
ar
X

iv
:2

30
2.

06
24

8v
4

 [
cs

.F
L

]
 1

5
Ju

l 2
02

4

Fundamenta Informaticae 191(3-4) : 269–284 (2024) 269

Available at IOS Press through:

https://doi.org/10.3233/FI-242182

Decision Problems on Copying and Shuffling

Vesa Halava*†

Department of Mathematics and Statistics

University of Turku, Finland

vesa.halava@utu.fi

Tero Harju

Department of Mathematics and Statistics

University of Turku, Finland

harju@utu.fi

Dirk Nowotka

Department of Computer Science

Kiel University, Germany

dn@zs.uni-kiel.de

Esa Sahla

Department of Mathematics and Statistics

University of Turku, Finland

etsahla@gmail.com

Abstract. We study decision problems of the form: given a regular or linear context-free lan-

guage L, is there a word of a given fixed form in L, where given fixed forms are based on word

operations copy, marked copy, shuffle and their combinations.

Keywords: Regular language, linear context-free language, shuffle, marked copy, reverse copy,

membership problem

1. Introduction

We consider classic problems on decidability issues of formal languages. We shall fill in gaps that

have remained for elementary operations copy and shuffle and their variants on words and languages.

The presented results, as well as the known results on the topic, are presented in the table affixed in

the second page leaving two open cases for further studies.

We investigate the decidability status of several special membership problems for regular and

linear context-free (linear CF) languages where it is asked whether or not the language contains a

word of a certain form. Let L be a given language. The operations and the question are the following:

*Supported by emmy.network foundation under the aegis of the Fondation de Luxembourg.
†Address for correspondence: Department of Mathematics and Statistics, University of Turku, Finland.

http://arxiv.org/abs/2302.06248v4

270 V. Halava et al. / Decision Problems on Copying and Shuffling

1. copy, i.e., does there exist a square ww ∈ L for some word w?

2. reversed copy, i.e., does there exist a word wwr ∈ L for some word w, where wr denotes the

reversal of the word w?

3. marked copy, i.e., does there exist a word ww ∈ L for some word w, where w denotes a marked

copy of the word w? (For a definition of a marked copy, see page 271)

4. self-shuffle, i.e., does there exist a word u ∈ w � w with u ∈ L for some word w, where �

denotes the shuffle operations of two words?

5. shuffle with reverse, i.e., does there exist a word u ∈ w� wr with u ∈ L for some word w?

6. marked shuffle, i.e., does there exist a word u ∈ w� w̄ with u ∈ L for some word w?

The decidability statuses of these questions are listed in the following table, where D (resp. U)

means that the problem is decidable (resp. undecidable) and the question mark denotes problems that

remain unsettled. After the symbols D and U we give a reference for the proof in the text. Here Reg

stands for the regular languages and Lin for the linear context-free languages.

Reg Lin

ww ∈ L D (Cor. 3.2) U (Thm. 4.1)

wwr ∈ L D (Cor. 3.7) U (Thm. 4.14)

ww ∈ L D (Thm. 3.5) U (Thm. 4.3)

w� w ∩ L 6= ∅ ? U (Thm. 4.9)

w� wr ∩ L 6= ∅ ? U (Thm. 4.13)

w� w ∩ L 6= ∅ U (Thm. 3.10) U (Thm. 4.16)

We also study decidability of some special inclusion problems related to the above problems. For

example, we investigate the problem of whether a given regular, linear context-free or context-free

language is closed under taking squares, and also, the problem whether the set all squares generated

by another given language is a subset of a given language.

There are naturally many related language operations to be investigated; see Rampersad and Shallit

[1], where among other results it was shown that it is undecidable whether a context-free grammar

generates a square. We deal with this problem in Theorem 4.1 for linear CF-languages.

2. Preliminaries

Let Σ be a finite alphabet. A word over Σ is a finite sequence of symbols of Σ. The empty word is

denoted by ε. The length of a word w = a1 · · · ak, where ai ∈ Σ for all i = 1, . . . , k, is k and it

is denoted by |w|. The set of all words over Σ is denoted by Σ∗ and the set of all non-empty words

by Σ+.

For two words u, v ∈ Σ∗, their concatenation is u · v = uv. A factorization of a word w ∈ Σ∗ is

a finite sequence u1, . . . , uk, where ui ∈ Σ∗ for all i, such that w = u1 · · · uk. A word u is a prefix of

a word w if w = uv for some word v.

V. Halava et al. / Decision Problems on Copying and Shuffling 271

The powers of words are defined inductively: w0 = ε and for all n ∈ N, wn+1 = wn · w. We say

that a word w is primitive, if for all u ∈ Σ∗, w = un implies that n = 1.

Let wr denote the reversal (or the mirror image) of w, that is, wr = an · · · a1 for w = a1 · · · an,

where ai ∈ Σ for all i.
With an alphabet Σ we accompany a marked copy alphabet Σ̄ = {ā | a ∈ Σ} , where Σ ∩ Σ̄ = ∅.

For a word w = a1a2 · · · an, let w = ā1ā2 · · · ān be the marked copy of w.

A subset of Σ∗ is called language. Denote by Lc the complement of L, that is, Lc = Σ∗ \ L.

We assume that the reader is familiar with the basic notions of language theory; see e.g., Salo-

maa [2] for definitions of regular languages, finite automata, context-free (CF) languages, pushdown

automata, context-sensitive languages and pumping lemmas for regular and context-free languages.

We briefly recall a few basic facts. First of all, recall that a language L is a linear CF-language

if it is accepted by a pushdown automaton (PDA) that makes at most one reversal (from increasing to

decreasing mode) on its stack. Equivalently, each linear CF-language is generated by a linear context-

free grammar, where the productions have at most one non-terminal on the right hand side.

Example 2.1. The language of all palindromes of even length,

E = {wwr | w ∈ Σ∗},

is a linear CF-language. Indeed, E can be accepted by a non-deterministic linear PDA which first

reads symbols onto the stack until it (non-deterministically) decides to check by popping symbols

whether the rest of the input word agrees with the stack content.

We use the Pumping lemma for regular languages to show that certain languages are not regular.

Lemma 2.2. For a regular language L, there exists a natural number p ≥ 1 such that, if w ∈ L is of

length |w| ≥ p, then it has a factorization w = xyz with |y| ≥ 1 and |xy| ≤ p, such that xynz ∈ L
for all n ∈ N.

The Pumping lemma for CF-languages has two simulaneous pumps.

Lemma 2.3. For a CF-language L, there exists a natural number p ≥ 1 such that, if w ∈ L has length

|w| ≥ p, then it has a factorization w = uvwxy with |vx| ≥ 1 and |vwx| ≤ p, such that uvnwxny ∈ L
for all n ∈ N.

Next we define two special languages. Firstly, let P ⊆ Σ∗ be a language. The copy language of

P is defined as the set of all second powers of words of P :

CP = {ww | w ∈ P}.

It is well-known that for a regular language P , the copy language CP is context-sensitive, but not

context-free (see, for example, [3]). We state the following open problem concerning the copy lan-

guages. A one-counter automaton is a pushdown automaton, with a single stack letter, which is able

to check the emptiness of the stack.

Problem 1. Is the complement of CΣ∗ a one-counter language?

272 V. Halava et al. / Decision Problems on Copying and Shuffling

Considering the marked copy, the problem becomes easier.

Lemma 2.4. For a regular language P , the complement of the marked copy language {ww | w ∈ P}
is a one-counter language.

Proof:

Sketch of the proof: Assume P is accepted by a finite automaton A, that is, P = L(A). Let Ā be the

copied version of A, i.e., where the letters in the transitions are changed to marked letters.

We construct a one reversal nondeterministic PDA B for A and its marked copy automaton Ā as

follows:

1. B simulates A and reads symbols from Σ and adds one to the counter to count the length of the

prefix read so far.

2. At one point B remembers the symbol a ∈ Σ under its reading head and stops writing to the

stack. B continues by reading the rest of the non-marked part w.

3. If w /∈ P , the input is accepted.

4. Otherwise B simulates Ā for the marked part of the input and decreases the counter on each

step.

5. When the stack is empty and the input is not read fully, B checks if the current symbol of the

input is equal to a. If not, then the input is accepted. ⊓⊔

Secondly, we define the shuffle (language) of two words u, v ∈ Σ∗ as follows:

u� v ={u1v1 · · · unvn | ui, vi ∈ Σ∗ for all i = 1, . . . , n

and u = u1u2 · · · un, v = v1v2 · · · vn}.

In the above factorizations of u and v we allow that some of the factors ui and vi are empty.

Let Σ and ∆ be two alphabets. A mapping g : Σ∗ → ∆∗ is a morphism if, for all u, v ∈ Σ∗,

g(uv) = g(u)g(v).

For the undecidability proofs, we use reductions from the Post’s Correspondence Problem (PCP,

for short). The PCP was introduced and proved to be undecidable by E. Post in 1946; see [4]. We shall

use the modern form of the problem and define the PCP using monoid morphisms: assume that g and

h are two morphisms from Σ∗ into ∆∗, where Σ = {a1, . . . , an} is an alphabet of n letters. The pair

(g, h) is called an instance of the PCP, a word w satisfying

g(w) = h(w). (1)

is called a solution of the instance (g, h). The size of an instance is the size of the domain alphabet,

i.e., the size is equal to |Σ|.

Theorem 2.5. It is undecidable for instances (g, h) whether or not it has a solution.

V. Halava et al. / Decision Problems on Copying and Shuffling 273

It is known that for the size n ≤ 2, the PCP is decidable; see [5] and [6]. On the other hand, for

sizes n ≥ 5, the PCP is known to be undecidable; see [7]. The decidability statuses for n = 3 and

4 are open. Note that in basic undecidability proofs, the morphisms g and h are non-erasing, that is,

g(a) 6= ε 6= h(a) for all a ∈ Σ. This is also the case in [7].

3. Regular languages

In this section we study the problems defined in the first section for regular languages.

3.1. Powers and copies

Our first theorem is well-known and can be regarded as folklore.

Theorem 3.1. Let n ≥ 2 be a fixed integer and P ⊆ Σ∗ a regular language. It is decidable for regular

languages R ⊆ Σ∗ if there exists a power wn ∈ R for some word w ∈ P . Indeed, the existence of a

power wn ∈ R is a PSPACE complete problem.

Proof:

Let A be a finite automaton accepting R, i.e., R = L(A). Let the states of A be q0, q1, . . . , qm, where

q0 is the initial state. Define, for all i and j, the regular language Rij by

Ri,j = {w | qi w−−→ qj} ∩ P,

where qi
w−−→ qj denotes that there is a computations from the state qi to the state qj reading the word

w in A. Then there is an nth power wn with w ∈ P accepted by A if and only if there is an accepting

sequence,

q0
w−−→ qi1

w−−→ . . .
w−−→ qin ,

where qin is a final state, i.e., if R0,i1 ∩ Ri1,i2 ∩ · · · ∩ Rin−1,in 6= ∅. For each sequence 0, i1, . . . , in,

the intersection is a regular language. Moreover, there are only finitely many such sequences of length

n+ 1. Since the emptiness problem is decidable for regular languages, the claim follows.

For PSPACE completeness we need to do the reduction above to the other direction. Indeed, let

A1, . . . ,An be finite automata accepting languages L1, . . . , Ln. Now construct a new automaton A
by adding transitions reading a new symbol # from the final states of Ai to initial state of Ai+1 for

i = 1, . . . , n − 1, and add new final state f to A, such that from all final states of An, there is a

transition to f reading #. It is immediate that L1 ∩ · · · ∩ Ln 6= ∅ if and only if there exists w(= u#)
such that wn ∈ L(A). The PSPACE completeness now follows from the PSPACE completeness of

emptyness of the intersection problem, see [8]. ⊓⊔

By setting P = Σ∗ and n = 2 in Theorem 3.1, we have, see also Anderson et al. [9].

Corollary 3.2. It is decidable for a given regular language L ⊆ Σ∗ whether or not there exists w ∈ Σ∗

such that ww ∈ L.

274 V. Halava et al. / Decision Problems on Copying and Shuffling

The proof of Theorem 3.1 also gives a well-known result on the roots of words: the nth root of a

regular language R,
n
√
R = {w | wn ∈ R},

as well as, the collection of all the roots,

∗

√
R =

⋃

n≥2

n
√
R = {w | wn ∈ R for some n ≥ 2},

are regular. Let us mention that the regularity does not hold in the limit case as we see from the

following lemma.

Lemma 3.3. For a regular language R, the language

Pr(
∗

√
R) = {w | w primitive and wn ∈ R for some n ≥ 2}

is not necessarily regular.

Proof:

Let Q = Pr(∗

√
Σ∗), that is, Q is the language of all primitive words over Σ. Assume that Q is regular

over Σ = {a, b}, and consider the (regular) complement Qc of Q consisting of all non-primitive

words over Σ. Then anbanb ∈ Qc for all n, and thus for sufficiently large n, (indeed, larger that p
in the Pumping Lemma 2.2) an+kbanb ∈ Qc for some k ≥ 1 by the Pumping Lemma, but the word

an+kbanb is clearly primitive; a contradiction.

Indeed, Q is not even deterministic CF-language; see Lischke [10]. ⊓⊔

For the sake of completeness, we state the following theorem on the inclusion problem CP ⊆ L
for the copy languages CP .

Theorem 3.4. For regular languages R and P , it is decidable if CP ⊆ R holds. In particular, it is

decidable if a regular language R is closed under taking squares, i.e., if CR ⊆ R.

Proof:

The claim follows from Theorem 3.1. Indeed, CP * R if and only if the complement Rc of R contains

a square ww with w ∈ P . Since the complement of regular language is also regular, the claim follows.

⊓⊔

The technique in the proof of Theorem 3.1 can also be used for the marked copy problem.

Theorem 3.5. It is decidable for regular languages R, if ww ∈ R for some w.

Proof:

Let C be a finite automaton accepting R, i.e., R = L(C). As the regular languages are closed under

intersection, let A be a finite automaton accepting the language R ∩ Σ∗Σ
∗
. Furthermore, let B be a

copy of A where all letters in the transitions are changed from marked to unmarked and vice versa.

Therefore, L(B) = {uv | uv ∈ R}. We may assume that the state set of A as well as that of B is

{q0, . . . , qm} and q0 is the initial state.

V. Halava et al. / Decision Problems on Copying and Shuffling 275

Define, for all i and j, the regular language Rij by

RA
i,j = {w | qi w−−→ qj in A}

RB
i,j = {w | qi w−−→ qj in B}.

Now, there is a word ww ∈ R if and only if for some state qj and a final state qn,

q0
w−−→ qj

w−−→ qn,

in A (and C), i.e., if RA
0,j ∩RB

j,n∩Σ∗ 6= ∅ for some j and n. There are only finitely many intersections

of regular languages to be checked, so the claim follows again from the decidability of the emptiness

problem for regular languages. ⊓⊔

For the reverse copy problem requesting if wwr ∈ R for some w, we first state a more general

case.

Theorem 3.6. Let k ≥ 1 be fixed. It is decidable for regular languages R if w1w
r
1 · · ·wkw

r
k ∈ R for

some w1, . . . , wk.

Proof:

Let, for fixed k,

Ek = {w1w
r
1 · · ·wkw

r
k | wi ∈ Σ∗, i = 1, 2, . . . , k}.

As a concatenation of k copies of the linear CF-language E from Example 2.1, Ek is a (nondetermin-

istic) CF-language. Therefore, also the language

Lk = Ek ∩R

is a CF-language as context-free languages are closed under intersection with regular languages. Since

the emptiness problem is decidable for context-free languages, the claim follows. ⊓⊔

Setting k = 1 in the previous theorem yields a result for the reverse copy problem.

Corollary 3.7. It is decidable for a regular language R, if wwr ∈ R for some word w.

The problem of Theorem 3.6 turns out to be undecidable for context-free languages with k = 1;

see Corollary 4.15.

The proof of Theorem 3.6 can also be used for the following theorem.

Theorem 3.8. It is decidable if a regular language R contains a word of the form w1w
r
1 · · ·wkw

r
k for

some w1, . . . , wk and k ≥ 1.

Proof:

Let

L =
∞⋃

k=1

Ek .

Clearly, L is a CF-language, and as in the proof of Theorem 3.6, the language L∩R is a CF-language

and the claim follows from the decidability of the emptiness problem of CF-languages. ⊓⊔

276 V. Halava et al. / Decision Problems on Copying and Shuffling

3.2. Shuffles

We begin by defining the language

LΣ =
⋃

w∈Σ∗

w� w .

Lemma 3.9. The language LΣ is not a CF-language if |Σ| ≥ 2.

Proof:

Indeed, let L = LΣ ∩ Σ∗Σ
∗
= {ww | w ∈ Σ∗}. If LΣ were a CF-language, then L would be a

CF-language as Σ∗Σ
∗

is regular. However, the copy language CΣ∗ is a morphic image of L, and as the

CF-languages are closed under morphic images, that would make CΣ∗ a CF-language; a contradiction.
⊓⊔

Engelfriet and Rozenberg [11, Theorem 15] showed in 1980 that each recursively enumerable

language K can be represented in the form K = h(LΣ ∩M), where h is a letter-to-letter morphism,

Σ a binary alphabet and M a regular language. It follows, as stated in [11], that it is undecidable for

regular languages R ⊆ Σ∗ if R contains a word from w � w for some w ∈ Σ∗; see also [12] for a

direct proof of this along different lines.

We give a simple proof of the result based on reduction to the Post Correspondence Problem. The

proof below does not apply to small alphabets as the PCP is known to be undecidable only for alphabet

sizes of at least five.

Theorem 3.10. It is undecidable for regular languages R if R contains an element of w � w for

some w.

Proof:

Let (g, h) be an instance of the PCP for g, h : Σ∗ → ∆∗, where g and h are both non-erasing. Define

a (generalized) finite automaton A with the set of states

Q = {v | v is a prefix of h(a), a ∈ Σ}.

We set the state qf = ε to be the initial and the unique final state. The transitions of A are of the form:

for a ∈ Σ and z ∈ Σ+

u
az−−→ v if there exists x ∈ Σ∗ and v ∈ Q such that g(a) = xv and h(z) = ux,

u
a−→ vg(a), if vg(a) ∈ Q.

Note that the words z in the above can be found algorithmically, as the images g(a) are of finite length

and h is non-erasing.

The states w ∈ Q correspond to overflows of the instance (g, h) when g is leading: an overflow

w ∈ Q occurs in the situation, where g(u) = h(v)w for some words u and v. Indeed, if the automaton

A is in state w after reading the word v, then necessarily v = a1z1a2z2 · · · anzn, where ai ∈ Σ and

zi ∈ Σ∗ (note that zi is empty for the transitions of the latter form) for all i = 1, . . . , n, and

g(a1)g(a2) · · · g(an) = h(z1)h(z2) · · · h(zn)w.

V. Halava et al. / Decision Problems on Copying and Shuffling 277

As qf = ε, we have that A accepts the language

L(A) = {a1z1a2z2 · · · anzn | n ≥ 0, ai ∈ Σ, zi ∈ Σ∗,

g(a1a2 · · · an) = h(z1z2 · · · zn)}.

Therefore, (w � w) ∩ L(A) 6= ∅ for some w if and only if there exists a word a1z1a2z2 · · · anzn in

L(A) such that w = a1a2 · · · an = z1z2 · · · zn. This is equivalent to saying that the instance (g, h) of

the PCP has a solution. ⊓⊔

The self-shuffle and the shuffle with reverse are left as open problems.

Problem 2. Is it decidable for regular languages R if R contains an element of w� w for some w?

Problem 3. Is it decidable for regular languages R if R contains an element of w� wr for some w?

The problems with shuffles of words tend to be algorithmically difficult. Indeed, the following

was shown by Biegler and McQuillan [13].

Theorem 3.11. Consider an instance consisting of a DFA A and two words u, v ∈ Σ∗ with |Σ| ≥ 2.

It is NP-complete to determine if there exists a word w ∈ L(A) such that w /∈ u� v.

Problem 4. Does the above problem stay NP-complete if an instance consists of A and a single word

u, and the problem is to determine if there exists a word w with w /∈ u� u?

4. Linear CF-languages

In this section we study the problems defined in the introduction for linear CF-languages and show

that they are all undecidable.

4.1. Powers and copies

Let (g, h) be an instance of the PCP, where g, h : Γ∗ → ∆∗ with Γ ∩∆ = ∅. Define the language

L2(g, h) = {zurxwr : u,w ∈ Γ+, z, x ∈ ∆∗, z = g(w), x = h(u)}.

It is an easy exercise of language theory to show that L2(g, h) is accepted by a deterministic linear

pushdown automaton. Indeed, the reversal happens between ur and x as the automaton can recognize

the alternation in the disjoint alphabets. Checking if z = g(w) and x = h(u) can be easily performed

deterministically while decreasing the stack after the reversal. Therefore, L2(g, h) is a linear CF-

language.

Theorem 4.1. It is undecidable for deterministic linear CF-languages L if ww ∈ L for some w.

278 V. Halava et al. / Decision Problems on Copying and Shuffling

Proof:

Suppose g, h : Γ∗ → ∆∗ are morphisms where Γ and ∆ are disjoint, and let Σ = Γ ∪∆. We rewrite

the above language in a more convenient form:

L2(g, h) = {g(w)urh(u)wr : u,w ∈ Γ+}. (2)

Obviously, there is a square in L2(g, h) if and only if g(w)ur = h(u)wr for some non-empty words u
and w, that is, if and only if the instance (g, h) of the PCP has a nonempty solution: g(w) = h(u) and

w = u.

Since L2(g, h) is a deterministic linear CF-language, the claim follows. ⊓⊔

Since the deterministic linear CF-languages are closed under taking complements, we have, cor-

responding to Theorem 3.4, the following corollary.

Corollary 4.2. It is undecidable for deterministic linear CF-languages L if all squares are in L, i.e., if

CΣ∗ ⊆ L.

Proof:

We consider the negation of the proposition in Theorem 4.1:

¬∃w : ww ∈ L ⇐⇒ ∀w : ww /∈ L ⇐⇒ ∀w : ww ∈ Lc. ⊓⊔

For the marked copy, we transform the language L2(g, h) in (2) into the language

L̄2(g, h) = {g(w)urh(u)wr : u,w ∈ Γ∗}

which is clearly also a deterministic linear CF-language.

Theorem 4.3. It is undecidable for deterministic linear CF-languages L, if ww ∈ L for some word w.

Proof:

As in the proof of Theorem 4.1, because the alphabets ∆ and Γ are disjoint (therefore, so are ∆ and

Γ) we obtain that there is a word of the form ww in L̄2(g, h) if and only if g(w)ur = h(u)wr which

again is equivalent to saying that the instance (g, h) of the PCP has a solution. ⊓⊔

Example 4.4. The language

F = {w ∈ Σ∗ | w = uxxv for some nonempty word x}

is not regular. Indeed, by the Pumping lemma, its complement, the language of all square-free words,

is not even context-free. For this, assume contrary that F c is a CF-language. As it is infinite, pumping

in Lemma 2.3, implies that for every sufficiently long word w ∈ F c contains a factor of the form xx
for some nonempty word x. Therefore, there is a word of the form uxxv in F c; a contradiction.

We extend Theorem 4.1 for arbitrary powers n ≥ 2 as follows.

V. Halava et al. / Decision Problems on Copying and Shuffling 279

Theorem 4.5. Let n ≥ 2 be a fixed integer. It is undecidable for deterministic linear CF-languages

L ⊆ Σ∗ if there exists a power wn ∈ L for some nonempty w ∈ Σ∗.

Proof:

Our construction relies on the language L2(g, h) defined in (2). Let

Ln(g, h) = L2(g, h) · (#∆+Γ+)n−2.

It is a deterministic linear CF-language since the end portion (∆+Γ+)n−2 is regular. Recall that

∆ ∩ Γ = ∅.

Now,
g(w)urh(u)wr · w1u1 · · ·wn−2un−2 ∈ Ln(g, h)

is an nth power if and only if g(w) = h(u) = w1 = . . . = wn−2 and ur = wr = u1 = . . . = un−2,

and thus if and only if the instance (g, h) has a solution. This proves the claim. ⊓⊔

Finally, if we replace Ln(g, h) by the deterministic linear CF-language

Lω(g, h) = L2(g, h) · (∆+Γ+)∗,

we have,

Theorem 4.6. It is undecidable for deterministic linear CF-languages L ⊆ Σ∗ if there exists a power

wn ∈ L for some n ≥ 2 and nonempty w ∈ Σ∗.

Regarding the decidability result in Theorem 3.4 for regular languages, we state an open problem

for linear CF-languages.

Problem 5. Is it decidable for linear CF-languages L if CL ⊆ L, i.e., if L is closed under taking

squares?

In many special cases the answer to the above problem is positive. Indeed, according to Greibach [14]

if a language L1cL2, with Li ⊆ (Σ \ {c})∗ for i = 1, 2, is a linear CF-language then Li is regular for

i = 1 or i = 2.

The inclusion problem of squares in a language becomes undecidable ”just above” the regular

languages. Recall that counter languages are accepted with (nondeterministic) pushdown automata

with a single pushdown letter for the stack.

Theorem 4.7. It is undecidable for counter languages L ⊆ Σ∗ if CΣ∗ ⊆ L holds.

Proof:

We prove the claim by reduction from the PCP. Let (g, h) be an instance of the PCP for g, h : Σ∗ →
∆∗. Let Γ = Σ ∪ {#}, where # is a new letter.

We now describe a (nondeterministic) counter language L ⊆ Γ∗ such that w ∈ L if

(1) w 6= u#v#, for all u, v ∈ Σ∗, or

280 V. Halava et al. / Decision Problems on Copying and Shuffling

(2) w = u#v# but u 6= v or g(u) 6= h(v).

Clearly, L contain all squares of Γ∗ except those words w#w# with g(w) = h(w). Thus CΣ∗ ⊆ L if

and only if the instance (g, h) has no solutions, and the claim follows from the undecidability of the

PCP.

Starting from its initial state the automaton M branches to one of the three separate lines of actions,

and it accepts the input w if one of these lines leads to acceptance. Note that counter automata are

nondetermistic, and their languages are closed under union.

The automaton M accepts if

1. w /∈ Σ∗#Σ∗#. Since Σ∗#Σ∗# is regular this can be decided with the states, without counter

actions.

From this on, we suppose that w = u#v#, where u, v ∈ Σ∗.

2. u 6= v. While reading the prefix u and increasing the counter, the automaton guesses a position

n ≤ |u|, say with the letter a. The counter stack has then cn. The automaton reads on until it

reaches the first #, after which it pops the counter to gain the nth letter, say b, of v. It accepts if

a 6= b, that is the nth letter of u is not equal to nth letter of v.

3. g(u) 6= h(v). As in case 2 the automaton can guess a position of different letter while in the

images g(u) and h(v). E.g., while reading u = a1 · · · am, the automaton guesses a position n =
|g(a1a2 · · · ak)| + j by pushing c|g(ai)| i = 1, 2, . . . , k, to the counter when reading a1, . . . , ak
and then pushing cj , for j < |g(ak+1)|, and remembers the symbol a which is the ith symbol of

g(ak+1) and, therefore, the nth symbol of g(u).

Then, when reading v = b1 · · · bt, M decreases the counter with c|h(bi)| until |h(b1 · bℓ)|+s = n
for some ℓ such that s < |h(bℓ+1)| and checks that the symbol in position s of h(bℓ+1), that is,

the nth symbol of h(v) are different.

It is straightforward to see that M accepts the language L. ⊓⊔

4.2. Shuffles

We begin with the shuffle operation on CF-languages. By considering the generating grammars, it

is evident that the family of context-free languages is closed under concatenation. However, it is not

closed under shuffle of languages. To see this, consider the languages

L1 = {anbn | n ≥ 1}, L2 = {cmam | m ≥ 1} and L = L1� L2 ∩ a∗c∗b∗a∗.

If L1 � L2 is a CF-language, then so is L as CF-languages are closed under intersection with regular

languages and a∗c∗b∗a∗ is regular. But L = {ancmbnam | n,m ≥ 1} is a well-known non-CF-

language. Note that the languages L1 and L2 are even deterministic linear CF-languages.

The following example showing that CF-languages over binary alphabets are not closed under

shuffle is due to Chris Köcher [15].

V. Halava et al. / Decision Problems on Copying and Shuffling 281

Example 4.8. Let L1 = {anban | n ≥ 1} and L2 = {bnabn | n ≥ 1}. Now

(L1 � L2) ∩ a∗b∗a∗b∗ = {ambn+1am+1bn | m,n ≥ 1},

which is not a context-free language. As the language a∗b∗a∗b∗ is regular, and intersection of a

context-free language and a regular language is always context-free, we get that L1 � L2 is not a

context-free language.

Next, we study the shuffle problem for linear CF-languages.

Theorem 4.9. It is undecidable for deterministic linear CF-languages L if L contains an element of

w� w for some w.

Proof:

Recall the language L2(g, h) from (2), and consider its modification

L#(g, h) = {$g(w)ur#$h(u)wr# : u,w ∈ Γ∗}, (3)

where the markers $ and # appears only in the given positions. Clearly, L#(g, h) is deterministic

linear CF-language.

The only word of the form $u#$v# in the shuffle $w#� $w# is $w#$w#, which in its turn

belongs to L#(g, h) if and only if the instance (g, h) has a solution, the claim follows. ⊓⊔

Corollary 4.10. It is undecidable for deterministic linear CF-languages L ⊆ Σ∗ if all shuffles w�w
for w ∈ Σ∗ are in L.

Proof:

We consider the negation of the proposition in Theorem 4.9:

¬∃w : w� w ∩ L 6= ∅ ⇐⇒ ∀w : w� w ∩ L = ∅ ⇐⇒ ∀w : w� w ⊆ Lc.

Since the family of deterministic linear CF-languages is closed under complement, the claim follows.

⊓⊔

By Rizzi and Vialette [16] and Buss and Soltys [17], it is an NP-complete problem if a word v is

a self-shuffle, i.e., if there exists a word w such that v = w� w.

Consider the shuffle w� wr, where wr is the reverse of w. For a language P , let

MP =
⋃

w∈P

w� wr.

See Henshall et al. [18] for the following result.

Theorem 4.11. The language MΣ∗ is not context-free.

We give a bit simpler result related to the previous theorem as an example.

282 V. Halava et al. / Decision Problems on Copying and Shuffling

Example 4.12. We show that the language MP need not be regular for regular P . Indeed, let P =
a+b+ over Σ = {a, b}. Then L = MP ∩ a∗b∗a∗ = {anb2man | n,m ≥ 1} is non-regular (by the

Pumping Lemma). Therefore, MP is not regular.

Similarly, let L = {anbn | n ≥ 1}. Now,

ML ∩ a∗b∗a∗ =
⋃

n≥1

(anbn� bnan) ∩ a∗b∗a∗ = {anb2nan | n ≥ 1}

is not context-free, and, therefore, ML is not context-free, since a∗b∗a∗ is regular.

Our next theorem concerns linear CF-languages that need not be deterministic.

Theorem 4.13. It is undecidable for linear CF-languages if L contains an element of w � wr for

some w.

Proof:

The proof is by reduction from the PCP. Let (g, h) be an instance of the PCP with g, h : Σ∗ → ∆∗

and let # be a new symbol # /∈ ∆. Consider the linear CF-language L1 = L(G) generated by the

grammar G with two non-terminals S and T together with the production rules

S → #g(a)Th(a)r# for all a ∈ Σ,

T → g(a)Th(a)r for all a ∈ Σ,

T → ##.

Hence

L1 = {#g(v)##h(v)r# | v ∈ Σ+}. (4)

Now, L1 contains an element of w � wr for a word w if and only if w = #g(v)# = #h(v)# for

some nonempty word v for which then g(v) = h(v). The claim follows from the undecidability of the

PCP. ⊓⊔

The linear CF-language L1 in (4) also gives immediately the following result.

Theorem 4.14. It is undecidable for linear CF-languages L, if wwr ∈ L for some word w.

The proof of Theorem 4.13 also gives the following corollary.

Corollary 4.15. It is undecidable for linear CF-languages L if L contains a palindrome, i.e, a word w
such that w = wr .

The following result is a trivial consequence of Theorem 3.10, which stated the result already for

regular languages.

Theorem 4.16. It is undecidable for linear context-free languages if L contains an element of w�w
for some w.

V. Halava et al. / Decision Problems on Copying and Shuffling 283

In contrast to the decidability result in Theorem 3.6 we can extend the proof of Theorem 4.13 for

the next claim.

Theorem 4.17. Let k ≥ 1 be fixed. It is undecidable for CF-languages L if L contains a word of the

form w1w
r
1 · · ·wkw

r
k for some w1, . . . , wk.

Proof:

We modify the linear CF-language from (4). Consider the ’next’ linear CF-language Lk for the in-

stance (g, h): Lk = L1 · (cc)k−1, where c is a new letter. ⊓⊔

For regular languages R it is clearly decidable if {w,wr}∗ ⊆ R for given w.

Problem 6. Is it decidable for regular languages R if {w,wr}∗ ⊆ R for some w? How about CF-

languages?

On the other hand, it is decidable for context-free languages L if L ⊆ {w,wr}∗ for some w.

Indeed, by the Pumping property, the length of possible words w has an effective upper bound.

5. Conclusions

Our aim was to present a survey on the decidability statuses of special membership problems for

copies, marked copies, reversed copies, self-shuffles and shuffles with marked or reversed copies.

Two cases, the self-shuffle and shuffle with the reversed copy, remain unsolved. We also studied

special inclusion problems regarding powers and especially squares of words. Several related open

problem were stated.

References

[1] Rampersad N, Shallit J. Detecting patterns in finite regular and context-free languages. Inf. Process. Lett.,

2010. 110(3):108–112. doi:10.1016/j.ipl.2009.11.002.

[2] Salomaa A. Formal Languages. Academic Press, New York, 1973.

[3] Kutrib M, Malcher A, Wendlandt M. Queue Automata: Foundations and Developments, pp. 385–431.

Springer International Publishing. ISBN 978-3-319-73216-9, 2018. doi:10.1007/978-3-319-73216-9_19.

URL https://doi.org/10.1007/978-3-319-73216-9_19.

[4] Post EL. A variant of a recursively unsolvable problem. Bull. Amer. Math. Soc., 1946. 52:264–268.

doi:10.1090/S0002-9904-1946-08555-9. URL http://dx.doi.org/10.1090/S0002-9904-1946-

08555-9.

[5] Ehrenfeucht A, Karhumäki J, Rozenberg G. The (generalized) Post correspondence problem with lists

consisting of two words is decidable. Theoret. Comput. Sci., 1982. 21(2):119–144. doi:10.1016/0304-

3975(89)90080-7. URL http://dx.doi.org/10.1016/0304-3975(89)90080-7.

[6] Halava V, Harju T, Hirvensalo M. Binary (generalized) Post correspondence problem. The-

oret. Comput. Sci., 2002. 276(1-2):183–204. doi:10.1016/S0304-3975(01)00157-8. URL

http://dx.doi.org/10.1016/S0304-3975(01)00157-8.

https://doi.org/10.1007/978-3-319-73216-9_19
http://dx.doi.org/10.1090/S0002-9904-1946-
08555-9
http://dx.doi.org/10.1016/0304-3975(89)90080-7
http://dx.doi.org/10.1016/S0304-3975(01)00157-8

284 V. Halava et al. / Decision Problems on Copying and Shuffling

[7] Neary T. Undecidability in binary tag systems and the Post correspondence problem for five pairs of

words. In: 32nd International Symposium on Theoretical Aspects of Computer Science, volume 30 of

LIPIcs. Leibniz Int. Proc. Inform., Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2015 pp. 649–661.

doi:10.5167/uzh-121761.

[8] Rabin MO, Scott D. Finite Automata and Their Decision Problems. IBM J. Res. Dev., 1959. 3(2):114–125.

doi:10.1147/rd.32.0114. URL https://doi.org/10.1147/rd.32.0114.

[9] Anderson T, Loftus J, Rampersad N, Santean N, Shallit J. Detecting palindromes, patterns and borders in

regular languages. Inf. Comput., 2009. 207(11):1096–1118. doi:10.1016/j.ic.2008.06.007.

[10] Lischke G. Primitive words and roots of words. Acta Univ. Sapientiae, Inform., 2011. 3(1):5–34.

[11] Engelfriet J, Rozenberg G. Fixed point languages, equality languages, and representation of recursively

enumerable languages. J. Assoc. Comput. Mach., 1980. 27:499–518.

[12] Halava V, Harju T, Sahla E. On shuffling a word with its letter-to-letter substitution. Fundamenta Infor-

maticae, 2020. 175:201–206.

[13] Biegler F, McQuillan I. On comparing deterministic finite automata and the shuffle of words. In: Im-

plementation and application of automata. 19th international conference, CIAA 2014, Giessen, Germany,

July 30 – August 2, 2014. Proceedings, pp. 98–109. Berlin: Springer. ISBN 978-3-319-08845-7/pbk,

2014.

[14] Greibach S. The unsolvability of the recognition of linear context-free languages. J. Assoc. Comput.

Mach., 1966. 13:582–587.

[15] Köcher C. personal communication.

[16] Rizzi R, Vialette S. On recognizing words that are squares for the shuffle product. In: Computer science

– theory and applications. 8th international computer science symposium in Russia, CSR 2013, Ekater-

inburg, Russia, June 25–29, 2013. Proceedings, pp. 235–245. Berlin: Springer. ISBN 978-3-642-38535-

3/pbk, 2013.

[17] Buss S, Soltys M. Unshuffling a square is NP-hard. J. Comput. Syst. Sci., 2014. 80(4):766–776.

[18] Henshall D, Rampersad N, Shallit J. Shuffling and Unshuffling. Bulletin of the EATCS, 2012. (107):131–

142. 1106.5767v4.

https://doi.org/10.1147/rd.32.0114
1106.5767v4

	Introduction
	Preliminaries
	Regular languages
	Powers and copies
	Shuffles

	Linear CF-languages
	Powers and copies
	Shuffles

	Conclusions

