of the part B of FC(G) corresponding to G[Ci]) belong to
the component Fj , for some 1 ≤ j ≤ l. Then, we associate Fj with the block K ∈ KC(G). More
precisely, we define the following mapping.

g : KC(G) → {F1, F2, . . . , Fl}
K 7→ Fj , where (vK ,K ′, vK′) is fixed, vK′ ∈ Ci and ui ∈ Fj

Since the vertex vK′ ∈ C can belong to exactly one component G[Ci] of G[C] and, similarly, the
vertex ui of FC(G) can belong to exactly one of its components Fj , the mapping g is therefore well-
defined. We now claim that g is one-to-one. Indeed, consider any K ∈ KC(G) with (vK ,K ′, vK′)
associated to it, and such that g(K) = Fj . Assume by contradiction that there is L ∈ KC(G), K ̸= L,
with g(L) = Fj , and (vL, L

′, vL′) is associated with L. Since V (K) ∩ C = ∅, for every vertex
ur ∈ V (Fj) and any block J ∈ IG(Cr), we have f(J) ≥ f(K) + 1. Thus, f(K ′) = f(K) + 1 is
minimum among all such blocks. By the same reasoning applied to L, we also have f(L′) = f(L)+1
minimum among all blocks J ∈ IG(Cr), where ur ∈ V (Fj). This implies that f(L′) = f(K ′),
since both values are minimim among all f(J), where J ∈ IG(Cr) and ur ∈ V (Fj). Therefore,
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we also have f(K) = f(L). Now, since K ̸= L, we must have V (K) ∩ V (L) = ∅, or else, we
would have |f(K) − f(L)| = 1, a contradiction. Now, let GK represent the descendant block graph
of K, that is, the connected subgraph (also a block graph) of G rooted at K. Similarly define GL

to be the descendant block graph of L. Then, by the structure of the block graph G, its subgraphs
GK and GL are vertex-disjoint. Since V (K) ∩ C = V (L) ∩ C = ∅, all components G[Cr] of
G[C] for all ur ∈ V (Fj) must belong to GK and GL simultaneously, which is a contradiction since
V (GK) ∩ V (GL) = ∅. This shows that g is one-to-one, as claimed.

As noticed before, for each K ∈ KC(G) such that g(K) = Fj , we have

f(K) + 1 = min{f(J) : J ∈ IG(Cr), ur ∈ Fj}.

Now, let K0 be the root block of G. As argued before, K0 /∈ KC(G). In other words, V (K0)∩Ci0 ̸= ∅
for some component G[Ci0 ] of G[C]. Let ui0 ∈ Fj0 . Therefore, we have

0 ≤ min{f(J) : J ∈ IG(Cr), ur ∈ Fj0} ≤ f(K0) = 0 (since K0 ∈ IG(Ci0)).

This implies that g(K) = Fi0 for any K would imply f(K) = −1, which is not possible. Hence,
the image of the function g is a subset of {F1, F2, . . . , Fl} \ {Fi0}. This, along with the fact that g is
one-to-one, therefore implies that |KC(G)| ≤ l − 1. ♦

Claim D. |KC(G) ∪ K4(G)| ≤ |K(G[C])| − n0(G[C]).

Proof of Claim D. Assume that K ∈ K(G) is a block of KC(G) ∪ K4(G). Then, V (K) contains at
least two vertices, say, u, v ∈ C. Therefore, uv ∈ E(G). So, assume L ∈ K(G[C]) to be the block
such that u, v ∈ V (L). Then, V (L) ⊂ V (K). Thus, every block K ∈ KC(G) ∪ K4(G) can be asso-
ciated with a block L ∈ K(G[C]) such that |V (L)| ≥ 2. Moreover, by the structure of a block graph,
this association is one-to-one. This implies that |KC(G) ∪ K4(G)| ≤ |K(G[C])| − n0(G[C]). ♦

To compute |K(G)| now, we have from the above Claims A, B, C and D that

|K(G)| ≤ |KC(G) ∪ K4(G)|+ |KC(G)|+ |K2(G)|+ |K3(G)|
≤ |K(G[C])| − n0(G[C]) + l − 1 + |V2|+ 2(k − l). (1)

Therefore, using Equation (1), we have the following.

For ID-codes:

|K(G)| ≤ |K(G[C])| − n0(G[C]) + l − 1 + |V2|+ 2(k − l)

≤ |C| − k + l − 1 + |C| − n0(G[C]) + 2(k − l) [using Corollary 3.4 and Lemma 3.6(1)]

= 2|C|+ k − l − n0(G[C])− 1

≤ 2|C|+ k − n0(G[C])− 2.

Now, k − n0(G[C]) is the total number of components of G[C] of order at least 2. Any such
component must contain at least 3 vertices of the code C (or else, if a component contained exactly
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two vertices, they would not be closed-separated in G by C). Therefore, 3(k − n0(G[C])) ≤ |C| −
n0(G[C]). Therefore, 3|K(G)| ≤ 7|C| − n0(G[C])− 6 ≤ 7|C| − 6 and, hence, the result holds.

For LD-codes:

|K(G)| ≤ |K(G[C])| − n0(G[C]) + l − 1 + |V2|+ 2(k − l)

≤ |C| − k + l − 1 + |C|+ 2(k − l) [using Corollary 3.4 and Lemma 3.6(2)]

= 2|C|+ k − l − 1

≤ 3|C| − 2.

Finally, for OLD-codes, we have n0(G[C]) = 0. Hence,

|K(G)| ≤ |K(G[C])|+ l − 1 + |V2|+ 2(k − l)

≤ |C| − 2k + l − 1 + |C|+ 2(k − l) [using Lemmas 3.6(3) and 3.10(2)]

= 2|C| − l − 1

≤ 2|C| − 2, using l ≥ 1.

This proves the theorem. ⊓⊔

Recall that a block in a graph G (not necessarily a block graph) is a maximal complete subgraph
of G. Then, the lower bounds in Theorem 3.15 in terms of the number of blocks in a graph fail for
graphs in general. For example, consider the split graph G with its vertex set V (G) = {v1, ..., vk} ∪
{uX : X ⊆ {1, ..., k} and X ̸= ∅}. The vertices v1, . . . , vk induce a clique, whereas the vertices
uX induce an independent set. Moreover, there is an edge between the vertices vi and uX if and only
if i ∈ X . This graph has an identifying code of size 2k (the clique with the vertices corresponding
to the singletons), but the number of blocks in G is 2k. Similar examples exist to show that the
LD- and OLD-numbers of some split graphs that are not block-graphs violate the lower bounds in
Theorem 3.15.

Note that, for any tree G, we have |K(G)| = |E(G)| = |V (G)| − 1. Thus, for trees (which are
particular block graphs with each block being of order 2), Theorem 3.15 provides the same lower
bound

(
3(|V (G)|+1)

7

)
for ID-numbers as was given in [21]. The lower bounds for LD-numbers of

trees given in Theorems 3.11 and 3.15 are the same; and which, in turn, are the same as that given
in [7]. The lower bound for OLD-numbers of trees given by Theorem 3.15 is the same when |V (G)|
is even and one short when |V (G)| is odd as the lower bound given in [9]

(
which is

⌈
|V (G)|

2

⌉
+ 1

)
.

However, for |V (G)| odd, this lower bound for OLD-numbers given by Theorem 3.15 is tight for block
graphs in general (see Figure 9c and E.g. (3) below). The following are examples of extremal block
graphs described in Propositions 3.12, 3.13 and 3.14 whose code numbers attain the lower bounds in
Theorem 3.15.

E.g. (1) For k = 3 in Proposition 3.12, the graph G is a 1-corona of a P3 (with |K(G)| = 5) and is an
extremal example whose ID-number (= 3) attains the bound in Theorem 3.15.
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E.g. (2) In the proof of Proposition 3.13, the graph G′ obtained by deleting all the edges uiui+1 of
G is an example whose LD-number (= k) attains the bound in Theorem 3.15 (note that
|K(G′)| = 3k − 2).

E.g. (3) Finally, the graph Z described in Proposition 3.14(1) (with |K(G)| = 4) also serves as an
example whose OLD-number (= 3) and attains the bound given in Theorem 3.15.

Apart from the above examples, there are infinite families of trees reaching the three bounds in
Theorem 3.15 (see [21] for ID-codes, [7] for LD-codes and [9] for OLD-codes).

4. Conclusion

Block graphs form a subclass of chordal graphs for which all three considered identification problems
can be solved in linear time [34]. In this paper, we complemented this result by presenting lower
and upper bounds for all three codes. We gave bounds using both the number of vertices — as it
has been done for several other classes of graphs — and also using the parameter |K(G)| of the
number of blocks of G that is more fitting for block graphs. In particular, we verified a conjecture
from [35] (Conjecture 1.1) concerning an upper bound for γID(G), and also proved the conjecture on
the LD-number [29] (Conjecture 1.2) for the special case of block graphs. Moreover, we addressed
the questions to find block graphs where the provided lower and upper bounds are attained.

The structural properties of block graphs have enabled us to prove interesting bounds for the three
considered identification problems. It would be interesting to see whether other structured classes can
be studied in a similar way. It would also be interesting to prove Conjecture 1.2 for a larger class of
graphs, for example for all chordal graphs.
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