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1. Introduction

The concept of metric dimension in graphs is one of the classical parameters in the area of graph

theory. It is understood it has been independently introduced in the decade of 1970 in the two separate

works [9] and [23], which were aimed to consider identification properties of vertices in a graph. These

identification properties were also connected with the Mastermind game in [4], and problems related

to pattern recognition and image processing in [19]. After these two seminal works, the research on

the topic remained relatively quiet until the first years of the new century, where the number of articles

on the topic exploded. From this point on, several theoretical and applied results have been appearing,

and nowadays, the metric dimension of graphs is very well studied. It is not our goal to include a

lot of references on this fact, and we simply suggest the interested reader to consult the two recent

surveys [17, 24], which have a fairly complete amount of information on metric dimension in graphs

and related topics.

Among the research lines addressed in the investigation with metric dimension in graphs, a re-

markable one is that of considering variations of the classical concept that are giving more insight into

the main concept, and are indeed of independent interest. The range of variations include general-

izations of the concept, particularizations in the style of identification of vertices, union of the metric

properties with other graph situations, identification of other elements (edges for instance) of graphs,

etc. The survey [17] contains information on several of the most important variations already known.

As it happens, sometimes some variations could relate much between them, and sometimes there

could be some that indeed represent the same structure. This is one of the contributions of our work.

We describe the equivalence of two metric concepts that, at a first glance, appear to be separate from

each other. To this end, we first present some basic terminology and notations that shall be used in our

article.

Along our work, all graphs are simple, undirected and connected, unless we will specifically state

the contrary. Let G be a graph with vertex set V (G). Two vertices u, v are identified (recognized

or determined) by a vertex w if dG(u,w) 6= dG(v,w) where dG(x, y) stands for the distance (in its

standard version) between x and y. A set S ⊂ V (G) is a resolving set for G, if every two vertices

u, v ∈ V (G) are identified by a vertex of S. The cardinality of a smallest possible resolving set for

G is the metric dimension of G, denoted dim(G). A resolving set of cardinality dim(G) is called a

metric basis. These concepts are from [9] and [23], although in the latter work, they had different

names. Some recent significant contributions on the metric dimension of graphs are for instance

[6, 7, 18, 21, 25].

The metric representation of a vertex x with respect to an ordered set of vertices S = {v1, . . . , vk}
is the vector r(x|S) = (dG(x, v1), . . . , dG(x, vk)). It can be readily observed that a set S of vertices is

a resolving set of a graph G if and only if the set of metric representations of vertices of G are pairwise

different. This terminology turns out to be very useful while working with this concept.

Throughout our exposition, we are then focused on studying two (indeed one) metric dimension

related parameters: the multiset dimension and the ID-number of graphs, which are variants of metric

dimension that use multisets of distances instead of vectors, to uniquely identify the vertices of a

graph. Our exposition is organized as follows. The next section is dedicated to prove that in fact the
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multiset dimension and the ID-number of graphs are the same parameter, and based on this, we just

follow the terminology of multiset resolving sets and multiset dimension in our work. Section 3 is

focused on showing that the decision problem concerning finding the multiset dimension of graphs is

NP-complete. Next, in Section 4, we consider the multiset dimension of king grids, namely, the strong

product of a path with itself. Section 5 contains a characterization of the strong product graphs with

one factor being a complete graph, and whose multiset dimension is not infinite. Finally, we end our

work with some questions and open problems that might be of interest for future research.

2. Two equivalent metric concepts

A modified version of the classical metric dimension of graphs was first presented in [22] where the use

of “multisets” instead of vectors was initiated while considering metric representations of vertices with

respect to a given set. That is, if u ∈ V (G) and W = {w1, . . . , wt}, then the multiset representation

of u with respect to W is given by

mG(u|W ) = {{dG(u,w1), . . . , dG(u,wt)}},

where {{·}} represents a multiset. In order to facilitate our exposition, we write {{.}} + i to denote the

multiset obtained from {{.}} by adding i to every element of such multiset. The set W is a multiset

resolving set for G if the collection of multisets mG(u|S) with u ∈ V (G) are pairwise distinct. The

multiset dimension of G, denoted dimms(G), represents the cardinality of a smallest possible multiset

resolving set of G. Multiset resolving sets do not always exist in a given graph. For those graphs G
which do not contain any multiset resolving set, the agreement that dimms(G) = ∞ was taken in [22].

Some other investigations on the multiset dimension of graphs are [1, 3, 10–12]. It is clear that any

multiset resolving set is also a resolving set, since the fact that two multisets are different implies that

the vectors with the same elements are also different. This means that for any graph G,

dim(G) ≤ dimms(G). (1)

On the other hand, the following concepts were defined in [5]. Consider a connected graph G of

diameter d and a set of vertices S ⊂ V (G). Now, for every vertex x ∈ V (G), the code of x with

respect to S is the d-vector ~d(x|S) = (a1, a2, . . . , ad) where ai, with i ∈ {1, . . . , d} represents the

number of vertices in S at distance i from x. If all the codes of vertices of G are pairwise different,

then S is called an identification coloring or ID-coloring. Moreover, a graph G that has an ID-coloring

is called an ID-graph. In this sense, for any ID-graph G, the cardinality of a smallest ID-coloring is

the ID-number of G, denoted by ID(G). Other contributions in this direction are [14–16].

We next show that the two parameters defined above are indeed the same. To this end, we may

remark that for an ID-graph G of diameter d with an ID-coloring S, any vertex x ∈ V (G) with code
~d(x|S) = (a1, a2, . . . , ad) satisfies

∑d
i=1

ai = |S| if x /∈ S and
∑d

i=1
ai = |S| − 1 if x ∈ S.

Theorem 2.1. Let G be a graph of diameter d. Then S ⊂ V (G) is an ID-coloring for G if and only if

S is a multiset resolving set for G.
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Proof:

The result follows directly from the following fact. Let S ⊂ V (G) and let x ∈ V (G). Consider the

multiset representation mG(x|S) = {{dG(x,w1), . . . , dG(x,wt)}}. From mG(x|S) we construct the

vector ~d(x|S) = (a1, a2, . . . , ad) as follows. Each ai equals the number of elements in mG(x|S) with

value i for any i ∈ {1, . . . , d}. On the contrary, if we have the vector ~d(x|S) = (a1, a2, . . . , ad), then

the multiset representation mG(x|S) can be obtained in the following way. First, if
∑d

i=1
ai = |S|−1,

then x ∈ S and we need to add the value zero (0) to mG(x|S). Otherwise, if
∑d

i=1
ai = |S|, then

x /∈ S, and the value zero (0) does not belong to mG(x|S). Now, in both cases, for every ai ∈ ~d(x|S)
such that ai 6= 0, we add to mG(x|S) ai elements equal to i.

Based on the equivalence that exists between these two representations, the fact that the codes of

vertices of G are pairwise different implies that the collection of multisets are pairwise distinct as well,

and vice versa. Consequently, it is clear that a given set S ⊂ V (G) is an ID-coloring of G if and only

S is a multiset resolving set. ⊓⊔

Based on the equivalence above, we conclude the next consequence.

Corollary 2.2. For any graph G, dimms(G) = ID(G).

It is then now clear that graphs defined in [5] as ID-graphs are those ones satisfying that

dimms(G) < ∞ according to the terminology from [22].

3. Complexity results

This section is centered into considering the proof of the NP-completeness for the following decision

problem, which in addition allows to conclude that computing the multiset dimension of graphs is NP-

hard, and clearly, based on Theorem 2.1 and Corollary 2.2, it means that computing the ID-number

of graphs is NP-hard as well. Our proof is somewhat inspired by the proof of the NP-hardness of the

outer multiset dimension problem presented in [8].

Distinct vertices u and v are called twins if they have the same set of neighbors. It is well known

that if two vertices are twins, then each (multiset) resolving set contains at least one of them.

MULTISET DIMENSION

Instance: A graph G = (V,E) and an integer k satisfying 1 ≤ k ≤ |V |.
Question: Is dimms(G) ≤ k?

Theorem 3.1. The MULTISET DIMENSION problem is NP-complete.

Proof:

The problem is clearly in NP. We prove the NP-completeness by a reduction from 3-SAT. Consider an

arbitrary input to 3-SAT, that is, a formula F with n variables and m clauses, which does not have a

clause containing both the positive and the negative literals of the same variable. Let x1, x2, . . . , xn
be the variables, and let C1, C2, . . . , Cm be the clauses of F . We next construct a connected graph G
based on this formula F . To this end, we use the following gadgets.
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a1i b1i

a2i b2i

Ti Fi

d1i

d2i

...

dtii

e1i e2i

(a) The variable gadget for xi.

c1j c2j c3j

f1

j

...

f
sj
j

g1j g2j

(b) The clause gadget for Cj .

Figure 1: The variables and clause gadgets used in the reduction.

For each variable xi we construct a variable gadget as follows (see Figure 1(a)).

• Vertices Ti, Fi are the “true” and “false” ends of the gadget. The gadget is attached to the rest

of the graph only through these vertices.

• Vertices a1i , a2i , b1i , b2i represent the value of the variable xi, that is, a1i and a2i will be used

to represent that variable xi is true, and b1i and b2i that it is false. The vertices a1i and b1i are

adjacent, and so are the vertices a2i and b2i . Additionally, the vertices a1i and a2i are adjacent to

Ti and the vertices b1i and b2i are adjacent to Fi.

• Pti = d1i d
2

i · · · d
ti
i is a path such that d1i is adjacent to Ti and Fi, while dtii is adjacent to the two

vertices e1i and e2i . Notice that the vertices e1i and e2i are twins, and so, each multiset resolving

set of G must contain at least one of them.

For each clause Cj we construct a clause gadget as follows (see Figure 1(b)).

• The vertices c1j , c2j and c3j form a path. The vertices c1j and c3j will be helpful in determining

whether the clause Cj is satisfied.

• Psj = f1

j f
2

j · · · f
sj
j is a path such that f1

j is adjacent to c2j , while f
sj
j is adjacent to the two

vertices g1j and g2j . The vertices g1j and g2j are twins, and so, each multiset resolving set of G
must contain at least one of them.

The orders of the paths Pti and Psj must be pairwise distinct in order for the multiset represen-

tations to be different and our reduction to work. Let ti = 5(i + 1) for all i ∈ {1, . . . , n} and

sj = 5(n + j + 1) for all j ∈ {1, . . . ,m}. The sum of all the vertices in the variable and clause

gadgets is clearly polynomial in terms of n+m.
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The variable and clause gadgets are connected in the following way in order to construct our

graph G.

• Vertices c1j are adjacent to vertices Ti, Fi for all j and i.

• If a variable xi does not appear in a clause Cj , then the vertices Ti, Fi are adjacent to c3j .

• If a variable xi appears as a positive literal in a clause Cj , then the vertex Fi is adjacent to c3j .

• If a variable xi appears as a negative literal in a clause Cj , then the vertex Ti is adjacent to c3j .

Observe that G is connected and its order is polynomial in terms of the quantity of variables and

clauses of the 3-SAT instance. We shall show that F is satisfiable if and only if dimms(G) = 2m+n.

To this end, we proceed with a series of claims that will complete our whole reduction.

Claim 3.2. We have dimms(G) ≥ 2n+m.

Proof of Claim 3.2. Let S be a multiset basis of G. The vertices e1i and e2i are twins, and thus S
contains at least one of them for every i ∈ {1, . . . , n}. Similarly, the vertices g1j and g2j are twins

and at least one of them is in S for every j ∈ {1, . . . ,m}. Finally, in order to have distinct multiset

representation for the vertices a1i , a2i , b1i and b2i , at least one of these four vertices must be in S. Thus,

we have dimms(G) = |S| ≥ 2n+m. �

Claim 3.3. If F is satisfiable, then dimms(G) = 2n+m.

Proof of Claim 3.3. Consider a satisfying assignment for F and construct a set S∗ containing 2n+m
vertices as next described.

• For each i ∈ {1, . . . , n}, we add the vertex e1i to S∗.

• For each j ∈ {1, . . . ,m}, we add the vertex g1j to S∗.

• For each variable xi, if xi = true, then we add the vertex a1i to S∗, otherwise if xi = false,

then we add the vertex b1i to S∗.

We will show that the set S∗ is a multiset resolving set of G. We denote by S∗

xi
and S∗

Cj
the vertices

of the set S∗ that are not in the gadget of xi and Cj , respectively. We will first express the multiset

representations of the vertices in the variable gadgets with the help of the multiset representation of Ti

with respect to S∗

xi
. Since the vertices c1j are adjacent to all Ti and Fi, the distance from Ti to all Ti′

and Fi′ for i′ 6= i is 2. Now, we have

m(Ti|S
∗

xi
) = {{ 3, | for each i′ ∈ {1, . . . , n}, i′ 6= i

ti′ + 3, | for each i′ ∈ {1, . . . , n}, i′ 6= i

sj + 3, | for each j ∈ {1, . . . ,m}}}.

For instance, the distance between the vertex Ti and e1i′ equals ti′ + 3, because one shortest path

between them is Tic
1

1
Ti′d

1

i′ · · · d
ti′
i′ e

1

i′ . Other cases are deduced similarly from the construction of the

graph G.

Now, we can write the multiset representations of the vertices in the variable gadget of xi as

follows.

• m(Ti|S
∗) = m(Ti|S

∗

xi
) ∪ {{ti + 1, y}}, where y = 1 when a1i ∈ S∗ and y = 2 when b1i ∈ S∗.

• m(Fi|S
∗) = m(Ti|S

∗

xi
) ∪ {{ti + 1, y}}, where y = 1 when b1i ∈ S∗ and y = 2 when a1i ∈ S∗.
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• m(dhi |S
∗) = (m(Ti|S

∗

xi
) + h) ∪ {{ti − h+ 1, h+ 1}} for all h ∈ {1, . . . , ti}.

• m(ehi |S
∗) = (m(Ti|S

∗

xi
) + ti + 1) ∪ {{ti + 2, y}}, where y = 0 when ehi = e1i and y = 2 when

ehi = e2i .

• m(ahi |S
∗) = (m(Ti|S

∗

xi
) + 1) ∪ {{ti + 2, y}}, where when a1i ∈ S∗, we have y = 0 for a1i and

y = 2 for a2i , and when b1i ∈ S∗, we have y = 1 for ai
1

and y = 3 for a2i .

• m(bhi |S
∗) = (m(Ti|S

∗

xi
) + 1) ∪ {{ti + 2, y}}, where when a1i ∈ S∗, we have y = 1 for b1i and

y = 3 for b2i , and when b1i ∈ S∗, we have y = 0 for bi
1

and y = 2 for b2i .

As for the vertices of the clause gadgets, we will express them with an auxiliary representation as

well. To that end, observe that

m(c1j |S
∗

Cj
) = {{ 2, | for each i ∈ {1, . . . , n}

ti + 2, | for each i ∈ {1, . . . , n}

sj′ + 4, | for each j′ ∈ {1, . . . ,m}, j′ 6= j}}.

We then write the multiset representations of the vertices of the clause gadget of Cj other than c3j
as follows.

• m(c1j |S
∗) = m(c1j |S

∗

Cj
) ∪ {{sj + 2}}.

• m(c2j |S
∗) = (m(c1j |S

∗

Cj
) + 1) ∪ {{sj + 1}}.

• m(fh
j |S

∗) = (m(c1j |S
∗

Cj
) + h+ 1) ∪ {{sj − h+ 1}} for all h ∈ {1, . . . , sj}.

• m(ghj |S
∗) = (m(c1j |S

∗

Cj
) + sj + 2) ∪ {{y}}, where y = 0 when ghj = g1j and y = 2 when

ghj = g2j .

Since the values of ti and sj are large and distinct enough (recall that ti = 5(i + 1) and sj =
5(n+ j+1)), the multiset representations of the vertices in the variable and clause gadgets (other than

c3j ) are pairwise distinct. Indeed, notice that the values ti′ +3 and sj +3 form a pattern to the multiset

representations of a vertex of a variable gadget which is easy to distinguish from the corresponding

pattern of ti+2 and sj′+4 of a vertex from a clause gadget. Thus, we readily observe that the multiset

representations of the vertices in a variable gadget are distinct from those of the vertices of clause

gadgets. These patterns, or the anomalies present in them, to be more precise, are also the reason why

vertices in two different variable gadgets (or clause gadgets) have distinct multiset representations.

Indeed, there is a “gap” in this pattern where ti+3 should be for all vertices of the gadget of xi. Thus,

the multiset representations of the vertices within the same variable or clause gadget are distinct.

Let us then consider the vertices c3j . Similarly to the vertex c1j , the multiset representation of c3j
contains sj + 2 once, ti + 2 for each i ∈ {1, . . . , n}, and sj′ + 2 for each j′ ∈ {1, . . . ,m}, j′ 6= j.

However, the distance from c3j to the vertices a1i and b1i is 2 or 3 depending on whether the variable

xi appears in the clause Cj and in which form (positive or negative), and whether xi = true or

xi = false according to the truth assignment. More precisely, if the variable xi does not appear in

the clause Cj , then d(c3j , a
1

i ) = d(c3j , b
1

i ) = 2. If xi appears in Cj but the clause Cj is not satisfied

due to xi (note that here Cj can be satisfied but due to the truth value of some other variable xi′), then

the distance from c3i to whichever of a1i and b1i is in S∗ is again 2. However, if Cj is satisfied due

to xi, the distance from c3j to whichever of a1i and b1i is in S∗ is 3. (For example, if xi appears as a
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positive literal in Cj , the edge c3jFi is present in G whereas c3jTi is not. Thus, we have d(c3j , a
1

i ) = 3

and d(c3j , b
1

i ) = 2. Now, if the truth assignment of xi leads to Cj being satisfied, we have xi = true

and a1i ∈ S∗. Therefore, the multiset representation of c3j contains 3 due to a1i .)

Since the set S∗ is constructed using a truth assignment that satisfies F , there is at least one 3
in the multiset representation of c3j . Thus, the multiset representation of c3j is almost the same as the

multiset representation of c1j except that at least one 2 (in m(c1j |S
∗)) is swapped to 3. Thus, c3j and c1j

have distinct multiset representations. Furthermore, based on the arguments concerning the multiset

representations of the other vertices of G, it is clear that each c3j has a distinct multiset representation

compared to all other vertices of G.

Consequently, the set S∗ is a multiset resolving set of G, and the claim holds due to Claim 3.2. �

Claim 3.4. If dimms(G) = 2n +m, then F is satisfiable.

Proof of Claim 3.4. Let S be a multiset basis of G. By the arguments in the proof of Claim 3.2, the set

S must contain exactly one of the two vertices e1i or e2i for every i ∈ {1, . . . , n}; exactly one of the two

vertices g1j or g2j for every j ∈ {1, . . . ,m}; and exactly one of the vertices a1i , a2i , b1i or b2i for every

i ∈ {1, . . . , n}. By the same arguments as at the end of the proof of Claim 3.3, the vertices c1j and c3j
must have distinct multiset representations due to some ahi or bhi . Thus, the truth assignment where

xi = true if a1i or a2i is in S, and xi = false if b1i or b2i is in S for all i ∈ {1, . . . , n} satisfies F . �

This completes the reduction from 3-SAT to the MULTISET DIMENSION problem. ⊓⊔

4. The king grid

Based on the NP-completeness reduction made in the proof of Theorem 3.1, it is then desirable to

consider the multiset dimension (or ID-number) of some non-trivial families of graphs. In connection

with this, in this section we consider the strong product of a path Pn with itself, also known as the

king grid.

The graph G ⊠H is the strong product of G and H . The vertex set of G ⊠H is the set V (G) ×
V (H) = {(u, v) |u ∈ V (G), v ∈ V (H)}. Two vertices (g, h), (g′ , h′) ∈ V (G ⊠H) are adjacent if

g = g′ and h is adjacent to h′ in H; or g is adjacent to g′ in G and h = h′; or g is adjacent to g′ in G
and h is adjacent to h′ in H . We write V (Pn) = {1, . . . , n} so that the vertices of Pn⊠Pn correspond

to the coordinates of the Z
2 lattice. Moreover, for a vertex (i, j) ∈ V (Pn ⊠ Pn) and an integer q ≥ 1,

by Dq(i, j) we mean the set of vertices in V (Pn ⊠ Pn) at distance q from (i, j). Notice that such set

Dq(i, j) represents a kind of (not necessarily whole) “border” of a subgraph of Pn ⊠ Pn isomorphic

to the strong product of two paths. See Figure 2 for two representative examples.

Remark 4.1. We have dimms(P2 ⊠ P2) = dimms(P3 ⊠ P3) = ∞, since both of these graphs are of

diameter at most 2, and such graphs have no multiset resolving sets [22]. As for the case n = 4, the

set {(1, 1), (2, 1), (4, 1), (1, 3), (2, 3), (2, 4)} is a multiset resolving set of P4 ⊠ P4. We have checked

with an exhaustive computer search that no smaller multiset resolving sets exist for this graph, and

thus dimms(P4 ⊠ P4) = 6
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Figure 2: The graph P6⊠P6 with the sets D2(2, 2) and D2(3, 3), respectively illustrated in black. The

vertices (2, 2) and (3, 3) appear in red color.

We begin our exposition of the larger king grids with the two smallest cases, and further on proceed

with the general case.

Proposition 4.2. We have dimms(P5 ⊠ P5) = dimms(P6 ⊠ P6) = 4.

Proof:

It is known from [22] and [5] that no graph has a multiset resolving set of cardinality 2. Also, the

only graph that has a multiset resolving set consisting of only one element is the path graph Pn.

Thus, dimms(P5 ⊠P5) ≥ 3 and dimms(P6 ⊠P6) ≥ 3. We first prove that dimms(P5 ⊠P5) 6= 3 by a

simple counting argument. Suppose that S is a multiset resolving set of P5⊠P5 such that |S| = 3. The

maximum number of distinct multiset representations that do not contain 0 is
(

6

3

)

= 20. Since |V (G)\
S| = 22, some vertices of P5 ⊠ P5 have the same multiset representations, a contradiction. Thus,

dimms(P5 ⊠ P5) > 3, and the first equality follows since the set S = {(1, 1), (2, 1), (5, 1), (1, 5)} is

0144 0134 1124 1234 0344

1134 1133 1223 1233 1344

2224 2223 2222 2233 2344

1334 1333 2333 3333 3344

0444 1444 2444 3444 4444

1155 0145 1135 2225 1335 0445

1145 0144 1134 2224 1334 1445

1235 1234 1233 2223 2334 2445

2235 2234 2233 2333 3334 3445

1345 1344 2344 3344 3444 4445

0455 1455 2455 3455 4455 4555

Figure 3: The graphs P5 ⊠ P5 and P6 ⊠ P6 with the sets S and S′, respectively illustrated in black.

The four digits below each vertex are the distances in the multiset representation sorted in ascending

order.



324 A. Hakanen and I.G. Yero / Complexity and Equivalency of Multiset Dimension and ID-colorings

a multiset resolving set of P5 ⊠ P5. The sets S along with the multiset representations is illustrated in

Figure 3.

On the other hand, observe that the set S′ = {(2, 1), (2, 2), (6, 1), (1, 6)} is a multiset resolving set

of P6 ⊠ P6, as shown in Figure 3, throughout the multiset representations of each vertex with respect

to S′, being pairwise different. Thus dimms(P6 ⊠ P6) ≤ 4.

Now, in contrast to the case of P5⊠P5, to prove that dimms(P6⊠P6) 6= 3, the counting argument

used does not directly work. That is, if we suppose S′′ is a multiset resolving set of P6 ⊠ P6 such

that |S| = 3, then the maximum number of distinct multiset representations that do not contain 0 is
(

7

3

)

= 35, and |V (P6 ⊠ P6) \ S′′| = 33. Thus, some extra arguments are required. To this end,

assume there is a vertex (α, β) ∈ V (P6 ⊠ P6) such that it has multiset representation {{1, 1, a}} for

some a ∈ {1, . . . , 5}. Let (i, j), (i′ , j′) be two neighbors of (α, β) in S′′ (note that (i, j), (i′ , j′) are

at distance at most two). Hence, the third vertex (i′′, j′′) of S′′ must be in the set Da(α, β), namely,

S′′ = {(i, j), (i′ , j′), (i′′, j′′)}.

It is now just a matter of checking all the possibilities that can occur between the two vertices

(i, j), (i′ , j′) and the third vertex (i′′, j′′), to observe that one can always find two vertices that have

the same multiset representation with respect to S′′. In order to avoid a lengthy and time consuming

case analysis, we have simply checked this by computer. Thus, the multisets representations {{1, 1, a}}
are not possible for every a ∈ {1, . . . , 5} with respect to the set S′′, and there are 5 of them. But then

this means we have a total amount of
(

7

3

)

−5 = 30 possible distinct multiset representations that do not

contain 0. However, there are |V (P6 ⊠ P6) \ S
′′| = 33 vertices, which is a contradiction. Therefore,

dimms(P6 ⊠ P6) 6= 3, and the equality dimms(P6 ⊠ P6) = 4 follows. ⊓⊔

From now on, in order to facilitate the exposition, by a row or a column in Pn ⊠ Pn we mean

the path induced by the vertices (1, j), (2, j) . . . , (n, j) or (i, 1), (i, 2) . . . , (i, n), respectively, for any

i, j ∈ {1, . . . , n}.

Theorem 4.3. If n ≥ 7 is an integer, then 3 ≤ dimms(Pn ⊠ Pn) ≤ 4.

Proof:

The lower bound follows from the fact that any graph different from a path has multiset dimension at

least 3, or by using inequality (1), since dim(Pn⊠Pn) = 3 (see [2,20]). To show the upper bound we

use an induction procedure that separately works for odd and even values of n.

Case 1: n ≥ 7 is odd. Assume that the set Sn−2 = {(1, 1), (2, 1), (n − 2, 1), (1, n − 2)} is a multiset

resolving set of Pn−2 ⊠ Pn−2. This is true for n = 7 according to Proposition 4.2, which shows the

base case of the induction process. We will show that the set Sn = {(1, 1), (2, 1), (n, 1), (1, n)} is a

multiset resolving set of Pn ⊠ Pn.

Denote F = {(x, y) ∈ V (Pn ⊠ Pn) |x ∈ {1, n} or y ∈ {1, n}} and I = V (Pn ⊠ Pn) \ F (see

Figure 4(a)). Observe that each vertex in F has n− 1 in its multiset representation with respect to Sn,

whereas the vertices in I do not. Thus, vertices from F and I clearly have multiset representations

distinct from one another.
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(a) n = 7 (b) n = 8

Figure 4: Vertices within the dashed line are the vertices in I , and the vertices outside the dashed line

are the vertices in F . The black vertices are the elements of the set Sn.

Consider the vertices in I . The graph Pn ⊠Pn can be viewed as a graph constructed from Pn−2 ⊠

Pn−2 by adding an additional row or column of vertices to all four sides of the graph. The set Sn can

then be obtained by moving the elements of Sn−2 diagonally away from the middle. Thus, for each

(v1, v2) ∈ I \ {(2, 2), (3, 2)}, we have

m((v1, v2)|Sn) = m((v1 − 1, v2 − 1)|Sn−2) + 1.

Since Sn−2 is a multiset resolving set of Pn−2 ⊠ Pn−2, all vertices in I \ {(2, 2), (3, 2)} have distinct

multiset representations with respect to Sn in Pn⊠Pn. Since m((2, 2)|Sn) = {{1, 1, n−2, n−2}} and

m((3, 2)|Sn) = {{1, 2, n−3, n−2}}, the vertices (2, 2) and (3, 2) have distinct multiset representations

with respect to each other. Moreover, the vertex (2, 2) is the only vertex in I that is adjacent to two

elements of the set S2. The vertex (3, 2) is adjacent to one element of the set Sn, and so are two other

vertices in I . However, neither of these vertices has the distance 2 in their multiset representations,

which the vertex (3, 2) does have. Thus, all vertices in I have pairwise distinct multiset representations

with respect to Sn.

Consider then the vertices in F . The multiset representations of these vertices are as follows.

• For vertices on the top row, i.e. (i, n) where i ∈ {1, . . . , n}, we have m((i, n)|Sn) = {{i −
1, n − 1, n − 1, n− 1}}.

• For vertices on the right column, excluding the top corner, i.e. (n, i) where i ∈ {1, . . . , n − 1},

we have m((n, i)|Sn) = {{i − 1, n− 2, n − 1, n− 1}}.

• For vertices on the left column, excluding top and bottom corners, i.e. (1, i) where i ∈
{2, . . . , n− 1}, we have m((1, i)|Sn) = {{i − 1, i− 1, n − i− 2, n− 1}}.

• For vertices on the bottom row, excluding both corners, i.e. (i, 1), where i ∈ {2, . . . , n − 1},

we have m((i, 1)|Sn) = {{i − 1, i− 2, n − i− 2, n − 1}}.
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• For the bottom left corner (1, 1), we have m((1, 1)|Sn) = {{0, 1, n − 1, n− 1}}.

Since the vertices in the top row are the only ones to have (at least) three (n − 1)’s in their multiset

representations, the vertices on the top row have distinct representations from the other vertices of F .

Moreover, the multiset representations of the vertices on the top row are pairwise distinct. Similarly,

from the vertices left to be considered, the vertices in the right column are the only vertices that

have exactly two (n − 1)’s in their representations (other than (1, 1), but that has a distinct multiset

representation due to the 0). Thus it is clear that the vertices in the right column have distinct multiset

representations with respect to each other and other vertices in F . The vertices in the left column have

pairwise distinct representations with respect to each other, and the same holds also for vertices in the

bottom row. The only thing left to show is that two vertices, one in the left column and the other in

the bottom row, cannot have the same multiset representations.

To that end, suppose to the contrary that (i, 1) and (1, j) have the same multiset representation for

some i, j ∈ {2, . . . , n − 1}. Since j − 1 appears twice in the multiset representation of (1, j), we

must have i − 1 = n − i − 2 or i − 2 = n − i − 2. Since n is odd, we have i − 1 = n − i − 2 and

i− 1 = n−3

2
. Now, m((i, 1)|Sn) = {{n−3

2
, n−3

2
, n−3

2
− 1, n− 1}}. This implies that j − 1 = n−3

2
, but

now m((1, j)|Sn) = {{n−3

2
, n−3

2
, n−3

2
, n − 1}} 6= m((i, 1)|Sn), a contradiction. Thus, all vertices of

F have pairwise distinct multiset representations with respect to Sn.

As a consequence, we obtain that Sn is a multiset resolving set as claimed, and so, dimms(Pn ⊠

Pn) ≤ 4 in this case.

Case 2: n ≥ 8 is even. Assume that the set Sn−1 = {(1, 1), (2, 1), (n− 1, 1), (1, n− 1)} is a multiset

resolving set of Pn−1⊠Pn−1. If n = 8, then by the Case 1 we know that S7 is a multiset resolving set

of P7 ⊠ P7, which shows the base case. We will show that the set Sn = {(2, 2), (2, 3), (n, 2), (2, n)}
is a multiset resolving set of Pn ⊠ Pn.

We now denote F = {(x, y) ∈ V (Pn ⊠ Pn) |x = 1 or y = 1} and I = V (Pn ⊠ Pn) \ F (see

Figure 4(b)). The vertices in I clearly have pairwise distinct multiset representations as m(v|Sn) =
m(v|Sn−1) for all v ∈ I , and Sn−1 is a multiset resolving set of Pn−1⊠Pn−1. Also, all the vertices in

F have n− 1 in their multiset representations with respect to Sn, whereas vertices in I do not. Thus,

the multiset representation of a vertex in F is always distinct from that of a vertex of I .

We will show next that the multiset representations of vertices of F are pairwise distinct. To that

end, we first consider the vertices that are adjacent to some element of Sn. Their multiset representa-

tions are the following:

m((1, 1)|Sn) = {{1, 2, n − 1, n− 1}}, m((1, n)|Sn) = {{1, n − 2, n − 2, n− 1}},

m((1, 2)|Sn) = {{1, 2, n − 2, n− 1}}, m((1, n − 1)|Sn) = {{1, n − 3, n − 3, n− 1}},

m((1, 3)|Sn) = {{1, 2, n − 3, n− 1}}, m((n, 1)|Sn) = {{1, n − 3, n − 2, n− 1}},

m((4, 1)|Sn) = {{1, 2, n − 4, n− 1}}, m((n− 1, 1)|Sn) = {{1, n − 4, n − 3, n− 1}},

m((2, 1)|Sn) = {{1, 1, n − 2, n− 1}}, m((3, 1)|Sn) = {{1, 1, n − 3, n − 1}}.

Since n ≥ 8, we have n−4 6= 2 and all these multiset representations are pairwise distinct. Moreover,

since these vertices are the only vertices in F that have the distance 1 in their multiset representations,
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these multiset representations are distinct from the multiset representation of other vertices in F as

well. Let us then consider the rest of the vertices in F . The vertices (i, 1) where i ∈ {5, . . . , n − 2}
have multiset representations of the form {{i−2, i−3, n− i−2, n−1}}, and these representations are

pairwise distinct. Similarly, the vertices (1, j) where j ∈ {4, . . . , n−2} have multiset representations

of the form {{j − 2, j − 2, n − j − 2, n − 1}}, and these representations are clearly pairwise distinct.

Suppose then that (i, 1) and (1, j) have the same multiset representation for some i ∈ {5, . . . , n− 2}
and j ∈ {4, . . . , n − 2}. As in the proof for odd n, the distance j − 2 appears twice in the multiset

representation of (1, j). This implies that i−2 = n− i−2 or i−3 = n− i−2. As n is even, we have

i − 2 = n − i − 2, and thus i− 2 = n−4

2
. Now, m((i, 1)|Sn) = {{n−4

2
, n−4

2
, n−4

2
− 1, n − 1}}. This

implies that j − 2 = n−4

2
. However, now m((1, j)|Sn) = {{n−4

2
, n−4

2
, n−4

2
, n − 1}} 6= m((i, 1)|Sn),

a contradiction. Thus, all vertices in F have pairwise distinct multiset representations with respect

to Sn.

Therefore, we again conclude that Sn is a multiset resolving set in this situation, and so,

dimms(Pn ⊠ Pn) ≤ 4 follows as well, which completes the proof. ⊓⊔

5. Strong products involving a complete graph

Several graphs with infinite multiset dimension (or equivalently that are not ID-graphs) are already

known from the seminal works [5,22], in their corresponding terminologies. For instance, it is known

from these mentioned works that for a given graph G of diameter two, dimms(G ⊠Kn) < ∞ if and

only G is P3. From this result we can identify a lot of interesting and non-trivial families of graphs

like for instance the join of two non-complete graphs, the Cartesian or direct product of two complete

graphs, and the Kneser graph K(n, 2), among others, having infinite multiset dimension.

We next describe some other graphs with diameter larger than two that have infinite multiset

dimension. Specifically, we consider the case of strong product graphs G⊠H when H is a complete

graph. We first need the following definition from [13]. A graph G is called a multiset distance

irregular graph if for any two vertices x, y ∈ V (G) it follows that m(x|V (G)) 6= m(y|V (G)). A

example of a multiset distance irregular graph is for instance a tree obtained from a star Sn with leaves

v0, . . . vn−1 (n ≥ 3) and center x, by subdividing i times the edge xvi for every i ∈ {0 . . . , n− 1}.

Theorem 5.1. Let G be a graph and let n ≥ 2 be an integer. We have dimms(G ⊠Kn) < ∞ if and

only if n = 2 and G is a multiset distance irregular graph.

Proof:

Notice that the n vertices of each copy of Kn are twins, that is, they have the same closed neighbor-

hood. Hence, if S is a multiset resolving set of G⊠Kn, then at least n− 1 vertices from each copy of

Kn must be in S. If n ≥ 3, then from each copy of Kn there are at least two vertices in S. But then,

these two vertices have the same multiset representation, which is not possible. Consequently, we

deduce that G⊠Kn does not have multiset resolving sets when n ≥ 3 and so, dimms(G⊠Kn) = ∞
in this case.

Assume next that n = 2. By the same reasons as above, at least one vertex from each copy of K2

must be in S. Thus dimms(G ⊠ K2) ≥ |V (G)|. Now, assume G is multiset distance irregular, and
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consider a set X of vertices containing one whole copy of G. Since the multisets representations of

any two vertices x, y ∈ V (G) satisfy that m(x|V (G)) 6= m(y|V (G)), we deduce that X is a multiset

resolving set, and so dimms(G ⊠ Kn) ≤ |V (G)|, which gives the equality dimms(G ⊠ Kn) =
|V (G)| < ∞.

Assume now that dimms(G ⊠ Kn) < ∞. Clearly, n = 2, for otherwise we get a contradiction.

Also, we readily see that every multiset resolving set has nonempty intersection with every copy of

K2 in G ⊠ K2 and that dimms(G ⊠ K2) ≥ |V (G)|. Let X ′ be a multiset basis of G ⊠ K2. If X ′

contains both vertices of one copy of K2, then these two vertices have the same multiset representation

as they are twins. Thus, X ′ contains exactly one vertex from each copy of K2. If G is not multiset

distance irregular, then there are two vertices x, y ∈ V (G) such that m(x|V (G)) = m(y|V (G)).
Now, the vertices in the copies of K2 corresponding to x and y that are not in X ′ have the same

multiset representation, a contradiction. Therefore, G is multiset distance irregular, and the proof is

completed. ⊓⊔

Corollary 5.2. For any multiset distance irregular graph G, dimms(G⊠K2) = |V (G)|.

6. Concluding remarks

This work firstly shows that two metric parameters represent the same in graph theory, that is, multiset

dimension and ID-colorings are the same. We have also considered some computational and combina-

torial problems on this parameter. As a consequence of the study a number of possible future research

lines have been detected. We next remark a few that could be of interest from our humble opinion.

• We have proved that finding the multiset dimension of graphs is in general NP-hard. However,

not much is known on special classes of graphs. Does finding such parameters remain NP-hard

even when restricted to trees, chordal graphs or planar graphs?

• The multiset dimension of the king grid has been bounded above by 4. Is it true that dimms(Pn⊠

Pn) = 4 for any n ≥ 7? In addition, this result gives a first step into considering the multiset

dimension of the strong product graphs in general. Moreover, the study of such parameter in

some other related graph products is worthwhile as well.

• We have related the multiset dimension of graphs with multiset distance irregular graphs. Does

such graphs play a significant role in some investigations on the multiset dimension of general

graphs or at least in some product related structures?

• The notion of identification spectrum of an ID-graph G was introduced in [5], which can be un-

derstood as the set of positive integers r for which there is a multiset resolving set of cardinality

r. In this sense, since we have proved that dimms(Pn ⊠ Pn) ≤ 4 (equivalently Pn ⊠ Pn is an

ID-graph) for any n ≥ 7, we wonder which is the identification spectrum of Pn ⊠ Pn.

• Characterize all the graphs G for which dim(G) = dimms(G).
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