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Abstract. A morphism g from the free monoid X∗ into itself is called upper triangular if the

matrix of g is upper triangular. We characterize all upper triangular binary morphisms g1 and g2
such that g1g2 = g2g1.
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1. Introduction

The free monoid morphisms play an important role in many areas of mathematics and theoretical com-

puter science (see [1, 8, 9, 11, 12, 13]). On the other hand, many questions concerning combinatorics

on morphisms appear to be rather difficult. It is instructive to consider the problem of commutativity.

If u and v are words, the equation uv = vu holds if and only if there is a word w such that u and

v are powers of w (see [8]). For free monoid morphisms the situation is more complicated. For two

morphisms g1 and g2, the equation g1g2 = g2g1 does not imply that g1 and g2 are powers of a third

morphism (see, however, [10]).

In this paper we study commuting upper triangular binary morphisms. Let X = {a, b} be a binary

alphabet. A morphism g from the free monoid X∗ into itself is called upper triangular if the matrix

of g is upper triangular. If a is the first letter of X, this means that there is a nonnegative integer s
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such that g(a) = as. We will characterize all upper triangular binary morphisms g1 and g2 such that

g1g2 = g2g1.

We now outline the contents of this paper. In Section 2 we recall the basic definitions. In Section

3 we discuss the connections between freeness and commutativity. In Section 4 we give examples

of commuting morphisms. In Section 5 we study infinite words generated by morphisms. While the

morphisms we study are not uniform, it turns out to be possible to use results concerning automatic

sequences. In particular, we will apply the theorem of Cobham characterizing those sequences which

are automatic in two multiplicatively independent bases (see [1]).

In Sections 6,7,8 and 9 we characterize all upper triangular binary morphisms g1 and g2 such that

g1g2 = g2g1. Assume that a is the first letter and b is the second letter of the binary alphabet. In Section

6 we consider nonsingular morphisms such that both g1(b) and g2(b) contain at least two occurrences

of b. We have two cases depending on whether these numbers are multiplicatively independent or not.

The remaining cases are easier and are discussed in Sections 7,8 and 9.

We assume that the reader is familiar with the basics of free monoid morphisms, infinite words,

automatic sequences and combinatorics on words (see [1, 8, 9, 11, 12, 13]). For previous results

concerning combinatorics on morphisms see, e.g., [4, 5, 6, 7, 10].

2. Definitions

We use standard notation and terminology concerning free monoids and their morphisms (see [1, 8, 9,

11, 12]). If X is a finite nonempty set, X∗ is the free monoid generated by X. The identity element of

X∗ is the empty word denoted by ε. If u, v, w are words such that uv = w, we denote v = u−1w.

If w is a word and a is a letter, then |w|a is the number of occurrences of a in w. The length of a

word w, denoted by |w|, is the total number of letters in w.

Let X and Y be finite nonempty alphabets. A mapping h : X∗ → Y ∗ is a morphism if

h(uv) = h(u)h(v)

for all u, v ∈ X∗. The set of all morphisms from X∗ to X∗ is denoted by Hom(X∗). Hom(X∗) is a

monoid with respect to the usual product of morphisms.

If h ∈ Hom(X∗) and the letters of X are x1, . . . , xd in a fixed order, then the matrix Mh of h is

defined by

Mh =













|h(x1)|x1
|h(x2)|x1

. . . |h(xd)|x1

|h(x1)|x2
|h(x2)|x2

. . . |h(xd)|x2

...
...

...

|h(x1)|xd
|h(x2)|xd

. . . |h(xd)|xd













.

A morphism h ∈ Hom(X∗) is upper triangular if its matrix Mh is upper triangular. The set of

upper triangular morphisms from X∗ to X∗ is denoted by Tri(X∗). A morphism h ∈ Hom(X∗) is

nonsingular if its matrix is nonsingular.
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Let now X be a finite alphabet and let h ∈ Hom(X∗). If w ∈ X∗ is a word such that w is a prefix

of h(w) and limn→∞ |hn(w)| = ∞, we say that h is prolongable on w and define the infinite word

hω(w) by

hω(w) = lim
n→∞

hn(w).

Hence, hω(w) is the unique infinite word u such that hn(w) is a prefix of u for all n ∈ N.

3. Connections between freeness and commutativity

A nonempty subset Y of a semigroup S is called free if every element of the subsemigroup of S

generated by Y can be written uniquely as a product of elements of Y . In other words, a set Y is free

if for all positive integers m and n and u1, . . . , um, v1, . . . , vn ∈ Y , the equation

u1u2 · · · um = v1v2 · · · vn

implies that

m = n and ui = vi for i = 1, . . . ,m.

For an excellent introduction to freeness problems over semigroups we refer to [2].

If a set contains two elements which commute, then the set is not free. If u, v ∈ X∗ and u 6= v,

then {u, v} is free if and only if u and v do not commute (see [8]).

We recall some related results for upper triangular morphisms.

First, let X = {a, b} be a binary alphabet. Let g1, g2 ∈ Tri(X∗). We say that {g1, g2} is a special

pair if g1(b) and g2(b) belong to a∗ba∗ and exactly one of g1(a) and g2(a) equals a.

The following result is from [7].

Theorem 3.1. Let X = {a, b} and let g1, g2 ∈ Tri(X∗) be nonsingular upper triangular morphisms.

Assume that g1 6= g2. Assume that {g1, g2} is not a special pair. If {g1, g2} is not free, then g1g2 =
g2g1.

For larger alphabets we have the following result (see [6]).

Theorem 3.2. Let X be an arbitrary alphabet. Let g1, g2 ∈ Tri(X∗) and let Mi be the matrix of gi
for i = 1, 2. Assume g1 6= g2. Assume that all diagonal entries of Mi are at least two for i = 1, 2. If

{g1, g2} is not free, then g1g2 = g2g1.

Theorems 3.1 and 3.2 imply the following lemma.

Lemma 3.3. Assume that the morphisms g1 and g2 satisfy the assumptions of Theorem 3.1 or Theo-

rem 3.2. Let m and n be positive integers. If gm1 and gn2 commute, then g1 and g2 commute.

Proof:

Assume that gm1 gn2 = gn2 g
m
1 . Then the pair {g1, g2} is not free and the claim follows by Theorem 3.1

or by Theorem 3.2. ⊓⊔
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4. Examples

In this section we give examples of commuting morphisms. The morphisms considered in Example 4.1

can be regarded as direct sums of unary morphisms.

Example 4.1. Let X = {x1, . . . , xk} be an alphabet having k letters. Let (m1, . . . ,mk) and (n1, . . .,

nk) be k-tuples of nonnegative integers. Define the morphisms g1, g2 ∈ Tri(X∗) by

g1(xi) = xmi

i and g2(xi) = xni

i

for i = 1, . . . , k. Then

g1g2(xi) = g1(x
ni

i ) = xmini

i

and

g2g1(xi) = g2(x
mi

i ) = xmini

i

for i = 1, . . . , k. Hence

g1g2 = g2g1.

Example 4.2. Let X = {a, b} and define the morphisms g1, g2 ∈ Tri(X∗) by

g1(a) = a, g1(b) = b2

and

g2(a) = a2, g2(b) = b.

By Example 4.1 the morphisms g1 and g2 commute. However, there do not exist positive integers m,

n and a morphism g ∈ Hom(X∗) such that g1 = gm and g2 = gn. To see this, assume that such

g, m and n exist. Then neither g(a) nor g(b) is the empty word. Furthermore, either |g(a)| = 1
or |g(b)| = 1 but not both. Without loss of generality assume that |g(a)| = 1. Then g(a) = a or

g(a) = b. The first alternative is not possible since gn(a) = a2. The second alternative is not possible

since it would imply that the only word of length one in g(X∗) is b.

Example 4.3. Let X = {a, b} and let p and q be positive integers. Let α be a nonnegative integer. De-

fine the morphisms g1, g2 ∈ Tri(X∗) by g1(a) = g2(a) = a, g1(b) = (baα)p−1b, g2(b) = (baα)q−1b.

To prove the equation g1g2 = g2g1, let z = baα. Then g1(z) = zp and g2(z) = zq. Hence

g1g2(z) = g2g1(z). Therefore g1g2(b)a
α = g2g1(b)a

α, which implies that g1g2(b) = g2g1(b). Triv-

ially g1g2(a) = g2g1(a).

Example 4.4. Let X = {a, b} and let g1, g2 ∈ Tri(X∗) be nonsingular upper triangular binary mor-

phisms. Assume that there exist positive integers m and n such that gm1 = gn2 . Assume g1 6= g2.

Then {g1, g2} is not a special pair. Indeed, if one of g1(a) and g2(a) equals a, then both do. Hence

Theorem 3.1 implies that g1g2 = g2g1.

Let u and v be words over the binary alphabet X = {a, b}. We say that u and v are a-conjugates

if there exist nonnegative integers p, q, r, s and a word w such that

u = apwaq, v = arwas and p+ q = r + s.
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Example 4.5. Let X = {a, b} and let g1, g2 ∈ Tri(X∗) be nonsingular upper triangular morphisms.

Assume that g1(a) = g2(a) = a. Assume that there are positive integers m and n such that gn1 (b) and

gm2 (b) are a-conjugates. We show that these conditions imply that g1 and g2 commute. By Lemma 3.3

it is enough to show that gn1 and gm2 commute.

By assumption, there exist nonnegative integers γ1, γ2, δ1, δ2, α1, . . . , αp−1 such that gn1 (b) =
aγ1zaγ2 and gm2 (b) = aδ1zaδ2 , where z = baα1baα2b · · · baαp−1b and γ1 + γ2 = δ1 + δ2. Then

gn1 g
m
2 (b) = aδ1gn1 (z)a

δ2

= aδ1+γ1zaγ2+α1+γ1zaγ2+α2+γ1zaγ2 · · · aγ1zaγ2+αp−1+γ1zaγ2+δ2

and

gm2 gn1 (b) = aγ1gm2 (z)aγ2

= aγ1+δ1zaδ2+α1+δ1zaδ2+α2+δ1zaδ2 · · · aδ1zaδ2+αp−1+δ1zaδ2+γ2 .

Therefore gn1 g
m
2 (b) = gm2 gn1 (b). Hence gn1 g

m
2 = gm2 gn1 .

We conclude this section by two examples involving singular morphisms.

Example 4.6. Let X = {a, b}. Define the morphisms g1, g2 ∈ Tri(X∗) by

g1(a) = g2(a) = ε, g1(b) = wi, g2(b) = wj

where w ∈ X∗ and i and j are nonnegative integers. Then

g1g2(b) = g1(w
j) = wij|w|b and g2g1(b) = g2(w

i) = wij|w|b.

Hence g1g2 = g2g1.

Example 4.7. Let X = {a, b}. Define the morphisms g1, g2 ∈ Tri(X∗) by

g1(a) = ε, g1(b) = (aαbaβ)i

and

g2(a) = a, g2(b) = (baα+β)jb

where α, β, i, j are nonnegative integers. Then

g1g2(b) = g1((ba
α+β)jb) = g1(b

j+1) = (aαbaβ)i(j+1)

and

g2g1(b) = g2((a
αbaβ)i) = (aα(baα+β)jbaβ)i = (aαbaβ)i(j+1).

Hence g1g2 = g2g1.

5. Properties of infinite words generated by upper triangular binary

morphisms

Let X = {a, b} be a binary alphabet. Regard a as the first letter of X and b as the second letter of X.
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Let h ∈ Tri(X∗). Assume that h is nonsingular. Then there exist a nonnegative integer γ and a

word v such that h(b) = aγbv. Let c be a new letter and let Y = X ∪ {c}. Regard c as the third letter

of Y . Define the morphism RIGHT(h) ∈ Tri(Y ∗) by

RIGHT(h)(x) = h(x), if x ∈ X, RIGHT(h)(c) = cv.

Assume that v 6= ε. Then we define the infinite word ω(h) by

ω(h) = bc−1
RIGHT(h)ω(c).

In other words, the infinite word ω(h) is obtained from RIGHT(h)ω(c) by replacing its first letter c

by b. Hence, if n is any positive integer, the word obtained from hn(b) by deleting all occurrences of

a preceding the first occurrence of b is a prefix of ω(h).
For the proof of the following lemma see [6].

Lemma 5.1. Let g1, g2 ∈ Tri(X∗) be nonsingular morphisms. Let hi = RIGHT(gi) for i = 1, 2.

Assume that hi(c) 6= c for i = 1, 2. If g1g2 = g2g1, then ω(g1) = ω(g2).

We will now study some properties of the infinite words defined above.

Let w be an infinite word over X having infinitely many occurrences of b. For i ≥ 1, let Aw(i) be

the number of occurrences of the letter a in w between the ith and the (i+1)th occurrences of b in w.

The following lemma gives a formula for Aw(i), which will be used repeatedly.

Lemma 5.2. Let h ∈ Tri(X∗) be the morphism defined by

h(a) = as and h(b) = aγ1baα1baα2b · · · baαp−1baγ2 ,

where s ≥ 1, p ≥ 2 and γ1, γ2, α1, . . . , αp−1 ≥ 0. Let w = ω(h). Then

(i) Aw(i+ pn) = αi if i ∈ {1, . . . , p− 1} and n ≥ 0.

(ii) Aw(pi) = sAw(i) + γ1 + γ2 if i ≥ 1.

(iii) If m ≥ 1, k ≥ 0, dm, . . . , dm+k ∈ {0, 1, . . . , p− 1} and dm 6= 0, then

Aw(dmpm + dm+1p
m+1 + · · · + dm+kp

m+k) = αdms
m + (γ1 + γ2)(1 + s+ · · ·+ sm−1).

Proof:

The infinite word w belongs to a−γ1h(b){a, h(b)}ω and |h(b)|b = p. This implies (i).

To prove (ii), let

w = w1ba
jb · · · ,

where |w1b|b = i and j = Aw(i). Then

w = a−γ1 h(w1)h(b) a
js h(b) · · · ,

where |h(w1)h(b)|b = p|w1b|b = pi. Hence

Aw(pi) = γ2 + js + γ1 = sAw(i) + γ1 + γ2.

This proves (ii).
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If m = 1, (iii) is a consequence of (i) and (ii). Assume inductively that (iii) holds for m ≥ 1.

Assume that k ≥ 0, em+1, . . . , em+1+k ∈ {0, 1, . . . , p − 1} and em+1 6= 0. Then

Aw(em+1p
m+1 + em+2p

m+2 + · · ·+ em+k+1p
m+k+1)

= sAw(em+1p
m + em+2p

m+1 + · · ·+ em+k+1p
m+k) + γ1 + γ2

= s(αem+1
sm + (γ1 + γ2)(1 + s+ · · ·+ sm−1)) + γ1 + γ2

= αem+1
sm+1 + (γ1 + γ2)(1 + s+ · · ·+ sm).

Here the first equation follows by (ii) and the second equation by the inductive hypothesis. This

proves (iii). ⊓⊔

The final lemma of this section studies the case of eventually periodic words.

Lemma 5.3. Let h be as in Lemma 5.2. Assume that w = ω(h) is eventually periodic. Then γ1 =
γ2 = 0 and α1 = α2 = · · · = αp−1.

Proof:

Since w is eventually periodic, also the sequence (Aw(i))i≥1 is eventually periodic. In particular, this

sequence takes only finitely many different values. Hence, by Lemma 5.2, we have γ1 = γ2 = 0. If

α1 = · · · = αp−1 = 0, the claim of the lemma holds. Assume that some αi is nonzero. Then Lemma

5.2 implies that s = 1.

Assume

Aw(i) = Aw(i+ d) for all i ≥ i0,

where i0 is an integer and d = epm+ fpm+1 for some m ≥ 0, e ∈ {1, . . . , p− 1} and f ≥ 0. Choose

an integer n such that n > m and pn ≥ i0. Then

Aw(jp
n) = Aw(ep

m + fpm+1 + jpn)

for j = 1, . . . , p− 1. Now Lemma 5.2 implies that

αj = αe

for j = 1, . . . , p− 1. This implies the claim. ⊓⊔

6. Commuting nonsingular morphisms g1 and g2 such that both g1(b)

and g2(b) have at least two occurrences of b

In this section X = {a, b}. We will consider nonsingular morphisms g1, g2 ∈ Tri(X∗) such that

|gi(b)|b ≥ 2 for i = 1, 2. We have two different cases to consider according to whether |g1(b)|b
and |g2(b)|b are multiplicatively independent or not. Recall that two integers p ≥ 2 and q ≥ 2 are

multiplicatively dependent if there are positive integers r,m, n such that p = rm and q = rn (see [1]).
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6.1. The numbers of occurrences of b are multiplicatively independent

Lemma 6.1. Let gi ∈ Tri(X∗), i = 1, 2, be morphisms such that

g1(a) = as and g1(b) = aγ1baα1baα2b · · · baαp−1baγ2

and

g2(a) = at and g2(b) = aδ1baβ1baβ2b · · · baβq−1baδ2

where s, t ≥ 1, p, q ≥ 2 and γ1, γ2, δ1, δ2, α1, . . . , αp−1, β1, . . . , βq−1 ≥ 0. Assume that p and q are

multiplicatively independent. Assume that g1(b) 6∈ b∗. Assume that ω(g1) = ω(g2). Then s = t = 1
and γ1 = γ2 = δ1 = δ2 = 0.

Proof:

Let z be the smallest positive integer such that βz = max{βi | i = 1, 2, . . . , q − 1}. Then βz ≥ 0 but

it is possible that βz = 0.

By Lemma 5.2 we have

Aω(g2)(i) ≤ Aω(g2)(zq
n) (1)

for n ≥ 1 and i < zqn. Consider the numbers zqn, n ≥ 1. For n ≥ 1, let

zqn = pτ(n)(in + pjn),

where τ(n), jn ≥ 0 and in ∈ {1, . . . , p − 1}.

Now, the set {jn | n ≥ 1} is infinite. To see this, assume on the contrary that it is finite. Then

there are integers m and n such that im + pjm = in + pjn and m < n. This implies that

zqm

pτ(m)
=

zqn

pτ(n)
.

Hence pτ(n)−τ(m) = qn−m, which contradicts the assumption. It follows that the set {jn | n ≥ 1} is

infinite. Therefore there is an integer n ≥ 1 such that

zqn = pτ(n)(in + x1p+ · · ·+ xkp
k)

where k ≥ 2 and xk 6= 0.

Next, let y be an integer such that αy = max{αi | i = 1, . . . , p− 1} and consider the numbers

K1 = ypτ(n)+k−1 and K2 = zqn = pτ(n)(in + x1p+ · · · + xkp
k).

Then we have K1 < K2. Therefore (1) implies that

Aω(g1)(K1) = Aω(g2)(K1) ≤ Aω(g2)(K2) = Aω(g1)(K2).

On the other hand, Lemma 5.2 implies that

Aω(g1)(K1) = αys
τ(n)+k−1 + (γ1 + γ2)(1 + s+ · · ·+ sτ(n)+k−2)

and

Aω(g1)(K2) = αins
τ(n) + (γ1 + γ2)(1 + s+ · · ·+ sτ(n)−1).

Since Aω(g1)(K1) ≤ Aω(g1)(K2), we have γ1 = γ2 = 0. If αy = 0, we would have g1(b) ∈ b∗ which

contradicts our assumption. Hence αy 6= 0 and s = 1.
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Since γ1 = γ2 = 0 and s = 1, we have Aω(g1)(i) ∈ {α1, . . . , αp−1} for all i ≥ 1. Now the

equality ω(g1) = ω(g2) implies that δ1 = δ2 = 0 and t = 1. ⊓⊔

The next theorem gives all nonsingular morphisms gi ∈ Tri(X∗), i = 1, 2, such that g1g2 = g2g1
and the numbers |g1(b)|b and |g2(b)|b are multiplicatively independent integers larger than one. In

the proof we use automatic sequences and Cobham’s theorem characterizing sequences which are

p-automatic and q-automatic for multiplicatively independent integers p and q (see [1]).

Theorem 6.2. Let gi ∈ Tri(X∗), i = 1, 2, be morphisms such that

g1(a) = as and g1(b) = aγ1baα1baα2b · · · baαp−1baγ2

and

g2(a) = at and g2(b) = aδ1baβ1baβ2b · · · baβq−1baδ2

where s, t ≥ 1, p, q ≥ 2 and γ1, γ2, δ1, δ2, α1, . . . , αp−1, β1, . . . , βq−1 ≥ 0. Assume that p and q are

multiplicatively independent. Then g1g2 = g2g1 if and only if at least one of the following conditions

holds:

(i) gi(b) ∈ b∗ for i = 1, 2,

(ii) g1(a) = g2(a) = a, g1(b) = (baα)p−1b and g2(b) = (baα)q−1b, where α = α1.

Proof:

If (i) or (ii) holds, then g1g2 = g2g1 (see Examples 4.1 and 4.3).

Assume that g1g2 = g2g1. By Lemma 5.1 we have ω(g1) = ω(g2). Hence, if g1(b) ∈ b∗, also

g2(b) ∈ b∗ and (i) holds. Assume that g1(b) 6∈ b∗ and g2(b) 6∈ b∗.

Now Lemma 6.1 implies that s = t = 1 and γ1 = γ2 = δ1 = δ2 = 0. By Lemma 5.2,

the sequence (Aω(g1)(i))i≥1 is p-automatic and the sequence (Aω(g2)(i))i≥1 is q-automatic. Since

these sequences are equal and the numbers p and q are multiplicatively independent, (Aω(g1)(i))i≥1

is eventually periodic. Hence ω(g1) is eventually periodic. Now Lemma 5.3 implies that α1 = α2 =
· · · = αp−1. Hence g1(b) = (baα)p−1b where α = α1.

A similar argument shows that g2(b) = (baβ)q−1b, where β = β1. Since ω(g1) = ω(g2), we have

α1 = β1. Hence (ii) holds. ⊓⊔

6.2. The numbers of occurrences of b are multiplicatively dependent

In this subsection we first consider the case that |g1(b)|b and |g2(b)|b are equal.

Lemma 6.3. Let gi ∈ Tri(X∗), i = 1, 2, be morphisms such that

g1(a) = as and g1(b) = aγ1baα1baα2b · · · baαp−1baγ2

and
g2(a) = at and g2(b) = aδ1baβ1baβ2b · · · baβq−1baδ2

where s, t ≥ 1, p, q ≥ 2 and γ1, γ2, δ1, δ2, α1, . . . , αp−1, β1, . . . , βq−1 ≥ 0. Assume that p = q. If

g1g2 = g2g1, then at least one of the following conditions holds:
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(i) g1 = g2,

(ii) gi(b) ∈ b∗ for i = 1, 2,

(iii) g1(a) = g2(a) = a and the words g1(b) and g2(b) are a-conjugates.

Proof:

Assume that g1g2 = g2g1. Let wi = ω(gi) for i = 1, 2. By Lemma 5.1 we have w1 = w2. Since

p = q, the equation w1 = w2 implies that αi = βi for i = 1, . . . , p− 1.

If g1(b) ∈ b∗, we have w1 = bω. This implies that g2(b) ∈ b∗ and hence (ii) holds.

Assume that g1(b) 6∈ b∗ and g2(b) 6∈ b∗.

Next, assume that Aw1
(i) takes only finitely many different values. Then Lemma 5.2 implies that

γ1 = γ2 = 0. Since g1(b) 6∈ b∗, some αi is nonzero. This implies that s = 1. By a similar reasoning

it is seen that δ1 = δ2 = 0 and t = 1. Then g1(a) = g2(a) and g1(b) = g2(b) and condition (i) holds.

Assume then that Aw1
(i) takes infinitely many values. Since Aw1

(pi) = Aw2
(pi) for all i ≥ 1,

Lemma 5.2 implies that

sAw1
(i) + γ1 + γ2 = tAw2

(i) + δ1 + δ2

for all i ≥ 1. Because this equation holds for infinitely many different values of Aw1
(i) = Aw2

(i), it

follows that s = t and γ1 + γ2 = δ1 + δ2. If now s = t = 1, we have (iii).

Assume that s = t > 1. By counting the number of occurrences of a before the first occurrence

of b in g1g2(b) = g2g1(b), we see that

sδ1 + γ1 = tγ1 + δ1.

By counting the number of occurrences of a after the last occurrence of b in g1g2(b) = g2g1(b), we

see that

γ2 + sδ2 = δ2 + tγ2.

Hence (s − 1)δ1 = (t − 1)γ1 and (s − 1)δ2 = (t − 1)γ2. Since s = t > 1 we have γ1 = δ1 and

γ2 = δ2. Therefore condition (i) holds. ⊓⊔

The next theorem gives all nonsingular morphisms gi ∈ Tri(X∗), i = 1, 2, such that g1g2 = g2g1
and the numbers |g1(b)|b and |g2(b)|b are multiplicatively dependent integers larger than one.

Theorem 6.4. Let gi ∈ Tri(X∗), i = 1, 2, be morphisms such that

g1(a) = as and g1(b) = aγ1baα1baα2b · · · baαp−1baγ2

and
g2(a) = at and g2(b) = aδ1baβ1baβ2b · · · baβq−1baδ2

where s, t ≥ 1, p, q ≥ 2 and γ1, γ2, δ1, δ2, α1, . . . , αp−1, β1, . . . , βq−1 ≥ 0. Assume that p = rm

and q = rn where m,n, r are positive integers. Then g1g2 = g2g1 if and only if at least one of the

following conditions holds:

(i) gn1 = gm2 ,

(ii) gi(b) ∈ b∗ for i = 1, 2,

(iii) g1(a) = g2(a) = a and the words gn1 (b) and gm2 (b) are a-conjugates.
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Proof:

If at least one of the conditions (i), (ii) or (iii) holds, then g1g2 = g2g1 (see Examples 4.1, 4.4 and

4.5).

Assume g1g2 = g2g1. Let h1 = gn1 and h2 = gm2 . Then |h1(a)|a = sn, |h2(a)|a = tm and

|h1(b)|b = pn = rmn = qm = |h2(b)|b.

Since h1h2 = h2h1, Lemma 6.3 implies that at least one of the following conditions holds:

(a) h1 = h2,

(b) hi(b) ∈ b∗ for i = 1, 2,

(c) h1(a) = h2(a) = a and the words h1(b) and h2(b) are a-conjugates.

Now (a) implies (i), (b) implies (ii) and (c) implies (iii). ⊓⊔

7. Commuting nonsingular morphisms g1 and g2 such that |g1(b)|b = 1

and |g2(b)|b ≥ 2

Let X = {a, b}. The following theorem gives all commuting nonsingular morphisms gi ∈ Tri(X∗),
i = 1, 2, such that |g1(b)|b = 1 and |g2(b)|b ≥ 2.

Theorem 7.1. Let gi ∈ Tri(X∗), i = 1, 2, be morphisms such that

g1(a) = as and g1(b) = aγ1baγ2

and

g2(a) = at and g2(b) = aδ1baβ1baβ2b · · · baβq−1baδ2

where s, t ≥ 1, q ≥ 2 and γ1, γ2, δ1, δ2, β1, . . . , βq−1 ≥ 0. Then g1g2 = g2g1 if and only if at least

one of the following conditions holds:

(i) g1(x) = x for all x ∈ {a, b},

(ii) gi(b) ∈ b∗ for i = 1, 2.

Proof:

If (i) or (ii) holds, then g1g2 = g2g1.

Assume then that g1g2 = g2g1. Let h1 = g1g2 and h2 = g2. Then h1h2 = h2h1. Since

|h1(b)|b = |h2(b)|b ≥ 2, Lemma 6.3 implies that at least one of the following conditions holds:

(a) h1 = h2,

(b) hi(b) ∈ b∗ for i = 1, 2,

(c) h1(a) = h2(a) = a and the words h1(b) and h2(b) are a-conjugates.

Now (a) implies (i), (b) implies (ii) and (c) implies (i). ⊓⊔
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8. Commuting nonsingular morphisms g1 and g2 such that |g1(b)|b =
|g2(b)|b = 1

Let X = {a, b}. In this section we give all commuting nonsingular morphisms gi ∈ Tri(X∗), i = 1, 2,

such that |g1(b)|b = |g2(b)|b = 1.

Proposition 8.1. Let gi ∈ Tri(X∗), i = 1, 2, be morphisms such that

g1(a) = as and g1(b) = aγ1baγ2

and

g2(a) = at and g2(b) = aδ1baδ2

where s, t ≥ 1 and γ1, γ2, δ1, δ2 ≥ 0. Then g1g2 = g2g1 if and only if

(s− 1)δi = (t− 1)γi for i = 1, 2.

Proof:

We have

g1g2(b) = asδ1+γ1basδ2+γ2 and g2g1(b) = atγ1+δ1batγ2+δ2 .

Hence g1g2 = g2g1 if and only if sδ1 + γ1 = tγ1 + δ1 and sδ2 + γ2 = tγ2 + δ2. This implies the

claim. ⊓⊔

9. Commuting morphisms g1 and g2 such that g1 or g2 is singular

Let X = {a, b} and let h ∈ Tri(X∗). If h is singular, then h(a) = ε or h(b) ∈ a∗. In this section we

give all commuting morphisms gi ∈ Tri(X∗), i = 1, 2, such that g1 or g2 is singular.

Proposition 9.1. Let gi ∈ Tri(X∗) for i = 1, 2. Assume that g1(b) ∈ a∗. Then g1g2 = g2g1 if and

only if |g1g2(b)| = |g2g1(b)| or, equivalently,

|g1(a)||g2(b)|a + |g1(b)||g2(b)|b = |g2(a)||g1(b)|.

Proof:

Since g2g1(b) ∈ a∗ and g1g2(b) ∈ a∗, the claim holds. ⊓⊔

Proposition 9.2. Let g1, g2 ∈ Tri(X∗) be morphisms such that

g1(a) = ε, g1(b) = u

and

g2(a) = at, g2(b) = v,

where t ≥ 0 and both u and v have at least one occurrence of b. Then g1g2 = g2g1 if and only if at

least one of the following conditions holds:

(i) g1 = g2,

(ii) g2(x) = x for all x ∈ X,

(iii) t = 0 and uv = vu,

(iv) gi(b) ∈ b∗ for i = 1, 2,
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(v) t = 1 and there exist nonnegative integers α, β, i and j such that

g1(b) = (aαbaβ)i, g2(b) = (baα+β)jb.

Proof:

If (i), (ii), (iii), (iv) or (v) holds, then g1g2 = g2g1 (see Examples 4.1, 4.6, 4.7).

Assume that g1g2 = g2g1. Then

g2(u) = g2g1(b) = g1g2(b) = g1(v) = u|v|b .

If u ∈ b∗, this equation implies that v ∈ b∗. Hence (iv) holds. Assume that u 6∈ b∗.

Next, assume that t = 0. Then u|v|b = g2(u) = v|u|b , which shows that (iii) holds.

Assume then that t 6= 0. By assumption, |v|b = 1 or |v|b ≥ 2. Assume first that |v|b = 1. Then the

equation g2(u) = u shows that (ii) holds. Assume finally that |v|b ≥ 2. Then ω(g2) is defined. Since

ω(g2) is obtained from gω2 (u) = uω by deleting the occurrences of a preceding the first occurrence of

b, the word ω(g2) is eventually periodic. Hence t = 1. By Lemma 5.3 there are nonnegative integers

γ and j such that g2(b) = (baγ)jb. Since ω(g2) = (baγ)ω , there exist nonnegative integers α, β and i

such that g1(b) = (aαbaβ)i and γ = α+ β. Hence (v) holds. ⊓⊔

For a systematic study of the equation h(w) = wn, n ≥ 2, for binary morphisms, see [3].
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