
ar
X

iv
:2

10
2.

00
86

5v
8

 [
cs

.L
O

]
 1

6
Ju

l 2
02

4

Fundamenta Informaticae 192(1) : 1–75 (2024) 1

Available at IOS Press through:

https://doi.org/10.3233/FI-242188

Global Types and Event Structure Semantics

for Asynchronous Multiparty Sessions

Ilaria Castellani*

INRIA, Université Côte d’Azur, France

ilaria.castellani@inria.fr

Mariangiola Dezani-Ciancaglini

Dipartimento di Informatica, Università di Torino, Italy

dezani@di.unito.it

Paola Giannini†‡

DiSSTE, Università del Piemonte Orientale, Italy

paola.giannini@uniupo.it

Abstract. We propose an interpretation of multiparty sessions with asynchronous communica-

tion as Flow Event Structures. We introduce a new notion of asynchronous type for such sessions,

ensuring the expected properties for multiparty sessions, including progress. Our asynchronous

types, which reflect asynchrony more directly and more precisely than standard global types and

are more permissive, are themselves interpreted as Prime Event Structures. The main result is that

the Event Structure interpretation of a session is equivalent, when the session is typable, to the

Event Structure interpretation of its asynchronous type, namely their domains of configurations

are isomorphic.

Keywords: Communication-centric Systems, Communication-based Programming, Process Cal-

culi, Event Structures, Multiparty Session Types.

*This research has been supported by the ANR17-CE25-0014-01 CISC project.
†Address for correspondence: Computer Science Institute, DiSSTE, Pz. S. Eusebio 5 - 13100 Vercelli, Italy.
‡This original research has the financial support of the Università del Piemonte Orientale. This work was partially funded

by the MIUR project “T-LADIES” (PRIN 2020TL3X8X).

Received August 2023; accepted April 2024.

http://arxiv.org/abs/2102.00865v8

2 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

1. Introduction

Session types describe interactions among a number of participants, which proceed according to a

given protocol. They extend classical data types by specifying, in addition to the type of exchanged

data, also the interactive behaviour of participants, namely the sequence of their input/output actions

towards other participants. The aim of session types is to ensure safety properties for sessions, such

as the absence of communication errors (no type mismatch in exchanged data) and deadlock-freedom

(no standstill until every participant is terminated). Sometimes, a stronger property is targeted, called

progress (no participant waits forever).

Initially conceived for describing binary protocols in the π-calculus [1, 2], session types have been

later extended to multiparty protocols [3, 4] and embedded into a range of functional, concurrent,

and object-oriented programming languages [5]. While binary sessions can be described by a single

session type, multiparty sessions require two kinds of types: a global type that describes the whole

session protocol, and local types that describe the contributions of the individual participants to the

protocol. The key requirement in order to achieve the expected safety properties is that all local types

be obtained as projections from the same global type.

Communication in sessions is always directed from a given sender to a given receiver. It can be

synchronous or asynchronous. In the first case, sender and receiver need to synchronise in order to

exchange a message. In the second case, messages may be sent at any time, hence a sender is never

blocked. The sent messages are stored in a queue, where they may be fetched by the intended receiver.

Asynchronous communication is often favoured for multiparty sessions, since such sessions may be

used to model web services or distributed applications, where the participants are spread over different

sites.

Session types have been shown to bear a strong connection with models of concurrency such

as communicating automata [6], as well as with message-sequence charts [4], graphical choreogra-

phies [7, 8], and various brands of linear logics [9, 10, 11, 12, 13].

In a companion paper [14], we investigated the relationship between synchronous multiparty ses-

sions and Event Structures (ESs) [15], a well-known model of concurrency which is grounded on the

notions of causality and conflict between events. We considered a simple calculus, where sessions

are described as networks of sequential processes [16], equipped with standard global types [3]. We

proposed an interpretation of sessions as Flow Event Structures (FESs) [17, 18], as well as an interpre-

tation of global types as Prime Event Structures (PESs) [19, 20]. We showed that for typed sessions

these two interpretations yield isomorphic domains of configurations.

In the present paper, we undertake a similar endeavour in the asynchronous setting. This involves

devising a new notion of asynchronous type for asynchronous networks. We start by considering a

core session calculus as in the synchronous case, where processes are only able to exchange labels,

not values, hence local types coincide with processes. Moreover, networks are now endowed with a

queue and they act on this queue by performing outputs or inputs: an output stores a message in the

queue, while an input fetches a message from the queue. The present paper differs from [14] not only

for the operational semantics, but also for the typing rules and more essentially for the event structure

semantics of sessions and types.

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 3

To illustrate the difference between synchronous and asynchronous sessions and motivate the in-

troduction of new types for the latter, let us discuss a simple example. Consider the network:

N = p[[q!ℓ; q?ℓ′]] ‖ q[[p!ℓ′; p?ℓ]]

where each of the participants p and q wishes to first send a message to the other one and then receive

a message from the other one.

In a synchronous setting this network is stuck, because a network communication arises from the

synchronisation of an output with a matching input, and here the output q!ℓ of p cannot synchronise

with the input p?ℓ of q, since the latter is guarded by the output p!ℓ′. Similarly, the output p!ℓ′ of q

cannot synchronise with the input q?ℓ′ of p. Indeed, this network is not typable because any global

type for it should have one of the two forms:

G1 = p → q : ℓ; q → p : ℓ′ G2 = q → p : ℓ′; p → q : ℓ

However, neither of the Gi projects down to the correct processes for both p and q in N. For instance,

G1 projects to the correct process q!ℓ · q?ℓ′ for p, but its projection on q is p?ℓ · p!ℓ′, which is not the

correct process for q.

In an asynchronous setting, on the other hand, this network is run in parallel with a queue M,

which we indicate by N ‖ M, and it can always move for whatever choice of M. Indeed, the moves

of an asynchronous network are not complete communications but rather “communication halves”,

namely outputs or inputs. For instance, if the queue is empty, then N ‖ ∅ can move by first performing

the two outputs in any order, and then the two inputs in any order. If instead the queue contains a

message from p to q with label ℓ1, followed by a message from q to p with label ℓ2, which we indicate

by M = 〈p, ℓ1, q〉 · 〈q, ℓ2, p〉, then, assuming ℓ1 6= ℓ and ℓ2 6= ℓ′, the network will be stuck after

performing the two outputs. Indeed, the two inputs will not be able to occur, since the two messages

on top of the queue are not those expected by p and q. Hence we look for a notion of type that accepts

the network N ‖ ∅ but rejects the network N ‖ 〈p, ℓ1, q〉 · 〈q, ℓ2, p〉.
The idea for our new asynchronous types is quite simple: to split communications into outputs and

inputs, and to add a queue to the type, thus mimicking very closely the behaviour of asynchronous

networks. Hence, our asynchronous types have the form G ‖ M. Clearly, we must impose some well

formedness conditions on such types, taking into account also the content of the queue. Essentially,

this amounts to requiring that each input appearing in the type be justified by a preceding output in

the type or by a message in the queue, and vice versa, that each output in the type or message in the

queue be matched by a corresponding input in the type.

Having introduced this new notion of type, it becomes now possible to type the network N ‖ ∅
with the asynchronous type G ‖ ∅, where G = pq!ℓ; qp!ℓ′; pq?ℓ; qp?ℓ′, or with the other asynchronous

types obtained from it by swapping the outputs and/or the inputs. Instead, the network N ‖ 〈p, ℓ1, q〉 ·
〈q, ℓ2, p〉 will be rejected, because the asynchronous type G ‖ 〈p, ℓ1, q〉 · 〈q, ℓ2, p〉 is not well formed,

since its two inputs do not match the first two messages in the queue.

A different solution was proposed in [21] by means of an asynchronous subtyping relation on

local types which allows outputs to be brought forward. In our setting this boils down to a subtyping

relation on processes yielding both q!ℓ; q?ℓ′ ≤ q?ℓ′; q!ℓ and p!ℓ′; p?ℓ ≤ p?ℓ; p!ℓ′. With the help of this

subtyping, both G1 and G2 become types for the network N ‖ ∅ above. Unfortunately, however, this

subtyping turned out to be undecidable [22, 23].

4 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

To define our interpretations of asynchronous networks and types into FESs and PESs respectively,

we follow the same schema as for their synchronous counterparts in our previous work [14]. In

particular, the events of the ESs are defined syntactically and they record the “history” of the particular

communication occurrence they represent. More specifically, the events of the FES associated with a

network – which we call network events – record the local history of their communication. By contrast,

the events of the PES associated with an asynchronous type – which we call type events – record the

global history of their communication, namely the whole sequence of past communications that caused

it, which is extracted from the computation trace using a permutation equivalence. However, while

in [14] an event represented a communication between two participants, here it represents an output or

an input pertaining to a single participant. Hence, some care must be taken in defining the flow relation

between network events1, and in particular the “cross-flow” between an output event and the matching

input event, since input events may also be justified by a message in the queue. For type events,

queues appear inside events and affect the permutation equivalence. Therefore, our ES semantics for

the asynchronous setting is far from being a trivial adaptation of that given in [14] for the synchronous

setting.

To sum up, the contribution of this paper is twofold:

1) We propose an original syntax for asynchronous types, which, in our view, models asyn-

chronous communication in a more natural and precise way than existing approaches. Our type system

is more permissive than the standard one [4] – in particular, it allows outputs to take precedence over

inputs as in [21], a characteristics of asynchronous communication – but it remains decidable. We

show that our asynchronous types ensure classical safety properties as well as progress.

2) We present an Event Structure semantics for asynchronous networks and asynchronous types.

Networks are interpreted as FESs and asynchronous types are interpreted as PESs. Our main result

here is an isomorphism between the configuration domains of the FES of a typed network and the PES

of its asynchronous type.

The paper is organised as follows. Section 2 introduces our calculus for asynchronous multiparty

sessions. Section 3 introduces asynchronous types and the associated type system, establishing its

main properties. Section 4 recaps some necessary background on Event Structures. In Section 5 we

recall our interpretation of processes as PESs, taken from our companion paper [14]. In Section 6 we

present our interpretation of asynchronous networks as FESs. In Section 7 we define our interpretation

of asynchronous types as PESs. Finally, in Section 8 we prove the equivalence between the FES

semantics of a network and the PES semantics of its asynchronous type. We conclude with a discussion

on related work and future research directions in Section 9. All results are given with full proofs.

When not appearing in the main text, the proofs may be found in the Appendix, which contains also

the glossary of symbols.

2. A core calculus for multiparty sessions

We now formally introduce our calculus, where asynchronous multiparty sessions are represented as

networks of sequential processes with queues.

1In FESs, the flow relation represents a direct causality between events.

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 5

We assume the following base sets: participants, ranged over by p, q, r and forming the set Part, and

labels, ranged over by ℓ, ℓ′, . . . and forming the set Lab.

Let π ∈ {p!ℓ, p?ℓ | p ∈ Part, ℓ ∈ Lab} denote an atomic action. The action p!ℓ represents an

output of label ℓ to participant p, while the action p?ℓ represents an input of label ℓ from participant p.

Definition 2.1. (Processes)

Processes are defined by:

P ::=coind
⊕

i∈I p!ℓi;Pi | Σi∈Ip?ℓi;Pi | 0

where I is non-empty and ℓh 6= ℓk for all h, k ∈ I , h 6= k, i.e. labels in choices are all different.

The symbol ::=coind, in the definition above and in later definitions, indicates that the productions

should be interpreted coinductively. Namely, they define possibly infinite processes. However, we

assume such processes to be regular, that is, with finitely many distinct subprocesses. In this way,

we only obtain processes which are solutions of finite sets of equations, see [24]. So, when writing

processes, we shall use (mutually) recursive equations.

In the following, trailing 0’s will be omitted. Processes of the shape
⊕

i∈I p!ℓi;Pi and Σi∈Ip?ℓi;Pi

are called output and input processes, respectively. We will write p!ℓ;P or p?ℓ;P for choices with

just one branch, and use the infix notation ⊕ and + in the examples.

Processes can be seen as trees where internal nodes are decorated by p! or p?, leaves by 0, and

edges by labels ℓ.

In a full-fledged calculus, labels would carry values, namely they would be of the form ℓ(v). For

simplicity, we consider only simple labels ℓ here. This will allow us to project global types directly to

processes, without having to explicitly introduce local types, see Section 3.

In our calculus, asynchronous communication is modelled in the usual way, by storing sent mes-

sages in a queue. We define messages to be triples 〈p, ℓ, q〉, where p is the sender and q is the receiver,

and message queues (or simply queues) to be possibly empty sequences of messages:

M ::= ∅ | 〈p, ℓ, q〉 ·M

The order of messages in the queue is the order in which they will be read. Since the only reading

order that matters is that between messages with the same sender and the same receiver, we consider

message queues modulo the structural equivalence given by:

M· 〈p, ℓ, q〉 · 〈r, ℓ′, s〉 ·M′ ≡ M · 〈r, ℓ′, s〉 · 〈p, ℓ, q〉 ·M′ if p 6= r or q 6= s

Note in particular that 〈p, ℓ, q〉 · 〈q, ℓ′, p〉 ≡ 〈q, ℓ′, p〉 · 〈p, ℓ, q〉. These two equivalent queues represent

a situation in which both participants p and q have sent a label to the other one, and neither of them

has read the label sent by the other one. Since the two sends occur in parallel, the order of the

corresponding messages in the queue should be irrelevant. This point will be further illustrated by

Examples 2.4 and 2.5.

In the following we will always consider queues modulo structural equivalence.

Networks are comprised of located processes of the form p[[P]] composed in parallel, each with a

different participant p, and by a message queue.

6 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

Definition 2.2. (Networks)

Networks are defined by:

N ‖ M

where N = p1[[P1]] ‖ · · · ‖ pn[[Pn]] with ph 6= pk for any h 6= k, and M is a message queue.

We assume the standard laws for parallel composition, stating that ‖ is associative, commutative,

and has neutral element p[[0]] for any fresh p. These laws, together with the structural equivalence on

queues, give rise to the structural congruence on networks, also denoted by the symbol ≡.

If P 6= 0 we write p[[P]] ∈ N as short for N ≡ p[[P]] ‖ N′ for some N′. This abbreviation is

justified by the associativity and commutativity of parallel composition.

p[[
⊕

i∈I q!ℓi;Pi]] ‖ N ‖ M
pq!ℓk−−−→ p[[Pk]] ‖ N ‖ M · 〈p, ℓk, q〉 where k ∈ I [SEND]

q[[Σj∈Jp?ℓj ;Qj]] ‖ N ‖ 〈p, ℓk, q〉 ·M
pq?ℓk−−−→ q[[Qk]] ‖ N ‖ M where k ∈ J [RCV]

Figure 1. LTS for networks.

To define the operational semantics of networks, we use an LTS whose transitions are decorated

by outputs or inputs. We define the set of input/output communications (communications for short),

ranged over by β, β′, to be {pq!ℓ, pq?ℓ | p, q ∈ Part, ℓ ∈ Lab}, where pq!ℓ represents the send of

a label ℓ from participant p to participant q, and pq?ℓ the read by participant q of the label ℓ sent by

participant p. To memorise this notation, it is helpful to view pq as the channel from p to q and the

exclamation/question mark as the mode (write/read) in which the channel is used. The LTS semantics

of networks, defined modulo ≡, is specified by the two Rules [SEND] and [RCV] given in Figure 1.

Rule [SEND] allows a participant p with an internal choice (a sender) to send to a participant q one of

its possible labels ℓk by adding it to the queue. Symmetrically, Rule [RCV] allows a participant q with

an external choice (a receiver) to read the first label ℓk sent to it by participant p, provided this label is

among the ℓj’s specified in the choice. Using structural equivalence, the first message from p to q, if

any, can always be moved to the top of the queue.

A key role will be played by (possibly empty) sequences of communications, defined as traces.

Definition 2.3. (Traces)

(Finite) traces are defined by:

τ ::= ǫ | β · τ
We use |τ| to denote the length of the trace τ .

When τ = β1 · . . . · βn (n ≥ 1) we write N ‖ M
τ
−→ N′ ‖ M′ as short for

N ‖ M
β1
−→ N1 ‖ M1 · · ·

βn

−→ Nn ‖ Mn = N′ ‖ M′

Let us now consider the semantics of the network N ‖ ∅ discussed in the introduction.

Example 2.4. Let N = p[[q!ℓ; q?ℓ′]] ‖ q[[p!ℓ′; p?ℓ]]. Then N ‖ ∅ can move by first performing the

two sends, in any order, and then the two reads, in any order. A possible execution of N ‖ ∅, where

the use of ≡ on the queue is explicitly shown, is:

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 7

N ‖ ∅
pq!ℓ
−−→ p[[q?ℓ′]] ‖ q[[p!ℓ′; p?ℓ]] ‖ 〈p, ℓ, q〉

qp!ℓ′
−−−→ p[[q?ℓ′]] ‖ q[[p?ℓ]] ‖ 〈p, ℓ, q〉 · 〈q, ℓ′, p〉

≡ p[[q?ℓ′]] ‖ q[[p?ℓ]] ‖ 〈q, ℓ′, p〉 · 〈p, ℓ, q〉

qp?ℓ′
−−−→ p[[0]] ‖ q[[p?ℓ]] ‖ 〈p, ℓ, q〉
pq?ℓ
−−→ p[[0]] ‖ q[[0]] ‖ ∅

The following example illustrates a simple case in which both participants need to do outputs

before inputs.

Example 2.5. Alice and Bob play heads and tails as follows: they each write their prediction on a

piece of paper and then they exchange their papers. If the predictions are the same they start again,

otherwise they flip the coin and the winner is the one whose prediction was correct. The initial inter-

action in this scenario may be represented by the network p[[P]] ‖ q[[Q]] ‖ ∅ where p, q incarnate

Alice and Bob, h, t stand for head and tail, and P,Q are defined as follows:

P = q!h; (q?h;P + q?t)⊕ q!t; (q?h + q?t;P)

Q = p!h; (p?h;Q + p?t)⊕ p!t; (p?h + p?t;Q)

We now introduce the notion of player, which will be extensively used in the rest of the paper. The

player of a communication β is the participant who is active in β.

Definition 2.6. (Players of communications and traces)

We denote by play(β) the set of players of communication β defined by

play(pq!ℓ) = {p} play(pq?ℓ) = {q}

The function play is extended to traces in the obvious way:

play(ǫ) = ∅ play(β · τ) = play(β) ∪ play(τ)

Notice that the notion of player is characteristic of asynchronous communications, where only one of

the involved participants is active, namely the sender for an output communication and the receiver

for an input communication. Instead, in synchronous communications both participants (also called

roles in the literature) are active.

3. Asynchronous types

In this section we introduce our new types for asynchronous communication. The underlying idea is

quite simple: to split the communication constructor of standard global types into an output constructor

and an input constructor. This will allow us to type networks in which all participants make all their

outputs before their inputs, like the networks of Examples 2.4 and 2.5, whose asynchronous types will

be presented in Example 3.9.

8 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

Definition 3.1. (Global and asynchronous types)

1. Global types are defined by:

G ::=coind ⊞i∈Ipq!ℓi;Gi | pq?ℓ;G | End

where I is non-empty and p 6= q and ℓh 6= ℓk for all h, k ∈ I , h 6= k.

2. Asynchronous types are pairs made of a global type and a queue, written G ‖ M.

As for processes, ::=coind indicates that global types are coinductively defined regular terms. The

global type ⊞i∈Ipq!ℓi;Gi specifies that p sends a label ℓk with k ∈ I to q and then the interaction

described by the global type Gk takes place. Dually, the global type pq?ℓ;G specifies that q receives

label ℓ from p and then the interaction described by the global type G takes place. We will omit trailing

End’s.

Global types can be naturally seen as trees where internal nodes are decorated by pq! or pq?, leaves

by End, and edges by labels ℓ. The sequences of decorations of nodes and edges on the path from the

root to an edge of the tree are traces, in the sense of Definition 2.3. We denote by Tr+(G) the set of

such traces in the tree of G. By definition, Tr+(End) = ∅ and each trace in Tr+(G) is non-empty.

In Definition 2.6 we introduced the notion of player for communications and traces. It is useful to

extend this notion to global types, by defining the set of players of a global type G, play(G), to be the

union of the sets of players of all its traces, namely

play(G) =
⋃

τ∈Tr+(G) play(τ)

The regularity assumption ensures that the set of players of a global type is finite.

Asynchronous types will be used to type networks, see Figure 4. A standard guarantee they should

ensure is that each participant whose behaviour is not terminated can do some action. Moreover, since

communications are split into outputs and inputs in global types, we must make sure that each input

is balanced by an output in the type or by a message in the queue, and vice versa. These requirements

will be formulated as well-formedness conditions on asynchronous types.

The remainder of this section is divided in two subsections: the first focusses on well-formedness

of asynchronous types, and the second presents the type system and shows that it enjoys the properties

of subject reduction and session fidelity and that moreover it ensures progress.

3.1. Well-formed asynchronous types

We start by defining the projection of global types onto participants (Figure 2). We proceed by defin-

ing the boundedness predicate for global types (Definition 3.3) and the balancing predicate for asyn-

chronous types (Figure 3).

As mentioned earlier, the projection of global types on participants yields processes. Its coin-

ductive definition is given in Figure 2, where we use −→π to denote any sequence, possibly empty, of

input/output actions separated by “;”. We write |I| for the cardinality of I .

The projection of a global type on a participant which is not a player of the type is the inactive

process 0. In particular, the projection of End is 0 on all participants.

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 9

G↾ r = 0 if r 6∈ play(G)

(⊞i∈Ipq!ℓi;Gi)↾ r =







⊕

i∈I q!ℓi;Gi ↾p if r = p,

G1 ↾q if r = q and I = {1}
−→π;Σi∈Ip?ℓi;Pi if r = q and |I| > 1 and Gi ↾q = −→π; p?ℓi;Pi,

G1 ↾ r if r 6∈ {p, q} and r ∈ play(G1)

and Gi ↾ r = G1 ↾ r for all i ∈ I

(pq?ℓ;G)↾ r =

{

p?ℓ;G↾ r if r = q

G↾ r if r 6= q and r ∈ play(G)

Figure 2. Projection of global types onto participants.

The projection of an output choice type on the sender yields an output process sending one of its

labels to the receiver and then acting according to the projection of the corresponding branch.

The projection of an output choice type on the receiver q has two clauses: one for the case where the

choice has a single branch, and one for the case where the choice has more than one branch. In the first

case, the projection is simply the projection of the continuation of the single branch on q. In the second

case, the projection is defined if the projection of the continuation of each branch on q starts with the

same sequence of actions −→π , followed by an input of the label sent by p on that branch and then by

a possibly different process in each branch. In fact, participant q must receive the label chosen by

participant p before behaving differently in different branches. The projection on q is then the initial

sequence of actions −→π followed by an external choice on the different sent labels. The sequence −→π is

allowed to contain another input of a (possibly equal) label from p, for example:

(pq!ℓ1; pq!ℓ; pq?ℓ; pq?ℓ1; pq?ℓ⊞ pq!ℓ2; pq!ℓ
′; pq?ℓ; pq?ℓ2; pq?ℓ

′)↾q =

p?ℓ; (p?ℓ1; p?ℓ+ p?ℓ2; p?ℓ
′)

In Example 3.12 we will show why we need to distinguish these two cases.

The projection of an output choice type on the other participants is defined only if it produces the

same process for all branches of the choice.

The projection of an input type on the receiver is an input action followed by the projection of the

rest of the type. For the other participants, the projection is simply the projection of the rest of the

type.

Note that our projection adopts the strict requirement of [3] for participants not involved in a

choice, namely it requires their behaviours to be the same in all branches of a choice. A more per-

missive projection (in line with [25]) for the same global types is given in [26]. Our choice here is

motivated by simplicity, in order to focus on the event structure semantics.

To guarantee the property of progress, our types for networks must ensure that each network player

occurs in every computation, whether finite or infinite. To this end, each type player should occur in

every path of the tree of the type. Now, projectability already ensures that each player of a choice

type occurs in all its branches. This implies that if one branch of the choice gives rise to an infinite

path, either the player occurs at some finite depth in this path, or this path crosses infinitely many

10 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

branching points in which the player occurs in all branches. In the latter case, since the depth of the

player increases when crossing each branching point, there is no bound on the depth of the player over

all paths of the type. Hence, to ensure that all type players occur in all paths, it is enough to require

the existence of such bounds. This motivates the following definitions of depth and boundedness.

We first define the depth of a participant p in a global type G, depth(G, p), which uses the length

function | | of Definition 2.3 as well as the functions play(β) and play(τ) of Definition 2.6 and the

function play(G) defined earlier in this section. Intuitively, depth(G, p) is the limit, computed over all

paths of the tree of G, of the depth of the first occurrence of the player p in the path.

Definition 3.2. (Depth)

Let the two functions depth(τ, p) and depth(G, p) be defined by:

depth(τ, p) =

{

n if τ = τ1 ·β · τ2 and |τ1| = n− 1 and p /∈ play(τ1) and p ∈ play(β)

0 otherwise

depth(G, p) = sup{depth(τ, p) | τ ∈ Tr+(G)}

Definition 3.3. (Boundedness)

We say that a global type G is bounded if depth(G′, p) is finite for all subtrees G′ of G and for all

players p.

To show that G is bounded it is enough to check depth(G′, p) for all subtrees G′ of G and p ∈
play(G′), since for any other p we have depth(G′, p) = 0.

Note that the depth of a participant which is a player of G does not necessarily decrease in the

subtrees of G. As a matter of fact, this depth can be finite in G but infinite in one of its subtrees, as

shown by the following example.

Example 3.4. Consider G = rq!ℓ; rq?ℓ;G′ where

G′ = pq!ℓ1; pq?ℓ1; pr!ℓ3; pr?ℓ3 ⊞ pq!ℓ2; pq?ℓ2;G
′

Then we have:

depth(G, r) = 1 depth(G, p) = 3 depth(G, q) = 2
whereas

depth(G′, r) = ∞ depth(G′, p) = 1 depth(G′, q) = 2

since pq!ℓ2 · pq?ℓ2 · · · pq!ℓ2 · pq?ℓ2
︸ ︷︷ ︸

n

·pq!ℓ1 · pq?ℓ1 · pr!ℓ3 · pr?ℓ3 ∈ Tr+(G′) for all n ≥ 0 and

sup{4 + 2n | n ≥ 0} = ∞.

However, the finite depth of a participant which is a player of G but not the player of its root

communication decreases in the immediate subtrees of G, as stated in the following lemma.

Lemma 3.5. 1. If G = ⊞i∈Ipq!ℓi;Gi and r ∈ play(G) and r 6= p, then depth(G, r) > depth(Gi, r)
for all i ∈ I .

2. If G = pq?ℓ;G′ and r ∈ play(G) and r 6= q, then depth(G, r) > depth(G′, r).

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 11

The definition of projection given in Figure 2 is sound for bounded global types.

Lemma 3.6. If G is bounded, then G↾ r is a partial function for all r.

⊢b Gi ‖ M · 〈p, ℓi, q〉 for all i ∈ I if ⊞i∈Ipq!ℓi;Gi is cyclic then M = ∅

⊢b ⊞i∈Ipq!ℓi;Gi ‖ M

=== [OUT]

⊢b G ‖ M

⊢b pq?ℓ;G ‖ 〈p, ℓ, q〉 ·M

======================== [IN] ⊢b End ‖ ∅ [End]

Figure 3. Balancing predicate.

To ensure the correspondence between outputs and inputs, in Figure 3 we define the balancing

predicate ⊢b on asynchronous types, and we say that G ‖ M is balanced if ⊢b G ‖ M. The intuition is

that every initial input should come with a corresponding message in the queue (Rule [IN]), ensuring

that the input can take place. Then, each message in the queue can be exchanged for a corresponding

output that will prefix the type (Rule [OUT]): this output will then precede the previously inserted

input and thus ensure again that the input can take place. In short, balancing holds if the messages in

the queue and the outputs in the global type are matched by inputs in the global type and vice versa.

We say that a global type is cyclic if its tree contains itself as proper subtree. So the condition “if the

global type is cyclic then the queue is empty” in Rule [OUT] ensures that there is no message left in the

queue at the beginning of a new cycle, namely that all messages put in the queue by cyclic global types

have matching inputs in the same cycle. For instance we can apply Rule [OUT] to the asynchronous

type G′ ‖ ∅ of Example 3.7(3), but not to the asynchronous type G ‖ 〈p, ℓ, q〉 of Example 3.7(2).

Similarly, in Example 3.7(4), Rule [OUT] can be used for G2 ‖ ∅ but not for G2 ‖ 〈p, ℓ, q〉.

The double line indicates that the rules are interpreted coinductively [27] (Chapter 21). The con-

dition in Rule [OUT] guarantees that we get only regular proof derivations, therefore the judgement

⊢b G ‖ ∅ is decidable. If we derive ⊢b G ‖ ∅ we can ensure that in G ‖ ∅ all outputs are matched by

corresponding inputs and vice versa, see the Progress Theorem (Theorem 3.20). The progress property

holds also for standard global types [28, 29].

The next example illustrates the use of the balancing predicate on several asynchronous types.

Example 3.7. 1. The asynchronous type qp?ℓ; pq!ℓ′; pq?ℓ′ ‖ 〈q, ℓ, p〉 is balanced, as shown by the

following derivation:

⊢b End ‖ ∅

⊢b pq?ℓ′ ‖ 〈p, ℓ′, q〉

⊢b pq!ℓ′; pq?ℓ′ ‖ ∅

⊢b qp?ℓ; pq!ℓ′; pq?ℓ′ ‖ 〈q, ℓ, p〉

12 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

2. Let G = pq!ℓ; pq!ℓ; pq?ℓ;G. Then G ‖ ∅ is not balanced. Indeed, we cannot complete the proof

tree for ⊢b G ‖ ∅ because, since G is cyclic, we cannot apply Rule [OUT] to infer the premise

⊢b G ‖ 〈p, ℓ, q〉 in the following deduction:

⊢b G ‖ 〈p, ℓ, q〉

⊢b pq?ℓ;G ‖ 〈p, ℓ, q〉 · 〈p, ℓ, q〉

⊢b pq!ℓ; pq?ℓ;G ‖ 〈p, ℓ, q〉

⊢b G ‖ ∅

3. Let G′ = (pq!ℓ1; pq?ℓ1;G
′ ⊞ pq!ℓ2; pq?ℓ2). Then G′ ‖ ∅ is balanced, as we can see from the

infinite (but regular) proof tree that follows:
...

⊢b G′ ‖ ∅

⊢b pq?ℓ1;G
′ ‖ 〈p, ℓ1, q〉

⊢b End ‖ ∅

⊢b pq?ℓ2 ‖ 〈p, ℓ2, q〉

⊢b G′ ‖ ∅

4. Let G1 = pq!ℓ; pq!ℓ; pq?ℓ;G2 and G2 = pr!ℓ; pr?ℓ;G2. Then G1 ‖ ∅ is not balanced. Indeed,

we cannot complete the proof tree for ⊢b G1 ‖ ∅, since G2 is cyclic, so we cannot apply Rule

[OUT] to infer the premise ⊢b G2 ‖ 〈p, ℓ, q〉 in the following deduction:

⊢b G2 ‖ 〈p, ℓ, q〉

⊢b pq?ℓ;G2 ‖ 〈p, ℓ, q〉 · 〈p, ℓ, q〉

⊢b pq!ℓ; pq?ℓ;G2 ‖ 〈p, ℓ, q〉

⊢b G1 ‖ 〈p, ℓ, q〉

Instead, G2 ‖ ∅ is balanced:
...

⊢b G2 ‖ ∅

⊢b pr?ℓ;G2 ‖ 〈p, ℓ, r〉

⊢b G2 ‖ ∅

It is interesting to notice that balancing of asynchronous types does not imply projectability of their

global types. For example, the type G ‖ ∅ where

G = pq!ℓ1; pq?ℓ1; rq!ℓ1; rq?ℓ1 ⊞ pq!ℓ2; pq?ℓ2; rq!ℓ2; rq?ℓ2

is balanced, but G is not projectable on participant r for any of the projection definitions in the litera-

ture. Notably, type G prescribes that r should behave differently according to the message exchanged

between p and q, an unreasonable requirement.

Projectability, boundedness and balancing are the three properties that single out the asynchronous

types we want to use in our type system.

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 13

Definition 3.8. (Well-formed asynchronous types)

We say that the asynchronous type G ‖ M is well formed if it is balanced, G ↾ p is defined for all p

and G is bounded.

Clearly, it is sufficient to check that G↾p is defined for all p ∈ play(G), since G↾p = 0 otherwise.

3.2. Type system

In this subsection we present our type system. For establishing its expected properties, we then intro-

duce an LTS for asynchronous types (Figure 5) and show that well-formedness of asynchronous types

is preserved by transitions (Lemma 3.15).

Pi ≤ Qi for all i ∈ I

⊕

i∈Ip!ℓi;Pi ≤
⊕

i∈I p!ℓi;Qi

============================[≤-OUT]
Pi ≤ Qi for all i ∈ I

Σi∈I∪Jp?ℓi;Pi ≤Σi∈Ip?ℓi;Qi

==============================[≤-IN]

0 ≤ 0 [≤ -0]

Pi ≤ G↾pi for all i ∈ I play(G) ⊆ {pi | i ∈ I}

⊢Πi∈Ipi[[Pi]] ‖ M : G ‖ M
[NET]

Figure 4. Preorder on processes and network typing rule.

The typing rules are given in Figure 4. In the unique typing rule for networks, Rule [NET], we assume

the asynchronous type to be well formed.

We first define a preorder on processes, P ≤ Q, meaning that process P can be used where we

expect process Q. More precisely, P ≤ Q if either P is equal to Q, or we are in one of two situations:

either both P and Q are output processes, sending the same labels to the same participant, and after the

send P continues with a process that can be used when we expect the corresponding one in Q; or they

are both input processes receiving labels from the same participant, and P may receive more labels

than Q (and thus have more behaviours) but whenever it receives the same label as Q it continues

with a process that can be used when we expect the corresponding one in Q. The rules are interpreted

coinductively, since the processes may be infinite. However, derivability is decidable, since processes

have finitely many distinct subprocesses.

Clearly, our preorder on processes plays the same role as the subtyping relation on local types

in other works. In the original standard subtyping of [30] a better type has more outputs and less

inputs, while in the subtyping of [31] a better type has less outputs and more inputs. The subtyping

of [30] allows channel substitution, while the subtyping of [31] allows process substitution, as ob-

served in [32]. This justifies our structural preorder on processes, which is akin to a restriction of

the subtyping of [31]. The advantage of this restriction is a strong version of Session Fidelity, see

Theorem 3.19. On the other hand, as shown in [33], such a restriction does not change the class of

networks that can be typed by standard global types (but may change the types assigned to them). The

proof in [33] easily adapts to our asynchronous types.

14 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

A network N ‖ M is typed by the asynchronous type G ‖ M if for every participant p such

that p[[P]] ∈ N the process P behaves as specified by the projection of G on p. In Rule [NET], the

condition play(G) ⊆ {pi | i ∈ I} ensures that all players of G appear in the network. Moreover

it permits additional participants that do not appear in G, allowing the typing of sessions containing

p[[0]] for a fresh p – a property required to guarantee invariance of types under structural congruence

of networks.

Example 3.9. The network of Example 2.4 can be typed by G ‖ ∅ for four possible choices of G:

pq!ℓ; qp!ℓ′; pq?ℓ; qp?ℓ′ pq!ℓ; qp!ℓ′; qp?ℓ′; pq?ℓ

qp!ℓ′; pq!ℓ; pq?ℓ; qp?ℓ′ qp!ℓ′; pq!ℓ; qp?ℓ′; pq?ℓ

since each participant only needs to do the output before the input. Notice that this network cannot be

typed with the standard global types of [4].

The network of Example 2.5 can be typed by G ‖ ∅ where

G = pq!h; (qp!h; pq?h; qp?h;G ⊞ qp!t; pq?h; qp?t)⊞

pq!t; (qp!h; pq?t; qp?h⊞ qp!t; pq?t; qp?t;G) ‖ ∅

Again, this network cannot be typed with the standard global types of [4]. On the other hand, both

these networks can be typed by adding the semantic subtyping as defined in [21] to the type system

with the standard global types. However, the resulting system is less precise than ours, although it can

type more networks. As an example, consider the standard global type

G′ = p → q : h; (q → p : h;G′ ⊞ q → p : t)⊞ p → q : t; (q → p : h⊞ q → p : t;G′)

and its projections G′ ↾p = P ′ and G′ ↾q = Q′ defined by

P ′ = q!h; (q?h;P ′ + q?t)⊕ q!t; (q?h+ q?t;P ′)

Q′ = p?h; (p!h;Q′ ⊕ p!t) + p?t; (p!h⊕ p!t;Q′)

Then G′ is a type for the network p[[P]] ‖ q[[Q]] ‖ ∅ of Example 2.5, since Q can be obtained from Q′

using asynchronous subtyping, by anticipating the outputs towards p. Clearly, the global type G′ also

types the network p[[P ′]] ‖ q[[Q′]] ‖ ∅. However, this network does not follow the rules of the game

given in Example 2.5.

Figure 5 gives the LTS for asynchronous types. It shows that a communication can be performed

also under a choice or an input guard, provided it is independent from it. Actually, we are interested

only in the transitions of balanced asynchronous types, see Figure 3. This justifies the shape of the

message queues in Rules [ICOMM-OUT] and [ICOMM-IN]. The conditions p 6∈ play(β) and q 6∈
play(β) in these rules ensure that β does not depend on the enclosing communications.

We say that G ‖ M
β
−→ G′ ‖ M′ is a top transition if it is derived using either Rule [EXT-OUT] or

Rule [EXT-IN]. Top transitions preserve well-formedness of asynchronous types:

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 15

⊞i∈Ipq!ℓi;Gi ‖ M
pq!ℓk−−−→ Gk ‖ M · 〈p, ℓk, q〉 where k ∈ I [EXT-OUT]

pq?ℓ;G ‖ 〈p, ℓ, q〉 ·M
pq?ℓ
−−→ G ‖ M [EXT-IN]

Gi ‖ M · 〈p, ℓi, q〉
β
−→ G′

i ‖ M′ · 〈p, ℓi, q〉 for all i ∈ I p 6∈ play(β)
[ICOMM-OUT]

⊞i∈Ipq!ℓi;Gi ‖ M
β
−→ ⊞i∈Ipq!ℓi;G

′
i ‖ M′

G ‖ M
β
−→ G′ ‖ M′ q 6∈ play(β)

[ICOMM-IN]

pq?ℓ;G ‖ 〈p, ℓ, q〉 ·M
β
−→ pq?ℓ;G′ ‖ 〈p, ℓ, q〉 ·M′

Figure 5. LTS for asynchronous types.

Lemma 3.10. If G ‖ M
β
−→ G′ ‖ M′ is a top transition and G ‖ M is well formed, then G′ ‖ M′ is

well formed too.

The following lemma detects the immediate transitions of an asynchronous type from the projec-

tions of its global type.

Lemma 3.11. Let G ‖ M be well formed.

1. If G↾p =
⊕

i∈I q!ℓi;Pi, then G ‖ M
pq!ℓi
−−−→ Gi ‖ M · 〈p, ℓi, q〉 and Gi ↾p = Pi for all i ∈ I .

2. If G ↾ q = Σi∈Ip?ℓi;Pi and M ≡ 〈p, ℓ, q〉 · M′ for some ℓ, then I = {k} and ℓ = ℓk and

G ‖ M
pq?ℓk−−−→ G′ ‖ M′ and G′ ↾q = Pk.

The next lemma shows how to retrieve the projections of a global type from the immediate tran-

sitions of the asynchronous type obtained by combining the global type with a compliant queue. It

also shows that transitions of asynchronous types preserve projectability of their global types. For this

purpose, one needs the two clauses in the projection of an output choice on the receiver, see Figure 2,

as illustrated by the following example.

Example 3.12. Let G = pq!ℓ; pq?ℓ;G′, where G′ = qr!ℓ1; qr?ℓ1; pq?ℓ⊞ qr!ℓ2; qr?ℓ2; pq?ℓ. The

asynchronous type G ‖ 〈p, ℓ, q〉 is well formed. Assume we modify the definition of projection of an

output choice on the receiver by removing its first clause and the restriction of the second to |I| > 1.

Then G ↾ q is defined since (pq?ℓ;G′) ↾ q = p?ℓ; (r!ℓ1; p?ℓ ⊕ r!ℓ2; p?ℓ) has the required shape.

Applying Rule [ICOMM-OUT] we get G ‖ 〈p, ℓ, q〉
pq?ℓ
−−→ pq!ℓ;G′ ‖ ∅. The projection (pq!ℓ;G′) ↾ q

would not be defined since G′ ↾q = r!ℓ1; p?ℓ ⊕ r!ℓ2; p?ℓ does not have the required shape.

Lemma 3.13. Let G ‖ M be well formed.

1. If G ‖ M
pq!ℓ
−−→ G′ ‖ M′, then M′ ≡ M · 〈p, ℓ, q〉 and G ↾ p =

⊕

i∈I q!ℓi;Pi and ℓ = ℓk and

G′ ↾p = Pk for some k ∈ I and G↾ r ≤ G′ ↾ r for all r 6= p.

2. If G ‖ M
pq?ℓ
−−→ G′ ‖ M′, then M ≡ 〈p, ℓ, q〉 ·M′ and G ↾q = pq?ℓ;G′ ↾q and G ↾ r ≤ G′ ↾ r

for all r 6= q.

16 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

The LTS also preserves balancing of asynchronous types.

Lemma 3.14. If ⊢b G ‖ M and G ‖ M
β
−→ G′ ‖ M′, then ⊢b G′ ‖ M′.

We are now able to show that transitions preserve well-formedness of asynchronous types.

Lemma 3.15. If G ‖ M is a well formed asynchronous type and G ‖ M
β
−→ G′ ‖ M′, then G′ ‖ M′

is a well formed asynchronous type too.

Proof: Let β = pq!ℓ. By Lemma 3.13(1) we have that G′ ↾ r is defined for all r ∈ play(G). Similarly
for β = pq?ℓ, using Lemma 3.13(2). The proof that depth(G′′, r) is finite for all r and G′′ subtree of
G′ is easy by induction on the transition rules of Figure 5.
Finally, from Lemma 3.14 we have that G′ ‖ M′ is balanced.

By virtue of this lemma, we will henceforth only consider well-formed asynchronous types.

We end this section with the expected results of Subject Reduction, Session Fidelity [3, 4] and

Progress [28, 29], which rely as usual on Inversion and Canonical Form lemmas.

Lemma 3.16. (Inversion)

If ⊢ N ‖ M : G ‖ M, then P ≤ G↾p for all p[[P]] ∈ N.

Lemma 3.17. (Canonical Form)

If ⊢ N ‖ M : G ‖ M and p ∈ play(G), then p[[P]] ∈ N and P ≤ G↾p .

Theorem 3.18. (Subject Reduction)

If ⊢ N ‖ M : G ‖ M and N ‖ M
β
−→ N′ ‖ M′, then G ‖ M

β
−→ G′ ‖ M′ and ⊢ N′ ‖ M′ : G′ ‖ M′.

Proof: Let β = pq!ℓ. By Rule [SEND] of Figure 1, p[[
⊕

i∈I q!ℓi;Pi]] ∈ N and p[[Pk]] ∈ N′ and

M′ = M · 〈p, ℓk, q〉 and ℓ = ℓk for some k ∈ I . Moreover r[[R]] ∈ N iff r[[R]] ∈ N′ for all r 6= p.

From Lemma 3.16 we get

1.
⊕

i∈I q!ℓi;Pi ≤ G ↾ p , which implies G ↾ p =
⊕

i∈I q!ℓi;P
′
i with Pi ≤ P ′

i for all i ∈ I from

Rule [≤ -OUT] of Figure 4 , and

2. R ≤ G↾ r for all r 6= p such that r[[R]] ∈ N.

By Lemma 3.11(1) G ‖ M
pqℓk−−−→ Gk ‖ M · 〈p, ℓk, q〉 and Gk ↾ p = P ′

k, which implies Pk ≤ Gk ↾p .

By Lemma 3.13(1) G ↾ r ≤ Gk ↾ r for all r 6= p. By transitivity of ≤ we have R ≤ Gk ↾ r for all r 6= p.

We can then choose G′ = Gk.

Let β = pq?ℓ. By Rule [RCV] of Figure 1, q[[Σj∈Jp?ℓj;Qj]] ∈ N and q[[Qk]] ∈ N′ and M =
〈p, ℓk, q〉 · M

′ and ℓ = ℓk for some k ∈ J . Moreover r[[R]] ∈ N iff r[[R]] ∈ N′ for all r 6= q. From

Lemma 3.16 we get

1. Σj∈Jp?ℓj ;Qj ≤ G ↾ q , which implies G ↾ q = Σj∈Ip?ℓj;Q
′
j with I ⊆ J and Qi ≤ Q′

i for all

i ∈ I from Rule [≤ -IN] of Figure 4, and

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 17

2. R ≤ G↾ r for all r 6= q such that r[[R]] ∈ N.

By Lemma 3.11(2), since M = 〈p, ℓk, q〉 · M
′, we get G ‖ M

pq?ℓk−−−→ Gk ‖ M′ and I = {k} and

Gk ↾ q = Q′
k, which implies Qk ≤ Gk ↾ p . By Lemma 3.13(2) G ↾ r ≤ Gk ↾ r for all r 6= q. By

transitivity of ≤ we have R ≤ Gk ↾ r for all r 6= q. We can then choose G′ = Gk.

Theorem 3.19. (Session Fidelity)

If ⊢ N ‖ M : G ‖ M and G ‖ M
β
−→ G′ ‖ M′, then

N ‖ M
β
−→ N′ ‖ M′ and ⊢ N′ ‖ M′ : G′ ‖ M′

Proof: Let β = pq!ℓ. By Lemma 3.13(1) M′ ≡ M · 〈p, ℓ, q〉, G ↾ p =
⊕

i∈I p!ℓi;Pi, ℓ = ℓk,

G′ ↾p = Pk for some k ∈ I and G↾ r ≤ G′ ↾ r for all r 6= p. From Lemma 3.17 we get N ≡ p[[P]] ‖ N′′

and

1. P =
⊕

i∈I q!ℓi;P
′
i with P ′

i ≤ Pi for all i ∈ I , from Rule [≤ -OUT] of Figure 4, and

2. R ≤ G↾ r for all r[[R]] ∈ N′′.

We can then choose N′ = p[[P ′
k]] ‖ N′′.

Let β = pq?ℓ. By Lemma 3.13(2) M ≡ 〈p, ℓ, q〉 · M′, G ↾ q = p?ℓ;P , G′ ↾ q = P and

G↾ r ≤ G′ ↾ r for all r 6= q. From Lemma 3.17 we get N ≡ q[[Q]] ‖ N′′ and

1. Q = p?ℓ;P ′ +Q′ with P ′ ≤ P , from Rule [≤ -IN] of Figure 4, and

2. R ≤ G↾ r for all r[[R]] ∈ N′′.

We can then choose N′ = q[[P ′]] ‖ N′′.

We are now able to prove that in a typable network, every participant whose process is not termi-

nated may eventually perform an action, and every message that is stored in the queue is eventually

read. This property is generally referred to as progress [34].

Theorem 3.20. (Progress)

A typable network N ‖ M satisfies progress, namely:

1. p[[P]] ∈ N implies N ‖ M
τ · β
−−→ N′ ‖ M′ with play(β) = {p};

2. M ≡ 〈p, ℓ, q〉 ·M1 implies N ‖ M
τ · pq?ℓ
−−−−→ N′ ‖ M′.

Proof: By hypothesis ⊢ N ‖ M : G ‖ M for some G.

(1) If P is an output process, then it can immediately move. Let then P be an input process. From

p[[P]] ∈ N we get p ∈ play(G) and therefore depth(G, p) > 0. Moreover, since G is bounded, it

must be depth(G, p) < ∞. We prove by induction on depth(G, p) that 0 < depth(G, p) < ∞ implies

G ‖ M
τ · β
−−→ G′ ‖ M′ with play(β) = {p}. By Session Fidelity (Theorem 3.19) it will follow that

N ‖ M
τ · β
−−→ N′ ‖ M′. Let d = depth(G, p).

18 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

Case d = 1. Here G = qp?ℓ;G′. Since G ‖ M is balanced, M ≡ 〈q, ℓ, p〉 · M′ by Rule [IN] of

Figure 3. Then G ‖ M
qp?ℓ
−−→ G′ ‖ M′ by Rule [EXT-IN] of Figure 5.

Case d > 1. Here we have either G = ⊞i∈I rs!ℓi;Gi with r 6= p or G = rs?ℓ;G′′′ with s 6= p. By

Lemma 3.5 this implies depth(Gi, p) < d for all i ∈ I in the first case, and depth(G′′′, p) < d in the

second case. Hence in both cases, by applying Rule [EXT-OUT] or Rule [EXT-IN] of Figure 5, we get

G ‖ M
β′

−→ G′′ ‖ M′′. Since either G′′ = Gk for some k ∈ I or G′′ = G′′′ we get play(β′) 6= {p}
and depth(G′′, p) < d. In case G is a choice of outputs we get p ∈ play(G′′) by projectability of G if

p 6= s and by balancing of G ‖ M if p = s. Thus 0 < depth(G′′, p) < d < ∞. We may then apply

induction to get G′′ ‖ M′′ τ · β
−−→ G′ ‖ M′ with play(β) = {p}. Therefore G ‖ M

β′ · τ ·β
−−−−→ G′ ‖ M′ is

the required transition sequence.

(2) Let the input depth of the input pq?ℓ in G, notation idepth(G, pq?ℓ), be inductively defined by:

idepth(⊞i∈I rs!ℓi;Gi, pq?ℓ) = 1 +maxi∈I{idepth(Gi, pq?ℓ)}

idepth(rs?ℓ′;G′, pq?ℓ) =







1 if pq?ℓ = rs?ℓ′

∞ if p = r and q = s and ℓ 6= ℓ′

1 + idepth(G′, pq?ℓ) otherwise

idepth(End, pq?ℓ) = ∞

By hypothesis M ≡ 〈p, ℓ, q〉 ·M1.

We show that, for all M and G, ⊢b G ‖ 〈p, ℓ, q〉 · M implies that idepth(G, pq?ℓ) is finite.

The proof is by induction on maxPath(G) defined as the maximum length of a path from the root

of G to either a leaf (if the path is finite) or the first cyclic global type encountered (if the path is

infinite). Since G is regular every infinite path starting from its root must contain a cyclic global type,

so maxPath(G) = n for some n.

If n = 0 either G = End or G is cyclic. Therefore ⊢b G ‖ 〈p, ℓ, q〉 ·M cannot hold and the statement

is true (Rules [End] and [OUT] of Figure 3 require an empty queue).

If n > 0, we consider the two possible shapes of G.

Let G = rs?ℓ′;G′. If r = p, s = q and ℓ′ 6= ℓ, then ⊢b G ‖ 〈p, ℓ, q〉 · M cannot hold and the

statement is true (Rule [IN] requires a queue starting with 〈p, ℓ′, q〉). If r = p, s = q and ℓ′ = ℓ,
then idepth(G, pq?ℓ) = 1. Otherwise maxPath(G′) = n − 1 and, since ⊢b G ‖ 〈p, ℓ, q〉 · M,

〈p, ℓ, q〉 ·M ≡ 〈r, ℓ′, s〉 · 〈p, ℓ, q〉 ·M′ for some M′ (Rule [IN]). Moreover, ⊢b G′ ‖ 〈p, ℓ, q〉 ·M′. By

induction hypotheses we get that idepth(G′, pq?ℓ) is finite. Therefore idepth(G, pq?ℓ) is finite.

If G = ⊞i∈I rs!ℓi;Gi, then for all i ∈ I , maxPath(Gi) < n and ⊢b Gi ‖ 〈p, ℓ, q〉 · M · 〈r, ℓi, s〉
(Rule [OUT]). By induction hypotheses we get that idepth(Gi, pq?ℓ) is finite for all i ∈ I . Therefore

idepth(G, pq?ℓ) is finite.

More precisely idepth(G, pq?ℓ) is the number of rule applications between the rule which intro-

duces 〈p, ℓ, q〉 and the conclusion in the derivation of ⊢b G ‖ 〈p, ℓ, q〉 ·M1.

We prove by induction on idepth(G, p) that G ‖ M
τ · pq?ℓ
−−−−→ G′ ‖ M′. By Session Fidelity

(Theorem 3.19) it will follow that N ‖ M
τ · pq?ℓ
−−−−→ N′ ‖ M′. Let id = idepth(G, p).

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 19

Case id = 1. Here G = pq?ℓ;G′, which implies G ‖ M
pq?ℓ
−−→ G′ ‖ M1 by Rule [EXT-IN] of Figure 5.

Case id > 1. As in the proof of Statement (1), by applying Rule [EXT-OUT] or Rule [EXT-IN] of

Figure 5 we get

G ‖ M
β
−→ G′′ ‖ M′′

where β 6= pq?ℓ and thus idepth(G′′, pq?ℓ) < id.

By induction G′′ ‖ M′′ τ · pq?ℓ
−−−−→ G′ ‖ M′. We conclude that G ‖ M

β · τ · pq?ℓ
−−−−−−→ G′ ‖ M′ is the

required transition sequence.

The proof of Theorem 3.20 shows that the desired transition sequences use only Rules [EXT-OUT]
and [EXT-IN] and the output choice is arbitrary. Moreover the lengths of these transition sequences

are bounded by depth(G, p) and idepth(G, pq?ℓ), respectively.

4. Event structures

We recall the definitions of Prime Event Structure (PES) from [20] and Flow Event Structure (FES)

from [17]. The class of FESs is more general than that of PESs, in that it allows for disjunctive

causality and does not require causality to be a transitive relation. As we shall see in Sections 5 and 6,

PESs are sufficient to interpret processes, while we need FESs to interpret networks. The reader is

referred to [35] for a comparison of the various classes of event structures.

This section is borrowed from [36] and therefore it is also shared with its extended version [14].

Definition 4.1. (Prime Event Structure)

A prime event structure (PES) is a tuple S = (E,≤, #) where:

1. E is a denumerable set of events;

2. ≤⊆ (E × E) is a partial order relation, called the causality relation;

3. # ⊆ (E × E) is an irreflexive symmetric relation, called the conflict relation, satisfying the

property: ∀e, e′, e′′ ∈ E : e# e′ ≤ e′′ ⇒ e# e′′ (conflict hereditariness).

Definition 4.2. (Flow Event Structure)

A flow event structure (FES) is a tuple S = (E,≺, #) where:

1. E is a denumerable set of events;

2. ≺⊆ (E × E) is an irreflexive relation, called the flow relation;

3. # ⊆ (E × E) is a symmetric relation, called the conflict relation.

Note that the flow relation is not required to be transitive, nor acyclic (its reflexive and transitive

closure is just a preorder, not necessarily a partial order). Intuitively, the flow relation represents a

possible direct causality between two events. Observe also that in a FES the conflict relation is not

20 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

required to be irreflexive nor hereditary; indeed, FESs may exhibit self-conflicting events, as well as

disjunctive causality (an event may have conflicting causes).

Any PES S = (E,≤, #) may be regarded as a FES, with ≺ given by < (the strict ordering) or

by the covering relation of ≤.

We now recall the definition of configuration for event structures. Intuitively, a configuration is

a set of events having occurred at some stage of the computation. Thus, the semantics of an event

structure S is given by its poset of configurations ordered by set inclusion, where X1 ⊂ X2 means that

S may evolve from X1 to X2.

Definition 4.3. (PES configuration)

Let S = (E,≤, #) be a prime event structure. A configuration of S is a finite subset X of E such

that:

1. X is downward-closed: e′ ≤ e ∈ X ⇒ e′ ∈ X ;

2. X is conflict-free: ∀e, e′ ∈ X ,¬(e# e′).

The definition of configuration for FESs is slightly more elaborated. For a subset X of E, let ≺X

be the restriction of the flow relation to X and ≺∗
X be its transitive and reflexive closure.

Definition 4.4. (FES configuration)

Let S = (E,≺, #) be a flow event structure. A configuration of S is a finite subset X of E such that:

1. X is downward-closed up to conflicts: e′ ≺ e ∈ X , e′ /∈ X ⇒ ∃ e′′ ∈ X . e′ # e′′ ≺ e;

2. X is conflict-free: ∀e, e′ ∈ X ,¬(e# e′);

3. X has no causality cycles: the relation ≺∗
X is a partial order.

Condition (2) is the same as for prime event structures. Condition (1) is adapted to account for the

more general – non-hereditary – conflict relation. It states that any event appears in a configuration

with a “complete set of causes”. Condition (3) ensures that any event in a configuration is actually

reachable at some stage of the computation.

If S is a prime or flow event structure, we denote by C(S) its set of configurations. Then, the

domain of configurations of S is defined as follows:

Definition 4.5. (ES configuration domain)

Let S be a prime or flow event structure with set of configurations C(S). The domain of configurations

of S is the partially ordered set D(S)=def(C(S),⊆).

We recall from [35] a useful characterisation for configurations of FESs, which is based on the notion

of proving sequence, defined as follows:

Definition 4.6. (Proving sequence)

Given a flow event structure S = (E,≺, #), a proving sequence in S is a sequence e1; · · · ; en of

distinct non-conflicting events (i.e. i 6= j ⇒ ei 6= ej and ¬(ei # ej) for all i, j) satisfying:

∀i ≤ n ∀e ∈ E : e ≺ ei ⇒ ∃k < i . either e = ek or e# ek ≺ ei

Note that any prefix of a proving sequence is itself a proving sequence.

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 21

We have the following characterisation of configurations of FESs in terms of proving sequences.

Proposition 4.7. (Representation of configurations as proving sequences [35])

Given a flow event structure S = (E,≺, #), a subset X of E is a configuration of S if and only if it

can be enumerated as a proving sequence e1; · · · ; en.

Since PESs may be viewed as particular FESs, we may use Definition 4.6 and Proposition 4.7 both

for the FESs associated with networks (see Section 6) and for the PESs associated with asynchronous

global types (see Section 7). Note that for a PES the condition of Definition 4.6 simplifies to

∀i ≤ n ∀e ∈ E : e < ei ⇒ ∃k < i . e = ek

5. Event structure semantics of processes

In this section, we present our ES semantics for processes and show that the obtained ESs are PESs.

This semantics coincides with the one given for processes of synchronous networks in our previous

work [36]. Indeed, a design choice of our ES semantics is to implement asynchrony at the level of

networks, and not at the level of processes. Thus, processes are agnostic with respect to the communi-

cation mode of the network, and sequentiality between their actions is always interpreted as causality.

A process event, namely an event in the ES of a process, is an occurrence of a send or receive

action preceded by its causal history, i.e., by the sequence of actions that caused that occurrence in

the process. Therefore, different occurrences of the same send or receive action in the process give

rise to different process events in the associated ES. Indeed, process events correspond to paths in the

syntactic tree of a process.

Our ES semantics for processes will be the basis for defining the ES semantics for networks

in Section 6, which will reflect, as expected, the asynchronous nature of communication.

We start by introducing process events, which are non-empty sequences of atomic actions π as

defined at the beginning of Section 2.

Definition 5.1. (Process event)

Process events (p-events for short) η, η′ are defined by:

η ::= π | π · η
We denote by PE the set of p-events.

Note the difference with the sequences −→π used in Figure 2, where actions are separated by “;”.

Let ζ denote a (possibly empty) sequence of actions, and ⊑ denote the prefix ordering on such

sequences. Each p-event η may be written either in the form η = π · ζ or in the form η = ζ · π. We

shall feel free to use any of these forms. When a p-event is written as η = ζ · π, then ζ may be viewed

as the causal history of η, namely the sequence of actions that must have been executed by the process

for η to be able to happen.

We define the action of a p-event to be its last atomic action:

act(ζ · π) = π
A p-event η is an output p-event if act(η) is an output and an input p-event if act(η) is an input.

22 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

Definition 5.2. (Causality and conflict relations on p-events)

The causality relation ≤ and the conflict relation # on the set of p-events PE are defined by:

1. η ⊑ η′ ⇒ η ≤ η′;

2. π 6= π′ ⇒ ζ · π · ζ ′ # ζ · π′ · ζ ′′.

Definition 5.3. (Event structure of a process)

The event structure of process P is the triple

SP(P) = (PE(P),≤P , # P)
where:

1. PE(P) ⊆ PE is the set of sequences of decorations along the nodes and edges of a path from

the root to an edge in the tree of P ;

2. ≤P is the restriction of ≤ to the set PE(P);

3. # P is the restriction of # to the set PE(P).

In the following we shall feel free to drop the subscript in ≤P and # P .

Note that the set PE(P) may be denumerable, as shown by the following example.

Example 5.4. If P = q!ℓ;P ⊕ q!ℓ′, then

PE(P) = {q!ℓ · . . . · q!ℓ
︸ ︷︷ ︸

n

| n ≥ 1} ∪ {q!ℓ · . . . · q!ℓ
︸ ︷︷ ︸

n

·q!ℓ′ | n ≥ 0}

We conclude this section by stating that the ESs of processes are PESs. The proof is easy and may

be found in [14].

Proposition 5.5. Let P be a process. Then SP(P) is a prime event structure with an empty concur-

rency relation.

6. Event structure semantics of networks

We present now the ES semantics of networks, which is grounded on that of processes.

Network events are simply process events located at some participant of the network. As we are

considering asynchronous communication, matching output and input events are not paired together

to yield a single network event, but instead they are kept separate, with the first representing the

enqueuing of a message in the queue, and the second the dequeuing of a message from the queue. The

event structure of a network has to take into account the fact that the queue may already contain some

messages. In an asynchronous setting, output events can always happen, provided that all events that

causally precede them have already been executed. Input events, on the other side, must wait for the

expected message to have been enqueued by the sender.

This asymmetry is reflected in the definition of the narrowing function (Definition 6.8), which we

use - as in our companion paper [14] dealing with synchronous communication - to restrict the set of

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 23

potential network events by discarding those that are not causally well-founded. In the present case,

narrowing will keep all output events (whose predecessors have not been discarded), while it will

keep only those input events that are “justified” by an output event (Definition 6.7), or whose expected

message in already on the queue. To check that an output event (send of participant p towards q)

justifies an input event (receive of participant q from p), since messages sent by p must be read by

q in the order they were sent, we look at the histories of the two events to check their “duality”

(Clause (1b) Definition 6.6). As discussed before Definition 6.5, this notion of duality is more flexible

than the standard one (which matches a send in one participant with a receive in the other), due to the

use of a preorder that extends the standard duality check by allowing output actions to be anticipated

over input actions as in [21].

We start by defining the o-trace of a queue M, notation otr(M), which is the sequence of output

communications corresponding to the messages in the queue. We use ω to range over o-traces.

Definition 6.1. (o-trace)

The o-trace corresponding to a queue is defined by

otr(∅) = ǫ otr(〈p, ℓ, q〉 ·M) = pq!ℓ · otr(M)

O-traces are considered modulo the following equivalence ∼=, which mimics the structural equivalence

on queues.

Definition 6.2. (o-trace equivalence ∼=)

The equivalence ∼= on o-traces is the least equivalence such that

ω · pq!ℓ · rs!ℓ′ ·ω′ ∼= ω · rs!ℓ′ · pq!ℓ ·ω′ if p 6= r or q 6= s

Network events are p-events associated with a participant.

Definition 6.3. (Network event)

1. Network events ρ, ρ′, also called n-events, are p-events located at some participant p, written

p :: η.

2. We define i/o(ρ) =

{

pq!ℓ if ρ = p :: ζ · q!ℓ

pq?ℓ if ρ = q :: ζ · p?ℓ

and we say that ρ is an output n-event representing the communication pq!ℓ or an input n-event

representing the communication pq?ℓ, respectively.

3. We denote by NE the set of n-events.

In order to define the flow relation between an output n-event p :: ζ · q!ℓ and the matching input n-event

q :: ζ · p?ℓ, we introduce a duality relation on projections of action sequences, see Definition 6.5. We

first define the projection of traces on participants, producing action sequences (Definition 6.4(1)), and

then the projection of action sequences on participants, producing sequences of undirected actions of

the form !ℓ and ?ℓ (Definition 6.4(2)).

In the sequel, we will use the symbol † to stand for either ! or ?. Then p†ℓ will stand for either p!ℓ
or p?ℓ. Similarly,†ℓ will stand for either !ℓ or ?ℓ.

24 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

Definition 6.4. (Projections)

1. The projection of a trace on a participant is defined by:

ǫ@ r = ǫ (β · τ)@ r =







q!ℓ · τ @ r if β = rq!ℓ

p?ℓ · τ @ r if β = pr?ℓ

τ @ r otherwise

2. The projection of an action sequence on a participant is defined by:

ǫ� r = ǫ (π · ζ)� r =

{

†ℓ · ζ � r if π = r†ℓ

ζ � r otherwise

We use χ to range over sequences of output actions and ϑ to range over sequences of undirected

actions.

We now introduce a variant of the standard duality relation on sequences of undirected actions.

This relation is meant to compare the sequences of actions of two participants communicating with

each other, in order to check that they match with each other. In a synchronous setting, these sequences

would be required to be in the standard symmetric duality relation ⋊⋉, as defined in Clause (1) of

Definition 6.5, with an input of a label matching an output of the same label and viceversa. In our

asynchronous setting, the duality relation needs to reflect the fact, first observed in [21], that it is

“better” to anticipate outputs. To this end, in Clause (2) of Definition 6.5 we define a partial order

on sequences of actions whereby a sequence is better than (i.e., less than or equal to) another one if

it anticipates outputs over inputs. Finally, to compare the sequences of actions of two participants

communicating with each other, in Clause (3) of Definition 6.5 we define our weak duality relation

w ⋊⋉v, a symmetric relation that relates two sequences which are both less than or equal to two

sequences related by ⋊⋉. In this way, we allow outputs to be anticipated in both sequences.

Definition 6.5. (Partial order and duality relations on undirected action sequences)

The three relations ⋊⋉, w and w⋊⋉v on undirected action sequences are defined as follows:

1. The duality relation ⋊⋉ on undirected action sequences is defined by:

ǫ ⋊⋉ ǫ ϑ ⋊⋉ ϑ′ ⇒ !ℓ.ϑ ⋊⋉ ?ℓ.ϑ′and ?ℓ.ϑ ⋊⋉ !ℓ.ϑ′

2. The partial order relation w on undirected action sequences is defined as the smallest partial

order such that:

ϑ · !ℓ · ?ℓ′ ·ϑ′ w ϑ · ?ℓ′ · !ℓ ·ϑ′

3. The weak duality relation w⋊⋉v on undirected action sequences is defined by:

ϑ1 w⋊⋉v ϑ2 if ϑ′
1 ⋊⋉ ϑ′

2 for some ϑ′
1, ϑ

′
2 such that ϑ1 w ϑ′

1 and ϑ2 w ϑ′
2

For example !ℓ1 · !ℓ3 · ?ℓ2 · ?ℓ4 w !ℓ1 · ?ℓ2 · !ℓ3 · ?ℓ4 and !ℓ2 · !ℓ4 · ?ℓ1 · ?ℓ3 w ?ℓ1 · !ℓ2 · ?ℓ3 · !ℓ4 and

!ℓ1 · ?ℓ2 · !ℓ3 · ?ℓ4 ⋊⋉ ?ℓ1 · !ℓ2 · ?ℓ3 · !ℓ4 imply !ℓ1 · !ℓ3 · ?ℓ2 · ?ℓ4 w⋊⋉v !ℓ2 · !ℓ4 · ?ℓ1 · ?ℓ3.

We may now define the flow and conflict relations on n-events. Notably the flow relation is

parametrised on an o-trace representing the queue.

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 25

Definition 6.6. (ω-flow and conflict relations on n-events)

The ω-flow relation ≺ω and the conflict relation # on the set of n-events NE are defined by:

1. (a) η < η′ ⇒ p :: η ≺ω p :: η′;

(b) (ω@ p · ζ) � q w ⋊⋉v (ω@ q · ζ ′′) � p and (ζ ′ · p?ℓ) � p w (ζ ′′ · p?ℓ ·χ) � p for some ζ ′′

and χ ⇒ p :: ζ · q!ℓ ≺ω q :: ζ ′ · p?ℓ;

2. η# η′ ⇒ p :: η# p :: η′.

Clause (1a) defines flows within the same “locality” p, which we call local flows, while Clause (1b)

defines flows between different localities, which we call cross-flows: these are flows between an output

of p towards q and the corresponding input of q from p. The condition in Clause (1b) expresses a sort

of relaxed duality between the history of the output and the history of the input: the intuition is that

if q has some outputs towards p occurring in ζ ′, namely before its input p?ℓ, then when checking for

duality these outputs can be moved after p?ℓ, namely in χ, because q does not need to wait until p has

consumed these outputs to perform its input p?ℓ. This condition can be seen at work in Examples 6.12

and 6.13.

The reason for parametrising the flow relation with an o-trace ω is that the cross-flow relation

depends on ω, which in the FES of a network N ‖ M will be the image through the mapping otr (see

Definition 6.1) of the queue M.

For example, we have a cross-flow ρ ≺ω ρ′ between the following n-events

ρ = p :: r?ℓ4 · q?ℓ3 · q!ℓ ≺ω q :: p!ℓ′ · p?ℓ1 · p?ℓ2 · p?ℓ = ρ′

where

ω = pq!ℓ1 · pq!ℓ2 · qs!ℓ5 · qp!ℓ3

since in this case ζ = r?ℓ4 · q?ℓ3 and ζ ′ = p!ℓ′ · p?ℓ1 · p?ℓ2, and thus, taking ζ ′′ = p?ℓ1 · p?ℓ2 and

χ = p!ℓ′, we obtain

(ω@ p · ζ)�q = !ℓ1 · !ℓ2 · ?ℓ3 w ?ℓ3 · !ℓ1 · !ℓ2 ⋊⋉ !ℓ3 · ?ℓ1 · ?ℓ2 = (ω@ q · ζ ′′)�p
and

(ζ ′ · p?ℓ)�p = !ℓ′ · ?ℓ1 · ?ℓ2 · ?ℓ w ?ℓ1 · ?ℓ2 · ?ℓ · !ℓ
′ = (ζ ′′ · p?ℓ ·χ)�p

When ρ = p :: η ≺ω q :: η′ = ρ′ and p 6= q, then by definition ρ is an output and ρ′ is an input. In this

case we say that the output ρ ω-justifies the input ρ′, or symmetrically that the input ρ′ is ω-justified

by the output ρ. An input n-event may also be justified by a message in the queue. Both justifications

are formalised by the following definition.

Definition 6.7. (Justifications of n-events)

1. The input n-event ρ is ω-justified by the output n-event ρ′ if ρ′ ≺ω ρ and they are located at

different participants.

2. The input n-event ρ = q :: ζ · p?ℓ is ω-queue-justified if there exists ω′ such that ω′ · pq!ℓ is a

prefix of ω (modulo ∼=) and p :: (ω′@ p) · q!ℓ ≺ǫ ρ.

26 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

The condition p :: (ω′ @ p) · q!ℓ ≺ǫ ρ ensures that the inputs from p in ζ will consume exactly the

messages from p to q in the queue ω′. For example, if ω = pq!ℓ · pq!ℓ, then both q :: p!ℓ′ · p?ℓ
and q :: p!ℓ′ · p?ℓ · p?ℓ are ω-queue-justified. On the other hand, if ω = pq!ℓ, then q :: p!ℓ′ · p?ℓ is

ω-queue-justified, but q :: p!ℓ′ · p?ℓ · p?ℓ is not ω-queue-justified.

To define the set of n-events associated with a network, we filter the set of all its potential n-events

by keeping only

• those n-events whose constituent p-events have all their predecessors appearing in some other

n-event of the network and

• those input n-events that are either queue-justified or justified by output n-events of the network.

Definition 6.8. (Narrowing)

Given a set E of n-events and an o-trace ω, we define the narrowing of E with respect to ω (notation

nr(E,ω)) as the greatest fixpoint of the function fE,ω on sets of n-events defined by:

fE,ω(X) = {ρ ∈ E | ρ = p :: η ·π ⇒ p :: η ∈ X and

(ρ is an input n-event ⇒ ρ is either ω-queue-justified

or ω-justified by some ρ′ ∈ X)}

Thus, nr(E,ω) is the greatest set X ⊆ E such that X = fE,ω(X).

Note that we could not have taken nr(E,ω) to be the least fixpoint of fE,ω rather than its greatest

fixpoint. Indeed, the least fixpoint of fE,ω would be the empty set.

It is easy to verify that the n-events which are discarded by the narrowing while their local prede-

cessors are not discarded must be input events. More precisely:

Fact 6.9. If ρ ∈ E and ρ 6∈ nr(E,ω) and either ρ = p :: π or ρ = p :: η · π with p :: η ∈ nr(E,ω),
then ρ is an input event.

We have now enough machinery to define the ES of networks.

Definition 6.10. (Event structure of a network)

The event structure of the network N ‖ M is the triple:

SN (N ‖ M) = (NE(N ‖ M),≺ω
N‖M, # N‖M)

where ω = otr(M) and

1. NE(N ‖ M) = nr(DE(N), ω), where DE(N) = {p :: η | η ∈ PE(P) with p[[P]] ∈ N};

2. ≺ω
N‖M is the restriction of ≺ω to the set NE(N ‖ M);

3. # N‖M is the restriction of # to the set NE(N ‖ M).

The following example shows how the operation of narrowing prunes the set of potential n-events

of a network ES. It also illustrates the interplay between the two conditions in the definition of nar-

rowing.

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 27

Example 6.11. Consider the network N ‖ ∅, where N = p[[q?ℓ; r!ℓ′]] ‖ r[[p?ℓ′]]. The set of potential

n-events of SN (N ‖ ∅) is {p :: q?ℓ, p :: q?ℓ; r!ℓ′, r :: p?ℓ′}. The n-event p :: q?ℓ is cancelled, since it

is neither ∅-queue-justified nor ∅-justified by another n-event of the ES. Then p :: q?ℓ; r!ℓ′ is cancelled

since it lacks its predecessor p :: q?ℓ. Lastly r :: p?ℓ′ is cancelled, since it is neither ∅-queue-justified

nor ∅-justified by another n-event of the ES. Notice that p :: q?ℓ; r!ℓ′ would have ∅-justified r :: p?ℓ′,
if it had not been cancelled. We conclude that NE(N ‖ ∅) = ∅.

The following two examples illustrate the definitions given in this section.

Example 6.12. Consider the ES associated with the network N ‖ ∅, with

N = p[[q!ℓ; q?ℓ′; q!ℓ; q?ℓ′]] ‖ q[[p!ℓ′; p?ℓ; p!ℓ′; p?ℓ]]

The n-events of SN (N ‖ ∅) are:

ρ1 = p :: q!ℓ ρ′1 = q :: p!ℓ′

ρ2 = p :: q!ℓ · q?ℓ′ ρ′2 = q :: p!ℓ′ · p?ℓ

ρ3 = p :: q!ℓ · q?ℓ′ · q!ℓ ρ′3 = q :: p!ℓ′ · p?ℓ · p!ℓ′

ρ4 = p :: q!ℓ · q?ℓ′ · q!ℓ · q?ℓ′ ρ′4 = q :: p!ℓ′ · p?ℓ · p!ℓ′ · p?ℓ

The ǫ-flow relation is given by the cross-flows ρ1 ≺ǫ ρ′2, ρ3 ≺ǫ ρ′4, ρ
′
1 ≺ǫ ρ2, ρ

′
3 ≺ǫ ρ4, as well as by

the local flows ρi ≺
ǫ ρj and ρ′i ≺

ǫ ρ′j for all i, j such that i ∈ {1, 2, 3}, j ∈ {2, 3, 4} and i < j. The

conflict relation is empty.

The configurations of SN (N ‖ ∅) are:

{ρ1} {ρ′1} {ρ1, ρ
′
1} {ρ1, ρ

′
1, ρ2} {ρ1, ρ

′
1, ρ

′
2} {ρ1, ρ

′
1, ρ2, ρ

′
2}

{ρ1, ρ
′
1, ρ2, ρ3} {ρ1, ρ

′
1, ρ

′
2, ρ

′
3} {ρ1, ρ

′
1, ρ2, ρ

′
2, ρ3} {ρ1, ρ

′
1, ρ2, ρ

′
2, ρ

′
3}

{ρ1, ρ
′
1, ρ2, ρ

′
2, ρ3, ρ

′
3} {ρ1, ρ

′
1, ρ2, ρ

′
2, ρ3, ρ

′
3, ρ4}

{ρ1, ρ
′
1, ρ2, ρ

′
2, ρ3, ρ

′
3, ρ

′
4} {ρ1, ρ

′
1, ρ2, ρ

′
2, ρ3, ρ

′
3, ρ4, ρ

′
4}

The network N ‖ ∅ can evolve in two steps to the network:

N′ ‖ M′ = p[[q?ℓ′; q!ℓ; q?ℓ′]] ‖ q[[p?ℓ; p!ℓ′; p?ℓ]] ‖ 〈p, ℓ, q〉 · 〈q, ℓ′, p〉

The n-events of SN (N′ ‖ M′) are:

ρ5 = p :: q?ℓ′ ρ′5 = q :: p?ℓ

ρ6 = p :: q?ℓ′ · q!ℓ ρ′6 = q :: p?ℓ · p!ℓ′

ρ7 = p :: q?ℓ′ · q!ℓ · q?ℓ′ ρ′7 = q :: p?ℓ · p!ℓ′ · p?ℓ

Let ω = pq!ℓ · qp!ℓ′. The ω-flow relation is given by the cross-flows ρ6 ≺ω ρ′7 , ρ′6 ≺ω ρ7, and by

the local flows ρi ≺
ω ρj and ρ′i ≺

ω ρ′j for all i, j such that i ∈ {5, 6}, j ∈ {6, 7} and i < j. The

input n-events ρ5 and ρ′5, which are the only ones without causes, are ω-queue-justified. The conflict

relation is empty.

The network N′ ‖ M′ can evolve in five steps to the network:

N′′ ‖ M′′ = q[[p?ℓ]] ‖ 〈p, ℓ, q〉

The only n-event of SN (N′′ ‖ M′′) is q :: p?ℓ.

28 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

Example 6.13. Let N = p[[q!ℓ1; r!ℓ ⊕ q!ℓ2; r!ℓ]] ‖ q[[p?ℓ1 + p?ℓ2]] ‖ r[[p?ℓ]]. The n-events of

SN (N ‖ ∅) are:
ρ1 = p :: q!ℓ1 ρ′1 = q :: p?ℓ1

ρ2 = p :: q!ℓ2 ρ′2 = q :: p?ℓ2

ρ3 = p :: q!ℓ1 · r!ℓ ρ′′1 = r :: p?ℓ

ρ4 = p :: q!ℓ2 · r!ℓ

The ǫ-flow relation is given by the local flows ρ1 ≺ǫ ρ3, ρ2 ≺ǫ ρ4, and by the cross-flows ρ1 ≺ǫ ρ′1,

ρ2 ≺ǫ ρ′2, ρ3 ≺ǫ ρ′′1 , ρ4 ≺ǫ ρ′′1 . The conflict relation is given by ρ1 # ρ2, ρ1# ρ4, ρ2# ρ3, ρ3 # ρ4
and ρ′1 # ρ′2. Notice that ρ3 and ρ4 are conflicting causes of ρ′′1. Figure 6(a) in Section 8 illustrates this

event structure. The configurations are

{ρ1} {ρ1, ρ3} {ρ1, ρ
′
1} {ρ1, ρ3, ρ

′
1} {ρ1, ρ3, ρ

′′
1} {ρ1, ρ3, ρ

′
1, ρ

′′
1}

{ρ2} {ρ2, ρ4} {ρ2, ρ
′
2} {ρ2, ρ4, ρ

′
2} {ρ2, ρ4, ρ

′′
1} {ρ2, ρ4, ρ

′
2, ρ

′′
1}

The network N ‖ M can evolve in one step to the network:

N′ ‖ M′ = p[[r!ℓ]] ‖ q[[p?ℓ1 + p?ℓ2]] ‖ r[[p?ℓ]] ‖ 〈p, ℓ1, q〉

The n-events of SN (N′ ‖ M′) are ρ5 = p :: r!ℓ, ρ′3 = q :: p?ℓ1 and ρ′′2 = r :: p?ℓ. Let ω = pq!ℓ1.

The ω-flow relation is given by the cross-flow ρ5 ≺
ω ρ′′2 . Notice that the input n-event ρ′3 is ω-queue-

justified, and that there is no n-event corresponding to the branch p?ℓ2 of q, since such an n-event

would not be ω-queue-justified. Hence the conflict relation is empty. The configurations are

{ρ5} {ρ′3} {ρ5, ρ
′
3} {ρ5, ρ

′′
2} {ρ5, ρ

′
3, ρ

′′
2}

It is easy to show that the ESs of networks are FESs.

Proposition 6.14. Let N ‖ M be a network. Then SN (N ‖ M) is a flow event structure.

Proof: Let ω = otr(M). The relation ≺ω is irreflexive since:

1. η < η′ implies p :: η 6= p :: η′;

2. p 6= q implies p :: ζ · q!ℓ 6= q :: ζ ′ · p?ℓ.

Symmetry of the conflict relation between n-events follows from the corresponding property of conflict

between p-events.

In the remainder of this section we show that projections of n-event configurations give p-event

configurations. We start by formalising the projection function of n-events to p-events and showing

that it is downward surjective.

Definition 6.15. (Projection of n-events to p-events)

The projection function projp(·) is defined by:

projp(ρ) =

{

η if ρ = p :: η

undefined otherwise

The projection function projp(·) is extended to sets of n-events in the obvious way:

projp(X) = {η | ∃ρ ∈ X . projp(ρ) = η}

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 29

Proposition 6.16. (Downward surjectivity of projection)

Let

p[[P]] ∈ N and SN (N ‖ M) = (NE(N ‖ M),≺ω, #) and SP(P) = (PE(P),≤P , # P)

Then the partial function projp : NE(N ‖ M) → PE(P) is downward surjective.

Proof: Follows immediately from the fact that NE(N ‖ M) is the narrowing of a set of n-events

p :: η with ω = otr(M) and p[[P]] ∈ N and η ∈ PE(P).

The operation of narrowing on network events makes sure that each configuration of the ES of a

network projects down to configurations of the ESs of the component processes.

Proposition 6.17. (Projection preserves configurations)

Let p[[P]] ∈ N. If X ∈ C(SN (N ‖ M)), then projp(X) ∈ C(SP(P)).

Proof: Let X ∈ C(SN (N ‖ M)) and Y = projp(X). We want to show that Y ∈ C(SP(P)), namely

that Y satisfies Conditions (1) and (2) of Definition 4.3.

(1) Downward-closure. Let η ∈ Y . Since Y = projp(X), there exists ρ ∈ X such that ρ = p :: η.

Suppose η′ < η. From Proposition 6.16 there exists ρ′ ∈ NE(N ‖ M) such that ρ′ = p :: η′.
Let ω = otr(M). By Definition 6.6(1a) we have then ρ′ ≺ω ρ. Since X is left-closed up to

conflicts, we know that either ρ′ ∈ X or there exists ρ′′ ∈ X such that ρ′′# ρ′ and ρ′′ ≺ ρ. We

examine the two cases in turn:

• ρ′ ∈ X . Then, since η′ = projp(ρ
′), we have η′ ∈ projp(X) = Y and we are done.

• ∃ρ′′ ∈ X . ρ′′ # ρ′ and ρ′′ ≺ ρ. From ρ′′# ρ′ we get ρ′′ = p :: η′′ and η′′ # η′. This

implies η′′ # η. By Definition 6.6(2) this implies ρ# ρ′, contradicting the hypothesis that

X is conflict-free. So this case is impossible.

(2) Conflict-freeness. Ad absurdum, suppose there exist η, η′ ∈ Y such that η# η′. Then, since

Y = projp(X), there must exist ρ, ρ′ ∈ X such that ρ = p :: η and ρ′ = p :: η′. By

Definition 6.6(2) this implies ρ# ρ′, contradicting the hypothesis that X is conflict-free.

Notice that there are configurations of C(SP(P)) which cannot be obtained by projecting configura-

tions of C(SN (N ‖ M)) in spite of the condition p[[P]] ∈ N. A simple example is p[[q?ℓ]] ‖ ∅.

7. Event structure semantics of asynchronous types

We define now the ES semantics of asynchronous types, which is based on particular traces. In the

ES of an asynchronous type, as in the ES of a network, an event represents a particular occurrence

of an input or output communication, preceded by its causal history. However, while in the ES of

a network an event is a located process event, and the causal history of an input or output action

is its local history within the participant where it is located, in the ES of an asynchronous type the

causal history of a communication is its global history, which may include communications from

other participants. Recall that an asynchronous type is a global type coupled with a queue. Then,

30 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

the global history of a communication is obtained by taking the trace labelling the path that leads to

that communication in the tree of the global type, and removing from it all the communications that

do not cause the last one. A trace of this kind, with the property that all its communications cause

a subsequent communication in the trace, will be called pointed. Moreover, since a communication

may have concurrent causes, whose order in the computation is irrelevant, such pointed traces will be

considered up to permutation of concurrent communications. So far, the treatment is very similar to the

one proposed for the synchronous case in [14]. However, asynchrony introduces additional subtleties

in the definition of causality and concurrency among communications. Indeed, two communications

will be causally related not only when they have the same player, but also when one of them is an

output pq!ℓ and the other is the matching input pq?ℓ (Definition 7.1). Moreover, this matching relation

is affected by the presence of the queue (since an input can match either a message in the queue or an

output in its trace within the global type), so it has to be computed relatively to a prefixing output trace

that represents the queue. This gives rise to a notion of well-formedness for traces (Definition 7.2) that

reflects the balancing condition for asynchronous types. Similarly, the concurrency relation between

adjacent communications (Definition 7.3) and the resulting permutation equivalence (Definition 7.5),

as well as the notion of pointedness (Definition 7.7), will have to be defined relatively to a prefixing

output trace.

To sum up, the events in the ES of an asynchronous type will be pairs made of an output trace

representing the queue of the type (taken up to an equivalence that reflects the structural congruence

on queues, see Definition 6.2), and of a trace (taken up to permutation equivalence, see Definition 7.5)

that is pointed with respect to the queue output trace (Definition 7.13) and which is obtained from

a trace of the global type by removing only the communications that are not causes of the last one

(Definition 7.17).

Although the events of an asynchronous type ES have a more complex and indirect definition than

the events of a network ES, they have two importants benefits with respect to the latter:

• the relations of causality and conflict are very simple to define on them (Definition 7.16);

• they do not raise well-foundedness issues, since they are extracted from paths in the tree of the

global type by removing only the unnecessary communications (Definition 7.17).

For traces τ , as given in Definition 2.3, we use the following notational conventions:

• We denote by τ [i] the i-th element of τ , i > 0.

• If i ≤ j, we define τ [i ... j] = τ [i] · · · τ [j] to be the subtrace of τ consisting of the (j − i + 1)
elements starting from the i-th one and ending with the j-th one. If i > j, we define τ [i ... j] to

be the empty trace ǫ.

If not otherwise stated we assume that τ has n elements, so τ = τ [1 ... n].

In the traces appearing in events, we want to require that every input matches a corresponding

output. This is checked using the multiplicity of pq† in τ , defined by induction as follows:

m(pq†, ǫ) = 0 m(pq†, β · τ) =

{

m(pq†, τ) + 1 if β = pq†ℓ

m(pq†, τ) otherwise

where † ∈ {!, ?} (as in Definition 6.4).

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 31

An input of q from p matches a preceding output from p to q in a trace if it has the same label

ℓ and the number of inputs from p to q in the subtrace before the given input is equal to the number

of outputs from p to q in the subtrace before the given output. This is formalised using the above

multiplicity notion and the positions of communications in traces.

Definition 7.1. (Matching)

The input τ [j] = pq?ℓ matches the output τ [i] = pq!ℓ in τ , dubbed i ∝ τ j, if i < j and m(pq!,
τ [1 ... i − 1]) = m(pq?, τ [1 ... j − 1]).

For example, if τ = pq!ℓ; pq!ℓ; pq!ℓ; pq?ℓ; pq?ℓ, then 1 ∝ τ 4 and 2 ∝ τ 5, while no input matches the

output at position 3, denoted by ¬(3 ∝ τ 4) and ¬(3 ∝ τ 5). Similarly, if τ = pq!ℓ; pq!ℓ′; pq?ℓ′′; pq?ℓ′,
then 2 ∝ τ 4, while no output is matched by the input at position 3.

As mentioned earlier, o-traces will be used to represent queues and general traces are paths in

global type trees. We want to define an equivalence relation on general traces, which allows us to

exchange the order of adjacent communications when this order is not essential. This is the case if

the communications have different players and in addition they are not matching according to Defi-

nition 7.1. However, the matching relation must also take into account the fact that some outputs are

already on the queue. So we will consider well-formedness with respect to a prefixing o-trace. We

proceed as follows:

• we start with well-formed traces (Definition 7.2);

• we define the swapping relation ⊲ω which allows two communications to be interchanged in a

trace τ , when these communications are independent in the trace ω · τ (Definition 7.3);

• then we show that ⊲ω preserves ω-well-formedness (Lemma 7.4);

• finally we define the equivalence ≈ω on ω-well-formed traces (Definition 7.5).

In a well-formed trace each input must have a corresponding output. A matching input/output

pair corresponds to a communication in the standard global types of [4]. So, if we find an input at

some position in a trace, the corresponding output must already occur at some earlier position in the

trace. We also introduce a notion of well-formedness with respect to a prefixing trace, where the prefix

represents communications that have already occurred.

Definition 7.2. (Well-formedness)

1. A trace τ is well formed if every input matches an output in τ .

2. A trace τ is τ ′-well formed if τ ′ · τ is well formed.

As an example, the trace τ = pq!ℓ · pq!ℓ′ · pq?ℓ′ is not well formed since the input pq?ℓ′ in the third

position does not match the output pq!ℓ′ in the second position, i.e., ¬(2 ∝ τ 3). On the other hand,

τ is pq!ℓ′-well formed, since pq!ℓ′ · τ is well formed given that the input pq?ℓ′ in the fourth position

matches the output pq!ℓ′ in the first position, i.e., 1 ∝ pq!ℓ′ · τ4.

Notice that any o-trace is well formed and any well-formed trace of length 1 must be an output. A

well-formed trace of length 2 can consist of either two outputs or an output followed by the matching

32 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

input. Note also that, if in Definition 7.2(2) the trace τ ′ is an o-trace, then it may be viewed as

representing a queue, and therefore in this case the matching between an input in τ and an output in

τ ′ is akin to the balancing condition of Rule [IN] in Figure 3 for asynchronous types.

Definition 7.3. (Swapping)

Let τ be ω-well formed. We say that τ ω-swaps to τ ′, notation τ⊲ωτ
′, if

τ = τ [1 ... i − 1] · β · β′ · τ ′′ τ ′ = τ [1 ... i − 1] · β′ ·β · τ ′′ and

play(β) ∩ play(β′) = ∅ and ¬(i+ |ω| ∝ω·τ i+ 1 + |ω|)

For instance, if ω = pq!ℓ and τ = pq!ℓ · pq?ℓ, then τ ω-swaps to τ ′ = pq?ℓ ·pq!ℓ because the input

in τ matches the output in ω and therefore it is independent from the output in τ .

Lemma 7.4. If τ is ω-well formed and τ⊲ωτ
′, then τ ′ is ω-well formed too.

Proof: Let τ = τ [1 ... i − 1] · β ·β′ · τ1 and τ ′ = τ [1 ... i − 1] · β′ ·β · τ1. We want to prove that ω · τ ′

is well formed. To this end, we will show that if β or β′ is an input, then it matches an output that

occurs in the prefix (ω · τ)[1 ... i − 1 + |ω|] of ω · τ ′. Note that it must be β 6= β′, since by hypothesis

play(β) ∩ play(β′) = ∅.

Suppose β′ is an input. Since τ is ω-well formed, β′ matches an output in (ω · τ)[1 ... i−1+|ω|] · β.

This output cannot be β, since by hypothesis ¬(i+|ω| ∝ω·τ i+1+|ω|). Hence β′ matches an output

which occurs in the prefix (ω · τ)[1 ... i − 1 + |ω|] of ω · τ ′.

Suppose now β = pq?ℓ and m(pq?, (ω · τ)[1 ... i − 1 + |ω|]) = m. Since τ is ω-well formed, β
matches an output (ω · τ)[j] = pq!ℓ in the prefix (ω · τ)[1 ... i−1+|ω|] of ω · τ . Then 1 ≤ j < i+ |ω|
and m(pq!, (ω · τ)[1 ... j−1+|ω|]) = m. Since β 6= β′, we get also m(pq?, (ω · τ ′)[1 ... i + |ω|]) = m.

Then β matches (ω · τ)[j] also in ω · τ ′.

From the previous lemma and the observation that, if τ is ω-well formed and τ ′ is obtained by swap-

ping the i-th and (i + 1)-th element of τ , then play(τ ′[i]) ∩ play(τ ′[i + 1]) = ∅ and

¬(i + | ω| ∝ω·τ ′ i + 1 + | ω|), we deduce that the swapping relation is symmetric. This allows

us to define ≈ω as the equivalence relation induced by the swapping relation.

Definition 7.5. (Equivalence ≈ω on ω-well-formed traces)

The equivalence ≈ω on ω-well-formed traces is the reflexive and transitive closure of ⊲ω.

Observe that for o-traces all the equivalences ≈ω collapse to ≈ǫ and ≈ǫ⊂∼=, where ∼= is the o-trace

equivalence given in Definition 6.2. Indeed, it should be clear that ≈ǫ⊆∼=. To show ≈ǫ 6=∼=, consider

ω = pq!ℓ · pr!ℓ′ and ω′ = pr!ℓ′ · pq!ℓ. Then ω ∼= ω′ but ω 6≈ǫ ω
′. This agrees with the fact that o-traces

represent messages in queues, while general traces represent future communication actions.

Another constraint that we want to impose on traces in order to build events is that each commu-

nication must be a cause of at least one of those that follow it. This happens when:

• either the two communications have the same player, in which case we say that the first com-

munication is required in the trace (Definition 7.6);

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 33

• or the first communication is an output and the second is the matching input.

We call pointedness the property of a trace in which each communication, except the last one, satisfies

one of the two conditions above. Like well-formedness, also pointedness is parameterised on traces.

We first define required communications.

Definition 7.6. (Required communication)

We say that τ [i] is required in τ , notation req(i, τ), if play(τ [i]) ⊆ play(τ [(i+1) ... n]), where n = |τ|.

Note that by definition the last element τ [n] is not required in τ .

Definition 7.7. (Pointedness)

The trace τ is τ ′-pointed if τ is τ ′-well formed and for all i, 1 ≤ i < n, one of the following holds:

1. either req(i, τ)

2. or i+ |τ ′| ∝ τ ′ · τj + |τ ′| for some j > i.

Observe that the two conditions of the above definition are reminiscent of the two kinds of causality

- local flow and cross-flow - discussed for network events in Section 6 (Definition 6.6). Indeed,

Condition (1) holds if τ [i] is a local cause of some τ [j], j > i, while Condition (2) holds if τ [i] is a

cross-cause of some τ [j], j > i.

Note also that the conditions of Definition 7.7 must be satisfied only by every τ [i] with i < n, thus

they hold vacuously for any single communication and for the empty trace. This does not imply that

a single-communication trace τ is τ ′-pointed for any τ ′, since to this end τ also needs to be τ ′-well

formed. For instance, the trace qp?ℓ is not ǫ-well formed nor pq!ℓ-well formed (beware not to confuse

qp?ℓ with pq?ℓ). If τ = τ1 · β · β′ is τ ′-pointed, then either play(β) = play(β′) or β′ matches β in

τ ′ · τ , i.e., |τ1| + 1 + |τ ′| ∝ τ ′ · τ |τ1| + 2 + |τ ′|. Also, if a trace τ is τ ′-pointed for some τ ′, we know

that each communication in τ must be executed before the last one. Indeed, the reader familiar with

ESs will have noticed that pointed traces are very similar in spirit to ES prime configurations.

Example 7.8. Let ω = pq!ℓ · rq!ℓ and τ = pq!ℓ · pq?ℓ · rq?ℓ. The trace τ is not ω-pointed, since

the output pq!ℓ in τ is not matched by any input in ω · τ (the input pq?ℓ in τ matches the output

pq!ℓ in ω) and it is not required in τ because its player p is neither the player of pq?ℓ nor the player

of rq?ℓ. So the condition of Definition 7.7 is not satisfied for the output pq!ℓ in τ . Instead the trace

τ ′ = pq?ℓ · rq?ℓ is ω-pointed, as well as the trace τ ′′ = rq?ℓ · pq?ℓ.

Pointedness is preserved by suffixing.

Lemma 7.9. If τ is τ ′-pointed and τ = τ1 · τ2, then τ2 is τ ′ · τ1-pointed.

Proof: Immediate, since (τ ′ · τ1) · τ2 = τ ′ · (τ1 · τ2) and τ2 is a suffix of τ and therefore its elements

are a subset of those of τ .

Note on the other hand that if τ is τ ′-pointed and τ ′ = τ ′1 · τ
′
2, then it is not true that τ ′2 · τ is

τ ′1-pointed, because in this case the set of elements of τ ′2 · τ is a superset of that of τ . For instance, if

τ ′1 = ǫ, τ ′2 = pq!ℓ and τ = rs!ℓ′ · rs?ℓ′, then τ ′2 · τ is not τ ′1-pointed.

34 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

A useful property of ω-pointedness is that it is preserved by the equivalence ≈ω , which does not

change the rightmost communication in ω-pointed traces. We use last(τ) to denote the last communi-

cation of τ .

Lemma 7.10. Let τ be ω-pointed and τ ≈ω τ ′. Then τ ′ is ω-pointed and last(τ ′) = last(τ).

Proof: Let τ ≈ω τ ′. By Definition 7.5 τ ′ is obtained from τ by m swaps of adjacent communications.

The proof is by induction on the number m of swaps.

Case m = 0. The result is obvious.

Case m > 0. In this case there is τ1 obtained from τ by m− 1 swaps of adjacent communications and

there are β, β′, τ2 such that

τ1 = τ1[1 ... i − 1] · β ·β′ · τ2 ≈ω τ1[1 ... i − 1] · β′ · β · τ2 = τ ′

and play(β) ∩ play(β′) = ∅ and ¬(i+ |ω| ∝ω·τ1 i+ 1 + |ω|)

By induction hypothesis τ1 is ω-pointed and last(τ1) = last(τ).

To show that τ ′ is ω-pointed, observe that play(β) ∩ play(β′) = ∅ implies:

play(β) ⊆ play(β′) ∪ play(τ2) ⇔ play(β) ⊆ play(τ2)

play(β′) ⊆ play(τ2) ⇔ play(β′) ⊆ play(β) ∪ play(τ2)

From this we deduce req(i, τ1) ⇐⇒ req(i, τ ′) and req(i+1, τ1) ⇐⇒ req(i+1, τ ′), so if both τ1[i]
and τ1[i+ 1] are required in τ1 we are done.

Otherwise, suppose that i + |ω| ∝ω·τ1 j + |ω| where either req(j, τ1) or j = n. If req(j, τ1) then

also req(j, τ ′), as we just saw. Now, j cannot be i+1 since by hypothesis ¬(i+|ω| ∝ω·τ1 i+1+|ω|).
This implies i+ 1 + |ω| ∝ω·τ ′j + |ω| . Similarly we can show that i+ 1 + |ω| ∝ω·τ1j + |ω| implies

i+ |ω| ∝ω·τ ′j + |ω| . Therefore τ ′ is ω-pointed.

To show that last(τ) = last(τ ′), assume ad absurdum that τ2 = ǫ. Then τ1[1 ... i − 1] · β · β′

is ω-pointed and thus, as observed after Definition 7.7, we have either play(β) ∩ play(β′) 6= ∅ or

i+ |ω| ∝ω·τ1 i+ 1 + |ω| . In both cases β and β′ cannot be swapped. So it must be τ2 6= ǫ.

We now relate asynchronous types with pairs of o-traces and traces.

Lemma 7.11. If ⊢b G ‖ M and ω = otr(M) and τ ∈ Tr+(G), then τ is ω-well formed.

Proof: We prove by induction on τ that ⊢b G ‖ M implies that ω · τ is well formed.

Case τ = β. If β is an output the result is obvious. If β = pq?ℓ, by Rule [IN] of Figure 3, we get

M ≡ 〈p, ℓ, q〉 ·M′. Therefore ω = pq!ℓ ·ω′ and ω · β is well formed.

Case τ = β · τ ′ with τ ′ ∈ Tr+(G′). If β = pq!ℓ, then G = ⊞i∈Ipq!ℓi;Gi and ℓ = ℓk and G′ = Gk for

some k ∈ I . From ⊢b G ‖ M and Rule [OUT] of Figure 3, we get ⊢b G′ ‖ M · 〈p, ℓ, q〉. By induction

hypothesis on τ ′, the trace otr(M· 〈p, ℓ, q〉) · τ ′ is well formed. So since otr(M· 〈p, ℓ, q〉) = ω · pq!ℓ
we get that ω · τ is well formed.

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 35

If β = pq?ℓ, then G = pq?ℓ;G′. From ⊢b G ‖ M and Rule [IN] of Figure 3, we get M ≡ 〈p, ℓ, q〉·M′

and ⊢b G′ ‖ M′. Let ω′ = otr(M′). Then ω ∼= pq!ℓ · ω′. By induction hypothesis on τ ′ the trace

ω′ · τ ′ is well formed. We want now to show that also the trace τ ′′ = ω · τ = pq!ℓ ·ω′ · pq?ℓ · τ ′

is well formed, namely that in τ ′′ every input matches an output. Note that the first input in τ ′′ is

τ ′′[|ω| + 1] = pq?ℓ. This input matches the output τ ′′[1] = pq!ℓ. For inputs τ ′′[i] with i > |ω| + 1,

we know that τ ′′[i] = (ω′ · τ ′)[i− 2], where (ω′ · τ ′)[i− 2] matches some output (ω′ · τ ′)[j] in ω′ · τ ′.
Then τ ′′[i] matches τ ′′[j + 1] if j ≤ |ω′| and τ ′′[j + 2] otherwise. This proves that ω · τ is well

formed.

We have now enough machinery to define events of asynchronous types, which are equivalence

classes of pairs whose first elements are o-traces ω (representing queues) and whose second elements

are traces τ (representing paths in the global type components of the asynchronous types). The traces

ω and τ are considered respectively modulo ∼= and modulo ≈ω. The trace τ is ω-well formed, re-

flecting the balancing of asynchronous types. The communication represented by an event is the last

communication of τ .

Definition 7.12. (Type event)

1. The equivalence ∼ on pairs (ω, τ), where τ 6= ǫ is ω-pointed, is the least equivalence such that

(ω, τ) ∼ (ω′, τ ′) if ω ∼= ω′ and τ ≈ω τ ′

2. A type event (t-event) δ = [ω, τ]∼ is the equivalence class of the pair (ω, τ). The communication

of δ, notation i/o(δ), is defined to be last(τ).

3. We denote by TE the set of t-events.

Notice that the function i/o can be applied both to an n-event (Definition 6.3(2)) and to a t-event

(Definition 7.12(2)). In all cases the result is a communication.

Given an o-trace ω and an arbitrary trace τ , we want to build a t-event [ω, τ ′]∼ (Definition 7.14).

To this aim we scan τ from right to left and remove all and only the communications τ [i] which make

τ violate the ω-pointedness property.

Definition 7.13. (Trace filtering)

The filtering of τ · τ ′ by ω with cursor at τ , denoted by τ ⌈ω τ ′, is defined by induction on τ as follows:

ǫ ⌈ω τ ′ = τ ′ (τ ′′ ·β) ⌈ω τ ′ =

{

τ ′′ ⌈ω (β · τ ′) if β · τ ′ is (ω · τ ′′)-pointed

τ ′′ ⌈ω τ ′ otherwise

For example pq?ℓ · qp?ℓ ⌈pq!ℓ ǫ = pq?ℓ ⌈pq!ℓ ǫ = ǫ ⌈pq!ℓ pq?ℓ = pq?ℓ. The resulting trace can also

be empty, in case the last communication is an input and τ · τ ′ is not ω-well formed. For instance,

qp?ℓ ⌈pq!ℓ ǫ = ǫ ⌈pq!ℓ ǫ = ǫ because qp?ℓ is not pq!ℓ-well formed. It is easy to verify that τ ⌈ω τ
′ is a

subtrace of τ · τ ′, and that if τ is ω-pointed, then τ ⌈ω ǫ = τ .

Definition 7.14. (t-event of a pair)

Let τ 6= ǫ be ω-well formed. The t-event generated by ω and τ , notation ev(ω, τ), is defined to be

ev(ω, τ) = [ω, τ ⌈ω ǫ]∼.

36 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

Hence the trace of the event ev(ω, τ) is the filtering of τ by ω with cursor at the end of τ . This

definition is sound since ω ∼= ω′ implies τ ⌈ω τ ′ = τ ⌈ω′ τ ′. Moreover the communication of ev(ω, τ)
is the last communication of τ .

Lemma 7.15. If ev(ω, τ) is defined, then τ ⌈ω ǫ 6= ǫ and i/o(ev(ω, τ)) = last(τ ⌈ω ǫ) = last(τ).

Proof: Let τ 6= ǫ be ω-well formed and τ = τ ′ ·β. Then β is (ω · τ ′)-well formed by Definition 7.2.

This implies that β is (ω · τ ′)-pointed by Definition 7.7, and thus τ ⌈ω ǫ = (τ ′ · β) ⌈ω ǫ = τ ′ ⌈ω β. This

gives i/o(ev(ω, τ)) = last(τ ⌈ω ǫ) = last(τ).

Since the o-traces in the t-events of an asynchronous type correspond to the queue, we define

the causality and conflict relations only between t-events with the same o-traces. Causality is then

simply prefixing of traces modulo ≈ω, while conflict is induced by the conflict relation on the p-events

obtained by projecting the traces on participants (Definition 6.4(1)).

Definition 7.16. (Causality and conflict relations on t-events)

The causality relation ≤ and the conflict relation # on the set of t-events TE are defined by:

1. [ω, τ]∼ ≤ [ω, τ ′]∼ if τ ′ ≈ω τ · τ1 for some τ1;

2. [ω, τ]∼ # [ω, τ ′]∼ if τ @ p # τ ′@ p for some p.

Concerning Clause (1), note that the relation ≤ is able to express cross-causality as well as local

causality, thanks to the hypothesis of ω-well formedness of τ in any t-event [ω, τ]∼. Indeed, this

hypothesis implies that, whenever τ ends by an input pq?ℓ, then the matched output pq!ℓ must appear

either in ω, in which case the output has already occurred, or at some position i in τ . In the latter case,

the t-event ev(ω, τ [1 ... i]), which represents the output pq!ℓ, is such that ev(ω, τ [1 ... i]) ≤ [ω, τ]∼.

As regards Clause (2), note that if τ ≈ω τ ′, then τ @ p = τ ′@ p for all p, because ≈ω does not

swap communications with the same player. Hence, conflict is well defined, since it does not depend

on the trace chosen in the equivalence class. The condition τ @ p # τ ′@ p states that participant p

does the same actions in both traces up to some point, after which it performs two different actions in

τ and τ ′.

We get the events of an asynchronous type G ‖ M by applying the function ev to the pairs made

of the o-trace representing the queue M and a trace in the tree of G. Lemma 7.11 and Definition 7.14

ensure that ev is defined. We then build the ES associated with an asynchronous type G ‖ M as

follows.

Definition 7.17. (Event structure of an asynchronous type)

The event structure of the asynchronous type G ‖ M is the triple

ST (G ‖ M) = (TE(G ‖ M),≤G‖M, # G‖M)

where:

1. TE(G ‖ M) = {ev(ω, τ) | ω = otr(M) & τ ∈ Tr+(G)};

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 37

2. ≤G‖M is the restriction of ≤ to the set TE(G ‖ M);

3. # G‖M is the restriction of # to the set TE(G ‖ M).

Example 7.18. The network of Example 6.13 can be typed by the asynchronous type G ‖ ∅ with

G = pq!ℓ1; pq?ℓ1; pr!ℓ; pr?ℓ ⊞ pq!ℓ2; pq?ℓ2; pr!ℓ; pr?ℓ. The t-events of ST (G ‖ ∅) are:

δ1 = [ǫ, pq!ℓ1]∼ δ′1 = [ǫ, pq!ℓ1 · pq?ℓ1]∼

δ2 = [ǫ, pq!ℓ2]∼ δ′2 = [ǫ, pq!ℓ2 · pq?ℓ2]∼

δ3 = [ǫ, pq!ℓ1 · pr!ℓ]∼ δ′′1 = [ǫ, pq!ℓ1 · pr!ℓ · pr?ℓ]∼

δ4 = [ǫ, pq!ℓ2 · pr!ℓ]∼ δ′′2 = [ǫ, pq!ℓ2 · pr!ℓ · pr?ℓ]∼

The causality relation is given by δ1 ≤ δ3, δ1 ≤ δ′1, δ2 ≤ δ4, δ2 ≤ δ′2, δ3 ≤ δ′′1 , δ4 ≤ δ′′2 , δ1 ≤ δ′′1 ,

δ2 ≤ δ′′2 . The conflict relation is given by δ1 # δ2 and all the conflicts inherited from it. Figure 6(b) in

Section 8 illustrates this event structure.

The following example shows that, due to the fact that global types are not able to represent

concurrency explicitly, two forking traces in the tree representation of G do not necessarily give rise

to two conflicting events in ST (G ‖ M).

Example 7.19. Let G = pq!ℓ; (rs!ℓ1; pq?ℓ; rs?ℓ1⊞rs!ℓ2; pq?ℓ; rs?ℓ2). Then ST (G ‖ ∅) contains the

t-event [ǫ, pq!ℓ · pq?ℓ]∼ generated by the two forking traces in Tr+(G):

pq!ℓ · rs!ℓ1 · pq?ℓ pq!ℓ · rs!ℓ2 · pq?ℓ

Note on the other hand that if we replace r by q in G, namely if we consider the global type G′ =
pq!ℓ; (qs!ℓ1; pq?ℓ; qs?ℓ1⊞qs!ℓ2; pq?ℓ; qs?ℓ2), then ST (G′ ‖ ∅) contains δ = [ǫ, pq!ℓ · qs!ℓ1 · pq?ℓ]∼
and δ′ = [ǫ, pq!ℓ · qs!ℓ2 · pq?ℓ]∼. Here δ# δ′ because

(pq!ℓ · qs!ℓ1 · pq?ℓ)@ q = s!ℓ1 · p?ℓ # s!ℓ2 · p?ℓ = (pq!ℓ · qs!ℓ2 · pq?ℓ)@ q

So, here the two occurrences of pq?ℓ in the type are represented by two distinct events that are in

conflict.

We end this section by showing that the obtained ES is a PES.

Proposition 7.20. Let G ‖ M be an asynchronous type. Then ST (G ‖ M) is a prime event structure.

Proof: We show that ≤ and # satisfy Properties (2) and (3) of Definition 4.1. Reflexivity and tran-

sitivity of ≤ follow easily from the properties of concatenation and the properties of the two equiva-

lences in Definitions 6.2 and 7.5. As for antisymmetry note that, by Clause (1) of Definition 7.16, if

[ω, τ]∼ ≤ [ω, τ ′]∼ and [ω, τ ′]∼ ≤ [ω, τ]∼, then τ · τ1 ≈ω τ ′ and τ ′ · τ2 ≈ω τ for some τ1 and τ2.

Hence τ · τ1 · τ2 ≈ω τ , which implies τ1 = τ2 = ǫ, i.e. τ ≈ω τ ′.

The conflict between t-events inherits irreflexivity, symmetry and hereditariness from the con-

flict between p-events. In particular, for hereditariness, suppose that [ω, τ]∼ # [ω, τ ′]∼ ≤ [ω, τ ′′]∼.

Then τ ′′ ≈ω τ ′ · τ1 for some τ1 and τ ′′@ p = (τ ′ · τ1)@ p = (τ ′@ p) · (τ1 @ p)# τ @ p since

τ ′ @ p # τ @ p .

38 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

N = p[[q!ℓ1; r!ℓ⊕ q!ℓ2; r!ℓ]] ‖ q[[p?ℓ1 + p?ℓ2]] ‖ r[[p?ℓ]]

p :: q!ℓ1

p :: q!ℓ1 · r!ℓ

r :: p?ℓ

(a)

p :: q!ℓ2

p :: q!ℓ2 · r!ℓ

q :: p?ℓ1 q :: p?ℓ2

#

#

#

❄ ❄

········· ··············· ···············

·········· ··········

········ ········

·········
· ·
· ·
· ·
·

· ·
· ·
· ·
·

· · · · · · ·

· · · · · · ·

❅
❅
❅
❅❅❘

�
�

�
��✠

�
�✠

❅
❅❘

G = pq!ℓ1; pq?ℓ1; pr!ℓ; pr?ℓ ⊞ pq!ℓ2; pq?ℓ2; pr!ℓ; pr?ℓ

[ǫ, pq!ℓ1]∼

[ǫ, pq!ℓ1; pr!ℓ]∼

[ǫ, pq!ℓ1; pr!ℓ; pr?ℓ]∼ [ǫ, pq!ℓ2; pr!ℓ; pr?ℓ]∼

[ǫ, pq!ℓ2]∼

(b)

[ǫ, pq!ℓ2; pr!ℓ]∼

[ǫ, pq!ℓ1; pq?ℓ1]∼ [ǫ, pq!ℓ2; pq?ℓ2]∼

#

❄ ❄

❄ ❄

········· ·········

�
�✠

❅
❅❘

Figure 6. (a) FES of N ‖ ∅ in Example 6.13. (b) PES of G ‖ ∅ in Example 7.18.

8. Equivalence of the two event structure semantics

In the previous two sections, we defined the ES semantics of networks and types, respectively. As

expected, the FES of a network is not isomorphic to the PES of its type, unless the former is itself a

PES. As an example, consider the network FES pictured in Figure 6(a) (where the arrows represent

the flow relation) and its type PES pictured in Figure 6(b) (where the arrows represent the covering

relation of causality and inherited conflicts are not shown). The rationale is that events in the network

FES record the local history of a communication, while events in the type FES record its global causal

history, which contains more information. Indeed, while the network FES may be obtained from the

type PES simply by projecting each t-event on the player of its last communication, the inverse con-

struction is not as direct: essentially, one needs to construct the configuration domain of the network

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 39

FES, and from this, by selecting the complete prime configurations according to the classic construc-

tion of [20], retrieve the type PES. To show that this is indeed the type PES, however, we would need

to rely on well-formedness properties of the network FES, namely on semantic counterparts of the

well-formedness properties of types. We will not follow this approach here. Instead, we will com-

pare the FESs of networks and the PESs of their types at a more operational level, by looking at the

configuration domains they generate.

In the rest of this section we establish our main theorem for typed networks, namely the isomor-

phism between the configuration domain of the FES of the network and the configuration domain of

the PES of its asynchronous type. To prove the various results leading to this theorem, we will largely

use the characterisation of configurations as proving sequences, given in Proposition 4.7. Let us briefly

sketch how these results are articulated.

The proof of the isomorphism is grounded on the Subject Reduction Theorem (Theorem 3.18) and

the Session Fidelity Theorem (Theorem 3.19). These theorems state that if ⊢ N ‖ M : G ‖ M, then

N ‖ M
τ
−→ N′ ‖ M′ if and only if G ‖ M

τ
−→ G′ ‖ M′, and in both directions ⊢ N′ ‖ M′ : G′ ‖ M′.

We can then relate the ESs of networks and asynchronous types by connecting them through the traces

of their transition sequences, and by taking into account the queues by means of the mapping otr given

by Definition 6.1. This is achieved as follows.

If N ‖ M
τ
−→ and otr(M) = ω, then the function nec (Definition 8.6) applied to ω and τ gives a

proving sequence in SN (N ‖ M) (Theorem 8.10). Vice versa, if ρ1; · · · ; ρn is a proving sequence in

SN (N ‖ M), then N ‖ M
τ
−→ N′ ‖ M′, where τ = i/o(ρ1) · · · i/o(ρn) and i/o is the mapping given

in Definition 6.3(2) (Theorem 8.11).

Similarly, if G ‖ M
τ
−→ G′ ‖ M′ and otr(M) = ω, then the function tec (Definition 8.19) applied

to ω and τ gives a proving sequence in ST (G ‖ M) (Theorem 8.24). Lastly, if δ1; . . . ; δn is a proving

sequence in ST (G ‖ M), then G ‖ M
τ
−→ G′ ‖ M′, where τ = i/o(δ1) · . . . · i/o(δn) and i/o is the

mapping given in Definition 7.12(2) (Theorem 8.25).

It is then natural to split this section in three subsections: the first establishing the relationship

between network transition sequences and proving sequences of their event structure, the second doing

the same for asynchronous types and finally a third subsection in which the isomorphism between the

two configuration domains is proved relying on these relationships.

8.1. Transition sequences of networks and proving sequences of their ESs

We start by showing how network communications affect n-events in the associated ES. To this aim

we define two partial operators � and ♦, which applied to a communication β and an n-event ρ yield

another n-event ρ′ (when defined). The intuition is that ρ′ represents the event ρ as it will be after

the communication β, or as it was before the communication β, respectively. So, in particular, if

{p} = play(β) and ρ is not located at p, it will remain unchanged under both mappings � and ♦. We

shall now explain in more detail how these operators work.

The operator �, when applied to β and ρ, yields the n-event ρ′ obtained from ρ after executing the

communication β, if this event exists. We call β � ρ the residual of ρ after β. So, if β = pq!ℓ and ρ
is located at p and its p-event starts with the action q!ℓ, then the p-event of ρ′ is obtained by removing

40 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

this action, provided the result is still a p-event (this will not be the case if the p-event of ρ is a simple

action); otherwise, the operation is not defined. If β = pq?ℓ and ρ is located at q and its p-event starts

with the action p?ℓ, the p-event of ρ′ is obtained by removing p?ℓ, if possible; otherwise, the operation

is not defined.

The operator ♦, when applied to β and ρ, yields the n-event ρ′ obtained from ρ before executing

the communication β. We call β ♦ ρ the retrieval of ρ before β. So, if β = pq!ℓ and ρ is located at p,

the p-event of ρ′ is obtained by adding q!ℓ in front of the p-event of ρ. If β = pq?ℓ and ρ is located at

q, the p-event of ρ′ is obtained by adding p?ℓ in front of the p-event of ρ. We use the projection τ @ r

of a trace on a participant given in Definition 6.4(1).

Definition 8.1. (Residual and retrieval of an n-event with respect to a communication)

1. The residual of an n-event r :: η after a communication β is defined by

β � (r :: η) = r :: η′ if η = (β@ r) · η′

2. The retrieval of an n-event r :: η before a communication β is defined by

β ♦ (r :: η) = r :: (β@ r) · η

Notice that in Clause (1) of the above definition η′ 6= ǫ, see Definition 5.1. So β � (r :: η) is not

defined if {r} = play(β) and either η is just an atomic action or β@ r is not the first action of η.

Observe also that the operators � and ♦ preserve the communication of n-events, namely

i/o(β � ρ) = i/o(β ♦ ρ) = i/o(ρ)

Residual and retrieval are inverse of each other.

Lemma 8.2. 1. If β � ρ is defined, then β ♦ (β � ρ) = ρ.

2. β � (β ♦ ρ) = ρ.

The residual and retrieval operators on n-events are mirrored by (partial) mappings on o-traces, which

it is handy to define explicitly.

Definition 8.3. The partial mappings β ◮ ω and β ⊲ ω are defined by:

1. pq!ℓ ◮ ω = ω · pq!ℓ and pq?ℓ ◮ ω = ω′ if ω ∼= pq!ℓ ·ω′;

2. pq!ℓ ⊲ ω = ω′ if ω ∼= ω′ · pq!ℓ and pq?ℓ ⊲ ω = pq!ℓ ·ω.

It is easy to verify that if β ◮ ω is defined, then β ⊲ β ◮ ω ∼= ω, and if β ⊲ ω is defined, then

β ◮ β ⊲ ω ∼= ω.

We can show that the operators ◮ and ⊲ applied to a communication β modify the queues in the

same way as the (forward or backward) execution of β would do in the underlying network.

Lemma 8.4. If N ‖ M
β
−→ N′ ‖ M′, then β ◮ otr(M) ∼= otr(M′) and β ⊲ otr(M′) ∼= otr(M).

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 41

Proof: From N ‖ M
β
−→ N′ ‖ M′ we get M′ ≡ M · 〈p, ℓ, q〉 if β = pq!ℓ and M ≡ 〈p, ℓ, q〉 · M′

if β = pq?ℓ. In the first case, we have otr(M′) ∼= otr(M) · pq!ℓ ∼= β ◮ otr(M), whence also

β ⊲ otr(M′) ∼= β ⊲β ◮ otr(M) ∼= otr(M). In the second case, we have otr(M) ∼= pq!ℓ · otr(M′) ∼=
β ⊲ otr(M′), whence also β ◮ otr(M) ∼= β ◮ β ⊲ otr(M′) ∼= otr(M′).

The residual and retrieval operators preserve the ω-flow and conflict relations. For the flow relation

the parametrising o-traces are obtained by the previously defined mappings.

Lemma 8.5. 1. If ρ ≺ω ρ′ and β � ρ and β � ρ′ and β ◮ ω are defined,

then β � ρ ≺β◮ω β � ρ′.

2. If ρ ≺ω ρ′ and β ⊲ ω is defined, then β ♦ ρ ≺β⊲ω β ♦ ρ′.

3. If ρ# ρ′ and both β � ρ and β � ρ′ are defined, then β � ρ#β � ρ′.

4. If ρ# ρ′, then β ♦ ρ#β ♦ ρ′.

We now define the total function nec, which yields sequences of n-events starting from a trace.

The definition makes use of the projection given in Definition 6.4(1).

Definition 8.6. (n-events from traces)

We define the sequence of n-events corresponding to the trace τ by

nec(τ) = ρ1; · · · ; ρn
where

ρi = pi :: ηi if {pi} = play(τ [i]) and ηi = τ [1 ... i] @ pi

It is immediate to see that, if τ = pq!ℓ or τ = pq?ℓ, then nec(τ) consists only of the n-event p :: q!ℓ
or of the n-event q :: p?ℓ, respectively, because τ [1 ... 1] = τ [1].

We show now that two n-events appearing in the sequence generated from a given trace τ cannot be

in conflict. Moreover, from nec(τ) we can recover τ by means of the function i/o of Definition 6.3(2).

Lemma 8.7. Let nec(τ) = ρ1; · · · ; ρn.

1. If 1 ≤ k, l ≤ n, then ¬(ρk # ρl);

2. τ [i] = i/o(ρi) for all i, 1 ≤ i ≤ n.

Proof: (1) Let ρi = pi :: ηi for all i, 1 ≤ i ≤ n. If pk 6= pl, then ρk and ρl cannot be in conflict. If

pk = pl, then by Definition 8.6 either ηk < ηl or ηk < ηl. So in all cases we have ¬(ρk # ρl).

(2) Immediate from Definition 8.6.

The following lemma relates the operators � and ♦ with the mapping nec. This will be handy for the

proof of Theorem 8.10.

Lemma 8.8. 1. Let τ = β · τ ′. If nec(τ) = ρ1; · · · ; ρn and nec(τ ′) = ρ′2; · · · ; ρ
′
n, then β � ρi =

ρ′i for all i, 2 ≤ i ≤ n.

2. Let τ = β · τ ′. If nec(τ) = ρ1; · · · ; ρn and nec(τ ′) = ρ′2; · · · ; ρ
′
n, then β ♦ ρ′i = ρi for all i,

2 ≤ i ≤ n.

42 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

Proof: (1) Note that τ [i] = τ ′[i − 1] for all i, 2 ≤ i ≤ n. Then we can assume ρi = pi :: ηi for

all i, 1 ≤ i ≤ n and ρ′i = pi :: η′i for all i, 2 ≤ i ≤ n. By Definition 8.6 ηi = τ [1 ... i] @ pi =
(β · τ ′[1 ... i − 1])@ pi for all i, 1 ≤ i ≤ n and η′i = τ ′[1 ... i − 1]@ pi for all i, 2 ≤ i ≤ n. Then we

get β � ρi = β � (pi :: β@ pi · η
′
i) = pi :: η

′
i = ρ′i for all i, 2 ≤ i ≤ n.

(2) From Point (1) and Lemma 8.2(1).

We end this subsection with the two theorems for networks discussed at the beginning of the whole

section. We first show that two n-events which ω-justify the same n-event of the same network must

be in conflict.

Lemma 8.9. Let ρ, ρ1, ρ2 ∈ NE(N ‖ M), ω = otr(M) and ρi ≺ω ρ for i ∈ {1, 2}, where each

ρi ≺
ω ρ is derived by Clause (1b) of Definition 6.6. Then ρ1 # ρ2.

Proof: Clause (1b) of Definition 6.6 prescribes ρ = q :: ζ · p?ℓ, ρi = p :: ζi · q!ℓ and

(*) (ω@ p · ζi)�q w⋊⋉v (ω@ q · ζ ′i)�p
(**) (ζ · p?ℓ)�p w (ζ ′i · p?ℓ ·χi)�p

for some ζ ′i and χi, where i ∈ {1, 2}. Let n be the number of occurrences of p?ℓ in ζ , ni be the number

of occurrences of q!ℓ in ζi and n′
i be the number of occurrences of p?ℓ in ζ ′i. From (*) we get ni = n′

i

and from (**) we get n = n′
i for i ∈ {1, 2}. Then ni = nj for {i, j} = {1, 2}. Assume ad absurdum

ρi ≺
ω ρj for some i, j ∈ {1, 2}, i 6= j. Then ρi ≺

ω ρj is derived by Clause (1a) of Definition 6.6,

thus ζi · q!ℓ ⊏ ζj · q!ℓ, that is ζi · q!ℓ ⊑ ζj . This means that ζj contains at least one more occurrence of

q!ℓ than ζi, namely ni < nj , which is a contradiction.

Theorem 8.10. If N ‖ M
τ
−→ N′ ‖ M′, then nec(otr(M), τ) is a proving sequence in the event

structure SN (N ‖ M).

Proof: The proof is by induction on τ . Let ω = otr(M).

Case τ = β. Assume first that β = pq!ℓ. From N ‖ M
β
−→ N′ ‖ M′ we get p[[

⊕

i∈I q!ℓi;Pi]] ∈ N

with ℓ = ℓk for some k ∈ I . Thus p[[Pk]] ∈ N′ and M′ ≡ M · 〈p, ℓ, q〉. By Definition 5.3(1)

q!ℓ ∈ PE(
⊕

i∈I q!ℓi;Pi). By Definition 6.10(1) p :: q!ℓ ∈ NE(N ‖ M). By Definition 8.6 nec(β) =
ρ1 = p :: q!ℓ. Clearly, ρ1 is a proving sequence in SN (N ‖ M), since ρ ≺ω ρ1 would imply ρ = p :: η
for some η such that η < q!ℓ, which is not possible.

Assume now that β = pq?ℓ. In this case we get q[[Σi∈Ip?ℓi;Qi]] ∈ N with ℓ = ℓk for some

k ∈ I . Thus q[[Qk]] ∈ N′ and M ≡ 〈p, ℓ, q〉 · M′. With a similar reasoning as in the previous case,

we obtain nec(β) = ρ1 = q :: p?ℓ. Since ω ∼= pq!ℓ ·ω′, where ω′ = otr(M′), it is immediate to

see that ρ1 is ω-queue-justified. As in the previous case, there is no event ρ in NE(N ‖ M) such that

ρ ≺ω ρ1, and thus ρ1 is a proving sequence in SN (N ‖ M).

Case τ = β · τ ′ with τ ′ 6= ǫ. In this case, from N ‖ M
τ
−→ N′ ‖ M′ we get

N ‖ M
β
−→ N′′ ‖ M′′ τ ′

−→ N′ ‖ M′

for some N′′,M′′. Let ω′ = otr(M′′). By Lemma 8.4 ω = β ⊲ ω′. Let nec(τ) = ρ1; · · · ; ρn and

nec(τ ′)=ρ′2; · · · ; ρ
′
n. By induction nec(τ ′) is a proving sequence in SN (N′′ ‖ M′′). By Lemma 8.8(2)

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 43

β ♦ ρ′j = ρj for all j, 2 ≤ j ≤ n. We show that ρj ∈ NE(N ‖ M) for all j, 2 ≤ j ≤ n. Let ad

absurdum k (2 ≤ k ≤ n) be the minimum index such that ρk 6∈ NE(N ‖ M). By Fact 6.9, ρk should

be an input which is not ω-queue justified and β ♦ ρ′ should be undefined for all ρ′ ω′-justifying ρ′k.

Since ρ′k ∈ NE(N′′ ‖ M′′), either ρ′k is ω′- queue-justified or ρ′k is ω′-justified by some output, which

must be an event ρ′l for some l < k, 2 ≤ l ≤ n given that ρ′2; · · · ; ρ
′
n is a proving sequence. In the

first case ρk is ω- queue-justified. In the second case, we get β ♦ ρ′l ∈ NE(N ‖ M) since l < k.

So, in both cases we reach a contradiction. Finally, from the proof of the base case we know that

ρ1 = p :: β@ p ∈ NE(N ‖ M) where {p} = play(β).

What is left to show is that ρ1; · · · ; ρn is a proving sequence in SN (N ‖ M). By Lemma 8.7(1)

no two events in this sequence can be in conflict. Let ρ ∈ NE(N ‖ M) and ρ ≺ω ρh for some h,

1 ≤ h ≤ n. As argued in the base case, this implies h > 1. We distinguish two cases, depending on

whether β � ρ is defined or not.

If β � ρ is defined, let ρ′ = β � ρ.

If ρ′ ∈ NE(N′′ ‖ M′′), then by Lemma 8.5(1) we have ρ′ ≺ω′

β � ρh. By Lemma 8.8(1) β � ρj = ρ′j
for all j, 2 ≤ j ≤ n. Thus we have ρ′ ≺ω′

ρ′h. Since nec(τ ′) is a proving sequence in SN (N′′ ‖ M′′),
by Definition 4.6 there is l < h such that either ρ′ = ρ′l or ρ′# ρ′l ≺ ρ′h. In the first case we have

ρ = β ♦ ρ′ = β ♦ ρ′l = ρl. In the second case, from ρ′# ρ′l we deduce ρ# ρl by Lemma 8.5(4), and

from ρ′l ≺
ω′

ρ′h we deduce ρl ≺
ω ρh by Lemma 8.5(2).

If instead ρ′ 6∈ NE(N′′ ‖ M′′), we distinguish two cases according to whether ρ ≺ω ρh is deduced

by Clause (1a) or by Clause (1b) of Definition 6.6. If ρ ≺ω ρh by Clause (1a) of Definition 6.6, then

ρ′ ≺ω′

ρ′h again by Clause (1a) of Definition 6.6 as proved in Lemma 8.5(1). Then ρ′ 6∈ NE(N′′ ‖ M′′)
implies ρ′h 6∈ NE(N′′ ‖ M′′) by narrowing, so this case is impossible. If ρ ≺ω ρh by Clause (1b) of

Definition 6.6, then ρh is an input and ρ ω-justifies ρh. Then also ρ′h is an input and by definition of

proving sequence there is ρ′k for some k, 2 ≤ k ≤ n which ω′-justifies ρ′h. Then ρk ω-justifies ρh by

Lemma 8.5(2). Since ρ and ρk both ω-justify ρh we get ρ# ρk by Lemma 8.9.

If β � ρ is undefined, then by Definition 8.1(1) either ρ = ρ1 or ρ = p :: π · ζ with π 6= β@ p ,

which implies ρ# ρ1. In the first case we are done. So, suppose ρ# ρ1. Let π′ = β@ p . Since ρ
and ρ1 are n-events in NE(N ‖ M), we may assume π = q!ℓ and π′ = q!ℓ′ and therefore β = pq!ℓ′.
Indeed, we know that play(β) = {p}, and β cannot be an input qp?ℓ′ since in this case there should

be ρ0 = p :: q?ℓ ∈ NE(N ‖ M) by narrowing, and the two input n-events ρ0 and ρ1 = p :: q?ℓ′ could

not be both ω-queue-justified. Note that ρ cannot be a local cause of ρh, i.e ρ ≺ω ρh cannot hold by

Clause (1a) of Definition 6.6, because ρh = p :: π · ζ · η would imply ρh# ρ1, contradicting what

said above. Therefore ρ is a cross-cause of ρh, i.e ρ ≺ω ρh holds by Clause (1b) of Definition 6.6, so

ρ = p :: π · ζ ′ · r!ℓ′′ and ρh = r :: ζ ′′ · p?ℓ′′. We know that ρh = β ♦ ρ′h. By Definition 8.1(2) we

have ρ′h = r :: ζ ′′ · p?ℓ′′, because r is the receiver of a message sent by p and thus by construction

r 6= p. Since ρ′h is an input n-event in NE(N′′ ‖ M′′), it must either be justified by the queue ω · β
or have a cross-cause in NE(N′′ ‖ M′′). Since ρh is not ω-queue-justified (because ρ ≺ω ρh), the

only way for ρ′h to be ω · β-queue-justified would be that pr!ℓ′′ = β, that is r = q and ℓ′′ = ℓ′, and

that (∗) (ω@ p) � q w ⋊⋉v ζ0 � p and (ζ ′′ · p?ℓ′) � p w (ζ0 · p?ℓ
′ · χ) � p for some ζ0 and χ, see

Definition 6.7. This means that ζ0 �p is the subsequence of ζ ′′ �p obtained by keeping all and only its

inputs. Now, if ρ′h = q :: ζ ′′ ·p?ℓ′, then ρh = q :: ζ ′′ ·p?ℓ′. Since ρ = p :: q!ℓ·ζ ′ ·q!ℓ′ is a cross-cause of

44 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

ρh, we have (∗∗) (ω@ p · q!ℓ ·ζ ′)�q w⋊⋉v (ω@ q · ζ1 · χ
′)�p and (ζ ′′ ·p?ℓ′)�p w (ζ1 ·p?ℓ

′ ·χ′)�p
for some ζ1 and χ′, see Clause (1b) of Definition 6.6. It follows that the inputs in ζ1 �p coincide with

the inputs in ζ ′′ � p and thus with those in ζ0 � p . From (*) we know that all inputs in ζ0 � p match

some output in (ω@ p) � q . Therefore no input in (ω@ q · ζ1 · χ
′) � p can match the output q!ℓ in

(ω@ p · q!ℓ · ζ ′) � q , contradicting (**). Hence ρ′h must have a cross-cause in NE(N′′ ‖ M′′). Let

ρ′ be such a cross-cause. Then ρ′ = p :: ζ2 · r!ℓ
′′ for some ζ2. Since nec(τ ′) is a proving sequence

in SN (N′′ ‖ M′′), by Definition 4.6 there is l < h such that either ρ′ = ρ′l or ρ′ # ρ′l ≺ ρ′h. In the

first case β ♦ ρ′ = β ♦ ρ′l = ρl ≺ ρh, and (β ♦ ρ′)# ρ because β ♦ ρ′ = p :: π′ · ζ2 · r!ℓ
′′. In the

second case, let ρ′l = p :: η for some η. From ρ′ # ρ′l ≺ ρ′h we derive β ♦ ρ′ #β ♦ ρ′l ≺ β ♦ ρ′h by

Lemma 8.5(4) and (2). This implies ρl = β ♦ ρ′l = p :: π′ · η. Hence ρ# ρl ≺ ρh.

Theorem 8.11. If ρ1; · · · ; ρn is a proving sequence in SN (N ‖ M), then N ‖ M
τ
−→ N′ ‖ M′ where

τ = i/o(ρ1) · · · i/o(ρn).

Proof: The proof is by induction on the length n of the proving sequence. Let ω = otr(M).

Case n = 1. Let i/o(ρ1) = β where β = pq?ℓ. The proof for β = pq!ℓ is similar and simpler.

By Definition 6.10(1) ρ1 = q :: ζ · p?ℓ. Note that it must be ζ = ǫ, since otherwise we would have

q :: ζ ∈ NE(N ‖ M) by narrowing, where q :: ζ ≺ω ρ1 by Definition 6.6(1)(a), contradicting

the hypothesis that ρ1 is minimal. Moreover, ρ1 cannot be ω-justified by an output n-event ρ ∈
NE(N ‖ M), because this would imply ρ ≺ω ρ1, contradicting again the minimality of ρ1. Hence,

by Definition 6.10(1) ρ1 = q :: p?ℓ must be ω-queue-justified, which means that ω ∼= pq!ℓ ·ω′.

Thus M ≡ 〈p, ℓ, q〉 · M′, where otr(M′) = ω′. By Definition 5.3(1) and Definition 6.10(1) we

have N ≡ q[[Σi∈Ip?ℓi;Qi]] ‖ N0 where ℓk = ℓ for some k ∈ I . We may then conclude that

N ‖ M
β
−→ q[[Qk]] ‖ N0 ‖ M′ = N′ ‖ M′.

Case n > 1. Let i/o(ρ1) = β and N ‖ M
β
−→ N′′ ‖ M′′ be the corresponding transition as obtained

from the base case. Let ω′ = otr(M′′). By Lemma 8.4 ω′ = β ◮ ω. We show that β � ρj is defined

for all j, 2 ≤ j ≤ n. If β � ρk were undefined for some k, 2 ≤ k ≤ n, then by Definition 8.1(1)

either ρk = ρ1 or ρk = p :: π · ζ where {p} = play(β) and π 6= β@ p , which implies ρk # ρ1. So

both cases are impossible. Thus we may define ρ′j = β � ρj for all j, 2 ≤ j ≤ n. We show that

ρ′j ∈ NE(N′′ ‖ M′′) for all j, 2 ≤ j ≤ n. Let ad absurdum k (2 ≤ k ≤ n) be the minimum index

such that ρ′k 6∈ NE(N′′ ‖ M′′). By Fact 6.9, ρ′k should be an input which is not ω′-queue justified and

β � ρ′ should be undefined for all ρ′ ω-justifying ρ′k. Since ρk ∈ NE(N ‖ M), either ρk is ω-queue

justified or ρk is ω-justified by some output, which must be an event ρl for some l < k, 2 ≤ l ≤ n
given that ρ1, . . . , ρn is a proving sequence. In the first case ρ′k is ω′-queue justified. In the second

case we get β � ρl ∈ NE(N′′ ‖ M′′) since l < k. So in both cases we reach a contradiction.

We show that ρ′2; · · · ; ρ
′
n is a proving sequence in SN (N′′ ‖ M′′). By Lemma 8.2(1) ρj = β ♦ ρ′j

for all j, 2 ≤ j ≤ n. Then by Lemma 8.5(4) no two n-events in the sequence ρ′2; · · · ; ρ
′
n can be in

conflict.

Let ρ ∈ NE(N′′ ‖ M′′) and ρ ≺ω′

ρ′h for some h, 2 ≤ h ≤ n. Let ρ′ = β ♦ ρ. By Lemma 8.5(2)

β ♦ ρ ≺ω β ♦ ρ′h = ρh. Therefore ρ′ ≺ω ρh. If ρ′ ∈ NE(N ‖ M), since ρ1; · · · ; ρn is a proving

sequence in SN (N ‖ M), by Definition 4.6 there is l < h such that either ρ′ = ρl or ρ′ # ρl ≺ ρh. In

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 45

the first case, by Lemma 8.2(2) we get ρ = β � ρ′ = β � ρl = ρ′l. In the second case, by Lemma 8.5(1)

and (3) we get ρ# ρ′l ≺
ω ρ′h. If ρ′ 6∈ NE(N ‖ M) we distinguish two cases according to whether

ρ ≺ω′

ρ′h is deduced by Clause (1a) or Clause (1b) of Definition 6.6. If ρ ≺ω′

ρ′h by Clause (1a) of

Definition 6.6, then ρ′ ≺ω ρh again by Clause (1a) of Definition 6.6 as proved in Lemma 8.5(1). Then

ρ 6∈ NE(N ‖ M) implies ρh 6∈ NE(N ‖ M) by narrowing, so this case is impossible. If ρ ≺ω′

ρ′h by

Clause (1b) of Definition 6.6, then ρ′h is an input and ρ ω′-justifies ρ′h. Then also ρh is an input and by

definition of proving sequence there is ρk for some k < h, 2 ≤ k ≤ n which ω-justifies ρh. Then ρ′k
ω′-justifies ρ′h by Lemma 8.5(2). Since ρ and ρ′k both ω′-justify ρ′h we get ρ# ρ′k by Lemma 8.9.

We have shown that ρ′2; · · · ; ρ
′
n is a proving sequence in the event structure SN (N′′ ‖ M′′). By

induction N′′ ‖ M′′ τ ′
−→ N′ ‖ M′ where τ ′ = i/o(ρ′2) · · · i/o(ρ

′
n). Since i/o(ρ′j) = i/o(ρj) for all

j, 2 ≤ j ≤ n, we have τ = β · τ ′. Hence N ‖ M
β
−→ N′′ ‖ M′′ τ ′

−→ N′ ‖ M′ is the required transition

sequence.

Remark 8.12. We can show that if N ‖ M
β
−→ N′ ‖ M′ and ρ ∈ NE(N′ ‖ M′), then we get

β ♦ ρ ∈ NE(N ‖ M). The use of this property would simplify the proof of Theorem 8.11, since we

would avoid to consider the case β ♦ ρ 6∈ NE(N ‖ M). Instead, the fact that N ‖ M
β
−→ N′ ‖ M′ and

ρ ∈ NE(N ‖ M) and β � ρ is defined does not imply β � ρ ∈ NE(N′ ‖ M′). An example is

p[[q?ℓ]] ‖ q[[r!ℓ1; p!ℓ⊕ r!ℓ2]] ‖ r[[q?ℓ1 + q?ℓ2]] ‖ ∅
qr!ℓ2
−−−→

p[[q?ℓ]] ‖ q[[0]] ‖ r[[q?ℓ1 + q?ℓ2]] ‖ 〈q, ℓ2, r〉

with β = qr!ℓ2 and ρ = p :: q?ℓ. Our choice is justified both by the shortening of the whole proofs

and by the uniformity between the proofs of Theorems 8.10 and 8.11.

8.2. Transition sequences of asynchronous types and proving sequences of their ESs

We introduce two operators • and ◦ for t-events, which play the same role as the operators � and ♦

for n-events. In defining these operators we must make sure that, in the resulting t-event [ω′, τ ′]∼, the

trace τ ′ is ω′-pointed, see Definition 7.12(1) and (2).

Let us start with the formal definition, and then we shall explain it in detail.

Definition 8.13. (Residual and retrieval of a t-event with respect to a communication)

1. The residual of a t-event [ω, τ]∼ after a communication β is defined by:

β • [ω, τ]∼ =

{

[β ◮ ω, τ ′]∼ if τ ≈ω β · τ ′ with τ ′ 6= ǫ

[β ◮ ω, τ]∼ if play(β) 6⊆ play(τ)

2. The retrieval of a t-event [ω, τ]∼ before a communication β is defined by:

β ◦ [ω, τ]∼ =

{

[β ⊲ ω, β · τ]∼ if β · τ is β ⊲ ω-pointed

[β ⊲ ω, τ]∼ if play(β) 6⊆ play(τ)

Note that the operators • and ◦ preserve the communication of t-events, namely i/o(β • δ) =
i/o(β ◦ δ) = i/o(δ), and transform the o-trace using the operators ◮ and ⊲, see Definition 8.3. We

now explain the transformation of the trace τ .

46 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

Consider first the case of β • [ω, τ]∼. If the communication β can be brought to the head of the trace

τ using the equivalence ≈ω, we obtain the residual of [ω, τ]∼ after β by removing the message β
from the head of the trace, provided this does not result in the empty trace (otherwise, the residual is

undefined). Then, letting ω′ = β ◮ ω, it is easy to see that the trace τ ′ is ω′-pointed, since it is a

suffix of τ = β · τ ′ which is ω-pointed (see Lemma 7.9). On the other hand, if play(β) 6⊆ play(τ),
then the residual of [ω, τ]∼ after β is simply obtained by leaving the trace unchanged. In this case,

letting again ω′ = β ◮ ω, the ω′-pointedness of τ follows immediately from its ω-pointedness. For

instance, consider the t-event [pr!ℓ′, pr?ℓ′]∼ where ω = pr!ℓ′ and τ = pr?ℓ′. Observe that p occurs in

τ , but p /∈ play(τ). Then we have pq!ℓ • [pr!ℓ′, pr?ℓ′]∼ = [pr!ℓ′ · pq!ℓ, pr?ℓ′]∼.

Next, consider the definition of β ◦ [ω, τ]∼. The resulting trace will be the prefixing of τ by

β if it is β ⊲ ω-pointed. Otherwise the resulting trace is τ if play(β) is not a player of τ . For in-

stance, for the t-event [pq!ℓ, pq?ℓ]∼, where ω = pq!ℓ and τ = pq?ℓ, we have p /∈ play(τ), but

1 ∝ pq!ℓ · pq?ℓ 2, thus pq!ℓ ◦ [pq!ℓ, pq?ℓ]∼ = [ǫ, pq!ℓ · pq?ℓ]∼. On the other hand, for the t-event

[pq!ℓ, rs!ℓ′ · rs?ℓ′]∼, where ω=pq!ℓ and τ= rs!ℓ′ · rs?ℓ′, we have p /∈play(τ) and ¬(1 ∝ pq!ℓ · rs!ℓ′ · rs?ℓ′2)
and ¬(1 ∝ pq!ℓ · rs!ℓ′ · rs?ℓ′3), so pq!ℓ ◦ [pq!ℓ, rs!ℓ′ · rs?ℓ′]∼ = [ǫ, rs!ℓ′ · rs?ℓ′]∼.

Lemma 8.15 is the analogous of Lemma 8.2 as regards the first two statements. The remaining

two statements establish some commutativity properties of the mappings • and ◦ when applied to two

communications with different players. These properties rely on the corresponding commutativity

properties for the mappings ◮ and ⊲ on o-traces, given in Lemma 8.14. Note that these properties

are needed for • and ◦ whereas they were not needed for � and ♦, because the Rules [ICOMM-OUT]
and [ICOMM-IN] of Figure 5 allow transitions to occur inside asynchronous types, whereas the LTS

for networks only allows transitions for top-level communications. In fact Statements (3) and (4) of

Lemma 8.15 are used in the proof of Lemma 8.18.

Lemma 8.14. Let play(β1) ∩ play(β2) = ∅.

1. If both β2 ◮ ω and β2 ◮ (β1 ⊲ ω) are defined, then β1 ⊲ (β2 ◮ ω) ∼= β2 ◮ (β1 ⊲ ω).

2. If both β1⊲ω and β2⊲ω are defined, then β1⊲(β2 ⊲ ω) is defined and β1⊲(β2 ⊲ ω) ∼= β2⊲(β1 ⊲ ω).

Lemma 8.15. 1. If β • δ is defined, then β ◦ (β • δ) = δ.

2. If β ◦ δ is defined, then β • (β ◦ δ) = δ.

3. If both β2 • δ, β2 • (β1 ◦ δ) are defined, and play(β1) ∩ play(β2) = ∅, then β1 ◦ (β2 • δ) =
β2 • (β1 ◦ δ).

4. If both β1 ◦ δ, β2 ◦ δ are defined, and play(β1)∩ play(β2) = ∅, then β1 ◦ (β2 ◦ δ) is defined and

β1 ◦ (β2 ◦ δ) = β2 ◦ (β1 ◦ δ).

The next lemma shows that the residual and retrieval operators on t-events preserve causality and that

the retrieval operator preserves conflict. It is the analogous of Lemma 8.5, but without the statement

corresponding to Lemma 8.5(3), which is true but not required for later results. The difference is

due to the fact that ESs of networks are FESs, while those of asynchronous types are PESs. This

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 47

appears clearly when looking at the proof of Theorem 8.11 which uses Lemma 8.5(3), while that of

Theorem 8.25 does not need the corresponding property.

Lemma 8.16. 1. If δ1 < δ2 and both β • δ1, β • δ2 are defined, then β • δ1 < β • δ2.

2. If δ1 < δ2 and β ◦ δ1 is defined, then β ◦ δ1 < β ◦ δ2.

3. If δ1 # δ2 and both β ◦ δ1, β ◦ δ2 are defined, then β ◦ δ1 #β ◦ δ2.

We show now that the operator • starting from t-events of G ‖ M builds t-events of asynchronous

types whose global types are subtypes of G composed in parallel with the queues given by the balanc-

ing of Figure 3. Symmetrically, ◦ builds t-events of an asynchronous type G ‖ M from t-events of the

immediate subtypes of G composed in parallel with the queues given by the balancing of Figure 3.

Lemma 8.17. 1. If δ ∈ TE(⊞i∈Ipq!ℓi;Gi ‖ M) and pq!ℓk • δ is defined, then

pq!ℓk • δ ∈ TE(Gk ‖ M · 〈p, ℓk, q〉) where k ∈ I .

2. If δ ∈ TE(pq?ℓ;G ‖ 〈p, ℓ, q〉 ·M) and pq?ℓ • δ is defined, then pq?ℓ • δ ∈ TE(G ‖ M).

3. If δ ∈ TE(G ‖ M · 〈p, ℓ, q〉), then

pq!ℓ ◦ δ ∈ TE(⊞i∈Ipq!ℓi;Gi ‖ M) where ℓ = ℓk and G = Gk for some k ∈ I .

4. If δ ∈ TE(G ‖ M), then pq?ℓ ◦ δ ∈ TE(pq?ℓ;G ‖ 〈p, ℓ, q〉 ·M).

The operators • and ◦ modify t-events in the same way as the transitions in the LTS would do. This is

formalised and proved in the following lemma. Notice that ♦ enjoys this property, while � does not,

see Remark 8.12.

Lemma 8.18. Let G ‖ M
β
−→ G′ ‖ M′. Then otr(M) ∼= β ⊲ otr(M′) and

1. if δ ∈ TE(G ‖ M) and β • δ is defined, then β • δ ∈ TE(G′ ‖ M′);

2. if δ ∈ TE(G′ ‖ M′), then β ◦ δ ∈ TE(G ‖ M).

The function tec, which builds a sequence of t-events corresponding to a pair (ω, τ), is simply defined

applying the function ev to ω and to the prefixes of τ .

Definition 8.19. (t-events from pairs of o-traces and traces)

Let τ 6= ǫ be ω-well formed. We define the sequence of global events corresponding to ω and τ by

tec(ω, τ) = δ1; · · · ; δn

where δi = ev(ω, τ [1 ... i]) for all i, 1 ≤ i ≤ n.

The following lemma establishes the soundness of the above definition.

Lemma 8.20. If τ 6= ǫ is ω-well formed, then:

1. τ [1 ... i] is ω-well formed for all i, 1 ≤ i ≤ n;

48 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

2. ev(ω, τ [1 ... i]) is defined and i/o(ev(ω, τ [1 ... i])) = τ [i] for all i, 1 ≤ i ≤ n.

Proof: The proof of (1) is immediate since by Definitions 7.1 and 7.2 every prefix of an ω-well formed

trace is ω-well formed. Fact (2) follows from Fact (1), Definition 7.14 and Lemma 7.15.

As for the function nec (Lemma 8.7), the t-events in a sequence generated by the function tec

are not in conflict, and we can retrieve τ from tec(ω, τ) by using the function i/o given in Defini-

tion 7.12(2).

Lemma 8.21. Let τ 6= ǫ be ω-well formed and tec(ω, τ) = δ1; · · · ; δn.

1. If 1 ≤ k, l ≤ n, then ¬(δk # δl);

2. τ [i] = i/o(δi) for all i, 1 ≤ i ≤ n.

The following lemma, together with Lemma 8.20, ensures that tec(ω, τ) is defined when ω = otr(M)
and G ‖ M

τ
−→ G′ ‖ M′.

Lemma 8.22. If G ‖ M
τ
−→ G′ ‖ M′ and ω = otr(M), then τ is ω-well formed.

The following lemma mirrors Lemma 8.8.

Lemma 8.23. 1. Let τ = β · τ ′ and ω′ = β ◮ ω. If tec(ω, τ) = δ1; · · · ; δn and tec(ω′, τ ′) =
δ′2; · · · ; δ

′
n, then β • δi = δ′i for all i, 2 ≤ i ≤ n.

2. Let τ = β · τ ′ and ω = β ⊲ ω′. If tec(ω, τ) = δ1; · · · ; δn and tec(ω′, τ ′) = δ′2; · · · ; δ
′
n, then

β ◦ δ′i = δi for all i, 2 ≤ i ≤ n.

We end this subsection with the two theorems for asynchronous types discussed at the beginning of

the whole section, which relate the transition sequences of an asynchronous type with the proving

sequences of the associated PES.

Theorem 8.24. If G ‖ M
τ
−→ G′ ‖ M′, then tec(otr(M), τ) is a proving sequence in the event

structure ST (G ‖ M).

Proof: Let ω = otr(M). By Lemma 8.22 τ is ω-well formed. Then by Lemma 8.20 tec(ω, τ) is

defined and by Definition 8.19 tec(ω, τ) = δ1; · · · ; δn, where δi = ev(ω, τ [1 ... i]) for all i, 1 ≤ i ≤ n.

We proceed by induction on τ .

Case τ = β. In this case, tec(ω, β) = δ1 = ev(ω, β). By Definition 7.14 we have ev(ω, β) =
[ω, β ⌈ω ǫ]∼. By Definition 7.13 [ω, β ⌈ω ǫ]∼ = [ω, β]∼ since β is ω-well formed.

We use now a further induction on the inference of the transition G ‖ M
β
−→ G′ ‖ M′, see Figure 5.

Base Subcases. The rule applied is [EXT-OUT] or [EXT-IN]. Therefore β ∈ Tr+(G). By Defini-

tion 7.17(1) this implies ev(ω, β) ∈ TE(G ‖ M).

Inductive Subcases. If the last applied Rule is [ICOMM-OUT], then G = ⊞i∈Ipq!ℓi;Gi and G′ =

⊞i∈Ipq!ℓi;G
′
i and Gi ‖ M · 〈p, ℓi, q〉

β
−→ G′

i ‖ M′ · 〈p, ℓi, q〉 for all i ∈ I and p 6∈ play(β).

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 49

We have otr(M·〈p, ℓi, q〉) = ω · pq!ℓi. By induction we get tec(ω · pq!ℓi, β) = δ′i = [ω · pq!ℓi, β]∼ ∈
TE(Gi ‖ M · 〈p, ℓi, q〉). By Lemma 8.17(3) pq!ℓi ◦ δ′i ∈ TE(G ‖ M). Now, from p /∈ play(β) it

follows that pq!ℓi is not a local cause of β, namely ¬(req(1, pq!ℓi ·β)). From Lemma 8.22 β is

ω-well-formed. So, if β is an input, its matched output must be in ω. Hence pq!ℓi is not a cross-cause

of β, namely ¬(1+|ω| ∝ω · pq!ℓi ·β 2+|ω|). Therefore pq!ℓi ·β is not ω-pointed. By Definition 8.13(2)

we get pq!ℓi ◦δ
′
i = [ω, β]∼ = δ1. We conclude again that δ1 ∈ TE(G ‖ M) and clearly δ1 is a proving

sequence in ST (G ‖ M) since β has no proper prefix.

If the last applied Rule is [ICOMM-IN] the proof is similar.

Case τ = β · τ ′ with τ ′ 6= ǫ. From G ‖ M
τ
−→ G′ ‖ M′ we get G ‖ M

β
−→ G′′ ‖ M′′ τ ′

−→ G′ ‖ M′

for some G′′, M′′. Let ω′ = otr(M′′). By Lemma 8.22 τ ′ is ω′-well formed. Thus tec(ω′, τ ′) is

defined by Lemma 8.20. Let tec(ω′, τ ′) = δ′2; · · · ; δ
′
n. By induction tec(ω′, τ ′) is a proving sequence

in ST (G′′ ‖ M′′). By Lemma 8.23(2) δj = β ◦ δ′j for all j, 2 ≤ j ≤ n. By Lemma 8.18(2)

this implies δj ∈ TE(G ‖ M) for all j, 2 ≤ j ≤ n. From the proof of the base case we know

that δ1 = [ω, β]∼ ∈ TE(G ‖ M). What is left to show is that tec(ω, τ) is a proving sequence in

ST (G ‖ M). By Lemma 8.21(1) no two events in this sequence can be in conflict.

Let δ ∈ TE(G ‖ M) and δ < δk for some k, 1 ≤ k ≤ n. Note that this implies j > 1.

If β • δ is undefined, then by Definition 8.13(1) either δ = δ1 or δ = [ω, τ]∼ with τ 6≈ω β · τ ′

and play(β) ⊆ play(τ). In the first case we are done. In the second case τ @ play(β) #β@ play(β) ,

which implies δ1 # δ. Since δ < δk and conflict is hereditary, it follows that δ1 # δk, which contradicts

what said above. Hence this second case is not possible. If β • δ is defined, by Lemma 8.18(1)

β • δ ∈ TE(G′′ ‖ M′′) and by Lemma 8.16(1) β • δ < β • δk. Let δ′ = β • δ. By Lemma 8.23(1)

β • δj = δ′j for all j, 2 ≤ j ≤ n. Thus we have δ′ < δ′k. Since tec(ω′, τ ′) is a proving sequence

in ST (G′′ ‖ M′′), by Definition 4.6 there is h < k such that δ′ = δ′h. By Lemma 8.15(1) we derive

δ = β ◦ δ′ = β ◦ δ′h = δh.

Theorem 8.25. If δ1; . . . ; δn is a proving sequence in ST (G ‖ M), then G ‖ M
τ
−→ G′ ‖ M′ where

τ = i/o(δ1) · . . . · i/o(δn).

Proof: The proof is by induction on the length n of the proving sequence. Let ω = otr(M).

Case n = 1. Let i/o(δ1) = β. Since δ1 is the first event of a proving sequence, it can have no causes,

so it must be δ1 = [ω, β]∼. We show this case by induction on d = depth(G, play(β)).

Subcase d = 1. If β = pq!ℓ we have G = ⊞i∈Ipq!ℓi;Gi with ℓk = ℓ for some k ∈ I . We deduce

G ‖ M
β
−→ Gk ‖ M · 〈p, ℓ, q〉 by applying Rule [EXT-OUT]. If β = pq?ℓ we have G = pq?ℓ;G′.

Since G ‖ M is well formed, by Rule [IN] of Figure 3 we get M ≡ 〈p, ℓ, q〉 · M′. We deduce

G ‖ M
β
−→ G′ ‖ M′ by applying Rule [EXT-IN].

Subcase d > 1. We are in one of the two situations:

1. G = ⊞i∈I rs!ℓi;Gi with r /∈ play(β);

2. G = rs?ℓ′;G′′ with s /∈ play(β).

50 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

In situation (1), r /∈ play(β) implies that rs!ℓi • δ1 is defined for all i ∈ I by Definition 8.13(1).

By Lemma 8.17(1) rs!ℓi • δ1 ∈ TE(Gi ‖ M · 〈p, ℓi, q〉) for all i ∈ I . Lemma 3.5(1) implies

depth(G, play(β)) > depth(Gi, play(β)) for all i ∈ I . By induction hypothesis we have

Gi ‖ M · 〈p, ℓi, q〉
β
−→ G′

i ‖ M′ · 〈p, ℓi, q〉 for all i ∈ I . Then we may apply Rule [ICOMM-OUT] to

deduce

⊞i∈I rs!ℓi;Gi ‖ M
β
−→ ⊞i∈I rs!ℓi;G

′
i ‖ M′

In situation (2), since G ‖ M is well formed we get M ≡ 〈r, ℓ′, s〉 · M′′ by Rule [IN] of Fig-

ure 3. Hence ω ∼= rs!ℓ′ ·ω′. This and s /∈ play(β) imply that rs?ℓ′ • δ1 is defined by Defini-

tion 8.13(1). By Lemma 8.17(2) rs?ℓ′•δ1 ∈ TE(G′′ ‖ M′′). Lemma 3.5(2) gives depth(G, play(β)) >

depth(G′′, play(β)). By induction hypothesis G′′ ‖ M′′ β
−→ G′′′ ‖ M′′′. Then we may apply Rule

[ICOMM-IN] to deduce

rs?ℓ′;G′′ ‖ 〈r, ℓ′, s〉 ·M′′ β
−→ rs?ℓ′;G′′′ ‖ 〈r, ℓ′, s〉 ·M′′′

Case n > 1. Let i/o(δ1) = β, and G ‖ M
β
−→ G′′ ‖ M′′ be the corresponding transition as

obtained from the base case. We show that β • δj is defined for all j, 2 ≤ j ≤ n. If β • δk were

undefined for some k, 2 ≤ k ≤ n, then by Definition 8.13(1) either δk = δ1 or δk = [ω, τ]∼
with τ 6≈ω β · τ ′ and play(β) ⊆ play(τ). In the second case β@ play(β) # τ @ play(β) , which

implies δk # δ1. So both cases are impossible. If β • δj is defined, by Lemma 8.18(1) we may define

δ′j = β • δj ∈ TE(G′′ ‖ M′′) for all j, 2 ≤ j ≤ n. We show that δ′2; · · · ; δ
′
n is a proving sequence in

ST (G′′ ‖ M′′). By Lemma 8.15(1) δj = β ◦ δ′j for all j, 2 ≤ j ≤ n. Then by Lemma 8.16(3) no two

events in this sequence can be in conflict.

Let δ ∈ TE(G′′ ‖ M′′) and δ < δ′h for some h, 2 ≤ h ≤ n. By Lemma 8.18(2) β ◦ δ and β ◦ δ′h
belong to TE(G ‖ M). By Lemma 8.16(2) β ◦ δ < β ◦ δ′h. By Lemma 8.15(1) β ◦ δ′h = δh. Let

δ′ = β ◦ δ. Then δ′ < δh implies, by Definition 4.6 and the fact that ST (G ‖ M) is a PES, that there

is l < h such that δ′ = δl. By Lemma 8.15(2) we get δ = β • δ′ = β • δl = δ′l.

We have shown that δ′2; · · · ; δ
′
n is a proving sequence in ST (G′′ ‖ M′′). By induction we get

G′′ ‖ M′′ τ ′
−→ G′ ‖ M′ where τ ′ = i/o(δ′2) · . . . · i/o(δ

′
n). Let τ = i/o(δ1) · . . . · i/o(δn). Since

i/o(δ′j) = i/o(δj) for all j, 2 ≤ j ≤ n, we have τ=β · τ ′. Therefore G‖ M
β
−→ G′′ ‖ M′′ τ ′

−→ G′ ‖ M′

is the required transition sequence.

8.3. Isomorphism

We are finally able to show that the ES interpretation of a network is equivalent, when the session is

typable, to the ES interpretation of its asynchronous type.

To prove our main theorem, we will also use the following separation result from [35] (Lemma

2.8 p. 12). Recall from Section 4 that C(S) denotes the set of configurations of S.

Lemma 8.26. (Separation [35])

Let S = (E,≺, #) be a flow event structure and X ,X ′ ∈ C(S) be such that X ⊂ X ′. Then there

exist e ∈ X ′\X such that X ∪ {e} ∈ C(S).

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 51

We may now establish the isomorphism between the domain of configurations of the FES of a ty-

pable network and the domain of configurations of the PES of its asynchronous type. In the proof of

this result, we will use the characterisation of configurations as proving sequences, given in Propo-

sition 4.7. We will also take the freedom of writing ρ1; · · · ; ρn ∈ C(SN (N ‖ M)) to mean that

ρ1; · · · ; ρn is a proving sequence such that {ρ1, . . . , ρn} ∈ C(SN (N ‖ M)), and similarly for

δ1; · · · ; δn ∈ C(ST (G ‖ M)).

Theorem 8.27. If ⊢ N ‖ M : G ‖ M, then D(SN (N ‖ M)) ≃ D(ST (G ‖ M)).

Proof: Let ω = otr(M). We start by constructing a bijection between the proving sequences of

the event structure SN (N ‖ M) and the proving sequences of the event structure ST (G ‖ M).
By Theorem 8.11, if ρ1; · · · ; ρn ∈ C(SN (N ‖ M)), then N ‖ M

τ
−→ N′ ‖ M′ where τ =

i/o(ρ1) · · · · · i/o(ρn). By applying iteratively Subject Reduction (Theorem 3.18), we obtain

G ‖ M
τ
−→ G′ ‖ M′ and ⊢ N′ ‖ M′ : G′ ‖ M′

By Theorem 8.24, we get tec(ω, τ) ∈ C(ST (G ‖ M)).

By Theorem 8.25, if δ1; · · · ; δn ∈ C(ST (G ‖ M)), then G ‖ M
τ
−→ G′ ‖ M′, where τ =

i/o(δ1) · · · i/o(δn). By applying iteratively Session Fidelity (Theorem 3.19), we obtain

N ‖ M
τ
−→ N′ ‖ M′ and ⊢ N′ ‖ M′ : G′ ‖ M′

By Theorem 8.10, we get nec(τ) ∈ C(SN (N ‖ M)).

Therefore we have a bijection between D(SN (N ‖ M)) and D(ST (G ‖ M)), given by nec(τ) ↔
tec(ω, τ) for any τ generated by the (bisimilar) LTSs of N ‖ M and G ‖ M.

We now show that this bijection preserves inclusion of configurations.

By Lemma 8.26 it is enough to prove that if ρ1; · · · ; ρn ∈ C(SN (N ‖ M)) is mapped to

δ1; · · · ; δn∈ C(ST (G‖ M)), then ρ1; · · · ; ρn; ρ∈ C(SN (N‖ M)) iff δ1; · · · ; δn; δ∈ C(ST (G‖ M)),
where δ1; · · · ; δn; δ is the image of ρ1; · · · ; ρn; ρ under the bijection. So, suppose ρ1; · · · ; ρn ∈
C(SN (N ‖ M)) and δ1; · · · ; δn ∈ C(ST (G ‖ M)) are such that

ρ1; · · · ; ρn = nec(τ) ↔ tec(ω, τ) = δ1; · · · ; δn

Then i/o(ρ1) · · · i/o(ρn) = τ = i/o(δ1) · · · i/o(δn).

By Theorem 8.11, if ρ1; · · · ; ρn; ρ ∈ C(SN (N ‖ M)) with i/o(ρ) = β, then

N ‖ M
τ ·β
−−→ N′ ‖ M′

By applying iteratively Subject Reduction (Theorem 3.18) we get

G ‖ M
τ · β
−−→ G′ ‖ M′ and ⊢ N′ ‖ M′ : G′ ‖ M′

We conclude that tec(ω, τ · β) ∈ C(ST (G ‖ M)) by Theorem 8.24.

By Theorem 8.25, if δ1; · · · ; δn; δ ∈ C(ST (G ‖ M)) with i/o(δ) = β, then

G ‖ M
τ ·β
−−→ G′ ‖ M′

52 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

By applying iteratively Session Fidelity (Theorem 3.19) we get

N ‖ M
τ · β
−−→ N′ ‖ M′ and ⊢ N′ ‖ M′ : G′ ‖ M′

We conclude that nec(τ · β) ∈ C(SN (N ‖ M)) by Theorem 8.10.

9. Related work and conclusions

Session types, as originally proposed in [2, 4] for binary sessions, are grounded on types for the π-

calculus. Early proposals for typing channels in the π-calculus include simple sorts [37], input/output

types [38] and usage types [39]. In particular, the notion of progress for multiparty sessions [28,

29] is inspired by the notion of lock-freedom developed for the π-calculus in [40, 41]. The more

recent work [42] provides further evidence of the strong relationship between binary session types and

channel types in the linear π-calculus. The notion of lock-freedom for the linear π-calculus was also

revisited in [43].

Multiparty sessions disciplined by global types were introduced in the keystone papers [3, 4].

These papers, as well as most subsequent work on multiparty session types (for a survey see [34]),

were based on more expressive session calculi than the one we use here, where sessions may be

interleaved and participants exchange pairs of labels and values. In that more general setting, global

types are projected onto session types and in turn session types are assigned to processes. Here,

instead, we consider only single sessions and pure label exchange: this allows us to project global

types directly to processes, as in [44], where the considered global types are those of [4]. Possible

extensions of our work to more expressive calculi are discussed at the end of this section.

Standard global types are too restrictive for typing processes which communicate asynchronously.

A powerful typability extension is obtained by the use of the subtyping relation given in [21]. This

subtyping allows inputs and outputs to be exchanged, stating that anticipating outputs is better. The

rationale is that outputs are not blocking, while inputs are blocking in asynchronous communication.

Unfortunately, this subtyping is undecidable [22, 23], and thus type systems equipped with this subtyp-

ing are not effective. Decidable restrictions of this subtyping relation have been proposed [22, 23, 45].

In particular, subtyping is decidable when both internal and external choices are forbidden in one of

the two compared processes [22]. This result is improved in [45], where both the subtype and the

supertype can contain either internal or external choices. More interestingly, the work [46] presents a

sound (though not complete) algorithm for checking asynchronous subtyping. A very elegant formula-

tion of asynchronous subtyping is given in [47]: it allows the authors to show that any extension of this

subtyping would be unsound. In the present paper we achieve a gain in typability for asynchronous

networks by using a more fine-grained syntax for global types. Our type system is decidable, since

projection is computable and the preorder on processes is decidable. Notice that there are networks

that can be typed using the algorithm in [46] but cannot be typed in our system, like the running

example of that paper.

We claim that our asynchronous types are more “prescribing” than the global types of [3, 4]

equipped with asynchronous subtyping, since asynchronous types specify the order in which par-

ticipants must do inputs and outputs in a more precise way. For instance, the asynchronous type

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 53

pq!ℓ; qp!ℓ′; pq?ℓ; qp?ℓ′ ‖ ∅ of Example 3.9 can type the network p[[q!ℓ; q?ℓ′]] ‖ q[[p!ℓ′; p?ℓ]] of Ex-

ample 2.4, but cannot type the network p[[q!ℓ; q?ℓ′]] ‖ q[[p?ℓ; p!ℓ′]]. Instead, in the system of [3, 4]

one needs the global type p → q : ℓ; q → p : ℓ′ and the subtyping p!ℓ′; p?ℓ ≤ p?ℓ; p!ℓ′ to type the

network p[[q!ℓ; q?ℓ′]] ‖ q[[p!ℓ′; p?ℓ]]. The drawback is that the same global type can also type the

network p[[q!ℓ; q?ℓ′]] ‖ q[[p?ℓ; p!ℓ′]].

More permissive variants of our asynchronous types, called “deconfined global types”, were sub-

sequently considered in [26] and [48]. In [26] both projection and balancing are refined, the first

one allowing the participants which are not involved in a choice to have different behaviours in the

branches of the choice, and the second one allowing unbounded queues. The type system of [48] has

global types that allow choices of inputs, and types the running example of [46] and also a network for

which the algorithm of [46] fails. With the type systems of [26, 48], due to a more complex definition

of balancing, one can type networks with queues that may grow unboundedly, which is not possi-

ble with the balancing of Figure 3. Since the focus of the present paper was on the event structure

semantics, we decided to go for this simpler definition.

Since their introduction in [19, 20], Event Structures have been widely used to give semantics

to process calculi. Several ES interpretations of Milner’s calculus CCS have been proposed, using

various classes of ESs: Stable ESs [49], Prime ESs or variations of them [50, 51, 52], and Flow

ESs [17, 53]. Other calculi such as TCSP [54, 55] and LOTOS have been provided respectively with

a PES semantics [56, 57] and with a Bundle ES semantics [58, 59]. More recently, ES semantics have

been investigated also for the π-calculus [60, 61, 62, 63, 64, 65]. A more extensive discussion on ES

semantics for process calculi may be found in our companion paper [14].

It is noteworthy that all the above-mentioned ES semantics were given for calculi with syn-

chronous communication. This is perhaps not surprising since ESs are generally equipped with a

synchronisation algebra when modelling process calculi, and a communication is represented by a

single event resulting from the synchronisation of two events. This is also the reason why, in our pre-

vious paper [14], we started by considering an ES semantics for a synchronous session calculus with

standard global types.

An asynchronous PES semantics for finite synchronous choreographies was recently proposed

in [66], where, like in the present paper, a communication is represented by two distinct events, one

for the output and the other for the matching input. However, in our work the output and the matching

input are already decoupled in the types, and their matching relation needs to be reconstructed in order

to obtain the cross-causality relation in the PES. Instead, in [66] the definition of cross-causality is

immediate, since the standard synchronous type construct gives rises to a pair of events which are

by construction in the cross-causality relation. Moreover, only types are interpreted as ESs in [66].

To sum up, while asynchrony is an essential feature of sessions in our calculus, and therefore it is

modelled also in their abstract specifications (asynchronous types), asynchrony is rather viewed as an

implementation feature of sessions in [66], and therefore it is not modelled in their abstract specifica-

tions (choreographies), which remain synchronous.

A denotational semantics based on concurrent games [67] has been proposed for the asynchronous

π-calculus in [68]. Notice, however, that in the asynchronous π-calculus an output can never be a local

cause of any other event, since the output construct has no continuation. Therefore the asynchrony of

the asynchronous π-calculus is more liberal than that of our calculus and of session calculi in general,

54 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

which adopt the definition of asynchrony of standard protocols such as TCP/IP, where the order of

messages between any given pair of participants is preserved.

This work builds on the companion paper [14], where synchronous rather than asynchronous com-

munication was considered. In that paper too, networks were interpreted as FESs, and global types,

which were the standard ones, were interpreted as PESs. The key result was again an isomorphism

between the configuration domain of the FES of a typed network and that of the PES of its global type.

Thus, the present paper completes the picture set up in [14] by exploring the “asynchronous side” of

the same construction.

An important feature of a denotational model such as Event Structures is abstraction. Clearly, our

PES semantics for asynchronous types abstracts away from their syntax, by making explicit the con-

currency relation between independent communications that is left implicit in the types: for instance,

it maps to the same PES all the types given in Example 3.9 for the characteristic network of Exam-

ple 2.4. Indeed, it can be shown that all well-formed asynchronous types that type the same network

give rise to the same PES. Our FES semantics for networks also abstracts away from their syntax to

some extent, via the narrowing operation which prunes off all the input events that are not justified

by an output event or by a message in the queue, as well as all their successors. As a consequence,

the (non typable) network p[[q?ℓ; r!ℓ′]] ‖ r[[p?ℓ′]] ‖ ∅ is interpreted as the FES with an empty set of

events, and so are other deadlocked networks of the same kind.

As future work, we shall try to devise semantic counterparts for our well-formedness conditions on

asynchronous types, namely structural conditions characterising both the PESs of well-formed asyn-

chronous types and the FESs of well-typed networks, along the lines of a previous proposal for binary

sessions as Linear Logic proofs based on causal nets [69]. This would allow us to reason entirely on

the semantic side, and in particular to establish the isomorphism of the configuration domains of a

well-typed network FES and the PES of one its types in a more direct way. Such semantic character-

isations of well-formedness would also help us to address the following synthesis problem: starting

from an arbitrary Prime ES, is it possible (1) to verify that it represents a well-formed asynchronous

type, and, if this is the case, (2) to reconstruct a network that behaves according to that asynchronous

type? A step in this direction was recently made in [70], in the synchronous setting of [14].

Other possible directions for future work have already been sketched in [14]: they include the

investigation of reversibility, which would benefit from previous work on reversible session cal-

culi [71, 72, 73, 74, 75, 76] and Reversible Event Structures [77, 65, 78, 79, 80]. We also plan to

investigate the extension of our asynchronous calculus with delegation. In the literature, delegation is

usually modelled using the channel passing mechanism of the π-calculus, which requires interleaved

sessions. Now, the extension of our event structure semantics to interleaved sessions would require a

deep rethinking, especially for the definition of narrowing. Hence we plan to use the alternative notion

of delegation proposed in [81] for a session calculus without channels, called “internal delegation”.

Note that delegation remains essentially a synchronous mechanism, even in the asynchronous setting:

indeed, unlike ordinary outputs that become non-blocking, delegation remains blocking for the princi-

pal, who has to wait until the deputy returns the delegation to be able to proceed. As a matter of fact,

this is quite reasonable: not only does it prevent the issue of “power vacancy” that would arise if the

role of the principal disappeared from the network for some time, but it also seems natural to assume

that the principal delegates a task only when it has the guarantee that the deputy will accept it.

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 55

Acknowledgments We are indebted to Francesco Dagnino for suggesting a simplification in the

definition of balancing for asynchronous types. We also wish to thank the anonymous referees for

their helpful comments. In particular, they helped us to clarify several definitions, and to expand both

the comparison with the literature and the discussion on future work.

References

[1] Takeuchi K, Honda K, Kubo M. An interaction-based language and its typing system. In: Hankin C (ed.),

PARLE, volume 817 of LNCS. Springer, 1994 pp. 122–138. doi:10.1007/BFb0053567.

[2] Honda K, Vasconcelos VT, Kubo M. Language primitives and type discipline for structured

communication-based programming. In: Hankin C (ed.), ESOP, volume 1381 of LNCS. Springer, 1998

pp. 122–138. doi:10.1007/BFb0053567.

[3] Honda K, Yoshida N, Carbone M. Multiparty asynchronous session types. In: Necula GC, Wadler P

(eds.), POPL. ACM Press, 2008 pp. 273–284. doi:10.1145/1328897.1328472.

[4] Honda K, Yoshida N, Carbone M. Multiparty asynchronous session types. Journal of ACM, 2016.

63(1):9:1–9:67. doi:10.1145/2827695.

[5] Ancona D, Bono V, Bravetti M, Campos J, Castagna G, Deniélou P, Gay SJ, Gesbert N, Giachino E, Hu R,

Johnsen EB, Martins F, Mascardi V, Montesi F, Neykova R, Ng N, Padovani L, Vasconcelos VT, Yoshida

N. Behavioral types in programming languages. Foundations and Trends in Programming Languages,

2016. 3(2-3):95–230. doi:10.1561/2500000031.

[6] Deniélou P, Yoshida N. Multiparty session types meet communicating automata. In: Seidl H (ed.), ESOP,

volume 7211 of LNCS. Springer, 2012 pp. 194–213. doi:10.1007/978-3-642-28869-2\ 10.

[7] Lange J, Tuosto E, Yoshida N. From communicating machines to graphical choreographies. In: Rajamani

SK, Walker D (eds.), POPL. ACM Press, 2015 pp. 221–232. doi:10.1145/2676726.2676964.

[8] Tuosto E, Guanciale R. Semantics of global view of choreographies. Journal of Logic and Algebraic

Methods in Programming, 2018. 95:17–40. doi:10.1016/j.jlamp.2017.11.002.

[9] Caires L, Pfenning F. Session types as intuitionistic linear propositions. In: Gastin P, Laroussinie F (eds.),

CONCUR, volume 6269 of LNCS. Springer, 2010 pp. 222–236. doi:10.1007/978-3-642-15375-4\ 16.

[10] Toninho B, Caires L, Pfenning F. Dependent session types via intuitionistic linear type theory. In:

Schneider-Kamp P, Hanus M (eds.), PPDP. ACM Press, 2011 pp. 161–172. doi:10.1145/2003476.

2003499.

[11] Wadler P. Propositions as sessions. Journal of Functional Programming, 2014. 24(2-3):384–418. doi:

10.1017/S095679681400001X.

[12] Pérez JA, Caires L, Pfenning F, Toninho B. Linear logical relations and observational equivalences for

session-based concurrency. Information and Computation, 2014. 239:254–302. doi:10.1016/j.ic.2014.08.

001.

[13] Caires L, Pfenning F, Toninho B. Linear logic propositions as session types. Mathematical Structures in

Computer Science, 2016. 26(3):367–423. doi:10.1017/S0960129514000218.

[14] Castellani I, Dezani-Ciancaglini M, Giannini P. Event structure semantics for multiparty sessions. Journal

of Logic and Algebraic Methods in Programming, 2023. 131:100844. doi:10.1016/j.jlamp.2022.100844.

56 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

[15] Winskel G. An introduction to event structures. In: de Bakker JW, de Roever WP, Rozenberg G (eds.),

REX: Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, volume 354

of LNCS. Springer, 1988 pp. 364–397. doi:10.1007/BFb0013026.

[16] Dezani-Ciancaglini M, Ghilezan S, Jaksic S, Pantovic J, Yoshida N. Precise subtyping for synchronous

multiparty sessions. In: Gay S, Alglave J (eds.), PLACES, volume 203 of EPTCS. Open Publishing

Association, 2015 pp. 29 – 44. doi:10.4204/EPTCS.203.3.

[17] Boudol G, Castellani I. Permutation of transitions: an event structure semantics for CCS and SCCS.

In: de Bakker JW, de Roever WP, Rozenberg G (eds.), REX: Linear Time, Branching Time and Partial

Order in Logics and Models for Concurrency, volume 354 of LNCS. Springer, 1988 pp. 411–427. doi:

10.1007/BFb0013028.

[18] Boudol G, Castellani I. Flow models of distributed computations: three equivalent semantics for CCS.

Information and Computation, 1994. 114(2):247–314. doi:10.1006/inco.1994.1088.

[19] Winskel G. Events in computation. Ph.D. thesis, University of Edinburgh, 1980.

[20] Nielsen M, Plotkin G, Winskel G. Petri nets, event structures and domains, part I. Theoretical Computer

Science, 1981. 13(1):85–108. doi:10.1016/0304-3975(81)90112-2.

[21] Mostrous D, Yoshida N, Honda K. Global principal typing in partially commutative asynchronous

sessions. In: Castagna G (ed.), ESOP, volume 5502 of LNCS. Springer, 2009 pp. 316–332. doi:

10.1007/978-3-642-00590-9\ 23.

[22] Bravetti M, Carbone M, Zavattaro G. Undecidability of asynchronous session subtyping. Information and

Computation, 2017. 256:300–320. doi:10.1016/j.ic.2017.07.010.

[23] Lange J, Yoshida N. On the undecidability of asynchronous session subtyping. In: Esparza J, Murawski

AS (eds.), FOSSACS, volume 10203 of LNCS. 2017 pp. 441–457. doi:10.1007/978-3-662-54458-7\ 26.

[24] Courcelle B. Fundamental properties of infinite trees. Theoretical Computer Science, 1983. 25:95–169.

doi:10.1016/0304-3975(83)90059-2.

[25] Scalas A, Yoshida N. Less is more: multiparty session types revisited. Proceedings of the ACM on

Programming Languages, 2019. 3(POPL):30:1–30:29. doi:10.1145/3290343.

[26] Dagnino F, Giannini P, Dezani-Ciancaglini M. Deconfined Global Types for Asynchronous Sessions.

In: Damiani F, Dardha O (eds.), COORDINATION, volume 12717 of LNCS. Springer, 2021 pp. 41–60.

doi:10.1007/978-3-030-78142-2 3.

[27] Pierce BC. Types and Programming Languages. MIT Press, 2002. ISBN 978-0-262-16209-8.

[28] Deniélou PM, Yoshida N. Dynamic multirole session types. In: Thomas Ball MS (ed.), POPL. ACM

Press, 2011 pp. 435–446. doi:10.1145/1926385.1926435.

[29] Coppo M, Dezani-Ciancaglini M, Yoshida N, Padovani L. Global progress for dynamically interleaved

multiparty sessions. Mathematical Structures in Computer Science, 2016. 26(2):238–302. doi:10.1017/

S0960129514000188.

[30] Gay S, Hole M. Subtyping for session types in the pi calculus. Acta Informatica, 2005. 42(2/3):191–225.

doi:10.1007/s00236-005-0177-z.

[31] Demangeon R, Honda K. Full abstraction in a subtyped pi-calculus with linear types. In: Ka-

toen J, König B (eds.), CONCUR, volume 6901 of LNCS. Springer, 2011 pp. 280–296. doi:10.1007/

978-3-642-23217-6\ 19.

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 57

[32] Gay S. Subtyping supports safe session substitution. In: Lindley S, McBride C, Trinder PW, San-

nella D (eds.), A List of Successes That Can Change the World - Essays Dedicated to Philip Wadler

on the Occasion of His 60th Birthday, volume 9600 of LNCS. Springer, 2016 pp. 95–108. doi:

10.1007/978-3-319-30936-1\ 5.

[33] Barbanera F, Dezani-Ciancaglini M, Lanese I, Tuosto E. Composition and decomposition of multiparty

sessions. Journal of Logic and Algebraic Methods Program., 2021. 119:100620. doi:10.1016/j.jlamp.

2020.100620.

[34] Hüttel H, Lanese I, Vasconcelos VT, Caires L, Carbone M, Deniélou PM, Mostrous D, Padovani L, Ravara

A, Tuosto E, Vieira HT, Zavattaro G. Foundations of session types and behavioural contracts. ACM

Computing Surveys, 2016. 49(1):3:1–3:36. doi:10.1145/2873052.

[35] Boudol G, Castellani I. Flow models of distributed computations: event structures and nets. Research

Report 1482, INRIA, 1991. URL https://inria.hal.science/inria-00075080/document.

[36] Castellani I, Dezani-Ciancaglini M, Giannini P. Event Structure Semantics for Multiparty Sessions. In:

Boreale M, Corradini F, Loreti M, Pugliese R (eds.), Models, Languages, and Tools for Concurrent and

Distributed Programming - Essays Dedicated to Rocco De Nicola on the Occasion of His 65th Birthday,

volume 11665 of LNCS. Springer, 2019 pp. 340–363. doi:10.1007/978-3-030-21485-2\ 19.

[37] Milner R. The polyadic pi-calculus (Abstract). In: Cleaveland R (ed.), CONCUR, volume 630 of LNCS.

Springer, 1992 p. 1. doi:10.1007/BFb0084778.

[38] Pierce BC, Sangiorgi D. Typing and subtyping for mobile processes. Mathematical Structures in Computer

Science, 1996. 6(5):376–385. doi:10.1017/S096012950007002X.

[39] Kobayashi N. Type-based information flow analysis for the pi-calculus. Acta Informatica, 2005. 42(4-

5):291–347. doi:10.1007/s00236-005-0179-x.

[40] Kobayashi N. A type system for lock-free processes. Information and Computation, 2002. 177(2):122–

159. doi:10.1016/S0890-5401(02)93171-8.

[41] Kobayashi N. A new type system for deadlock-free processes. In: Baier C, Hermanns H (eds.), CONCUR,

volume 4137 of LNCS. Springer, 2006 pp. 233–247. doi:10.1007/11817949\ 16.

[42] Dardha O, Giachino E, Sangiorgi D. Session types revisited. In: Schreye DD, Janssens G, King A (eds.),

PPDP. ACM, 2012 pp. 139–150. doi:10.1145/2370776.2370794.

[43] Padovani L. Type reconstruction for the linear π-calculus with composite regular types. Logical Methods

in Computer Science, 2015. 11(4). doi:10.2168/LMCS-11(4:13)2015.

[44] Severi P, Dezani-Ciancaglini M. Observational equivalence for multiparty sessions. Fundamenta Infor-

maticae, 2019. 167:267–305. doi:10.3233/FI-2019-1863.

[45] Bravetti M, Carbone M, Zavattaro G. On the boundary between decidability and undecidability of asyn-

chronous session subtyping. Theoretical Computer Science, 2018. 722:19–51. doi:10.1016/j.tcs.2018.02.

010.

[46] Bravetti M, Carbone M, Lange J, Yoshida N, Zavattaro G. A Sound Algorithm for Asynchronous Session

Subtyping and its Implementation. Logical Methods in Computer Science, 2021. 17(1):20:1–20:35. doi:

10.23638/LMCS-17(1:20)2021.

[47] Ghilezan S, Pantović J, Prokić I, Scalas A, Yoshida N. Precise subtyping for asynchronous multiparty

sessions. Proceedings of the ACM on Programming Languages, 2021. 5(POPL):1–28. doi:10.1145/

3434297.

https://inria.hal.science/inria-00075080/document

58 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

[48] Dagnino F, Giannini P, Dezani-Ciancaglini M. Deconfined Global Types for Asynchronous Sessions.

Logical Methods in Computer Science, 2023. 19(1). doi:10.46298/lmcs-19(1:3)2023.

[49] Winskel G. Event structure semantics for CCS and related languages. In: Nielsen M, Schmidt EM (eds.),

ICALP, volume 140 of LNCS. Springer, 1982 pp. 561–576. doi:10.1007/BFb0012800.

[50] Boudol G, Castellani I. On the semantics of concurrency: partial orders and transition systems. In:

Ehrig H, Kowalski RA, Levi G, Montanari U (eds.), TAPSOFT, volume 249 of LNCS. Springer, 1987 pp.

123–137. doi:10.1007/3-540-17660-8\ 52.

[51] Degano P, De Nicola R, Montanari U. On the consistency of truly concurrent operational and denotational

semantics. In: Chandra AK (ed.), LICS. IEEE Computer Society Press Press, 1988 pp. 133–141. doi:

10.1109/LICS.1988.5112.

[52] Degano P, De Nicola R, Montanari U. A partial ordering semantics for CCS. Theoretical Computer

Science, 1990. 75(3):223–262. doi:10.1016/0304-3975(90)90095-Y.

[53] van Glabbeek RJ, Goltz U. Well-behaved flow event structures for parallel composition and action refine-

ment. Theoretical Computer Science, 2004. 311(1-3):463–478. doi:10.1016/j.tcs.2003.10.031.

[54] Brookes S, Hoare CA, Roscoe AW. A theory of communicating sequential processes. Journal of ACM,

1984. 31(3):560–599. doi:10.1145/828.833.

[55] Olderog E. TCSP: theory of communicating sequential processes. In: Brauer W, Reisig W, Rozen-

berg G (eds.), Advances in Petri Nets, volume 255 of LNCS. Springer, 1986 pp. 441–465. doi:

10.1007/3-540-17906-2\ 34.

[56] Loogen R, Goltz U. Modelling nondeterministic concurrent processes with event structures. Fundamenta

Informaticae, 1991. 14(1):39–74. doi:10.3233/FI-1991-14103.

[57] Baier C, Majster-Cederbaum ME. The connection between an event structure semantics and an operational

semantics for TCSP. Acta Informatica, 1994. 31(1):81–104. doi:10.1007/BF01178923.

[58] Langerak R. Bundle event structures: a non-interleaving semantics for LOTOS. In: Diaz M, Groz R (eds.),

FORTE, volume C-10 of IFIP Transactions. North-Holland. ISBN 0-444-89282-6, 1992 pp. 331–346.

[59] Katoen J. Quantitative and qualitative extensions of event structures. Ph.D. thesis, University of Twente,

1996.

[60] Crafa S, Varacca D, Yoshida N. Compositional event structure semantics for the internal π-Calculus.

In: Caires L, Vasconcelos VT (eds.), CONCUR, volume 4703 of LNCS. Springer, 2007 pp. 317–332.

doi:10.1007/978-3-540-74407-8\ 22.

[61] Varacca D, Yoshida N. Typed event structures and the linear π-calculus. Theoretical Computer Science,

2010. 411(19):1949–1973. doi:10.1016/j.tcs.2010.01.024.

[62] Crafa S, Varacca D, Yoshida N. Event structure semantics of parallel extrusion in the π-calculus.

In: Birkedal L (ed.), FOSSACS, volume 7213 of LNCS. Springer, 2012 pp. 225–239. doi:10.1007/

978-3-642-28729-9\ 15.

[63] Cristescu I. Operational and denotational semantics for the reversible π-calculus. Ph.D. thesis, University

Paris Diderot - Paris 7, 2015.

[64] Cristescu I, Krivine J, Varacca D. Rigid families for CCS and the π-calculus. In: Leucker M,

Rueda C, Valencia FD (eds.), ICTAC, volume 9399 of LNCS. Springer, 2015 pp. 223–240. doi:

10.1007/978-3-319-25150-9\ 14.

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 59

[65] Cristescu I, Krivine J, Varacca D. Rigid families for the reversible π-calculus. In: Devitt SJ,

Lanese I (eds.), Reversible Computation, volume 9720 of LNCS. Springer, 2016 pp. 3–19. doi:

10.1007/978-3-319-40578-0\ 1.

[66] de’ Liguoro U, Melgratti HC, Tuosto E. Towards refinable choreographies. In: Lange J, Mavridou A,

Safina L, Scalas A (eds.), ICE, volume 324 of EPTCS. Open Publishing Association, 2020 pp. 61–77.

doi:10.4204/EPTCS.324.6.

[67] Rideau S, Winskel G. Concurrent strategies. In: Grohe M (ed.), LICS. IEEE Computer Society, 2011 pp.

409–418. doi:10.1109/LICS.2011.13.

[68] Sakayori K, Tsukada T. A truly concurrent game model of the asynchronous π-calculus. In: Es-

parza J, Murawski AS (eds.), FOSSACS, volume 10203 of LNCS. 2017 pp. 389–406. doi:10.1007/

978-3-662-54458-7\ 23.

[69] Castellan S, Yoshida N. Causality in linear logic - full completeness and injectivity (unit-free

multiplicative-additive fragment). In: Bojanczyk M, Simpson A (eds.), FOSSACS, volume 11425 of

LNCS. Springer, 2019 pp. 150–168. doi:10.1007/978-3-030-17127-8\ 9.

[70] Castellani I, Giannini P. Towards a Semantic Characterisation of Global Type Well-formedness. In: Costa

D, Hu R (eds.), PLACES, volume 401 of EPTCS. Open Publishing Association, 2024 pp. 11–21. doi:

10.4204/EPTCS.401.2.

[71] Tiezzi F, Yoshida N. Towards reversible sessions. In: Donaldson AF, Vasconcelos VT (eds.), PLACES,

volume 155 of EPTCS. Open Publishing Association, 2014 pp. 17–24. doi:10.4204/EPTCS.155.3.

[72] Tiezzi F, Yoshida N. Reversing single sessions. In: Devitt SJ, Lanese I (eds.), RC, volume 9720 of LNCS.

Springer, 2016 pp. 52–69. doi:10.1007/978-3-319-40578-0\ 4.

[73] Mezzina CA, Pérez JA. Causally consistent reversible choreographies: a monitors-as-memories approach.

In: Vanhoof W, Pientka B (eds.), PPDP. ACM Press, 2017 pp. 127–138. doi:10.1145/3131851.3131864.

[74] Mezzina CA, Pérez JA. Reversibility in session-based concurrency: A fresh look. Journal of Logic and

Algebraic Methods in Programming, 2017. 90:2–30. doi:10.1016/j.jlamp.2017.03.003.

[75] Neykova R, Yoshida N. Let it recover: multiparty protocol-induced recovery. In: Wu P, Hack S (eds.),

CC. ACM Press, 2017 pp. 98–108. doi:10.1145/3033019.

[76] Castellani I, Dezani-Ciancaglini M, Giannini P. Reversible sessions with flexible choices. Acta Informat-

ica, 2019. 56(7):553–583. doi:10.1007/s00236-019-00332-y.

[77] Phillips IC, Ulidowski I. Reversibility and asymmetric conflict in event structures. Journal of Logical and

Algebraic Methods in Programming, 2015. 84(6):781 – 805. doi:10.1016/j.jlamp.2015.07.004.

[78] Graversen E, Phillips I, Yoshida N. Towards a categorical representation of reversible event structures. In:

Vasconcelos VT, Haller P (eds.), PLACES, volume 246 of EPTCS. Open Publishing Association, 2017

pp. 49–60. doi:10.4204/EPTCS.246.9.

[79] Graversen E, Phillips I, Yoshida N. Event structure semantics of (controlled) reversible CCS. In: Kari J,

Ulidowski I (eds.), Reversible Computation, volume 11106 of LNCS. Springer, 2018 pp. 122–102. doi:

10.1007/978-3-319-99498-7\ 7.

[80] Graversen E. Event structure semantics of reversible process calculi. Ph.D. thesis, Imperial College

London, 2021.

[81] Castellani I, Dezani-Ciancaglini M, Giannini P, Horne R. Global types with internal delegation. Theoreti-

cal Computer Science, 2020. 807:128–153. doi:10.1016/j.tcs.2019.09.027.

60 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

A. Appendix

This Appendix contains the proofs of Lemmas 3.6, 3.10, 3.11, 3.13, 3.14, 8.5, 8.14, 8.15, 8.16, 8.17,

8.18, 8.21, 8.22, 8.23 and the auxiliary Lemmas A.1, A.2 , A.3.

Lemma 3.6 If G is bounded, then G↾ r is a partial function for all r.

Proof: We redefine the projection ↓r as the largest relation between global types and processes such

that (G, P) ∈↓r implies:

i) if r 6∈ play(G), then P = 0;

ii) if G = ⊞i∈I rq!ℓi;Gi, then P =
⊕

i∈I q!ℓi;Pi and (Gi, Pi) ∈↓r for all i ∈ I;

iii) if G = pr!ℓ;G′, then (G′, P) ∈↓r;

iv) if G = ⊞i∈Ipr!ℓi;Gi and |I| > 1, then P = −→π;Σi∈Ip?ℓi;Pi and (Gi,
−→π; p?ℓi;Pi) ∈↓r for all

i ∈ I;

v) if G = ⊞i∈Ipq!ℓi;Gi and r 6∈ {p, q} and r ∈ play(Gi), then (Gi, P) ∈↓r for all i ∈ I;

vi) if G = pr?ℓ;G′, then P = p?ℓ;P ′ and (G′, P ′) ∈↓r;

vii) if G = pq?ℓ;G′ and r 6= q and r ∈ play(G′), then (G′, P) ∈↓r.

We define equality E of processes to be the largest symmetric binary relation R on processes such that

(P,Q) ∈ R implies:

(a) if P =
⊕

i∈I p!ℓi;Pi , then Q =
⊕

i∈I p!ℓi;Qi and (Pi, Qi) ∈ R for all i ∈ I;

(b) if P = Σi∈Ip?ℓi;Pi , then Q = Σi∈Ip?ℓi;Qi and (Pi, Qi) ∈ R for all i ∈ I .

It is then enough to show that the relation Rr = {(P,Q) | ∃G . (G, P) ∈↓r and (G, Q) ∈↓r} satisfies

Clauses (a) and (b) (with R replaced by Rr), since this will imply Rr ⊆ E . Note first that (0,0) ∈ Rr

because (End,0) ∈↓r, and that (0,0) ∈ E because Clauses (a) and (b) are vacuously satisfied by the

pair (0,0), which must therefore belong to E .

The proof is by induction on d = depth(G, r). We only consider Clause (b), the proof for

Clause (a) being similar and simpler. So, assume (P,Q) ∈ Rr and P = Σi∈Ip?ℓi;Pi.

Case d = 1. In this case G = pr?ℓ;G′ and P = p?ℓ;P ′ and (G′, P ′) ∈↓r. From (G, Q) ∈↓r we get

Q = p?ℓ;Q′ and (G′, Q′) ∈↓r. Hence Q has the required form and (P ′, Q′) ∈ Rr.

Case d > 1. By definition of ↓r, there are five possible subcases.

1. Case G= pr!ℓ;G′ and (G′, P) ∈↓r. From (G, Q) ∈↓r we get (G′, Q) ∈↓r. Then (P,Q) ∈ Rr.

2. Case G = ⊞i∈Ipr!ℓi;Gi and (Gi, p?ℓi;Pi) ∈↓r for all i ∈ I and |I| > 1. From (G, Q) ∈↓r we

get Q = −→π;Σi∈Ip?ℓi;Qi and (Gi,
−→π; p?ℓi;Qi) ∈↓r for all i ∈ I .

Since (p?ℓi;Pi,
−→π; p?ℓi;Qi) ∈ Rr for all i ∈ I , by induction Clause (b) is satisfied. Thus

−→π = ǫ and (Pi, Qi) ∈ Rr for all i ∈ I .

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 61

3. Case G = ⊞j∈Jqr!ℓ
′
j ;Gj with q 6= p and P = p?ℓ;−→π;Σj∈Jq?ℓ

′
j;P

′
j and

(Gj , p?ℓ;
−→π; q?ℓ′j;P

′
j) ∈↓r for all j ∈ J . From (G, Q) ∈↓r we get Q =

−→
π′ ; Σj∈Jq?ℓ

′
j;Q

′
j and

(Gj ,
−→
π′ ; q?ℓ′j;Q

′
j) ∈↓r for all j ∈ J . Since (p?ℓ;−→π; q?ℓ′j;P

′
j ,

−→
π′ ; q?ℓ′j ;Q

′
j) ∈ Rr for all j ∈ J ,

by induction Clause (b) is satisfied.

Thus
−→
π′ = p?ℓ;−→π and (−→π; q?ℓ′j ;P

′
j ,

−→π; q?ℓ′j;Q
′
j) ∈ Rr for all j ∈ J .

4. Case G = ⊞j∈Jqs!ℓ
′
j;Gj and r 6= s and r ∈ play(Gj) and (Gj , P) ∈↓r for j ∈ J . From

(G, Q) ∈↓r we get (Gj, Q) ∈↓r for all j ∈ J . Then (P,Q) ∈ Rr.

5. Case G = qs?ℓ;G′ and r ∈ play(G′). Then (G′, P) ∈↓r. From (G, Q) ∈↓r we get (G′, Q) ∈↓r.
Then (P,Q) ∈ Rr.

Lemma 3.10 I f G ‖ M
β
−→ G′ ‖ M′ is a top transition and G ‖ M is well formed, then G′ ‖ M′ is

well formed too.

Proof: If the transition is derived using Rule [EXT-OUT], then G =⊞i∈Ipq!ℓi;Gi and for some k ∈ I
we have G′ = Gk and M′ ≡ M · 〈p, ℓk, q〉. We show that Gk ‖ M · 〈p, ℓk, q〉 is well formed. Since

G↾p is defined for all p, by definition of projection also Gk ↾p is defined for all p. Since G is bounded

and Gk is a subtree of G, also Gk is bounded. Finally, ⊢b G ‖ M implies ⊢b Gk ‖ M · 〈p, ℓk, q〉 by

inversion on Rule [OUT] of Figure 3.

If the transition is derived using Rule [EXT-IN], then G = pq?ℓ;G′ and the proof is similar and

simpler.

Lemma 3.11 Let G ‖ M be well formed.

1. If G↾p =
⊕

i∈I q!ℓi;Pi, then G ‖ M
pq!ℓi−−−→ Gi ‖ M · 〈p, ℓi, q〉 and Gi ↾p = Pi for all i ∈ I .

2. If G ↾ q = Σi∈Ip?ℓi;Pi and M ≡ 〈p, ℓ, q〉 · M′ for some ℓ, then I = {k} and ℓ = ℓk and

G ‖ M
pq?ℓk−−−→ G′ ‖ M′ and G′ ↾q = Pk.

Proof: (1) The proof is by induction on d = depth(G, p).

Case d = 1. By definition of projection (see Figure 2), G ↾ p =
⊕

i∈I q!ℓi;Pi implies G =
⊞i∈Ipq!ℓi;Gi with Gi ↾ p = Pi for all i ∈ I . Then by Rule [EXT-OUT] we may conclude

G ‖ M
pq!ℓi−−−→ Gi ‖ M · 〈p, ℓi, q〉 for all i ∈ I .

Case d > 1. In this case either i) G = ⊞j∈J rs!ℓ
′
j ;Gj with r 6= p or ii) G = rs?ℓ;G with s 6= p.

i) There are three subcases.

If s = p and |J | = 1, say J = {1}, then G = rp!ℓ′1;G1. By definition of projection and by assumption

G ↾ p = G1 ↾ p =
⊕

i∈I q!ℓi;Pi. By Lemma 3.5(1) depth(G, p) > depth(G1, p). By Lemma 3.10

G1 ‖ M · 〈r, ℓ′1, p〉 is well formed. Then by induction

G1 ‖ M · 〈r, ℓ′1, p〉
pq!ℓi
−−−→ G′

i ‖ M · 〈r, ℓ′1, p〉 · 〈p, ℓi, q〉

62 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

and G′
i ↾ p = Pi for all i ∈ I . Since M · 〈r, ℓ′1, p〉 · 〈p, ℓi, q〉 ≡ M · 〈p, ℓi, q〉 · 〈r, ℓ

′
1, p〉, by Rule

[ICOMM-OUT] we get G ‖ M
pq!ℓi−−−→ rp!ℓ′1;G

′
i ‖ M·〈p, ℓi, q〉 for all i ∈ I . By definition of projection

(rp!ℓ′1;G
′
i)↾p = G′

i ↾p and so (rp!ℓ′1;G
′
i)↾p = Pi for all i ∈ I .

If s = p and |J | > 1, by definition of projection and the assumption that G ↾ p is a choice of output

actions on q we have that G ↾ p = q!ℓ;P with P = −→π;Σj∈J r?ℓ
′
j ;Qj and Gj ↾ p = q!ℓ;−→π;r?ℓ′j;Qj

for all j ∈ J . By Lemma 3.5(1) depth(G, p) > depth(Gj, p) for all j ∈ J . By Lemma 3.10

Gj ‖ M·〈r, ℓ′j , s〉 is well formed. This implies Gj ‖ M·〈r, ℓ′j , s〉
pq!ℓ
−−→ G′

j ‖ M·〈r, ℓ′j , s〉 ·〈p, ℓ, q〉 and

G′
j ↾p = −→π;r?ℓ′j;Qj for all j ∈ J by induction. Since M·〈r, ℓ′j , s〉·〈p, ℓ, q〉 ≡ M·〈p, ℓ, q〉·〈r, ℓ′j , s〉, by

Rule [ICOMM-OUT] we get G ‖ M
pq!ℓ
−−→ ⊞j∈J rp!ℓ

′
j ;G

′
j ‖ M·〈p, ℓ, q〉. Lastly (⊞j∈J rp!ℓ

′
j;G

′
j)↾p =

−→π;Σj∈J r?ℓ
′
j ;Qj since G′

j ↾p = −→π;r?ℓ′j ;Qj . We may then conclude that (⊞j∈J rp!ℓ
′
j ;G

′
j)↾p = P .

If s 6= p, then by definition of projection G↾p = Gj ↾p for all j ∈ J . By Lemma 3.5(1) depth(G, p) >

depth(Gj , p) for all j ∈ J . Then by induction Gj ‖ M
pq!ℓi−−−→ Gi,j ‖ M · 〈p, ℓi, q〉 and Gi,j ↾ p = Pi

for all i ∈ I and all j ∈ J . By Rule [ICOMM-OUT]

G ‖ M
pq!ℓi−−−→ ⊞j∈J rs!ℓ

′
j ;Gi,j ‖ M · 〈p, ℓi, q〉

for all i ∈ I . By definition of projection (⊞j∈J rs!ℓ
′
j ;Gi,j)↾p = Gi,j ↾p = Pi for all i ∈ I .

ii) The proof of this case is similar and simpler than the proof of Case i). It uses Lemmas 3.5(2)

and 3.10 and Rule [ICOMM-IN], instead of Lemmas 3.5(1) and 3.10 and Rule [ICOMM-OUT]. Note

that, in order to apply Rule [ICOMM-IN], we need M ≡ 〈r, ℓ, s〉 ·M′. This derives from balancing of

rs?ℓ;G′ ‖ M using Rule [IN] of Figure 3.

(2) The proof is by induction on d = depth(G, q).

Case d = 1. By definition of projection and the hypothesis G ↾ q = Σi∈Ip?ℓi;Pi , it must be

G = pq?ℓ;G′ and |I| = 1, say I = {k}, and ℓ = ℓk and G′ ↾ q = Pk. Then by Rule [EXT-IN] we

deduce G ‖ 〈p, ℓk, q〉 ·M
′ pq?ℓk−−−→ G′ ‖ M′.

G = ⊞j∈J rs!ℓ
′
j ;Gj with r 6= q or ii) G = rs?ℓ;G′ with s 6= q.

i) There are two subcases, depending on whether s = q or s 6= q. The most interesting case is the

first one, namely G = ⊞j∈J rq!ℓ
′
j ;Gj . By definition of projection G ↾ q = −→π;Σj∈J r?ℓ

′
j ;Qj , where

Gj ↾ q = −→π; r?ℓ′j;Qj . By assumption G ↾ q = Σi∈Ip?ℓi;Pi, thus it must be either −→π = ǫ or |I| = 1,

say I = {k}, and −→π = p?ℓk;
−→
π′ .

If −→π = ǫ, we have that r = p and J = I and ℓ′i = ℓi and Qi = Pi for all i ∈ I . This means that

G = ⊞i∈Ipq!ℓi;Gi and Gi ↾q = p?ℓi;Pi. Let Mi ≡ 〈p, ℓ, q〉 · M′
i, where M′

i = M′ · 〈p, ℓi, q〉. By

Lemma 3.10 Gi ‖ Mi is well formed for all i ∈ I . By Lemma 3.5(1) depth(G, q) > depth(Gi, q)

for all i ∈ I . By induction hypothesis, Gi ‖ Mi
pq?ℓ
−−→ G′

i ‖ M′
i and ℓ = ℓi and G′

i ↾ q = Pi for

all i ∈ I . This implies that |I| = 1, say I = {k}. Then G = pq!ℓ;Gk and by Rule [ICOMM-OUT]

we deduce G ‖ M
pq?ℓ
−−→ G′ ‖ M′, where G′ = pq!ℓ;G′

k. Whence by definition of projection

G↾q = Gk ↾q = p?ℓk;Pk and G′ ↾q = G′
k ↾q = Pk .

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 63

If −→π = p?ℓk;
−→
π′ , then G ↾ q = p?ℓk;Pk , where Pk =

−→
π′;Σj∈J r?ℓ

′
j;Qj . Let Mj ≡ 〈p, ℓ, q〉 · M′

j ,

where M′
j = M′ ·〈r, ℓ′j , q〉. For all j ∈ J , Gj ‖ Mj is well formed by Lemma 3.10 and depth(G, q) >

depth(Gj , q) by Lemma 3.5(1). By induction hypothesis we get ℓ = ℓk and Gj ‖ Mj
pq?ℓ
−−→ G′

j ‖ M′
j

for all j ∈ J . Let G′ = ⊞j∈J rq!ℓ
′
j ;G

′
j . Then G ‖ M

pq?ℓ
−−→ G′ ‖ M′ by Rule [ICOMM-OUT] and

G′ ↾q =
−→
π′ ; Σj∈J r?ℓ

′
j;Qj = Pk.

ii) The proof of this case is similar and simpler than the proof of Case i). It uses Lemmas 3.5(2)

and 3.10 and Rule [ICOMM-IN], instead of Lemmas 3.5(1) and 3.10 and Rule [ICOMM-OUT]. Note

that, in order to apply Rule [ICOMM-IN], we need M ≡ 〈r, ℓ, s〉 ·M′. This derives from balancing of

rs?ℓ;G′ ‖ M using Rule [IN] of Figure 3.

Lemma 3.13 Let G ‖ M be well formed.

1. If G ‖ M
pq!ℓ
−−→ G′ ‖ M′, then M′ ≡ M · 〈p, ℓ, q〉 and G ↾ p =

⊕

i∈I q!ℓi;Pi and ℓ = ℓk and

G′ ↾p = Pk for some k ∈ I and G↾ r ≤ G′ ↾ r for all r 6= p.

2. If G ‖ M
pq?ℓ
−−→ G′ ‖ M′, then M ≡ 〈p, ℓ, q〉 ·M′ and G ↾q = pq?ℓ;G′ ↾q and G ↾ r ≤ G′ ↾ r

for all r 6= q.

Proof: (1) By induction on the inference of the transition G ‖ M
pq!ℓ
−−→ G′ ‖ M′.

Base Case. The applied rule must be Rule [EXT-OUT], so G = ⊞i∈Ipq!ℓi;Gi and ℓ = ℓk and G′ = Gk

for some k ∈ I , and

⊞i∈Ipq!ℓi;Gi ‖ M
pq!ℓk−−−→ Gk ‖ M · 〈p, ℓk, q〉

By definition of projection G ↾ p =
⊕

i∈I q!ℓi;Gi ↾ p and G′ ↾ p = Gk ↾ p . Again by definition of

projection, if r 6∈ {p, q} or r = q and |I| = 1, we have G↾ r = G1 ↾ r and so G↾ r = G′ ↾ r . If r = q and

|I| > 1, then G↾q = −→π;Σi∈Ip?ℓi;Qi, where Gi ↾q = −→π; p?ℓi;Qi for all i ∈ I and so G↾q ≤ Gk ↾q .

Inductive Cases. If the applied rule is [ICOMM-OUT], then G = ⊞j∈Jst!ℓ
′
j ;Gj and G′ = ⊞j∈Jst!ℓ

′
j ;G

′
j

and

Gj ‖ M · 〈s, ℓ′j , t〉
pq!ℓ
−−→ G′

j ‖ M′ · 〈s, ℓ′j , t〉 j ∈ J p 6= s

⊞j∈J st!ℓ
′
j;Gj ‖ M

pq!ℓ
−−→ ⊞j∈J st!ℓ

′
j;G

′
j ‖ M′

By Lemma 3.10 Gj ‖ M · 〈s, ℓ′j , t〉 is well formed. By induction hypothesis M′ · 〈s, ℓ′j , t〉 ≡ M ·
〈s, ℓ′j , t〉·〈p, ℓ, q〉, which implies M′ ≡ M·〈p, ℓ, q〉. If p 6= t, by definition of projection G↾p = G1 ↾p

and Gj ↾ p = G1 ↾ p for all j ∈ J . Similarly G′ ↾ p = G′
1 ↾ p and G′

j ↾ p = G′
1 ↾ p for all j ∈ J .

By induction hypothesis G1 ↾ p =
⊕

i∈I q!ℓi;Pi and ℓ = ℓk and G′
1 ↾ p = Pk for some k ∈ I . This

implies G↾p =
⊕

i∈I q!ℓi;Pi and G′ ↾p = Pk.

If p = t and |J | = 1 the proof is as in the previous case by definition of projection.

If p = t and |J | > 1, then the definition of projection gives G ↾ p = −→π;Σj∈J s?ℓ
′
j;Qj and Gj ↾ p =

−→π; s?ℓ′j;Qj and G′ ↾ p =
−→
π′;Σj∈Js?ℓ

′
j ;Q

′
j and G′

j ↾ p =
−→
π′; s?ℓ′j;Q

′
j for all j ∈ J . By induction

hypothesis −→π = q!ℓ;
−→
π′ , which implies G↾p = q!ℓ;G′ ↾p .

64 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

For r 6∈ {p, s, t} by definition of projection G ↾ r = G1 ↾ r and Gj ↾ r = G1 ↾ r for all j ∈ J . Similarly

G′ ↾ r = G′
1 ↾ r and G′

j ↾ r = G′
1 ↾ r for all j ∈ J . By induction hypothesis G1 ↾ r ≤ G′

1 ↾ r , which

implies G↾ r ≤ G′ ↾ r .

For participant s we have G↾s =
⊕

j∈J t!ℓ
′
j ;Gj ↾s ≤

⊕

j∈J t!ℓ
′
j ;G

′
j ↾s = G′ ↾s .

For participant t 6= p if |J | = 1 the proof is the same as for r 6∈ {p, s, t}. If |J | > 1, then we

have G ↾ t = −→π;Σj∈Js?ℓ
′
j ;Rj , where Gj ↾ t = −→π; s?ℓ′j;Rj and G′ ↾ t =

−→
π′;Σj∈J s?ℓ

′
j;R

′
j , where

G′
j ↾ t =

−→
π′; s?ℓ′j;R

′
j . From Gj ↾ t ≤ G′

j ↾ t for all j ∈ J we get
−→
π′ = −→π and Rj ≤ R′

j for all j ∈ J .

This implies G↾ t ≤ G′ ↾ t .

If the applied rule is [ICOMM-IN] the proof is similar and simpler.

(2) The proof is similar to the proof of (1). The most interesting case is the application of Rule

[ICOMM-OUT]

Gj ‖ M · 〈s, ℓ′j , t〉
pq?ℓ
−−→ G′

j ‖ M′ · 〈s, ℓ′j , t〉 j ∈ J q 6= s

⊞j∈Jst!ℓ
′
j;Gj ‖ M

pq?ℓ
−−→ ⊞j∈Jst!ℓ

′
j ;G

′
j ‖ M′

By Lemma 3.10 Gj ‖ M · 〈s, ℓ′j , t〉 is well formed. By induction hypothesis M· 〈s, ℓ′j , t〉 ≡ 〈p, ℓ, q〉 ·
M′ · 〈s, ℓ′j , t〉, which implies M ≡ 〈p, ℓ, q〉 ·M′. If q 6= t, by definition of projection G ↾q = G1 ↾q

and Gj ↾ q = G1 ↾ q for all j ∈ J . Similarly G′ ↾ q = G′
1 ↾ q and G′

j ↾ q = G′
1 ↾ q for all j ∈ J . By

induction hypothesis G1 ↾q = pq?ℓ;G′
1 ↾q . This implies G↾q = pq?ℓ;G′ ↾p .

If q = t and |J | = 1 the proof is as in the previous case by definition of projection.

If q = t and |J | > 1, then the definition of projection gives G ↾ q = −→π;Σj∈J s?ℓ
′
j;Qj and Gj ↾ q =

−→π; s?ℓ′j;Qj and G′ ↾ q =
−→
π′;Σj∈Js?ℓ

′
j ;Q

′
j and G′

j ↾ q =
−→
π′; s?ℓ′j;Q

′
j for all j ∈ J . By induction

hypothesis −→π = p?ℓ;
−→
π′ , which implies G↾q = p?qℓ;G′ ↾p .

The proof of G↾ r ≤ G′ ↾ r for all r 6= q is as in Case (1).

Lemma 3.14 I f ⊢b G ‖ M and G ‖ M
β
−→ G′ ‖ M′, then ⊢b G′ ‖ M′.

Proof: By induction on the inference of the transition G ‖ M
β
−→ G′ ‖ M′ of Figure 5.

Base Cases. Immediate from Lemma 3.10.

Inductive Cases. Let G ‖ M
β
−→ G′ ‖ M′ with Rule [ICOMM-OUT]. Then we get G = ⊞i∈Ipq!ℓi;Gi

and G′ = ⊞i∈Ipq!ℓi;G
′
i and Gi ‖ M · 〈p, ℓi, q〉

β
−→ G′

i ‖ M′ · 〈p, ℓi, q〉 for all i ∈ I . From Rule [OUT]
of Figure 3, we get ⊢b Gi ‖ M · 〈p, ℓi, q〉 for all i ∈ I . By induction hypotheses for all i ∈ I we can

derive ⊢b G′
i ‖ M · 〈p, ℓi, q〉. Therefore using Rule [OUT] we conclude ⊢b G′ ‖ M′.

Similarly for Rule [ICOMM-IN].

Lemma 8.5 1. If ρ ≺ω ρ′ and β � ρ and β � ρ′ and β ◮ ω are defined,

then β � ρ ≺β◮ω β � ρ′.

2. If ρ ≺ω ρ′ and β ⊲ ω is defined, then β ♦ ρ ≺β⊲ω β ♦ ρ′.

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 65

3. If ρ# ρ′ and both β � ρ and β � ρ′ are defined, then β � ρ#β � ρ′.

4. If ρ# ρ′, then β ♦ ρ#β ♦ ρ′.

Proof: (1) If ρ ≺ω ρ′, then

• either ρ = p :: η and ρ′ = p :: η′ and η < η′,

• or ρ = p :: ζ · q!ℓ and ρ′ = q :: ζ ′ · p?ℓ and (ω@ p · ζ)�q w⋊⋉v (ω@ q · ζ ′′)�p

for some ζ ′′ and χ such that (ζ ′ · p?ℓ)�p - (ζ ′′ · p?ℓ ·χ)�p .

In the first case, from the fact that β � ρ and β � ρ′ are defined and Definition 8.1(1) we get β � ρ =
p :: η1 and β � ρ′ = p :: η′1, where η = β@ p · η1 and η′ = β@ p · η′1. Since η1 < η′1 we conclude

β � ρ ≺β◮ω β � ρ′.

In the second case, let ω′ = β ◮ ω.

If play(β) 6⊂ {p, q}, then β@ p = β@ q = ǫ and β � ρ = ρ and β � ρ′ = ρ′. Moreover,

by Definition 8.3(1) (ω′ @ p) � q = (ω@ p) � q and (ω′@ q) � p = (ω@ q) � p . Therefore

(ω@ p · ζ)�q w⋊⋉v (ω@ q · ζ ′′)�p implies (ω′ @ p · ζ)�q w⋊⋉v (ω′ @ q · ζ ′′)�p which proves that

β � ρ ≺ω′

β � ρ′.

If play(β) = {p}, then either β = pr!ℓ′ or β = rp?ℓ′.
If β = pr!ℓ′, then β@ p = r!ℓ′ and β@ q = ǫ. By Definition 8.1(1), since β � ρ is defined we

have ζ = r!ℓ′ · ζ1. Then β � ρ = p :: ζ1 · q!ℓ and β � ρ′ = ρ′. Moreover, by Definition 8.3(1)

ω′@ p = (ω@ p) · r!ℓ′ and ω′ @ q = ω@ q. Therefore ω@ p · ζ = ω@ p · r!ℓ′ · ζ1 = ω′ @ p · ζ1 and

ω@ q · ζ ′′ = ω′@ q · ζ ′′. Then, from the fact that (ω@ p · ζ) � q w⋊⋉v (ω@ q · ζ ′′) � p it follows that

(ω′ @ p · ζ1)�q w⋊⋉v (ω′@ q · ζ ′′)�p .

If β = rp?ℓ′, then β@ p = r?ℓ′ and β@ q = ǫ. By Definition 8.1(1), since β � ρ is defined we

have ζ = r?ℓ′ · ζ1. Then β � ρ = p :: ζ1 · q!ℓ and β � ρ′ = ρ′. We now distinguish two subcases,

according to whether r = q or r 6= q.

If r = q, then by Definition 8.3(1) ω@ p = ω′@ p and ω@ q = p!ℓ′ · (ω′ @ q). Therefore

we get ω@ p · ζ = (ω′ @ p) · q?ℓ′ · ζ1 and ω@ q · ζ ′′ = p!ℓ′ · ω′@ q · ζ ′′. Then, from the fact that

(ω@ p · ζ) � q w ⋊⋉v (ω@ q · ζ ′′) � p and (ω′ @ p) � q cannot contain inputs, it follows that

(ω′ @ p)�q · ζ1 �q w⋊⋉v (ω′@ q · ζ ′′)�p .

If r 6= q, then by Definition 8.3(1) ω@ p = ω′ @ p and ω@ q = ω′ @ q. In this case we get

(ω@ p · ζ) � q = (ω′ @ p · r?ℓ′ · ζ1) � q = (ω′@ p · ζ1) � q and ω@ q · ζ ′′ = ω′@ q · ζ ′′. Then, from

(ω@ p · ζ)�q w⋊⋉v (ω@ q · ζ ′′)�p it follows that (ω′@ p · ζ1)�q w⋊⋉v (ω′ @ q · ζ ′′)�p .

If play(β) = {q} the proof is similar.

(2) The proof is similar to that of Fact (1).

(3) Let ρ = p :: η and ρ′ = p :: η′ and η# η′. From β � ρ and β � ρ′ defined we get η = β@ p · η1
and η′ = β@ p · η′1 and β � ρ = p :: η1 and β � ρ′ = p :: η′1 by Definition 8.1(1).

Since η# η′ implies η1 # η′1 we conclude β � ρ#β � ρ′.

66 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

In the following we use the notation pq?ℓ defined by pq?ℓ = pq!ℓ.

Lemma 8.14 Let play(β1) ∩ play(β2) = ∅.

1. If both β2 ◮ ω and β2 ◮ (β1 ⊲ ω) are defined, then β1 ⊲ (β2 ◮ ω) ∼= β2 ◮ (β1 ⊲ ω).

2. If both β1⊲ω and β2⊲ω are defined, then β1⊲(β2 ⊲ ω) is defined and β1⊲(β2 ⊲ ω) ∼= β2⊲(β1 ⊲ ω).

Proof: (1) Since ω2 = β2 ◮ ω is defined, by Definition 8.3(1) ω ∼= β2 ·ω2 when β2 is an input. Since

β2 ◮ (β1 ⊲ ω) is defined, ω1 = β1 ⊲ ω is defined and by Definition 8.3 ω ∼= ω1 · β1 when β1 is an

output and ω ∼= β2 ·ω0 ·β1 for some ω0 such that ω1
∼= β2 ·ω0 and ω2

∼= ω0 ·β1, when β1 is an output

and β2 is an input. Using Definition 8.3 we compute:

β1 ⊲ (β2 ◮ ω) ∼= β2 ◮ (β1 ⊲ ω) ∼=







ω1 · β2 if both β1 and β2 are outputs

ω0 if β1 is an output and β2 is an input

β1 · ω · β2 if β1 is an input and β2 is an output

β1 · ω2 if both β1 and β2 are inputs

(2) Since ωi = βi ⊲ ω is defined for i ∈ {1, 2}, by Definition 8.3(2) ω ∼= ωi · βi when βi is an

output. Then from play(β1) ∩ play(β2) = ∅ we get ω ∼= ω′ · β1 · β2 ∼= ω′ · β2 · β1 for some ω′ when

both β1 and β2 are outputs. Using Definition 8.3(2) we compute:

β1 ⊲ (β2 ⊲ ω) ∼= β2 ⊲ (β1 ⊲ ω) ∼=







ω′ if both β1 and β2 are outputs

βi · ωj if βi is an input and βj is an output

β1 · β2 · ω if both β1 and β2 are inputs

Lemma A.1. 1. If β • [ω, β ⌈ω τ]∼ is defined, then ω · β · τ is well formed and

β • [ω, β ⌈ω τ]∼ = [β ◮ ω, τ]∼

2. If β ◦ [ω, τ]∼ is defined, then (β ⊲ ω) · β · τ is well formed and

β ◦ [ω, τ]∼ = [β ⊲ ω, β ⌈(β⊲ω) τ]∼

Lemma 8.15 1. If β • δ is defined, then β ◦ (β • δ) = δ.

2. If β ◦ δ is defined, then β • (β ◦ δ) = δ.

3. If both β2 • δ, β2 • (β1 ◦ δ) are defined, and play(β1) ∩ play(β2) = ∅, then β1 ◦ (β2 • δ) =
β2 • (β1 ◦ δ).

4. If both β1 ◦ δ, β2 ◦ δ are defined, and play(β1)∩ play(β2) = ∅, then β1 ◦ (β2 ◦ δ) is defined and

β1 ◦ (β2 ◦ δ) = β2 ◦ (β1 ◦ δ).

Proof: Statements (1) and (2) immediately follow from Lemma A.1. In the proofs of the remaining

statements we convene that “β is required in τ1 · β · τ2” is short for “the shown occurrence of β is

required in τ1 · β · τ2” and similarly for “β matches an output in τ1 · β · τ2”.

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 67

(3) Let δ = [ω, τ]∼. Since both β2 • δ and β2 • (β1 ◦ δ) are defined, by Lemma A.1 both β2 ◮ ω
and β2 ◮ (β1 ⊲ ω) must be defined. Then, by Lemma 8.14(1) β2 ◮ (β1 ⊲ ω) ∼= β1 ⊲ (β2 ◮ ω). So we

set ω′ = β1 ⊲ (β2 ◮ ω). Let ω1 = β1 ⊲ ω . By Definition 8.13(2) we get

δ1 = β1 ◦ δ =

{

[ω1, β1 · τ]∼ if β1 · τ is ω1-pointed

[ω1, τ]∼ otherwise

Let ω2 = β2 ◮ ω. By Definition 8.13(1) we get

δ2 = β2 • δ =

{

[ω2, τ
′]∼ if τ ≈ω β2 · τ

′

[ω2, τ]∼ if play(β2) ∩ play(τ) = ∅

The remainder of this proof is split into two cases, according to the shape of δ2.

Case δ2 = [ω2, τ]∼. Then play(β2) ∩ play(τ) = ∅. By Definition 8.13(2) we get

β1 ◦ δ2 =

{

[ω′, β1 · τ]∼ if β1 · τ is ω′-pointed

[ω′, τ]∼ otherwise

Since play(β2) ∩ play(β1 · τ) = ∅, by Definition 8.13(1) we get

β2 • δ1 =

{

[ω′, β1 · τ]∼ if β1 · τ is ω1-pointed

[ω′, τ]∼ otherwise

We have to show that

(∗∗) β1 · τ is ω′-pointed iff β1 · τ is ω1-pointed

If β1 is an input, it must be required in τ for both ω′-pointedness and ω1-pointedness, so this case is

obvious.

Let β1 = pq!ℓ.

If β2 is an output, then ω′ ∼= ω1 · β2 by Definition 8.3(1). Since β2 6= pq!ℓ′ for all ℓ′, an input in τ
matches β1 in ω1 · β2 · β1 · τ iff it matches β1 in ω1 · β1 · τ .

If β2 is an input, then ω1
∼= β2 · ω

′ by Definition 8.3(1). If β2 6= pq?ℓ′ for all ℓ′, then an input in

τ matches β1 in ω′ · β1 · τ iff it matches β1 in β2 · ω
′ · β1 · τ . Let β2 = pq?ℓ′ for some ℓ′. Since

play(β2)∩play(τ) 6= ∅, there is no input β0 in τ such that β0 matches β1 in ω′ ·β1 ·τ or in β2 ·ω
′ ·β1 ·τ .

This concludes the proof of (∗∗).

Case δ2 = [ω2, τ
′]∼. Then τ ≈ω β2 · τ

′. By Definition 8.13(2) we get

β1 ◦ δ2 =

{

[ω′, β1 · τ
′]∼ if β1 · τ

′ is ω′-pointed

[ω′, τ ′]∼ otherwise

and, since δ = [ω, β2 · τ
′]∼, by the same definition we get

β1 ◦ δ =

{

[ω1, β1 · β2 · τ
′]∼ if β1 · β2 · τ

′ is ω1-pointed

[ω1, β2 · τ
′]∼ otherwise

We first show that β2 · β1 · τ
′ ≈ω1

β1 · β2 · τ
′. Since β1 ◦ δ is defined, the trace ω1 · β1 · β2 · τ

′ is

well formed by Lemma A.1(2). So β1 cannot be a matching input for β2. To show that β2 cannot be a

68 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

matching input for β1 observe that, if it were, then β1 = β2. Since β2 •(β1 ◦ δ) is defined we have that

ω1 ≡ β2 ·ω
′ by Definition 8.3(1). Therefore β2 cannot be a matching input for β1 in β2 ·ω

′ ·β1 ·β2 ·τ
′,

since it is the matching input of the first β2. From this and play(β1) ∩ play(β2) = ∅ we get that

β2 · β1 · τ
′ ≈ω1

β1 · β2 · τ
′. Therefore

β1 ◦ δ =

{

[ω1, β2 · β1 · τ
′]∼ if β1 · β2 · τ

′ is ω1-pointed

[ω1, β2 · τ
′]∼ otherwise

and by Definition 8.13(1)

β2 • δ1 =

{

[ω′, β1 · τ
′]∼ if β1 · β2 · τ

′ is ω1-pointed

[ω′, τ ′]∼ otherwise

We have to show that

(∗ ∗ ∗) β1 · τ
′ is ω′-pointed iff β1 · β2 · τ

′ is ω1-pointed

Note that β1 is required in τ ′ iff it is required in β2 · τ
′ since play(β2) ∩ play(β1) = ∅. Therefore

the result is immediate when β1 is an input.

Let β1 be an output.

If β2 is an output, then ω′ ∼= ω1 · β2 by Definition 8.3(1). Suppose that β1 · τ
′ is ω′-pointed, where

τ ′ = τ ′0 · β0 · τ
′′
0 and β0 matches β1 in ω1 · β2 · β1 · τ

′
0 · β0 · τ

′′
0 . Then, since β2 · β1 · τ

′ ≈ω1
β1 · β2 · τ

′,

we have that β0 matches β1 in ω1 · β1 · β2 · τ
′
0 · β0 · τ

′′
0 . In a similar way we can prove that, if an input

β0 matches β1 in ω1 · β1 · β2 · τ
′
0 · β0 · τ

′′
0 , then β0 matches β1 in ω1 · β2 · β1 · τ

′
0 · β0 · τ

′′
0 .

If β2 is an input, then ω1
∼= β2 · ω

′ by Definition 8.3(1). Suppose that β1 · τ
′ is ω′-pointed, where

τ ′ = τ ′0 ·β0 ·τ
′′
0 and β0 matches β1 in ω′ ·β1 ·τ

′
0 ·β0 ·τ

′′
0 . Then β0 matches β1 in β2 ·ω

′ ·β1 ·β2 ·τ
′
0 ·β0 ·τ

′′
0 ,

since β2 is the first input in the trace and it matches β2. In a similar way we can prove that, if an input

β0 matches β1 in β2 · ω
′ · β1 · β2 · τ

′
0 · β0 · τ

′′
0 , then β0 matches β1 in ω′ · β1 · τ

′
0 · β0 · τ

′′
0 . Therefore

(∗ ∗ ∗) holds.

(4) Let δ = [ω, τ]∼. Since βi ◦ δ is defined for i ∈ {1, 2}, by Lemma A.1(2) ωi = βi ⊲ω is defined

for i ∈ {1, 2}. Then by Lemma 8.14(2) β1 ⊲ (β2 ⊲ ω) ∼= β2 ⊲ (β1 ⊲ ω). Let ω′ = β1 ⊲ (β2 ⊲ ω).

Using Lemma A.1(2) we get for i ∈ {1, 2}

δi = βi ◦ [ω, τ]∼ = [ωi, βi ⌈ωi
τ]∼

Using again Lemma A.1(2) we get

β2 ◦ δ1 = β2 ◦ [ω1, β1 ⌈ω1
τ]∼ = [ω′, β2 ⌈ω′ (β1 ⌈ω1

τ)]∼
Similarly

β1 ◦ δ2 = β1 ◦ [ω2, β2 ⌈ω2
τ]∼ = [ω′, β1 ⌈ω′ (β2 ⌈ω2

τ)]∼

We want to prove that

(∗) β1 ⌈ω′ (β2 ⌈ω2
τ) ≈ω′ β2 ⌈ω′ (β1 ⌈ω1

τ)

In the proof of (*) we will use the following facts, where h, k = 1, 2 and h 6= k:

(a) βh ·βk · τ ≈ω′ βk · βh · τ ;

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 69

(b) if βh · τ is ω′-pointed and βk · τ is not ωk-pointed, then βh · τ is ωh-pointed;

(c) if βh · τ is ωh-pointed and βk · τ is not ωk-pointed, then βh · τ is ω′-pointed;

(d) βh ·βk · τ is ω′-pointed iff βh · τ is ωh-pointed and βk · τ is ωk-pointed.

Fact a. We show that βh · βk · τ ω′-swaps to βk ·βh · τ . By hypothesis play(βh)∩ play(βk) = ∅, so it

is enough to show that βk does not match βh in the trace ω′ · βh · βk · τ = (βh ⊲ (βk ⊲ ω)) · βh · βk · τ .

Suppose that βh is an output and βk is an input such that βk = βh. Since δh = βh ◦ δ is defined and

βh is an output, it must be ω ∼= ωh · βh. Then, since δk = βk ◦ δ is defined and βk is an input and

βk = βh, we get βk ⊲ ω = βk ·ω
∼= βk ·ωh ·βh ∼= βh ·ωh ·βh. Then ω′ = βh ⊲ (βk ⊲ ω) ∼= βh ·ωh.

Clearly, βk matches the initial output βh in the trace ω′ · βh · βk · τ , since βk is the first input in the

trace and the initial βh is the first complementary output in the trace. Therefore βk does not match its

adjacent output βh.

Fact b. If βh is required in βh · τ - a condition that is always true when βh is an input and βh · τ is

ω′-pointed - then βh · τ is ω0-pointed for all ω0.

We may then assume that βh is an output that is not required in βh · τ .

If βk is an output, then ωh
∼= ω′ · βk. If an input matches βh in ω′ · βh · τ , then the same input matches

βh in ωh · βh · τ , since play(βh) ∩ play(βk) = ∅.

If βk is an input, then ω′ ∼= βk · ωh. Suppose βh = pq!ℓ and βk = rs?ℓ′. Observe that it must be

q 6= s, because otherwise no input pq?ℓ could occur in τ , since βk · τ is not ωk-pointed, contradicting

the hypotheses that βh · τ is ω′-pointed and βh is not required in βh ·τ . Then the presence of βk = rs!ℓ
cannot affect the multiplicity of pq! or pq? in any trace. Therefore, if an input matches βh in ω′ ·βh · τ ,

then the same input matches βh in ωh · βh · τ .

Fact c. Again, we may assume that βh is an output that is not required in βh · τ .

If βk is an output, then ωh
∼= ω′ ·βk . If an input matches βh in ωh ·βh · τ , then the same input matches

βh in ω′ · βh · τ , since play(βh) ∩ play(βk) = ∅.

If βk is an input, then ω′ ∼= βk · ωh. Let βh = pq!ℓ and βk = rs?ℓ′. Again, it must be q 6= s, because

otherwise no input pq?ℓ could occur in τ , since βk · τ is not ωk-pointed, contradicting the hypotheses

that βh · τ is ωh-pointed and βh is not required in βh ·τ . Therefore, if an input matches βh in ωh ·βh · τ ,

then the same input matches βh in ω′ · βh · τ .

Fact d. From play(βh)∩ play(βk) = ∅ it follows that βh is required in βh ·βk · τ iff βh is required

in βh · τ , and similarly for βk. Let us then assume that βh and βk are not both required in βh · βk · τ ,

i.e., that at least one of them is an output not required in βh ·βk · τ .

If both βh and βk are outputs, then ωh
∼= ω′ · βk. Then an input matches βh in ω′ · βh · βk · τ iff the

same input matches βh in ωh · βh · τ , since βh ·βk · τ ≈ω′ βk ·βh · τ by Fact a.

Let βh = pq!ℓ and βk = rs?ℓ′, where βh is not required in βh ·βk · τ . Then ω′ ∼= βk · ωh. Therefore

an input matches βh in ω′ · βh · βk · τ iff the same input matches βh in ωh · βh · τ , since βh · βk · τ ≈ω′

βk · βh · τ by Fact a.

We proceed now to prove (*). We distinguish three cases, according to whether:

i) each βi · τ is ωi-pointed, for i = 1, 2;

ii) no βi · τ is ωi-pointed, for i = 1, 2;

70 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

iii) βh · τ is ωh-pointed and βk · τ is not ωk-pointed, for h, k = 1, 2 and h 6= k.

Case i. Suppose each βi · τ is ωi-pointed, for i = 1, 2. Then β1 ⌈ω′ (β2 ⌈ω2
τ) ≈ω′ β1 ⌈ω′ β2 · τ and

β2 ⌈ω′ (β1 ⌈ω1
τ) ≈ω′ β2 ⌈ω′ β1 · τ . By Fact d both β1 ·β2 · τ and β2 · β1 · τ are ω′-pointed. Then

β1 ⌈ω′ β2 · τ ≈ω′ β1 ·β2 · τ and β2 ⌈ω′ β1 · τ ≈ω′ β2 ·β1 · τ . By Fact a β1 · β2 · τ ≈ω′ β2 ·β1 · τ .

Case ii. Suppose no βi · τ is ωi-pointed, for i = 1, 2. Then β1 ⌈ω′ (β2 ⌈ω2
τ) ≈ω′ β1 ⌈ω′ τ and

β2 ⌈ω′ (β1 ⌈ω1
τ) ≈ω′ β2 ⌈ω′ τ . By Fact b, no βi · τ can be ω′-pointed, for i ∈ {1, 2}. Hence

β1 ⌈ω′ τ ≈ω′ τ ≈ω′ β2 ⌈ω′ τ .

Case iii. Suppose βh · τ is ωh-pointed and βk · τ is not ωk-pointed, for h, k = 1, 2 and h 6= k. Then

βh ⌈ω′ (βk ⌈ωk
τ) ≈ω′ βh ⌈ω′ τ and βk ⌈ω′ (βh ⌈ωh

τ) ≈ω′ βk ⌈ω′ βh · τ . By Fact c βh · τ is ω′-pointed.

Hence βh ⌈ω′ τ ≈ω′ βh · τ . By Fact d βk ·βh · τ is not ω′-pointed. Therefore βk ⌈ω′ βh · τ ≈ω′ βh · τ .

Lemma A.2. 1. Let β ◮ ω be defined and ω′ = β ◮ ω. Let τ, τ ′ be such that τ ′ is (ω · β · τ)-
pointed. Then

(β · τ) ⌈ω τ ′ = β ⌈ω (τ ⌈ω′ τ ′)

2. Let β ⊲ ω be defined and ω′ = β ⊲ ω. Let τ, τ ′ be such that τ ′ is (ω′ ·β · τ)-pointed. Then

(β · τ) ⌈ω′ τ ′ = β ⌈ω′ (τ ⌈ω τ ′)

Proof: (1) We show (β · τ) ⌈ω τ ′ = β ⌈ω (τ ⌈ω′ τ ′) by induction on τ .

Case τ = ǫ. In this case both the LHS and RHS reduce to β ⌈ω τ
′, for whatever ω.

Case τ = τ ′′ ·β′. By Definition 7.13 we obtain for the LHS:

(β · τ ′′ ·β′) ⌈ω τ ′ =

{

(β · τ ′′) ⌈ω (β′ · τ ′) if β′ · τ ′ is (ω · β · τ ′′)-pointed

(β · τ ′′) ⌈ω τ ′ otherwise

By Definition 7.13 (applied to the internal filtering) we obtain for the RHS:

β ⌈ω ((τ
′′ ·β′) ⌈ω′ τ ′) =

{

β ⌈ω (τ ′′ ⌈ω′ (β′ · τ ′)) if β′ · τ ′ is (ω′ · τ ′′)-pointed

β ⌈ω (τ ′′ ⌈ω′ τ ′) otherwise

We distinguish two cases, according to whether β is an input or an output.

Suppose first that β is an output. Then ω′ = ω · β. The side condition, i.e. the requirement that

β′ · τ ′ be (ω′ · τ ′′)-pointed, is the same in both cases. We may then immediately conclude that LHS =

RHS using the induction hypothesis.

Suppose now that β is an input. Then ω = β ·ω′. Observe that, since (ω′ · τ”) is obtained from

(ω ·β · τ ′′) = (β ·ω′ ·β · τ ′′) by erasing a pair of matching communications, (β′ · τ ′) is (ω′ · τ ′′)-
pointed if and only if (β′ · τ ′) is (ω ·β · τ ′′)-pointed. Then we may again conclude by induction.

(2) follows from (1) since β ◮ (β ⊲ ω) = ω.

Lemma A.3. 1. If τ 6= ǫ and β ◮ ω is defined, then β • ev(ω, β · τ) = ev(β ◮ ω, τ).

2. If β ⊲ ω is defined, then β ◦ ev(ω, τ) = ev(β ⊲ ω, β · τ).

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 71

Proof: Definition 7.14 and Lemmas A.1 and A.2 with τ ′ = ǫ imply (1) and (2) since:

(1) β • ev(ω, β · τ) = β • [ω, (β · τ) ⌈ω ǫ]∼ by Definition 7.14

= β • [ω, β ⌈ω (τ ⌈ω′ ǫ)]∼ by Lemma A.2(1)

= [ω′, τ ⌈ω′ ǫ]∼ by Lemma A.1(1)

ev(ω′, τ) = [ω′, τ ⌈ω′ ǫ]∼ by Definition 7.14

where ω′ = β ◮ ω

(2) β ◦ ev(ω, τ) = β ◦ [ω, τ ⌈ω ǫ]∼ by Definition 7.14

= [ω′, β ⌈ω′ (τ ⌈ω ǫ)]∼ by Lemma A.1(2)

= [ω′, (β · τ) ⌈ω′ ǫ]∼ by Lemma A.2(2)

ev(ω′, β · τ) = [ω′, (β · τ) ⌈ω′ ǫ]∼ by Definition 7.14

where ω′ = β ⊲ ω

Lemma 8.16 1. If δ1 < δ2 and both β • δ1, β • δ2 are defined, then β • δ1 < β • δ2.

2. If δ1 < δ2 and β ◦ δ1 is defined, then β ◦ δ1 < β ◦ δ2.

3. If δ1 # δ2 and both β ◦ δ1, β ◦ δ2 are defined, then β ◦ δ1 #β ◦ δ2.

Proof: (1) Let δ1 = [ω, τ]∼ and δ2 = [ω, τ · τ ′]∼. If β • δ1 = [ω′, τ]∼ and β • δ2 = [ω′, τ · τ ′]∼ for

some ω′, then β • δ1 < β • δ2.

Let β be an output. If τ ≈ω β · τ1 with τ1 6= ǫ, then β•δ1 = [ω·β, τ1]∼ and β•δ2 = [ω·β, τ1 · τ
′]∼.

Therefore β • δ1 < β • δ2. Let play(β) 6⊆ play(τ) and τ · τ ′ ≈ω β · τ2 with τ2 6= ǫ. This implies

β · τ2 ≈ω β · τ · τ ′2 for some τ ′2. It follows that τ2 ≈ω·β τ · τ ′2. Then we get β • δ1 = [ω · β, τ]∼ and

β • δ2 = [ω · β, τ2]∼ = [ω · β, τ · τ ′2]∼, which imply β • δ1 < β • δ2.

Let β be an input. The proof is similar.

(2) Since δ1 < δ2 and β ◦ δ1 is defined, then also β ◦ δ2 is defined. Let δ1 = [ω, τ]∼ and

δ2 = [ω, τ · τ ′]∼. If β ◦ δ1 = [ω′, τ]∼ and β ◦ δ2 = [ω′, τ · τ ′]∼ for some ω′, then β ◦ δ1 < β ◦ δ2.

Let β be an output. Then ω ∼= ω′ ·β. If β◦δ1 = [ω′, β ·τ]∼, then it must be β◦δ2 = [ω′, β ·τ · τ ′]∼.

Thus β ◦ δ1 < β ◦ δ2. The only other case is β ◦ δ1 = [ω′, τ]∼ and β ◦ δ2 = [ω′, β · τ · τ ′]∼. Since

β ◦ δ1 = [ω′, τ]∼, the trace β · τ is not ω′-pointed, so play(β) 6⊆ play(τ) and τ does not contain the

matching input of β. Therefore β · τ · τ ′ ≈ω′ τ ·β · τ ′ and β ◦ δ2 = [ω′, β · τ · τ ′]∼ = [ω′, τ ·β · τ ′]∼,

so β ◦ δ1 < β ◦ δ2.

Let β be an input. If β ◦ δ1 = [β · ω, β · τ]∼, then it must be β ◦ δ2 = [β · ω, β · τ · τ ′]∼. We

get β ◦ δ1 < β ◦ δ2. The only other case is β ◦ δ1 = [β · ω, τ]∼ and β ◦ δ2 = [β · ω, β · τ · τ ′]∼.

If β ◦ δ1 = [β · ω, τ]∼, then play(β) 6⊆ play(τ). Therefore β · τ · τ ′ ≈β·ω τ ·β · τ ′ and β ◦ δ2 =

[β · ω, β · τ · τ ′]∼ = [β · ω, τ · β · τ ′]∼, so β ◦ δ1 < β ◦ δ2.

(3) Let δ1 = [ω, τ]∼ and δ2 = [ω, τ ′]∼ and τ @ p # τ ′@ p . We select some interesting cases.

Note first that τ @ p # τ ′ @ p implies p ∈ play(τ) ∩ play(τ ′).

72 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

If β is an output , then ω ∼= ω′ · β. If both β · τ and β · τ ′ are ω′-pointed or not ω′-pointed, then the

result is immediate. If β · τ is ω′-pointed while β · τ ′ is not ω′-pointed, then play(β) 6⊆ play(τ ′). This

implies p 6∈ play(β). Similarly, if β is an input and play(β) ⊆ play(τ) while play(β) 6⊆ play(τ ′), then

p 6∈ play(β). In both cases we get (β · τ)@ p = τ @ p and (β · τ ′)@ p = τ ′ @ p , so we conclude

β ◦ δ1 #β ◦ δ2.

Lemma 8.17 1. If δ ∈ TE(⊞i∈Ipq!ℓi;Gi ‖ M) and pq!ℓk • δ is defined, then

pq!ℓk • δ ∈ TE(Gk ‖ M · 〈p, ℓk, q〉), where k ∈ I .

2. If δ ∈ TE(pq?ℓ;G ‖ 〈p, ℓ, q〉 ·M) and pq?ℓ • δ is defined, then pq?ℓ • δ ∈ TE(G ‖ M).

3. If δ ∈ TE(G ‖ M · 〈p, ℓ, q〉), then

pq!ℓ ◦ δ ∈ TE(⊞i∈Ipq!ℓi;Gi ‖ M), where ℓ = ℓk and G = Gk for some k ∈ I .

4. If δ ∈ TE(G ‖ M), then pq?ℓ ◦ δ ∈ TE(pq?ℓ;G ‖ 〈p, ℓ, q〉 ·M).

Proof: (1) By Definition 7.17(1), if δ ∈ TE(⊞i∈Ipq!ℓi;Gi ‖ M), then δ = ev(ω, τ), where ω =
otr(M) and τ ∈ Tr+(⊞i∈Ipq!ℓi;Gi), which gives τ ≈ω pq!ℓh · τh with τh ∈ Tr+(Gh) for some

h ∈ I . By hypothesis pq!ℓk • δ is defined, which implies τ ≈ω pq!ℓk · τk and τk 6= ǫ. Then

Lemma A.3(1) gives pq!ℓk • δ = ev(ω · pq!ℓk, τk). We conclude that

pq!ℓk • δ ∈ TE(Gk ‖ M · 〈p, ℓk, q〉)

(2) Similar to the proof of (1).

(3) By Definition 7.17(1), if δ ∈ TE(G ‖ M · 〈p, ℓ, q〉), then δ = ev(ω · pq!ℓ, τ), where ω =
otr(M) and τ ∈ Tr+(G). By Lemma A.3(2) pq!ℓ ◦ δ = ev(ω, pq!ℓ · τ). Then, again by Defini-

tion 7.17(1), pq!ℓ ◦ δ ∈ TE(⊞i∈Ipq!ℓi;Gi ‖ M), where ℓ = ℓk and G = Gk for some k ∈ I , since

pq!ℓk · τ ∈ Tr+(⊞i∈Ipq!ℓi;Gi).

(4) Similar to the proof of (3).

Lemma 8.18 Let G ‖ M
β
−→ G′ ‖ M′. Then otr(M) ∼= β ⊲ otr(M′) and

1. if δ ∈ TE(G ‖ M) and β • δ is defined, then β • δ ∈ TE(G′ ‖ M′);

2. if δ ∈ TE(G′ ‖ M′), then β ◦ δ ∈ TE(G ‖ M).

Proof: Lemma 8.4 and Session Fidelity (Theorem 3.19) imply otr(M) ∼= β ⊲ otr(M′).

(1) By induction on the inference of the transition G ‖ M
β
−→ G′ ‖ M′ , see Figure 5.

Base Cases. If the applied rule is [EXT-OUT], then G = ⊞i∈Ipq!ℓi;Gi and β = pq!ℓk and G′ = Gk

and M′ ≡ M · 〈p, ℓk, q〉 for some k ∈ I . By assumption β • δ is defined. By Lemma 8.17(1)

β • δ ∈ TE(G′ ‖ M′).

If the applied rule is [EXT-IN], then G = pq?ℓ;G′ and β = pq?ℓ and M ≡ 〈p, ℓ, q〉 · M′. By

assumption β • δ is defined. By Lemma 8.17(2) β • δ ∈ TE(G′ ‖ M′).

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 73

Inductive Cases. If the last applied rule is [ICOMM-OUT], then G = ⊞i∈Ipq!ℓi;Gi and G′ =

⊞i∈Ipq!ℓi;G
′
i and Gi ‖ M · 〈p, ℓi, q〉

β
−→ G′

i ‖ M′ · 〈p, ℓi, q〉 for all i ∈ I and p 6∈ play(β).

By Definition 7.17(1) δ ∈ TE(G ‖ M) implies δ = ev(ω, τ), where ω = otr(M) and τ ∈ Tr+(G).
Then τ = pq!ℓk · τ

′ and δ = [ω, τ0]∼ with τ0 = (pq!ℓk · τ
′) ⌈ω ǫ for some k ∈ I by Definition 7.14.

We get either τ0 ≈ω pq!ℓk · τ
′
0 or p 6∈ play(τ0) by Definition 7.13. Then pq!ℓk • δ is defined unless

τ0 ≈ω pq!ℓk · τ
′
0 and τ ′0 = ǫ by Definition 8.13(1). We consider the two cases.

Case τ0 ≈ω pq!ℓk · τ
′
0 and τ ′0 = ǫ. We get β • δ = [β ◮ ω, pq!ℓk]∼ since play(β) ∩ play(pq!ℓk) = ∅,

which implies β • δ ∈ TE(G′ ‖ M′) by Definition 7.17(1).

Case τ0 ≈ω pq!ℓk · τ
′
0 and τ ′0 6= ǫ or p 6∈ play(τ0). Let δ′ = pq!ℓk • δ. By Lemma 8.17(1) δ′ ∈

TE(Gk ‖ M · 〈p, ℓk, q〉). By assumption β • δ is defined. We first show that β • δ′ is defined. Since

β • δ and pq!ℓk • δ are defined, by Definition 8.13(1) we have four cases:

(a) τ0 ≈ω β · τ1 for some τ1 and τ0 ≈ω pq!ℓk · τ
′
0;

(b) τ0 ≈ω β · τ1 and p 6∈ play(τ0);

(c) play(β) ∩ play(τ0) = ∅ and τ0 ≈ω pq!ℓk · τ
′
0;

(d) play(β) ∩ play(τ0) = ∅ and p 6∈ play(τ0).

Let ω′ = pq!ℓk ◮ ω = ω · pq!ℓk and ω′′ = β ◮ ω′.

In Case a we have τ0 ≈ω β · pq!ℓk · τ
′
1 ≈ω pq!ℓk ·β · τ ′1 for some τ ′1. Let τ2 = β · τ ′1. Then

δ = [ω, pq!ℓk · τ2]∼ and therefore δ′ = [ω′, τ2]∼ = [ω′, β · τ ′1]∼. Hence β • δ′ = [ω′′, τ ′1]∼.

In Case b we have δ = [ω, β · τ1]∼ and p 6∈ play(β · τ1). Therefore δ′ = [ω′, β · τ1]∼. Hence

β • δ′ = [ω′′, τ1]∼.

In Case c we have δ′ = [ω′, τ ′0]∼ and β • δ′ = [ω′′, τ ′0]∼ since play(β) ∩ play(τ0) = ∅ implies

play(β) ∩ play(τ ′0) = ∅.

In Case d we have δ′ = [ω′, τ0]∼ and β • δ′ = [ω′′, τ0]∼.

So in all cases we conclude that β • δ′ is defined.

By induction β•δ′ ∈ TE(G′
k ‖ M′ ·〈p, ℓk, q〉). By Lemma 8.17(3) pq!ℓk◦(β•δ

′) ∈ TE(G′ ‖ M′).
Since δ′ is defined, Lemma 8.15(1) implies pq!ℓk ◦δ

′ = δ. Since β •δ′ and β • (pq!ℓk ◦ δ
′) are defined

and p 6∈ play(β), by Lemma 8.15(3) we get pq!ℓk ◦ (β • δ′) = β • (pq!ℓk ◦ δ
′) = β • δ. We conclude

that β • δ ∈ TE(G′ ‖ M′).

If the last applied rule is [ICOMM-IN] the proof is similar.

(2) By induction on the inference of the transition G ‖ M
β
−→ G′ ‖ M′, see Figure 5.

Base Cases. If the applied rule is [EXT-OUT], then G = ⊞i∈Ipq!ℓi;Gi and β = pq!ℓk and G′ = Gk

and M′ ≡ M · 〈p, ℓk, q〉 for some k ∈ I . By Lemma 8.17(3) β ◦ δ ∈ TE(G ‖ M).
If the applied rule is [EXT-IN], then G = pq?ℓ;G′ and β = pq?ℓ and M ≡ 〈p, ℓ, q〉 · M′. By

Lemma 8.17(4) β ◦ δ ∈ TE(G ‖ M).

74 I. Castellani et al. / Types and Semantics for Asynchronous Sessions

Inductive Cases. If the last applied rule is [ICOMM-OUT], then G = ⊞i∈Ipq!ℓi;Gi and G′ =

⊞i∈Ipq!ℓi;G
′
i and Gi ‖ M · 〈p, ℓi, q〉

β
−→ G′

i ‖ M′ · 〈p, ℓi, q〉 for all i ∈ I and p 6∈ play(β).

By Definition 7.17(1) δ ∈ TE(G′ ‖ M′) implies δ = ev(ω, τ), where ω = otr(M′) and τ ∈
Tr+(G′). Then τ = pq!ℓk · τ

′ and δ = [ω, τ0]∼ with τ0 = (pq!ℓk · τ
′) ⌈ω ǫ for some k ∈ I by

Definition 7.14. We get either τ0 ≈ω pq!ℓk · τ
′
0 or p 6∈ play(τ0) by Definition 7.13. Then pq!ℓk • δ is

defined unless τ0 ≈ω pq!ℓk · τ
′
0 and τ ′0 = ǫ by Definition 8.13(1). We consider the two cases.

Case τ0 ≈ω pq!ℓk · τ
′
0 and τ ′0 = ǫ. We get β ◦ δ = [β ⊲ ω, pq!ℓk]∼ since p 6∈ play(β), which implies

β ◦ δ ∈ TE(G ‖ M) by Definition 7.17(1).

Case τ0 ≈ω pq!ℓk · τ
′
0 and τ ′0 6= ǫ or p 6∈ play(τ0). Let δ′ = pq!ℓk • δ. By Lemma 8.17(1) δ′ ∈

TE(G′
k ‖ M′ · 〈p, ℓk, q〉). By induction β ◦ δ′ ∈ TE(Gk ‖ M · 〈p, ℓk, q〉). Since δ′ is defined,

Lemma 8.15(1) implies pq!ℓk ◦ δ
′ = δ. Since β ◦ δ′ and pq!ℓk ◦ δ

′ are defined, by Lemma 8.15(4) and

p 6∈ play(β) we get pq!ℓk ◦ (β ◦ δ′) = β ◦ (pq!ℓk ◦ δ
′) = β ◦ δ. By Lemma 8.17(3) pq!ℓk ◦ (β ◦ δ′) ∈

TE(G ‖ M). We conclude that β ◦ δ ∈ TE(G ‖ M).

If the last applied rule is [ICOMM-IN] the proof is similar.

Lemma 8.21 Let τ 6= ǫ be ω-well formed and tec(ω, τ) = δ1; · · · ; δn.

1. If 1 ≤ k, l ≤ n, then ¬(δk # δl);

2. τ [i] = i/o(δi) for all i, 1 ≤ i ≤ n.

Proof: (1) Let δi = [ω, τi]∼ for all i, 1 ≤ i ≤ n. By Definitions 8.19 and 7.14 τi = τ [1 ... i] ⌈ω ǫ. By

Definition 7.13 if τi @ p 6= ǫ, then there are ki ≤ i and τ ′i such that play(τ [ki]) = {p}, p 6∈ play(τ ′i)
and τi = τ [1 ... ki − 1] ⌈ω τ [ki] · τ

′
i . By the same definition all τ [j] with j ≤ ki and play(τ [j]) = {p}

occur in τi, in the same order as in τ . Theferore τi @ p is a prefix of τ @ p for all p and all i, 1 ≤ i ≤ n.

This implies that τh@ p cannot be in conflict with τl @ p for any p and any h, l, 1 ≤ h, l ≤ n.

(2) Immediate from Definitions 8.19, 7.14 and Lemma 7.15.

Lemma 8.22 If G ‖ M
τ
−→ G′ ‖ M′ and ω = otr(M), then τ is ω-well formed.

Proof: The proof is by induction on τ .

Case τ = β. If β = pq!ℓ, then the result is immediate.

If β = pq?ℓ, then from G ‖ M
β
−→ G′ ‖ M′ we get M ≡ 〈p, ℓ, q〉 · M′ by Lemma 3.13(2), which

implies ω ∼= pq!ℓ ·ω′. Then the trace ω ·β = pq!ℓ ·ω′ · pq?ℓ is well formed, since pq?ℓ is the first

input of q from p and pq!ℓ is the first output of p to q, and therefore 1 ∝ω ·β|ω|+1. Hence β is ω-well

formed.

Case τ = β · τ ′ with τ ′ 6= ǫ. Let G ‖ M
β
−→ G′′ ‖ M′′ τ ′

−→ G′ ‖ M′ and ω′ = otr(M′′). By induction

τ ′ is ω′-well formed. If β = pq!ℓ, then from G ‖ M
β
−→ G′′ ‖ M′′ we get M′′ = M · 〈p, ℓ, q〉 by

Lemma 3.13(1). Therefore otr(M′′) = ω · β = ω′. Since τ ′ is (ω · β)-well formed, i.e. ω · β · τ ′ is

well formed, we may conclude that τ = β · τ ′ is ω-well formed. If β = pq?ℓ, as in the base case

we get M ≡ 〈p, ℓ, q〉 · M′′ by Lemma 3.13(2), and thus ω = pq!ℓ ·ω′. We know that τ ′ is ω′-well

I. Castellani et al. / Types and Semantics for Asynchronous Sessions 75

formed, i.e. ω′ · τ ′ is well formed. Therefore we have that pq!ℓ ·ω′ · pq?ℓ · τ ′ is well formed, since

1 ∝ω · τ|ω| + 1, and we may conclude that τ is ω-well formed.

Lemma 8.23 1. Let τ = β · τ ′ and ω′ = β ◮ ω. If tec(ω, τ) = δ1; · · · ; δn and tec(ω′, τ ′) =
δ′2; · · · ; δ

′
n, then β • δi = δ′i for all i, 2 ≤ i ≤ n.

2. Let τ = β · τ ′ and ω = β ⊲ ω′. If tec(ω, τ) = δ1; · · · ; δn and tec(ω′, τ ′) = δ′2; · · · ; δ
′
n, then

β ◦ δ′i = δi for all i, 2 ≤ i ≤ n.

Proof: The proof is by induction on τ .

(1) By Definition 8.19 δi = ev(ω, β · τ ′[1 ... i]) and δ′i = ev(ω′, τ ′[1 ... i]) for all i, 2 ≤ i ≤ n.

Then by Lemma A.3(1) β ◦ δ′i = δi for all i, 2 ≤ i ≤ n.

(2) By Point (1) and Lemma A.3(2).

Glossary of symbols

symbol meaning

β input/output communication pq!ℓ, pq?ℓ

δ type event

ǫ empty trace

ζ sequence of input/output actions

η process event (nonempty sequence of input/output actions)

ϑ sequence of undirected actions !ℓ, ?ℓ

π input/output action p!ℓ, p?ℓ

ρ network event

τ trace (sequence of input/output communications)

χ sequence of output actions

ω sequence of output communications

	Introduction
	A core calculus for multiparty sessions
	Asynchronous types
	Well-formed asynchronous types
	Type system

	Event structures
	Event structure semantics of processes
	Event structure semantics of networks
	Event structure semantics of asynchronous types
	Equivalence of the two event structure semantics
	Transition sequences of networks and proving sequences of their ESs
	Transition sequences of asynchronous types and proving sequences of their ESs
	Isomorphism

	Related work and conclusions
	Appendix

