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Abstract. This article describes the confluence framework, a novel framework for proving and

disproving confluence using a divide-and-conquer modular strategy, and its implementation in

CONFident. Using this approach, we are able to automatically prove and disprove confluence

of Generalized Term Rewriting Systems, where (i) only selected arguments of function symbols

can be rewritten and (ii) a rather general class of conditional rules can be used. This includes,

as particular cases, several variants of rewrite systems such as (context-sensitive) term rewriting

systems, string rewriting systems, and (context-sensitive) conditional term rewriting systems. The

divide-and-conquer modular strategy allows us to combine in a proof tree different techniques for

proving confluence, including modular decompositions, checking joinability of (conditional) crit-

ical and variable pairs, transformations, etc., and auxiliary tasks required by them, e.g., joinability

of terms, joinability of conditional pairs, etc.
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1. Introduction

Reduction relations→ are pervasive in computer science and semantics of programming languages as

suitable means to describe computations s→∗ t, where→∗ denotes zero or more steps issued with→.

In general, s and t are abstract values (i.e., elements of an arbitrary set A), but often denote program

expressions: terms, lambda expressions, configurations in imperative programming, etc. If s →∗ t
holds, we say that s reduces to t or that t is a reduct of s. Confluence is the property of reduction

relations guaranteeing that whenever s has two different reducts t and t′ (i.e., s →∗ t and s →∗ t′),
both t and t′ are joinable, i.e., they have a common reduct u (hence t →∗ u and t′ →∗ u holds for

some u). Confluence is one of the most important properties of reduction relations: for instance, (i)

it ensures that for all expressions s, at most one irreducible reduct t of s can be obtained (if any);

and (ii) it ensures that two divergent computations can always join in the future. Thus, the semantics

and implementation of rewriting-based languages is less dependent on specific strategies to implement

reductions.

In this paper, rewriting steps are specified by using Generalized Term Rewriting Systems, GTRSs

R = (F ,Π, µ,H,R) [1], where (i) F is a signature of function symbols; (ii) Π is a signature of

predicate symbols; (iii) replacement restrictions on selected arguments i of k-ary function symbols

f ∈ F can be specified by means of a replacement map µ as in context-sensitive rewriting [2]; also,

(iv) atomic conditions A can be included in the conditional part c of conditional rules ℓ→ r ⇐ c in R,

provided that (v) predicates P occurring in such atomic conditions P (t1, . . . , tn) for terms t1, . . . , tn
are defined by means of Horn clauses in H .

Since Term Rewriting Systems (TRSs [3]), Conditional TRSs [4], Context-Sensitive TRSs

(CS-TRSs [2]), and Context-Sensitive CTRSs [5, Section 8.1] are particular cases of GTRSs (see [1,

Section 7.3]), our results apply to all of them.

Example 1.1. Consider the CTRSR in [6, Example 10] (COPS/387.trs1), over a signature F consist-

ing of function symbols f, g, and s, with R consisting of the conditional rules

g(s(x)) → g(x) (1)

f(g(x)) → x⇐ x ≈ s(0) (2)

where predicate ≈ represents a reachability test which is performed as part of the preparation of a

rewriting step using rule (2). This qualifies R as an oriented CTRS, see, e.g., [7, Definition 7.1.3].

This system is not confluent, as we have the following (local) peak2:

f(g(0)) (1)← f(
←−−−−
g(s(0)))
−−−−−−→

→(2) s(0) (3)

but s(0)) and f(g(0)) are irreducible (no rule applies on them) and hence not joinable. Now consider

the replacement map µ⊥(f) = ∅ for all symbols f , which forbids reductions on all arguments of func-

tion symbols. Then, we obtain a CS-CTRSsR⊥, where (3) is not possible as the leftmost reduction is

forbidden due to µ⊥(f) = ∅, which disables the rewriting step on g(s(0)). Using our framework we

are able to prove that R is not confluent, and also that R⊥ is confluent.

1Confluence Problems Data Base: http://cops.uibk.ac.at/.
2We use under

−−−→
and
←−−
over arrows to highlight which parts of the expression are rewritten and how.

http://cops.uibk.ac.at/
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Confluence has been investigated for several reduction-based formalisms and systems, see, e.g.,

[7, Chapters 4, 7.3, 7.4 & 8] and the references therein. Confluence is undecidable already for TRSs,

see, e.g., [7, Section 4.1]. Since TRSs are GTRSs, it is undecidable for GTRSs too. Thus, no algorithm

is able to prove or disprove confluence of the reduction relation associated to all such systems. Hence,

existing techniques for proving and disproving confluence are partial, i.e., they succeed on some kinds

of systems and fail on others. However, the combination of techniques in a certain order or the use of

auxiliary properties can help to prove or disprove confluence.

In this paper, we introduce a confluence framework for proving confluence of GTRSs, inspired

by the Dependency Pair Framework, originally developed for proving (innermost) termination of

TRSs [8, 9] and then generalized and extended to cope with other kind of termination problems

[10, 11, 12, 13, 14], including termination of GTRSs [15], and also to other properties like feasi-

bility, which tries to find a substitution satisfying a combination of atoms with respect to a first-order

theory [16].

In the confluence framework, we define two kinds of problems: three variants of confluence prob-

lems and two variants of joinability problems. Confluence problems encapsulate the system R whose

confluence is tested. Such confluence problems are transformed, decomposed, simplified, etc., into

other (possibly different) problems by using the so-called processors that can be plugged in and out

in a proof strategy, allowing us to find the best place to apply a proof technique in practice. Proces-

sors embed existing results about confluence of (variants of) rewrite systems, confluence-preserving

transformations, etc. Besides, joinability problems are produced by some processors acting on con-

fluence problems. They are used to prove or disprove the joinability of conditional pairs (including

conditional critical pairs [17, Definition 3.2] and conditional variable pairs [1, Definition 59]). They

are also treated by appropriate processors. The obtained proof is depicted as a labeled proof tree from

which the (non-)confluence of the targetted rewrite system can be proved. Processors apply on the

obtained problems until (i) a trivial problem is obtained (which is then labeled with yes) and the proof

either continues by considering pending problems, or else finishes and yes is returned if no problem

remains to be solved; or (ii) a counterexample is obtained and the problem is then labeled with no
and the proof finishes as well but no is returned; or (iii) the successive application of all available

processors finishes unsuccessfully and then the whole proof finishes unsuccessfully (and ‘MAYBE’ is

returned); or (iv) the ongoing proof is eventually interrupted due to a timeout, which is usually pre-

scribed in this kind of proof processes whose termination is not guaranteed or could take too much

time, and the whole proof fails. The use of processors often requires calls to external tools to solve

proof obligations like termination, feasibility, theorem proving, etc.

This paper is an extended and revised version of [18]. The main differences are:

1. The confluence framework has been extended to cope with Generalized Term Rewriting Sys-

tems, thus extending the scope of [18], where only TRSs, CS-TRSs, and CTRSs were treated.

In particular, we can treat CS-CTRSs now as particular cases of GTRSs.

2. In [18] only confluence and joinability problems were considered. Additional related problems

are considered now: local and strong confluence problems, and strong joinability problems.

They permit a better organization of confluence proofs. Of course, they also permit the use of

the framework for (dis)proving local confluence and strong confluence of GTRSs.
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3. 16 processors applicable to GTRSs are described in this paper (versus 10 in [18]). They apply

on (local, strong) confluence problems for GTRSs.

4. Details about the implementation of the confluence framework in CONFident are given now,

including a more precise description of CONFident proof strategy and its implementation.

5. Updated information about the participation of CONFident in the 2023 International Conflu-

ence Competition, CoCo 2023, is provided.

After some preliminaries in Section 2, Section 3 describes Generalized Term Rewriting Systems.

Section 4 defines the problems and processors used in the confluence framework. Section 5 gives a list

of processors that can be used in the framework. Section 6 presents the proof strategy of CONFident.

Section 7 provides some details about the general implementation of CONFident. Section 8 provides

an experimental evaluation of the tool, including an analysis of the use of processors in proofs of

(non-)confluence. Section 9 discusses related work. Section 10 concludes.

2. Preliminaries

In the following, w.r.t. means with respect to and iff means if and only if. We assume some familiarity

with the basic notions of term rewriting [3, 7, 19] and first-order logic [20, 21], where missing def-

initions can be found. For the sake of readability, though, here we summarize the main notions and

notations we use.

Abstract Reduction Relations. Given a binary relation R ⊆ A × A on a set A, we often write

a R b or b R−1 a instead of (a, b) ∈ R. The reflexive closure of R is denoted by R=; the transitive

closure of R is denoted by R+; and the reflexive and transitive closure by R∗. Given a ∈ A, and a

relation R, let SucR(a) = {b | a R∗ b} be the set of R-successors of a (and then adding a itself) and

Suc=
R
(a) = {b | a R= b} be the set of direct R-successors of a (and also adding a). An element a ∈ A

is irreducible, if there is no b such that a R b; we say that b is an R-normal form of a (written a R! b),
if a R∗ b and b is an R-normal form. We say that b ∈ A is R-reachable from a ∈ A if a R∗ b. We

say that a, b ∈ A are R-joinable if there is c ∈ A such that a R∗ c and b R∗ c. We say that a, b ∈ A
are strongly R-joinable if there are c, c′ ∈ A such that a R= c, b R∗ c, a R∗ c′, and b R= c′. Also,

a, b ∈ A are R-convertible if there is c ∈ A such that a (R ∪ R−1)∗b. Given a ∈ A, if there is no

infinite sequence a = a1 R a2 R · · · R an R · · · , then a is R-terminating; R is terminating if a
is R-terminating for all a ∈ A. We say that R is (locally) confluent if, for every a, b, c ∈ A, whenever

a R∗ b and a R∗ c (resp. a R b and a R c), b and c are R-joinable. Also, R is strongly confluent if,

for every a, b, c ∈ A, whenever a R b and a R c, b and c are strongly R-joinable.

Signatures, Terms, Positions. In this paper, X denotes a countable set of variables. A signature

of symbols is a set of symbols each with a fixed arity. We use F to denote a signature of function

symbols f, g, . . . , whose arity is given by a mapping ar : F → N. The set of terms built from F and

X is T (F ,X ). The set of variables occurring in t is Var(t); we often use Var(t, t′, . . .) to denote the
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set of variables occurring in a sequence of terms. Terms are viewed as labeled trees in the usual way.

Positions p are represented by chains of positive natural numbers used to address subterms t|p of t.
The set of positions of a term t is Pos(t). The set of positions of a subterm s in t is denoted Poss(t).
The set of positions of non-variable symbols in t are denoted as PosF (t).

Replacement Maps. Given a signature F , a replacement map is a mapping µ satisfying that, for

all symbols f in F , µ(f) ⊆ {1, . . . , ar(f)} [2]. The set of replacement maps for the signature

F is MF . Extreme cases are µ⊥, disallowing replacements in all arguments of function symbols:

µ⊥(f) = ∅ for all f ∈ F ; and µ⊤, restricting no replacement: µ⊤(f) = {1, . . . , k} for all k-ary

f ∈ F . The set Posµ(t) of µ-replacing (or active) positions of t is Posµ(t) = {Λ}, if t ∈ X ,

and Posµ(t) = {Λ} ∪ {i.p | i ∈ µ(f), p ∈ Posµ(ti)}, if t = f(t1, . . . , tk). The set of non-µ-

replacing (or frozen) positions of t is Posµ(t) = Pos(t)− Posµ(t). Positions of active non-variable

symbols in t are denoted as PosµF (t). Given a term t, Varµ(t) (resp. Var✚µ (t)) is the set of variables

occurring at active (resp. frozen) positions in t: Varµ(t) = {x ∈ Var(t) | ∃p ∈ Posµ(t), x = t|p}
and Var✚µ (t) = {x ∈ Var(t) | ∃p ∈ Posµ(t), x = t|p}. In general, Varµ(t) and Var✚µ (t) are not

disjoint: x ∈ Var(t) may occur active and also frozen in t.

Unification. A renaming ρ is a bijection from X to X . A substitution σ is a mapping σ : X →
T (F ,X ) from variables into terms which is homomorphically extended to a mapping (also denoted

σ) σ : T (F ,X ) → T (F ,X ). It is standard to assume that substitutions σ satisfy σ(x) = x except

for a finite set of variables. Thus, we often write σ = {x1 7→ t1, . . . , xn 7→ tn} where ti 6= xi for

1 ≤ i ≤ n to denote a substitution. Terms s and t unify if there is a substitution σ (i.e., a unifier) such

that σ(s) = σ(t). If s and t unify, then there is a (unique, up to renaming) most general unifier (mgu)

θ of s and t satisfying that, for any other unifier σ of s and t, there is a substitution τ such that, for all

x ∈ X , σ(x) = τ(θ(x)).

First-Order Logic. Here, Π denotes a signature of predicate symbols. Atoms and first-order for-

mulas are built using such function and predicate symbols, variables in X , quantifiers ∀ and ∃ and

logical connectives for conjunction (∧), disjunction (∨), negation (¬), and implication (⇒), in the

usual way. A first-order theory (FO-theory for short) Th is a set of sentences (formulas whose vari-

ables are all quantified). In the following, given an FO-theory Th and a formula ϕ, Th ⊢ ϕ means

that ϕ is deducible from (or a logical consequence of) Th by using a correct and complete deduction

procedure.

Feasibility Sequences. An f-condition γ is an atom [16]. Sequences F = (γi)
n
i=1 = (γ1, . . . , γn) of

f-conditions are called f-sequences. We often drop ‘f-’ when no confusion arises. Given an FO-theory

Th, a condition γ is Th-feasible (or just feasible if no confusion arises) if Th ⊢ σ(γ) holds for some

substitution σ; otherwise, it is infeasible. A sequence F is Th-feasible (or just feasible) if there is a

substitution σ satisfying all conditions in the sequence, i.e., for all γ ∈ F, Th ⊢ σ(γ) holds.

Grounding variables. Let F be a signature and X be a set of variables such that F ∩ X = ∅.
Let FX = F ∪ CX where variables x ∈ X are considered as (different) constant symbols cx of
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CX = {cx | x ∈ X} and F and CX are disjoint [22], see also [23, page 224]. Given a term

t ∈ T (F ,X ), a ground term t↓ is obtained by replacing each occurrence of x ∈ X in t by cx. Given a

substitution σ = {x1 7→ t1, . . . , xn 7→ tn}, we define σ↓ = {x1 7→ t↓1, . . . , xn 7→ t↓n}.

3. Generalized term rewriting systems

The material in this section is taken from [1, Section 7]. We consider definite Horn clauses α : A⇐ c
(with label α) where c is a sequence A1, . . . , An of atoms. If n = 0, then α is written A rather than

A ⇐. Let F be a signature of function symbols, Π be a signature of predicate symbols, µ ∈ MF

be a replacement map, H be a set of clauses A ⇐ c where root (A) /∈ {→,→∗}, and R be a set

of rewrite rules ℓ → r ⇐ c such that ℓ is not a variable (in both cases, c is a sequence A1, . . . , An

of atoms). The tuple R = (F ,Π, µ,H,R) is called a Generalized Term Rewriting System (GTRS,

[1, Definition 51]). As in [24, Definition 6.1], rules ℓ → r ⇐ c ∈ R are classified according to the

distribution of variables: type 1, if Var(r) ∪ Var(c) ⊆ Var(ℓ); type 2, if Var(r) ⊆ Var(ℓ); type 3,

if Var(r) ⊆ Var(ℓ) ∪ Var(c); and type 4, otherwise. A rule of type n is often called an n-rule. A

GTRS R is called an n-GTRS if all its rules are of type n; if R contains at least one n-rule which is

not an m-rule for some m < n, then we say that R is a proper n-GTRS. The FO-theory of a GTRS

R = (F ,Π, µ,H,R) is

R = {(Rf), (Co)} ∪ {(Pr)f,i | f ∈ F , i ∈ µ(f)} ∪ {(HC)α | α ∈ H ∪R}

where, as displayed in Table 1, (Rf) expresses reflexivity of many-step rewriting; (Co) expresses

Table 1. Generic sentences of the first-order theory of rewriting

Label Sentence

(Rf) (∀x) x→∗ x

(Co) (∀x, y, z) x→ y ∧ y →∗ z ⇒ x→∗ z

(Pr)f,i (∀x1, . . . , xk, yi) xi → yi ⇒ f(x1, . . . , xi, . . . , xk)→ f(x1, . . . , yi, . . . , xk)

(HC)A⇐A1,...,An (∀x1, . . . , xp) A1 ∧ · · · ∧An ⇒ A

where x1, . . . , xp are the variables occurring in A1, . . . , An and A

compatibility of one-step and many-step rewriting; for each k-ary function symbol f , i ∈ µ(f), and

x1, . . . , xk and yi distinct variables, (Pr)f,i enables the propagation of rewriting steps in the i-th
immediate active subterm of a term with root symbol f ; finally, for each Horn clause α ∈ H ∪ R,

(HC)α makes explicit the relationship between Horn clause symbol ⇐ (also used in rewrite rules

which are particular Horn clauses, actually) and logic implication⇒.

Definition 3.1. (Rewriting as deduction)

Let R be a GTRS. For all terms s and t, we write s →R t (resp. s →∗
R t) if R ⊢ s → t (resp.

R ⊢ s→∗ t).
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Join (J) (∀x, y, z) x→∗ z ∧ y →∗ z ⇒ x ≈ y

Oriented (O) (∀x, y) x→∗ y ⇒ x ≈ y

Semi-equational

(SE1) (∀x) x ≈ x

(SE2) (∀x, y, z) x→ y ∧ y ≈ z ⇒ x ≈ z

(SE3) (∀x, y, z) y → x ∧ y ≈ z ⇒ x ≈ z

Figure 1. Sentences for different semantics of CS-CTRSs

Figure 1 displays some sentences which can be included in H to make the meaning of predicate

≈ often used in the conditions of rules explicit; see, e.g., [7, Definition 7.1.3]: (J) interprets ≈ as

→R-joinability of terms; (O) interprets ≈ as →R-reachability; and (SE)1, (SE)2, (SE)3 provide

the interpretation of ≈ as →R-conversion. Accordingly, we let H≈ = {(J)}, or H≈ = {(O)}, or

H≈ = {(SE)1, (SE)2, (SE)3} and then we include H≈ in H . Given a GTRSR = (F ,Π, µ,H,R), a

number of well-known classes of rule-based systems is obtained:

• if Π = {→,→∗}, µ = µ⊤, and R consists of unconditional 2-rules only, then R is a TRS and

we often just refer to it as (F , R).

• if Π = {→,→∗} and R consists of unconditional 2-rules only, then R is a CS-TRS [2] and we

often just refer to it as (F , µ,R).

• if Π = {→,→∗,≈} and for all ℓ → r ⇐ c ∈ R, (i) c consists of conditions s ≈ t (for

some terms s and t), and (ii) H = H≈ then, depending on H≈, as explained above, R is a

(J-,O-,SE-)CS-CTRS; if µ = µ⊤, thenR is a (J-,O-,SE-)CTRS. If no confusion arises, we often

use (F , µ,R) and (F , R) instead of (F ,Π, µ,H≈, R) or (F ,Π, µ⊤,H≈, R), although these

notations are more self-contained as H embeds the evaluation semantics of ≈ [1, Remark 53].

Definition 3.2. (Confluence and termination of GTRSs)

A GTRSR is (locally) confluent (resp. terminating) if→R is (locally) confluent (resp. terminating).

Remark 3.3. (Confluence and termination of CS-TRSs and CS-CTRSs)

As remarked above, TRSs, CS-TRSs, CTRSs, and CS-CTRSs are particular cases of GTRSs. In the

realm of context-sensitive rewriting, it is often useful to make explicit the replacement map µ when

referring to the context-sensitive rewriting relation (by writing →֒R,µ and →֒∗
R,µ, or just →֒ and →֒∗)

and computational properties of CS-TRSs and CS-CTRSs R using a replacement map µ, i.e., we

usually talk of µ-termination or (local, strong) µ-confluence of R, see [2]. This is useful to compare

properties of context-sensitive systems and the corresponding properties of unrestricted systems (TRSs

and CTRSs). In this paper, though, we use a uniform notation,→R, for the rewrite relation associated

to a GTRSR, and also a uniform designation of the properties, just following Definition 3.2.

A rule α : ℓ→ r ⇐ c ∈ R is (in)feasible if c isR-(in)feasible. Two terms s and t are→R-joinable

iff s↓ and t↓ are →R-joinable, cf. [22, Proposition 6]. As in [1, Section 5] we consider conditional

pairs 〈s, t〉 ⇐ A1, . . . , An, where s, t are terms and A1, . . . , An are atoms. For a GTRSR, we say that

π : 〈s, t〉 ⇐ c is (in)feasible if c isR-(in)feasible. Also, π is (strongly) joinable if for all substitutions
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σ, whenever R ⊢ σ(γ) holds for all γ ∈ c, terms σ(s) and σ(t) are (strongly) joinable. A conditional

pair π is trivial if s = t. Trivial and infeasible conditional pairs are both joinable.

Definition 3.4. (Extended critical pairs of a GTRS, [1, Definitions 59 & 60])

LetR = (F ,Π, µ,H,R) be a GTRS and α : ℓ→ r ⇐ c, α′ : ℓ′ → r′ ⇐ c′ ∈ R feasible rules sharing

no variable (rename if necessary).

• Let p ∈ PosµF (ℓ) be a nonvariable position of ℓ such that ℓ|p and ℓ′ unify with mgu θ. Then,

〈θ(ℓ[r′]p), θ(r)〉 ⇐ θ(c), θ(c′) (4)

is a conditional critical pair (CCP) of R. If p = Λ and α′ is a renamed version of α, then (4)

is called improper; otherwise, it is called proper.

• Let x ∈ Varµ(ℓ), p ∈ Posµx(ℓ), and x′ be a fresh variable. Then,

〈ℓ[x′]p, r〉 ⇐ x→ x′, c (5)

is a conditional variable pair (CVP) of R. Variable x is called the critical variable of the pair.

In both cases, p is called the critical position. We use the following notation:

• pCCP(R) is the set of feasible proper conditional critical pairs ofR;

• iCCP(R) is the set of feasible improper conditional critical pairs of 3-rules in R (as improper

critical pairs of 2-rules are joinable); and

• CVP(R) is the set of all feasible conditional variable pairs inR.

Then,

ECCP(R) = pCCP(R) ∪ iCCP(R) ∪ CVP(R)

is the set of extended conditional critical pairs ofR.

For unconditional systems (CS-TRSs and TRSs) we can focus on smaller sets of possibly conditional

pairs to analize confluence:

• For CS-TRSs R, we have iCCP(R) = ∅ (R contains no 3-rule), and pCCP(R) is written

CP(R, µ) or just CP(R) if no confusion arises. Also, following [25, Definition 20], instead of

CVP(R), we can use the set of LHµ-critical pairs

LHCP(R, µ) = {〈ℓ[x′]p, r〉 ⇐ x→ x′ | ℓ→ r ∈ R, x ∈ Varµ(ℓ) ∩ (Var✚µ (ℓ) ∪ Var✚µ (r)),

p ∈ Posµx(ℓ)}

⊆ CVP(R)

which provides a more specific set of conditional pairs obtained from an unconditional rule

ℓ→ r capturing possibly harmful peaks coming from variables which are active in the left-hand

side ℓ but are also frozen in the same ℓ or else in the right-hand side r of the rule (see [1, Section

8] for a comparison of LHµ-critical pairs and conditional variable pairs for a CS-TRSR).

• For TRSs R (where µ⊤ can be assumed to view it as a CS-TRS), iCCP(R) = ∅ (no 3-rules),

LHCP(R, µ⊤) = ∅ (as Var✟✟µ⊤ (t) = ∅ for all terms t) and pCCP(R) is written CP(R).
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Example 3.5. Consider the CTRS R in Example 1.1. With rule (2), i.e., f(g(x)) → x ⇐ x ≈ s(0),
1 ∈ PosF (ℓ(2)) and (1)’, i.e., g(s(x′)) → g(x′), since f(g(x))|1 = g(x) and g(s(x′)) unify with

θ = {x 7→ s(x′)}, we obtain the following (feasible) proper conditional critical pair

〈f(g(x′)), s(x′)〉 ⇐ s(x′) ≈ s(0) (6)

Thus, pCCP(R) = {(6)}. SinceR is a 1-CTRS, iCCP(R) = ∅. With (2) and x ∈ Varµ⊤(f(g(x))) =
Var(f(g(x))), we obtain CVP(R) = {(7)} for the following conditional variable pair:

〈f(g(x′)), x〉 ⇐ x→ x′, x ≈ s(0) (7)

Thus, ECCP(R) = {(6), (7)}.

Example 3.6. For the CS-CTRS R⊥ in Example 1.1 there is no conditional critical pair because the

only active position of the left-hand sides ℓ(1) and ℓ(2) of rules (1) and (2) is Λ. However, ℓ(1) and

ℓ(2) do not unify. Hence pCCP(R⊥) = ∅ and, again, iCCP(R⊥) = ∅, being a 1-CS-CTRS. Also,

CVP(R⊥) = ∅ because all variables in the left-hand sides of the rules in R⊥ are frozen due to µ⊥.

Thus, ECCP(R⊥) = ∅.

4. Confluence framework

This section describes our confluence framework for proving and disproving (local, strong) confluence

of GTRSs. As mentioned in the introduction, the framework is inspired by existing frameworks for

proving termination of (variants of) TRSs, starting from [8]. We encapsulate the different stages of

confluence proofs for a given GTRSR as problems and the techniques used to treat them and develop

the proof as processors. Proofs are organized in a proof tree whose nodes are the aforementioned

problems and whose branches are defined by the (possibly repeated and parallel) use of processors.

Section 5 describes a list of processors that can be used in the confluence framework. Forthcoming

techniques can often be implemented as a new processor of the framework and then included in an

existing strategy for a practical use. In general, it is hard to find a single technique that is able to obtain

a complete proof at once. In practice, most proofs are a combination of different (repeatedly used)

techniques. This requires the definition of proof strategies as a combination of processors. Section 6

describes CONFident’s proof strategy.

4.1. Problems

A problem is just a structure that contains information used to prove the property we want to analyze.

We define some variants of Confluence and Joinability problems. Confluence problems are used to

(dis)prove confluence of GTRSs (and also local and strong confluence), and joinability problems are

used to (dis)prove (strong) joinability of conditional pairs. In the following, we often use τ to refer to

a problem when no confusion arises.

Definition 4.1. (Confluence Problems)

LetR be a GTRS. A (local, strong) confluence problem, denoted CR(R) (resp. WCR(R), SCR(R)),
is positive ifR is (locally, strongly) confluent; otherwise, it is negative.
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Definition 4.2. (Joinability Problems)

Let R be a GTRS and π be a conditional pair. A (strong) joinability problem, denoted JO(R, π)
(resp. SJO(R, π)), is positive if π is (strongly) joinable; otherwise, it is negative.

In the following, unless established otherwise, our definitions and results pay no attention to the spe-

cific type (confluence or joinability) of problems at stake. We just refer to them as “problems”.

Remark 4.3. (Relationship between problems)

From well-known results, see, e.g., [3, Section 2.7], the following relations hold for these problems:

If SCR(R) is positive, then CR(R) is positive.

If CR(R) is positive, then WCR(R) is positive.

If SJO(R, π) is positive, then JO(R, π) is positive.

It is well-known that, in general, these implications cannot be reversed.

4.2. Processors

A processor P is a partial function that takes a problem τ as an input and, if P is defined for τ , then it re-

turns either a (possibly empty) set of problems τ1, . . . , τn for some n ≥ 0 or “no”. Usually, τ1, . . . , τn
are (hopefully) simpler problems. We say that a processor is sound if it propagates positiveness of all

returned problems τ1, . . . , τn upwards as positiveness of the input problem τ . Symmetrically, a pro-

cessor is complete if negativeness of some returned problem is propagated upwards as negativeness of

the input problem τ . Furthermore, if a complete processor returns “no”, it tells us that τ is negative

and if a sound processor returns an empty set of problems, then τ is trivially positive.

Definition 4.4. A processor P is a partial function from problems into sets of problems; alternatively

it can return “no”. The domain of P (i.e., the set of problems on which P is defined) is denoted

Dom(P). We say that P is

• sound if for all τ ∈ Dom(P), τ is positive whenever P(τ) 6= “no” and all τ ′ ∈ P(τ) are

positive.

• complete if for all τ ∈ Dom(P), τ is negative whenever P(τ) = “no” or some τ ′ ∈ P(τ) is

negative.

Roughly speaking, soundness is used for proving problems positive, and completeness is used to prove

them negative. Sound and complete processors are obviously desirable, as they can be used for both

purposes. However, it is often the case that processors which are sound but not complete are available

and heavily used (and vice versa) as they implement important techniques for (dis)proving confluence.

Section 5 describes several processors and their use in the confluence framework.
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4.3. Proofs in the confluence framework

Confluence problems can be proved positive or negative by using a proof tree as follows. Our def-

initions and results are given, in particular, for confluence problems CR(R) for a GTRS R. They

straightforwardly adapt to WCR(R), SCR(R), JO(R, π), and SJO(R, π).

Definition 4.5. (Confluence Proof Tree)

LetR be a GTRS. A confluence proof tree T for R is a tree whose root label is CR(R), whose inner

(i.e., non-leaf) nodes are labeled with problems τ , and whose leaves are labeled either with problems

τ , or with “yes” or “no”. For every inner node n labeled with τ , there is a processor P such that

τ ∈ Dom(P) and:

1. if P(τ) =“no” then n has just one child, labeled with “no”.

2. if P(τ) = ∅ then n has just one child, labeled with “yes”.

3. if P(τ) = {τ1, . . . , τm}with m > 0, then n has m children labeled with the problems τ1, . . . , τm.

In this way, a confluence proof tree is obtained by the combination of different processors. The proof

of the following result is obvious from the previous definitions.

Theorem 4.6. (Confluence Framework)

LetR be a GTRS and T be a confluence proof tree forR. Then:

1. if all leaves in T are labeled with “yes” and all involved processors are sound for the problems

they are applied to, then R is confluent.

2. if T has a leaf labeled with “no” and all processors in the path from the root to such a leaf are

complete for the problems they are applied to, then R is not confluent.

Figures 3 and 4 at the end of Setion 5 display examples of proofs obtained by using the confluence

framework for some of the examples discussed in this paper.

5. List of processors

In this section, we enumerate some processors for use in the confluence framework, organized ac-

cording to their functionality. Table 2 displays the complete list, which we develop in the following

sections. Table 3 shows which processors (according to their definitions) are able to finish a proof

branch in a proof tree by either returning an empty set (which is translated by labeling with “yes” a

leaf of the tree) or by directly returning “no”.

5.1. Cleansing processors

In this section we present a number of processors implementing simple tests to detect and correct

particular situations (extra variables, trivial rules, trivial conditions in rules, infeasible conditions,

etc.) leading to simplifications of rules or even to an immediate answer. Sometimes, this is done on
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Table 2. Available processors

Group Section Processors

Cleansing 5.1 PEVar , PSimp , PInl

Modular decomposition 5.2 PMD

Local/Strong confluence 5.3 PHE

Confluence of CTRSs by transformation 5.4.1–5.4.2 PU , PUconf

Confluence and orthogonality 5.4.3 POrth

Confluence and local/strong confluence 5.4.4 PCR , PWCR, PSCR

Confluence and (local) confluence of CSR 5.4.5–5.4.6 PCanJ , PCnvJ , PCanCR

Confluence by termination and local confluence 5.4.7 PKB

Joinability 5.5 PJO

Table 3. Ending Processors in the Confluence Framework

Proc. May end with Proc. May end with Proc. May end with

PEVar no POrth yes PKB yes

PHE yes PJO yes / no

the input GTRS, just before attempting a proof; sometimes after applying processors that split the

system into components, or that transform the rules to produce new ones exhibiting such problems.

We consider processors PEVar which checks whether rules with extra variables may definitely

imply a non-confluent behavior; PSimp which removes trivial (components of) rules to simplify them;

and PInl which tries to obtain substitutions that can be used to remove conditions in rules.

5.1.1. Extra variables check: PEVar

An obvious reason for non-confluence is the presence of extra variables in rules. For instance, a rule

ℓ → x for some extra variable x /∈ Var(ℓ) ‘produces’ non-confluence: the following peak is always

possible: x′← ℓ → x for some fresh variable x′ /∈ Var(ℓ) ∪ {x}, but both x and x′ are irreducible.

In general, as a simple generalization of this fact, given a GTRS R = (F ,Π, µ,H,R), if there is

a feasible conditional rule ℓ → r ⇐ c ∈ R, and a variable x ∈ Var(r) − Var(ℓ, c) such that

p ∈ Posx(r) and for all q < p, root (r|q) is not a defined symbol, then R is not (locally, strongly)

confluent. Hence, we define the following processor:

PEVar (CR(R)) = no

PEVar (WCR(R)) = no

PEVar (SCR(R)) = no

ifR contains a rule as above. Then, PEVar is complete and (trivially) sound.
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5.1.2. Simplification: PSimp

The following simplifications of GTRSs are often useful in proofs of confluence problems.

1. Removing trivial rules. All rules t→ t or t→ t⇐ c for some term t are removed.

2. Removing trivial conditions. Conditions t ≈ t in the conditional part c of rules ℓ → r ⇐ c of

J-, O-, or SE-CS-CTRSs are removed.

3. Removing infeasible conditional rules. Conditional rules ℓ → r ⇐ c with an infeasible

condition c are removed, as they will not be applied in reduction steps.

4. Removing ground atoms. Ground atoms B occurring in feasible conditions c in clauses A ⇐
c ∈ H or rules ℓ → r ⇐ c ∈ R can be removed without affecting the role of the so-simplified

clause or rule in computations.

These are applied as much as possible (to each rule in the input system) by means of a simplifying

processor PSimp :

PSimp(CR(R)) = {CR(R′)}

PSimp(WCR(R)) = {WCR(R′)}

PSimp(SCR(R)) = {SCR(R′)}

where R′ = (F ,Π, µ,H ′, R′) is obtained by using the previous transformations to obtain H ′ and R′

from H and R, respectively. Since →R and →R′ coincide, (local, strong) confluence of R and R′

also coincide. Thus, PSimp is sound and complete.

Example 5.1. The following example (#409 in COPS3) displays an oriented CTRS.4

b → b (8)

g(s(x)) → x (9)

h(s(x)) → x (10)

f(x, y) → g(s(x))⇐ c(g(x)) ≈ c(a) (11)

f(x, y) → h(s(x))⇐ c(h(x)) ≈ c(a) (12)

Since rule (8) fits the first case above, we can remove it. Thus, we have: PSimp(CR(R)) = {CR(R′)}
where R′ consists of the rules (9), . . . , (12).

5.1.3. Inlining: PInl

As in [26, Definition 9.4 & Lemma 9.5], the so-called inlining of rules is useful to shrink the conditions

of O-rules in a GTRSR = (F ,Π, µ,H,R). By an O-rule we mean a rule α : ℓ→ r ⇐ c ∈ R where c
consists of conditions which are given the usual reachability semantics, by explicitly writing s →∗ t,
or, in an indirect way, as s ≈ t with ≈ defined by a single clause x ≈ y ⇐ x →∗ y in H . For

simplicity, in the remainder of the section we assume that the last format is used.

3Confluence Problems database, see https://cops.uibk.ac.at/
4In the following, in order to keep a close connection with the original sources, rather than call them GTRSs, we use TRS,

CTRS, CS-CTRS, etc., when citing external examples.

https://cops.uibk.ac.at/
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Definition 5.2. (Inlining)

Let α : ℓ→ r⇐ s1 ≈ t1, · · · , sn ≈ tn be an O-rule and ti = x for some variable

x /∈ Var(ℓ, si, t1, . . . , ti−1, ti+1, . . . tn) ∪ Var✚
µ (r, s1 . . . , sn), (13)

and 1 ≤ i ≤ n. Let σ = {x 7→ si}. The inlining of the i-th condition of α with x is

αx,i : ℓ→ σ(r)⇐ σ(s1) ≈ t1, · · · , σ(si−1) ≈ ti−1, σ(si+1) ≈ ti+1, · · · , σ(sn) ≈ tn (14)

Given a GTRSR = (F ,Π, µ,H,R ⊎ {α}) where α is an O-rule, the inlining of the i-th condition of

α in R with x isRα,x,i = (F ,Π, µ,H,R ⊎ {αx,i}).

For the sake of readability, the proof of the following result is in Appendix A.

Proposition 5.3. Let R = (F ,Π, µ,H,R) be a GTRS, α ∈ R, i, and x as in Definition 5.2. Let s
and t be terms.

1. If s→R t, then s→∗
Rα,x,i

t.

2. If s→Rα,x,i
t, then s→R t.

Corollary 5.4. LetR = (F ,Π, µ,H,R) be a GTRS, α ∈ R, i, and x as in Definition 5.2. Then,→∗
R

and→∗
Rα,x,i

coincide.

Corollary 5.4 entails that confluence ofR andRα,x,i coincide. By Proposition 5.3, local (resp. strong)

confluence of R implies local (resp. strong) confluence of Rα,x,i. In general, though, the opposite

direction does not hold.

Example 5.5. Consider the following O-CTRSR:

b → a (15)

b → x⇐ c ≈ x (16)

c → b (17)

c → d (18)

Note that R is not locally confluent:

a (15)← b→(16) d

because the conditional part of (16) is satisfied by c →∗
R d. However, the inlining of (16) yields

the rule b → c which, together with (15), (17), and (18) form the well-known locally confluent TRS

R(16),x,1 = {b→ a, b→ c, c→ b, c→ d}.
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As for PSimp , with PInl we assume that all rules in the input system R have been inlined as much as

possible to obtain R′. Then we have

PInl (CR(R)) = {CR(R′)}

PInl (WCR(R)) = {WCR(R′)}

PInl (SCR(R)) = {SCR(R′)}

By Corollary 5.4, PInl is sound and complete for confluence problems CR(R). By Proposition 5.3,

PInl is complete (but in general not sound, see Example 5.5) for local (resp. strong) confluence prob-

lems WCR(R) (SCR(R)).

5.2. Modular decomposition: PMD

The decomposition of a confluence problem CR(R) into two problems CR(R1) and CR(R2), by

splitting up the input GTRS as R = R1 ∪ R2 for appropriate components or modules R1 and R2,

can be useful in breaking down confluence problems into smaller ones. On this basis, in this section

we discuss a processor PMD implementing this approach. Soundness and completeness of PMD can

be proved by using existing results about modularity of (local, strong) confluence. As modularity of

GTRSs has not been investigated yet, in this section we focus on TRSs (as particular GTRSs), see [27]

and also [7, Section 8], which we follow here. Our discussion would easily generalize to CTRSs, for

which a number of modularity results for confluence are also available, see [28]. In general, a property

P of rewriting-based systems is modular if for all systems R1 and R2 satisfying P, the union R of

R1 and R2 also satisfies P, see [7, Definition 8.1.1]. Usually, properties can be proved modular only

if R1 and R2 fulfill particular combination conditions that are parameterized by Comb: we write

Comb(R1,R2) to express thatR1 andR2 satisfy the requirements of a particular combination Comb

of modules.

Definition 5.6. (Modularity of confluence)

(Local, Strong) Confluence is called modular with respect to a given combination Comb of TRSs

(Comb-modular for short) if for all TRSsR1 = (F1, R1) andR2 = (F2, R2) satisfying the condition

Comb(R1,R2), the following holds: if both R1 and R2 are (locally, strongly) confluent, then the

union R1 ∪R2 = (F1 ∪ F2, R1 ∪R2) is also (locally, strongly) confluent.

For TRSsR, processor PMD tries to find such a decomposition:

PMD(CR(R)) = {CR(R1),CR(R2)}

PMD(WCR(R)) = {WCR(R1),WCR(R2)}

PMD(SCR(R)) = {SCR(R1),SCR(R2)}

if R = R1 ∪ R2, Comb(R1,R2) holds and (local, strong) confluence is Comb-modular. This def-

inition guarantees soundness of PMD on (local, strong) confluence problems as it is implied by the

modularity of the corresponding property. Thus, PMD is sound on (local, strong) confluence problems

if Comb(R1,R2) holds and (local, strong) confluence is Comb-modular.
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5.2.1. Modular combinations and modularity results for TRSs

In the literature, a number of combinations Comb(R1,R2) of TRSsR1 andR2 have been considered

to prove modularity. In particular,

• disjoint combinations (where R1 and R2 share no function symbol [29]),

• constructor-sharing combinations (whereR1 andR2 may share constructor symbols only [30]),

• composable combinations (where R1 and R2 may share constructor symbols and also defined

symbols provided that they also share the rules defining them [31]).

See also [7, Definition 8.1.4] for definitions of all these combinations of TRSs, which we refer as

DisjU(R1,R2), CShC(R1,R2), and CompC(R1,R2), respectively. Note that

DisjU(R1,R2)⇒ CShC(R1,R2)⇒ CompC(R1,R2) (19)

see [7, Figure 8.2]. In Table 4 we show an excerpt of the results displayed in [7, Table 8.1] regard-

ing modularity of confluence, local confluence, and strong confluence of TRSs. In this table, we

use the notion of layer-preserving TRS (LP) [32, Definition 5.5]: in a composable combination, i.e.,

CompC(R1,R2) holds, let B = F1 ∩ F2 be the set of shared function symbols and, for i ∈ {1, 2},
Ai = Fi − B be the alien symbols for R3−i. Let i ∈ {1, 2}. Then, Ri = (Fi, Ri) is called

layer-preserving if for all ℓ→ r ∈ Ri, we have root(r) ∈ Ai whenever root (ℓ) ∈ Ai. A constructor-

sharing union is layer-preserving ifR1 andR2 contain neither collapsing rules nor constructor-lifting

rules (i.e., rules ℓ→ r such that root (r) is a shared constructor).

Table 4. Excerpt of [7, Table 8.1]. Here L is linearity, LL is left-linearity, and LP is layer preservation

Property Disjoint union Constructor-sharing Composable

Confluence [29, Coro. 4.1] +LP [33, Coro. 5.11] +LP [34]

+LL [35], see [7, Coro. 8.6.38(1)]

Local Conf. [36] [36] [36]

Strong Conf. +L [37] +L [37] +L [37]

Remark 5.7. (Comments on Table 4)

As remarked in [7, Sections 8.2.1 & 8.6.3], for composable combinations (hence for disjoint unions

and constructor-sharing combinations, see (19)), the following non interfering property [36] holds:

CP(R1 ∪R2) = CP(R1) ∪ CP(R2) (20)

that is, the set of critical pairs of the union is the union of the critical pairs of the components.

Accordingly, [7] makes the following observations that justify the last two rows in Table 4:
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• Middeldorp proved that local confluence is modular for disjoint unions of TRSs, see, e.g., [28,

Theorem 2.4], originally in [36]. Ohlebusch observes that local confluence is modular for any

combination of TRSs satisfying (20) [7, page 249, penultimate paragraph]. Thus, local conflu-

ence is modular for constructor-sharing and composable combinations too, see also [7, Corollary

8.6.41(1)].

• As explained in the paragraph below [7, Example 8.2.2], the results about modularity of strong

confluence, not explicit in [37], are a consequence of [37, Lemma 3.2] (A linear TRS is strongly

closed iff it is strongly confluent) and the non interfering property (20) for composable (hence

disjoint, sharing constructor) combinations.

5.2.2. Soundness of PMD

As a consequence of the discussion in Section 5.2.1, (see Table 4 and Remark 5.7), given R, R1, and

R2 such that R = R1 ∪R2, PMD is sound for

• CR(R) if (i) DisjU(R1,R2) holds, or (ii) CShC(R1,R2) holds and R is left-linear, or (iii)

CShC(R1,R2) or CompC(R1,R2) holds and R1 and R2 are layer preserving.

• WCR(R) if CompC(R1,R2) (and hence DisjU(R1,R2) or CShC(R1,R2)) holds.

• SCR(R) ifR is linear, and DisjU(R1,R2) or CShC(R1,R2) or CompC(R1,R2) holds.

Example 5.8. Consider the following TRS [38, Example 4]:

nats → from(0) (21)

inc(x:y) → s(x):inc(y) (22)

hd(x:y) → x (23)

tl(x:y) → y (24)

from(x) → x:from(s(x)) (25)

inc(tl(from(x))) → tl(inc(from(x))) (26)

With R1 = {(23)} and R2 = {(21), (22), (24), (25), (26)}, with : the only shared constructor

symbol, CShC(R1,R2) holds. Since, R is left-linear, PMD(CR(R)) = {CR(R1),CR(R2)}.

5.2.3. Completeness of PMD

Regarding modularity of disjoint unions R = R1 ∪ R2, where DisjU(R1,R2) holds, [29, Corollary

4.1] proves thatR is confluent iff bothR1 andR2 are. This entails that PMD is complete on confluence

problems for disjoint unions.

Also, PMD is complete on local confluence problems for disjoint unions: [28, Theorem 2.4] es-

tablishes modularity of local confluence and, according to [28, Definition 2.2], local confluence is

modular for a disjoint union of TRSs if the following equivalence holds: R1 ∪R2 is locally confluent
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iff both R1 and R2 are locally confluent. The point is that, for disjoint unions, joinability of critical

pairs in CP(Ri) for i ∈ {1, 2} cannot depend on reductions using R3−i. Since (20) holds for dis-

joint unions, it follows that local confluence of R = R1 ∪ R2 (i.e., joinability of all critical pairs in

CP(R1 ∪R2)) implies local confluence of bothR1 andR2. For composable combinations (hence for

constructor sharing combinations), Ohlebusch provides a similar treatment in [32]: [32, Proposition

5.3(1)] establishes modularity of local confluence for composable combinations, and, for composable

combinations, R1 ∪ R2 is locally confluent iff both R1 and R2 are locally confluent [32, Definition

3.2]. Similarly, since strong confluence is characterized by the strong joinability of critical pairs, PMD

is also complete on strong confluence problems for disjoint unions.

5.3. Processor for local/strong confluence problems: PHE

Processor PHE treats local and strong confluence problems as (strong) joinability of conditional criti-

cal and variable pairs.

Local confluence. Extended conditional critical pairs ECCP(R) enable the following characteriza-

tions of local confluence of GTRSs (and, in particular, of CS-TRSs, CTRSs, CS-CTRSs, etc.), thus

extending the well-known result for TRSs by Huet [37, Lemma 3.1].

Theorem 5.9. (Local confluence of GTRSs)

LetR be a GTRS. Then,

1. R is locally confluent iff each π ∈ ECCP(R) is joinable [1, Theorem 62].

2. If R is an SE-CS-CTRS such that (†) for all 〈s, t〉 ⇐ x → x′, c ∈ CVP(R), and u ≈ v ∈ c,
x /∈ Var✚µ (u) ∪ Var✚µ (v), then, R is locally confluent iff each π ∈ pCCP(R) ∪ iCCP(R) is

joinable [1, Corollary 63].

3. IfR is a CS-TRS, thenR is locally confluent iff each π ∈ CP(R, µ) ∪ LHCP(R, µ) is joinable

[25, Theorem 30].

Accordingly, for GTRSsR = (F ,Π, µ,H,R),

PHE (WCR(R)) = {JO(R, π1), . . . , JO(R, πn)},where

{π1, . . . , πn} =























CP(R) if R is a TRS

CP(R, µ) ∪ LHCP(R, µ) if R is a CS-TRS

pCCP(R) ∪ iCCP(R) if R is an SE-CS-CTRS satisfying (†)

ECCP(R) otherwise

Example 5.10. Consider the CTRS R in Example 1.1 with ECCP(R) = {(6), (7)} (see Example

3.5). Thus, we have PHE (WCR(R)) = {JO(R, (6)), JO(R, (7))}.

Example 5.11. (Continuing Examples 1.1 and 3.6)

For the CS-CTRSR⊥ in Example 1.1, ECCP(R⊥) = ∅. Thus, PHE (WCR(R⊥)) = ∅.

Note that, by Theorem 5.9, PHE is sound and complete on local confluence problems.
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Strong confluence. Linear TRSs whose critical pairs are strongly joinable are strongly confluent,

[3, Lemma 6.3.3]. Accordingly, for linear TRSsR,

PHE (SCR(R)) = {SJO(R, π1), . . . ,SJO(R, πn)},where {π1, . . . , πn} = CP(R)

This processor is sound and complete on strong confluence problems for linear TRSs: the existence of

a non-strongly-joinable conditional pair witnesses non-strong-joinabilty.

Table 5 summarizes the use of PEVar , PSimp , PInl , PMD , and PHE in the confluence framework.

Table 5. Use of PEVar , PSimp , PInl , PMD and PHE in the confluence framework

Problem PEVar PSimp PInl PMD PHE

CR X X X X

WCR X X X X X

SCR X X X X X

TRSs X X X X

CS-TRSs X X X

CTRSs X X X X

CS-CTRSs X X X X

GTRSs X X X X

PEVar , PSimp , and PHE are sound and complete. PInl is complete, but it is sound on CR problems only. PMD

is sound; if PMD is used with disjoint unions of TRSs, then it is complete on all problems it applies to; if PMD

is used with composable combinations of TRSs (hence, disjoint unions and constructor-sharing combinations),

then it is complete on WCR problems.

Table 6. Use of Processors for Confluence Problems in the confluence framework

Problem PU PUconf
POrth PCR PWCR PSCR PCanJ PCnvJ PCanCR PKB

CR X X X X X X X X X

WCR X X X X X X X X

SCR X X

TRSs X X X X X X X X

CS-TRSs X X X X X

CTRSs X X X X X X X

CS-CTRSs X X X X

GTRSs X X X X

Sound X X X X X X X X

Complete X X X

PCR is sound on WCR problems, and complete on SCR-problems.
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5.4. Processors for confluence problems

In this section we discuss a number of processors to be used with confluence problems. Processors

PU and PUconf
treat confluence problems for CTRSs R by transforming them into TRSs U(R) and

Uconf(R) and then solving the corresponding confluence problem. Following the results obtained by

Huet for left-linear TRSs without critical pairs [37], processor POrth exploits (variants of) orthogo-

nality investigated for CS-TRSs and CTRSs to treat confluence problems. Processors PCR, PWCR

and PSCR relate confluence problems and local/strong confluence problems. Processors PCanJ and

PCnvJ translate confluence problems for TRSs into local confluence problems of CS-TRSs. Processor

PCanCR translates confluence problems for TRSs into confluence problems for CS-TRSs. Finally,

for terminating GTRSs R, PKB either translates confluence problems into joinability problems of an

appropriate set of conditional critical pairs, or else into a local confluence problem forR. Table 6 sum-

marizes the use of processors for confluence problems in the confluence framework.

5.4.1. Confluence of terminating CTRSs as confluence of TRSs: PU

An oriented CTRSR is deterministic (DCTRS) if for every rule ℓ→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn inR
and every 1 ≤ i ≤ n, we have Var(si) ⊆ Var(ℓ) ∪

⋃i−1
j=1 Var(tj) [7, Def. 7.2.33]. In the following,

U is the transformation in [7, Def. 7.2.48] that, given a 3-DCTRSsR = (F , R) obtains a TRS U(R).
Each rule α : ℓ→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ R is transformed into n+ 1 unconditional rules:

ℓ → Uα
1 (s1, ~x1)

Uα
i−1(ti−1, ~xi−1) → Uα

i (si, ~xi) 2 ≤ i ≤ n

Uα
n (tn, ~xn) → r

where Uα
i are fresh new symbols and ~xi are sequences of variables in Var(ℓ) ∪ Var(t1) ∪ · · · ∪

Var(ti−1) for 1 ≤ i ≤ n. Unconditional rules remain unchanged. Then, U(R) = (U(F),U(R)),
where U(F) is the signature F extended with the new symbols introduced by transformation U and

U(R) is the new set of rules obtained from R as explained above.

Example 5.12. (Transformation U )

For the DCTRSR = (F , R) with R = {a→ b⇐ a ≈ b, a→ b⇐ a ≈ c}, U(R) consists of:

a → U(a) (27)

U(b) → b (28)

a → U ′(a) (29)

U ′(c) → b (30)

Note that U(F) = {a, b, c, U, U ′}.

Remark 5.13. (Simulating conditional rewriting by unconditional rewriting)

Starting from the pioneering work by Marchiori [39], several authors have investigated the ability of

transformations from CTRSs R to TRSs to simulate conditional rewriting by means of unconditional

rewriting, see, e.g., [40, 41] and the references therein. It is well-known that U is simulation-complete,
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i.e., →R ⊆ →
∗
U(R) see [41, Section 3]; however, U is not simulation-sound: there are terms s, t ∈

T (F ,X ) such that s→∗
U(R) t but s 6→∗

R t, see, e.g., [41, Example 3.3].

The following definition prepares Theorem 5.16 below, which enables the use of transformation U in

the confluence framework.

Definition 5.14. Let R be a 3-DCTRS. We say that U preserves →R-irreducibility of a 3-DCTRS

R = (F , R) if for all terms t ∈ T (F ,X ), if t is→R-irreducible, then t is→U(R)-irreducible.

In general, this property does not hold for all 3-DCTRSs.

Example 5.15. Let R and U(R) as in Example 5.12. Although term a is →R-irreducible, it is not

→U(R)-irreducible as, e.g., a→U(R) U(a). Thus, U does not preserve→R-irreducibility of R.

Theorem 5.16. LetR be a 3-DCTRS. IfR is terminating, U preserves→R-irreducibility, and U(R)
is confluent, then R is confluent.5

Proof:

By contradiction. If R is not confluent, then there are terms s, t, t′ ∈ T (F ,X ) such that s →∗
R t

and s →∗
R t′ but t and t′ are not →∗

R-joinable. By termination of →R, we can assume that t and t′

are different →R-irreducible terms, i.e., t 6= t′. By confluence of U(R), t →∗
U(R) u and t′ →∗

U(R) u

for some term u. Since U preserves →R-irreducibility, both t and t′ are →U(R)-irreducible. Thus,

t = u = t′, a contradiction. ⊓⊔

For a practical use of Theorem 5.16, we introduce a sufficient condition for preservation of irreducibil-

ity. In the following, given a sequence of expressions c and a set of variables V , c↓V is the partial

grounding of c where all variables x ∈ Var(c) ∩ V are replaced by cx. The following result provides

a sufficient condition for preservation of→R-irreducibility. Intuitively, requiring feasibility of c↓Var(ℓ)

for all rules ℓ→ r ⇐ c guarantees that no particular instantiation of variables due to pattern matching

against ℓ plays a role in the satisfaction of the conditional part c of the rule.

Proposition 5.17. Let R = (F , R) be a 3-DCTRS. If for all ℓ → r ⇐ c ∈ R, c↓Var(ℓ) is R-feasible,

then U preserves→R-irreducibility

Proof:

If t ∈ T (F ,X ) is→R-irreducible, we consider two cases: First, if there is no p ∈ Pos(t) such that

t|p = σ(ℓ) for some ℓ → r ⇐ c ∈ R and substitution σ, then t is also →U(R)-irreducible, as the

left-hand sides of rules in U(R) either coincide with those in R or include a symbol in U(F) − F .

Otherwise, since t is →R-irreducible, σ′(c) must be R-infeasible for all substitutions σ′ such that

σ′(x) = σ(x) for all x ∈ Var(ℓ). However, c↓Var(ℓ) is R-feasible, i.e., there is a substitution ς such

that ς(c↓Var(ℓ)) holds. Thus the substitution σ′ defined by σ′(x) = σ(x) for all x ∈ Var(ℓ) and

σ′(y) = ς(y) for all y /∈ Var(ℓ) also satisfies σ(c), a contradiction. ⊓⊔

5This result fixes the buggy [5, Theorem 8].
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Example 5.18. Consider the following 3-DCTRSR:

g(x) → x (31)

f(x) → x⇐ g(x) ≈ x (32)

Since g(cx) ≈ cx is clearly feasible (we have g(cx)→(31) cx), U preserves→R-irreducibility.

Processor PU transforms a confluence problem for a terminating 3-DCTRSR into a confluence prob-

lem for a TRS U(R). IfR is a terminating 3-DCTRS such that U preserves→R-irreducibility, then

PU (CR(R)) = {CR(U(R))}

By relying on Theorem 5.16, PU is sound. However, it is not complete.

Example 5.19. (PU is not complete)

The 3-DCTRS R in Example 5.12 is (locally) confluent: the rules are infeasible; thus, the one-step

reduction relation is empty. However, U(R) defines a non-joinable peak U(a) U(R)← a→U(R) U
′(a).

5.4.2. Confluence of CTRSs as confluence of TRSs using an improved transformation: PUconf

Gmeiner, Nishida and Gramlich [42] introduced transformation Uconf, which can also be used in proofs

of confluence of 3-DCTRSs in the confluence framework. Each rule α : ℓ → r ⇐ s1 ≈ t1, . . . , sn ≈
tn is transformed into n+ 1 unconditional rules [42, Definition 6]:

ℓ → Uℓ,s1(s1, ~x1)

Uℓ,s1(t1, ~x1) → Uℓ,s1,t1,s2(s2, ~x2)

...

Uℓ,s1,t1,...,sn(tn, ~xn) → r

where new symbols Uℓ,... depending on the the left-hand side ℓ of α and also on the terms occurring

in the conditions of α are introduced. For each 1 ≤ i ≤ n, ~xi is as in transformation U . Then,

Uconf(R) = (Uconf(F),Uconf(R)), where Uconf(F) is the signature F extended with the new symbols

introduced by transformation Uconf and Uconf(R) is the new set of rules obtained from R.

Example 5.20. (Transformation Uconf)

ForR = (F , R) in Example 5.12, Uconf(R) consists of the rules:

a → U(a) (33)

U(b) → b (34)

U(c) → b (35)

Compared with U(R) in Example 5.12, note that U ′ is missing thanks to the refined definition of Uconf.
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A DCTRS is weakly left-linear if “variables that occur more than once in the lhs of a conditional rule

and the rhs’s of conditions should not occur at all in lhs’s of conditions or the rhs of the conditional

rule” [40, Definition 3.17]. Processor PUconf
transforms a confluence problem for a 3-DCTRS R into

a confluence problem for a TRS Uconf(R), where Uconf is the transformation in [42, Definition 6]:

PUconf
(CR(R)) = {CR(Uconf(R))}

ifR is a weakly left-linear 3-DCTRS. By [42, Theorem 9], PUconf
is sound; however, it is not complete.

Example 5.21. (PUconf
is not complete)

For the 3-DCTRSR = (F , R) with R = {a→ b⇐ b ≈ a, a→ b⇐ c ≈ a}, we have

U(R) = Uconf(R) = {a→ U(b), U(a)→ b, a→ U ′(c), U ′(a)→ b}.

The rules of R are infeasible and can be removed. Thus, →R is empty, hence confluent. However,

the peak U(b) Uconf(R)← a →Uconf(R) U ′(c) is not joinable, as both U(b) and U ′(c) are Uconf(R)-
irreducible.

Note that R in Example 5.12 can be proved confluent using Uconf(R): as shown in Example 5.20,

Uconf(R) is orthogonal, hence confluent, which proves confluence ofR by [42, Theorem 9]. However,

the following example shows that PU can be used to prove confluence when PUconf
fails.

Example 5.22. The 3-DCTRSR in Example 5.18 is clearly terminating and, as shown in the example,

U preserves→R-irreducibility. The TRS U(R):

g(x) → x (36)

f(x) → U(g(x), x) (37)

U(x, x) → x (38)

is terminating and has no critical pair. Hence, U(R) is confluent. By Theorem 5.16, R is confluent.

Note that R is not weakly left-linear. Thus, Uconf(R) cannot be used to prove confluence ofR.

Thus, PU and PUconf
are complementary. However, our experiments show that PUconf

applies more

frequently than PU , see Table 11.

5.4.3. Orthogonality: POrth

A GTRSR is left-linear if for all rules ℓ→ r⇐ c, the left-hand side ℓ is linear.

• A left-linear TRS R whose critical pairs are all trivial is called weakly orthogonal. For left-

linear TRSs, Huet provided several results [37, Section 3.3] leading, in particular, to conclude

that weakly orthogonal TRSs are confluent, see [3, Section 6.4].

• A left-linear CS-TRS (R, µ) is µ-orthogonal if CP(R, µ) = LHCP(R, µ) = ∅ [25, Definition

35]. By [25, Corollary 36], µ-orthogonal CS-TRSs are confluent.
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• A left-linear CTRS is (almost) orthogonal if pCCP(R) = ∅ (resp. pCCP(R) consists of trivial

pairs 〈t, t〉 ⇐ c with critical position p = Λ) [7, Definition 7.1.10(1 & 2)]. By [7, Theorem

7.4.14],6 orthogonal, properly oriented, and right-stable 3-CTRS are confluent, where

– A 3-CTRS R is properly oriented if every rule ℓ → r ⇐ s1 ≈ t1, . . . , sn ≈ tn satisfies:

if Var(r) /∈ Var(ℓ), then Var(si) ⊆ Var(ℓ) ∪
⋃i−1

j=1 Var(tj) for all 1 ≤ i ≤ n. [7,

Definition 7.4.13].

– A CTRS is right-stable if for every rule ℓ → r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ R and

for all 1 ≤ i ≤ n, (a) (Var(ℓ) ∪
⋃i−1

j=1 Var(sj ≈ tj) ∪ Var(si)) ∩ Var(ti) = ∅, and

(b) ti is either a linear constructor term or a ground Ru-irreducible term [7, Definition

7.4.8], where Ru is obtained from the rules of R by just dropping the conditional part:

Ru = {ℓ→ r | ℓ→ r ⇐ c ∈ R}. [7, Definition 7.1.2].

By [7, Corollary 7.4.11], almost orthogonal and almost normal (i.e., right-stable and oriented

[7, Definition 7.4.8(2)]) 2-CTRSs are confluent.

Thus, we let (using the fact that confluence implies local confluence):

POrth(CR(R)) = POrth(WCR(R)) = ∅ if R is







































a weakly orthogonal TRS, or

a µ-orthogonal CS-TRS, or

an almost orthogonal and almost normal

2-CTRS, or

an orthogonal, properly oriented, and right-stable

3-CTRS

In all these uses, POrth is sound and (trivially) complete.

Example 5.23. (Continuing Example 5.8)

Since the TRSR1 in Example 5.8, is orthogonal, we obtain POrth(CR(R1)) = ∅.

5.4.4. Confluence and local/strong confluence: PCR , PWCR, PSCR

Processors PCR, PWCR and PSCR implement the well-known relationships between confluence and

local and strong confluence in Remark 4.3 from which soundness and completeness properties of these

processors follow.

Local and strong confluence problems as confluence problems. The following processor trans-

forms local confluence problems into confluence problems: for GTRSsR,

PCR(WCR(R)) = PCR(SCR(R)) = {CR(R)}.

PCR is sound on local confluence problems, and complete on strong confluence problems.

6Originally in [43, Theorem 4.6], this result concerns level-confluence, which implies confluence.
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Confluence and strong confluence problems as local confluence problems. The following pro-

cessors transforms confluence problems into local confluence problems: for GTRSsR.

PWCR(CR(R)) = PWCR(SCR(R)) = {WCR(R)}.

PWCR is complete, but not sound.

Confluence and local confluence problems as strong confluence problems. Strong confluence

implies confluence and hence local confluence (but not vice versa) [37, Lemma 2.5], see also [7,

Section 2.2]. The following processor uses this fact: for GTRSsR,

PSCR(CR(R)) = PSCR(WCR(R)) = {SCR(R)}.

PSCR is sound, but not complete.

5.4.5. Confluence of a TRS as local confluence of a terminating CS-TRS: PCanJ , PCnvJ

Replacement maps can be used to prove confluence of a TRSR by transforming it the into a CS-TRS

(R, µ). We consider two replacement maps:

• The canonical replacement map µcan
R is the most restrictive replacement map ensuring that the

non-variable subterms of the left-hand sides of the rules of R are all active [2, Section 5].

• The convective replacement map µcnv
R is the most restrictive replacement map that makes all

critical positions p of critical pairs 〈θ(ℓ)[θ(r′)]p, θ(r)〉 ∈ CP(R) active [38, Definition 3].

Replacement maps µ that are less restrictive than µcan
R (i.e., such that µcan

R (f) ⊆ µ(f) for all symbols

f in the signature, written µcan
R ⊑ µ) are collected in the set CMR and similarly for µcnv

R with CnvMR.

Since µcan
R is not more restrictive than µcnv

R , i.e., µcnv
R ⊑ µcan

R , we have CMR ⊆ CnvMR.

Example 5.24. Consider the following TRS (COPS/42.trs):

f(g(x)) → f(h(x, x)) (39)

g(a) → g(g(a)) (40)

h(a, a) → g(g(a)) (41)

We have µcan
R = µ⊤. The critical position 1 ∈ Pos(ℓ(39)) of the only critical pair 〈f(g(g(a))), f(h(a, a))〉

becomes active by just letting µcnv
R (f) = {1} and µcnv

R (p) = ∅ for any other symbol p.

Example 5.25. Consider the TRSR in Example 5.8.We have:

µcan
R (inc) = µcan

R (hd) = µcan
R (tl) = {1}, µcan

R (:) = µcan
R (from) = µcan

R (s) = ∅.

Also, with rule (26), i.e., inc(tl(from(x))) → tl(inc(from(x))), critical position p = 1.1 in the left-

hand side inc(tl(from(x))) of the rule, and rule (25), i.e., from(x) → x:from(s(x)), we obtain a

critical pair

〈inc(tl(x:from(s(x)))), tl(inc(from(x)))〉 (42)
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which is the only critical pair in CP(R). We only need to make the arguments of inc and tl active to

guarantee that p is active in inc(tl(from(x))). Thus, we have:

µcnv
R (inc) = µcnv

R (tl) = {1}, µcnv
R (:) = µcnv

R (from) = µcnv
R (hd) = µcnv

R (s) = ∅.

A CS-TRS (R, µ) is

• level-decreasing if for all rules ℓ → r in R, the level of each variable in r does not exceed its

level in ℓ; the level lvµ(t, p) of an occurrence of variable x at position p in a term t is obtained by

adding the number of frozen arguments that are traversed from the root to the occurrence t|p = x
of the variable. Then, lvµ(t, x) is the maximum level to which x occurs in t [44, Definition 1].

• 0-preserving [38, page 6] if for all rules ℓ→ r ∈ R, if a variable occurs active in the left-hand

side ℓ of rules ℓ→ r, then all its occurrences in r are also active, i.e., Varµ(ℓ) ∩ Var✚µ (r) = ∅.
For left-linear TRSs, this property coincides with ℓ → r having left-homogeneous µ-replacing

variables [2, Section 8.1], written LHRV(R, µ), see, e.g., [25, Proposition 3].

Example 5.26. Consider the TRSR in Example 5.8.

• With µ = µcan
R , R is not level-decreasing, as for rule (25),

lvµ(ℓ(25), x) = lvµ(from(x), x) = 0 < 2 = lvµ(x:from(s(x)), x) = lvµ(r(25), x).

• With respect to both µcnv
R and µcan

R , R is 0-preserving as all variable occurrences in left-hand

sides of rules are frozen.

Let R = (F , R) be a left-linear TRS and assume Rµ = (F , µ,R) terminating for µ as given below.

We define

PCanJ(CR(R)) = {WCR(Rµ)} if µ ∈ CMR and R is level-decreasing.

PCnvJ (CR(R)) = {WCR(Rµ)} if µ ∈ CnvMR and LHRV(R, µ) holds.

Example 5.27. (Continuing Example 5.8)

Since R2 in Example 5.8 is left-linear and LHRV(R2, µ
cnv
R2

) holds, we obtain PCnvJ (CR(R2)) =
{WCR(Rµ

2 )}, whereRµ
2 = (R2, µ

cnv
R2

).

By [44, Theorem 2] (resp. [38, Corollary 13]), PCanJ (resp. PCnvJ ) is sound. However, they are

not complete.

Example 5.28. (PCanJ and PCnvJ are not complete)

ForR consisting of the rules

a → b (43)

c → d(a) (44)

c → d(b) (45)
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we have µcan
R = µcnv

R = µ⊥. In particular, µcnv
R (d) = ∅. The (only) critical pair

〈d(a), d(b)〉 (46)

is not (R, µ⊥)-joinable, hence (R, µ⊥) is not locally confluent. However, R is confluent as it is

terminating and π is clearly R-joinable.

Remark 5.29. (PCnvJ subsumes PCanJ )

Since µcnv
R ⊑ µcan

R , and level-decreasingness implies the LHRV property (see [44, page 72]), and

hence 0-decreasingness, all uses of PCanJ are covered by PCnvJ . In practice, though, this may depend

on the specific choice(s) of µ when implementing the processor. For instance, consider R′ consisting

of rules (43), (44), and (45), together with

d(b) → b (47)

For R′ and R in Example 5.28, with CP(R) = CP(R′) = {(46)}, we have µcnv
R = µcnv

R′ = µ⊥.

Still, (46) is not (R′, µ⊥)-joinable. However, µcan
R′ (d) = {1} now (due to rule (47)) and hence (46) is

(R′, µcan
R′ )-joinable. Thus, (R′, µcan

R′ ) is locally confluent and (by soundness of PCanJ and termination

of (R′, µcan
R′ )), R is confluent. Typically, an implementation of PCnvJ would try µcnv

R only, although

µcan
R ∈ CnvMR is a possible choice as well.

5.4.6. Confluence of a TRS as confluence of canonical CSR: PCanCR

By relying on [2, Corollary 8.23], processor PCanCR transforms a confluence problem CR(R) for a

TRSR into a confluence problem for a CS-TRS:

PCanCR(CR(R)) = {CR(Rµ)}

if R is a left-linear and normalizing TRS (i.e., every term has a normal form), and Rµ = (R, µ) for

some µ ∈ CMR. PCanCR is sound but not complete, see [2, Sections 8.4 & 8.5] for a discussion.

5.4.7. Confluence of terminating systems as local confluence: PKB

The characterization of confluence of terminating TRSs as the joinability of all its critical pairs is a

landmark, early result by Knuth and Bendix [45]. Thus, we let

PKB(CR(R)) =











{JO(R, π1), . . . , JO(R, πn)} if {π1, . . . , πn} = pCCP(R) ∪ iCCP(R)

are overlays and R is a J-CTRS

{WCR(R)} otherwise

ifR is a terminating GTRS [15]. By relying on [46, Theorem 4] for the first case of the application of

PKB and Theorem 5.9 (plus Newman’s Lemma) for the second one, PKB is sound and complete.
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Example 5.30. (Continuing Example 5.1)

For the oriented 1-CTRSR′ obtained by PSimp in Example 5.1, there is a proper CCP:

〈h(s(x)), g(s(x))〉 ⇐ c(g(x)) ≈ c(a), c(h(x)) ≈ c(a) (48)

which is an overlay, as the critical position is p = Λ. Since R′ is a 1-CTRS, we dismiss improper

critical pairs. Thus, we have PKB (CR(R′)) = {JO(R′, (48))}.

Example 5.31. (Continuing Examples 1.1 and 3.6)

The CS-CTRSR⊥ in Example 1.1, is clearly terminating. Thus, PKB (CR(R⊥)) = {WCR(R⊥)}.

5.5. Joinability processor: PJO

For GTRSsR and conditional pairs π, we have the following processor:

PJO (JO(R, π)) =

{

∅ if π is joinable

no otherwise

PJO (SJO(R, π)) =

{

∅ if π is strongly joinable

no otherwise

For both uses PJO is sound and complete. As in [22, 1, 25], we often prove (non)joinability of terms

and critical pairs by proving the (in)feasibility of sequences (see Section 2).

Proposition 5.32. (cf. [1, Proposition 21 & Section 7.5]) Let R be a GTRS and π : 〈s, t〉 ⇐ c
be a conditional pair with variables ~x, and z be a variable not in ~x. If (i) σ(c) is feasible for some

substitution σ, and (ii) σ(c), σ(s) →∗ z, σ(t)→∗ z is infeasible (for some z /∈ Var(σ(c), σ(s), σ(t))),
then π is not joinable.

Remark 5.33. As discussed in [1, Remark 22], in order to use Proposition 5.32, the following heuris-

tics are useful.

H1 The simplest choice is the empty substitution, i.e., σ = ε or its grounded version σ = ε↓ =
{x 7→ cx | x ∈ X}. This is easily mechanizable, see Examples 5.34 and 5.37.

H2 Use σ = {x 7→ ℓ↓, x′ 7→ r↓} for some unconditional rule ℓ → r in R if π is a conditional

variable pair 〈s, t〉 ⇐ x→ x′, c.

H3 Choosing another substitution σ, usually trying to fulfill the conditions in the proposition.

Example 5.34. (Continuing Example 1.1)

We use Proposition 5.32 to show non-joinability of (6): the sequence s(x′)→∗ s(0) is feasible, but

s(x′)→∗ s(0), f(g(x′))→∗ z, s(x′)→∗ z

is infeasible: the only substitution satisfying s(x′)→∗ s(0) is σ = {x′ 7→ 0}; furthermore, in order to

satisfy the last condition s(x′)→∗ z we need σ = {x′ 7→ 0, z 7→ 0}; however, σ(f(g(x′))) = f(g(0))
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is irreducible; thus f(g(0)) →∗ 0 is not satisfied. By Proposition 5.32, the conditional critical pair (6)

is not joinable. By Theorem 5.9.(1),R in Example 1.1 is not locally R-confluent norR-confluent. As

for R⊥, since pCCP(R⊥) = iCCP(R⊥) = CVP(R⊥) = ∅ (see Example 3.6), by Theorem 5.9.(1),

R⊥ is locally confluent. Since R⊥ is terminating, by Newman’s Lemma,R⊥ is confluent.

The following results, originally established in [22] for CTRSs, can also be used with GTRSs.

Proposition 5.35. Let R be a GTRS and π : 〈s, t〉 ⇐ c be a conditional pair with variables ~x, and z
be a variable not in ~x. Then,

1. (cf. [22, Corollary 17]) IfR ⊢ (∀~x)(∃z) c⇒ s→∗ z ∧ t→∗ z holds, then π is joinable.

2. (cf. [22, Corollary 18]) If s↓ →∗ z ∧ t↓ →∗ z is feasible, then π is joinable.

3. (cf. [22, Proposition 22]) If Var(c) ∩ Var(s, t) = ∅, then π is joinable iff c is infeasible or

s↓ →∗ z, t↓ →∗ z is feasible.

The tool infChecker [16] can be used to automatically prove (in)feasibility of sequences.

Example 5.36. (Continuing Example 5.27)

The (unconditional) critical pair (42), i.e., 〈inc(tl(x:from(s(x)))), tl(inc(from(x)))〉, obtained in Ex-

ample 5.27 for R2 in Example 5.8 isR
µ
2 -joinable:

inc(tl(x:from(s(x)))) →R
µ
2

inc(from(s(x)))

and

tl(inc(from(x)))→R
µ
2
tl(inc(x:from(s(x))))→R

µ
2
tl(s(x):inc(from(s(x)))) →R

µ
2
inc(from(s(x))).

Thus, we have PJO (JO(Rµ
2 , (42))) = ∅.

Example 5.37. (Continuing Example 3.5)

Consider the O-CTRSR in Example 1.1 and the conditional critical pair (6), i.e., 〈f(g(x′)), s(x′)〉 ⇐
s(x′) ≈ s(0). This conditional pair is not joinable as the only way to satisfy the reachability condition

s(x′) ≈ s(0) in the conditional part is using σ = {x′ 7→ 0}. However, σ(f(g(x′))) = f(g(0)), and

σ(s(x′)) = s(0) are both irreducible. Alternatively, using Proposition 5.32 and heuristic H1 in Remark

5.33, the non-joinability of (6) can be proved as the R-infeasibility of the sequence

s(x′)→∗ s(0), f(g(x′))→∗ z, s(x′)→∗ z (49)

where z is a fresh variable. This can be proved by infChecker (use the input in Figure 2).

Remark 5.38. (Simple methods for joinability)

The previous methods, which are based on translating joinability proofs into (in)feasibility proofs,

heavily rely on the use of infChecker to solve them. Since this is costly, some exploration techniques

for concluding joinability are used. For unconditional pairs π : 〈s, t〉,
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(PROBLEM INFEASIBILITY)

(CONDITIONTYPE ORIENTED)

(VAR x)

(RULES

f(g(x)) -> x | x == s(0)

g(s(x)) -> g(x)

)

(VAR x’ z)

(CONDITION s(x’) ->* s(0), f(g(x’)) ->* z, s(x’) ->* z

)

Figure 2. Non-joinability as infeasibility in Example 5.37

J0 If s and t are irreducible and s 6= t, then π is not joinable.

Given an unconditional pair π : 〈s, t〉 or a feasible conditional pair π : 〈s, t〉 ⇐ c,

J1 If s and t are both ground and irreducible and s 6= t, then π is not joinable.

J2 If Suc→R
(s) ∩ Suc→R

(t) 6= ∅, then π is joinable.

J3 If Suc=→R
(t) ∩ Suc→R

(s) 6= ∅ and Suc=→R
(s) ∩ Suc→R

(t) 6= ∅, then π is strongly joinable.

Remark 5.39. (Checking irreducibility in J0 and J1)

Dealing with TRSs R, we can check irreducibility of a term u by just showing that u contains no

redex, i.e., no instance σ(ℓ) of a left-hand side ℓ of a rule ℓ → r in R occurs in u. Dealing with

GTRSsR, this simple test is not enough: there can be terms including instances σ(ℓ) of the left-hand

side ℓ of a conditional rule ℓ→ r ⇐ c (they are called preredexes [47]), which are also irreducible if

R ⊢ σ(c) does not hold. This is implemented by using a model generator (e.g., AGES [48] or Mace4
[49]) to (try to) find a countermodel of (∀~x)σ(c) in R, where ~x are the variables occurring in σ(c).
We proceed in two steps:

1. If u contains no (pre)redex, then it is irreducible.

2. If u contains a preredex σ(ℓ) of a conditional rule ℓ→ r ⇐ A1, . . . , An and the theory

R∪ {¬(∀~x) σ(A1) ∧ · · · ∧ σ(An)},

for ~x the variables occurring in σ(A1), · · · , σ(An) is satisfiable, then u is irreducible.

Example 5.40. (Continuing Example 5.30)

The proper CCP (48), i.e., 〈h(s(x)), g(s(x))〉 ⇐ c(g(x)) ≈ c(a), c(h(x)) ≈ c(a), is joinable, as we

have h(s(x))→(10) x and g(s(x))→(9) x. Thus, PJO(JO(R′, (48))) = ∅.

Figures 3 and 4 display the proof trees of the confluence framework for the examples in the paper.
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CR(R)

PWCR

WCR(R)

JO(R, (6))

no

JO(R, (7))

PHE

PJO

CR(R⊥)

WCR(R⊥)

PKB

PHE

yes

CTRSR in Example 1.1; CS-CTRSR⊥ in Example 1.1;

see also Examples 3.5, 5.10, and 5.34 see also Examples 3.6 and 5.31

Figure 3. Proof trees for confluence problems of CTRSs and CS-CTRSs in the confluence framework

CR(R)

CR(R′)

JO(R′, (48))

yes

PSimp

PKB

PJO

CR(R)

CR(R1)

yes

CR(R2)

WCR(Rµ
2 )

JO(Rµ
2 , (42))

yes

PMD

POrth PCnvJ

PHE

PJO

CTRSR in Example 5.1; TRSR in Example 5.8;

see also Examples 5.30 and 5.40 see also Examples 5.23, 5.27, and 5.36

Figure 4. Proof trees for confluence problems of CTRSs and TRSs in the confluence framework

6. Strategy

CONFident implements several processors. Given a GTRSR, the processors enumerated in Section 5

are used to build a proof tree with root CR(R) to hopefully conclude confluence or non-confluence of

R (Theorem 4.6). The selection and combination of processors to generate such a proof tree is usually

encoded as a fixed proof strategy which is applied to the initial confluence problem CR(R). Choosing

the appropriate proof strategy for an input problem is not a trivial task. The strategy must take into



198 R. Gutiérrez et al. / Proving Confluence with CONFident

account that many proof obligations involved in the implementation of processors are undecidable.

For instance, joinability of conditional pairs (required, e.g., by PJO ) is, in general, undecidable. Also,

calls to external tools trying to check undecidable properties like termination (as required, e.g., by

PKB ) may fail or succeed in proving the opposite property, i.e., non-termination. For these reasons,

the application of processors is usually constrained by a timeout so that after a predefined amount of

time, the strategy may try a different processor hopefully succeeding on the considered problem, or

even backtrack to a previous problem in the proof tree. Typically, a thorough experimental analysis is

needed to obtain a suitable strategy.

The proof strategies for (CS-)TRSs and (CS-)CTRSs are depicted in Figures 5 and 6, respectively.

The diagrams show how to deal with CR, WCR, SCR, JO, and SJO problems for (CS-)TRSs and

(CS-)CTRSs in CONFident, according to currently implemented techniques. Starting from the box

identifying the problem at stake, the sequence of used processors is displayed and the order of ap-

plication is indicated by means of arrows from one processor to the next one. Some processors have

two possible continuations. Some of them correspond to ending applications of the processor leading

to finish some branch (represented as boxes enclosing yes or no) and the decision depends on the

result of the processor as indicated as a label in the branches (e.g., for PHE , POrth , PKB , PJO ). In

other cases, the continuous one is chosen first and the dashed one is followed after a failure in the first

option.

Example 6.1. (Use of PKB )

For (CS-)TRSs R (see Figure 5), if R is terminating, then PKB produces a call to PHE (WCR(R)).
Otherwise, PCnvJ is used. For (CS-)CTRSs (see Figure 6), ifR is terminating, then

1. If R is a J-CTRS, then, if pCCP(R) ∪ iCCP(R) = ∅, then a positive answer yes is given;

otherwise, if all pairs in pCCP(R) ∪ iCCP(R) are overlays, then calls to PJO for each π ∈
pCCP(R) ∪ iCCP(R) are made.

2. If R is not a J-CTRS, or pCCP(R) ∪ iCCP(R) is not a set of overlays, then PKB produces a

call to PHE (WCR(R)).

Otherwise, PWCR is called.

Note that, in proofs involving (CS-)CTRSsR, after applying PInl and PSimp , it is possible to obtain a

(CS-)TRSR′. In this case, the proof would continue in the corresponding point of Figure 5.

7. Structure of CONFident

CONFident is written in Haskell and it has more than 100 Haskell files with almost 15000 lines of

code (blanks and comments not included). The tool is used online through its web interface in:

http://zenon.dsic.upv.es/confident/

Nowadays, only confluence problems CR(R) for CS-CTRSs R can be (explicitly) solved, i.e., the

input system R is treated as a CS-CTRS and a proof of confluence ofR is attempted. Direct proofs of

local or strong confluence, or (strong) joinability are not possible yet.

http://zenon.dsic.upv.es/confident/
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Confluence

PEVarno

PSimp

PMD

POrthyes

PSCR

PKB

PCnvJ

PCanCR

Local Confluence

PEVarno

PSimp

PCR

PHE

6= ∅

∅
yes

Strong Confluence

PEVarno

PSimp

PCR

PHE

6= ∅

∅
yes

Joinability

PJO

yes no

Strong Joinability

PJO

yes no

Figure 5. Proof strategy for (CS-)TRSs

Confluence

PEVarno

PInl

PSimp

PUconf

POrthyes

PKB

∅
6= ∅yes

PWCR

Local Confluence

PEVarno

PInl

PSimp

PCR

PHE

6= ∅

∅
yes

Joinability

PJO

yes no

Figure 6. Proof strategy for (CS-)CTRSs



200 R. Gutiérrez et al. / Proving Confluence with CONFident

(CONDITIONTYPE ORIENTED)

(REPLACEMENT-MAP

(f )

(g )

(s )

)

(VAR x)

(RULES

g(s(x)) -> g(x)

f(g(x)) -> x | x == s(0)

)

(STRATEGY CONTEXTSENSITIVE

(f )

(g )

(s )

)

(VAR x)

(RULES

g(s(x)) -> g(x)

f(g(x)) -> x | x ->* s(0)

)

Figure 7. The CS-CTRSR⊥ in Example 1.1 in COPS (left) and TPDB (right) format

7.1. Input format

The main input format to introduce rewrite systems in CONFident is the COPS format,7 the offi-

cial input format of the Confluence Competition (CoCo8). The (older) TPDB format9 can also be

used. As an example, Figure 7 displays the COPS and TPDB encoding of the O-CS-CTRS R⊥ in

Example 1.1. Both formats provide a similar display of the example, as they organize the information

about the rewrite system in several blocks: the type of CTRS according to the evaluation of condi-

tions (only in the COPS format, as the TPDB format permits oriented CTRSs only); replacement

map specification (within a section REPLACEMENT-MAP in the COPS format and within a section

STRATEGY CONTEXTSENSITIVE in the TPDB format); variable declaration; and rule description.

In CONFident, the user can combine both formats if needed (avoiding inconsistencies, of course),

for example, using specific rewriting relations in conditions in the COPS format or using the reserved

word REPLACEMENT-MAP to define a replacement map instead of the STRATEGY block in the TPDB

format.

7.2. Use of external tools

CONFident uses specialized tools to solve auxiliary proof obligations. For instance,

• infChecker is used by PSimp to prove infeasibility of conditional rules which are then discarded

from the analysis. It is also used by PHE , POrth , and PKB to remove infeasible conditional

critical pairs. Finally, infChecker is also used to implement the tests of joinability and µ-

joinability of (conditional) pairs required by PJO . For this purpose, Mace4 [49] and AGES [48]

are used from infChecker.

• MU-TERM is used by PKB and PCnvJ to check termination of CTRSs and CS-TRSs.

• Prover9 [49] is used by PJO to prove joinability of conditional pairs.

7http://project-coco.uibk.ac.at/problems/
8http://project-coco.uibk.ac.at/
9https://www.lri.fr/˜marche/tpdb/
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• Fort [50] is used by PCanCR to check whether a TRS is normalizing.

Tools like MU-TERM or infChecker are connected as Haskell libraries that are directly used by

CONFident, the rest of the tools are used by capturing external calls.

7.3. Implementing the confluence framework in Haskell

Problems. To implement the confluence framework, we start with the notion of problem. From the

implementation point of view, a problem is just a data structure containing all the needed information

to check its associated property. We can use a data type also to describe each kind of problem.

1 −− | Problem

2 data Problem typ p = Problem typ p
3

4 −− | Confluence Problem Type

5 data ConfProblem = ConfProblem
6

7 −− | Joinability Problem Type

8 data JoinProblem = JoinProblem

However, because we want to give more flexibility and deal with variants of rewrite systems ho-

mogeneously, we prefer to define type classes to describe the common characteristics of each problem

and define each variant of rewrite system as an proper instance.

9 −− | Problems contains a rewrite system

10 class IsProblem typ problem | typ −> problem where

11 getProblemType :: Problem typ problem −> typ
12

13 −− | Confluence Problems contains a rewrite system

14 class IsConfProblem typ problem trs | typ −> problem trs where

15 getConfProblem :: Problem typ problem −> trs
16

17 −− | Joinability Problems have a list of critical pairs

18 class IsJoinProblem typ problem cp | typ −> problem cp where

19 getCPair :: Problem typ problem −> cp

In these definitions, functional dependencies restrict a problem from being linked to multiple vari-

ants of rewrite systems and critical pairs. An example of instance can be CTRS:

20 −− A CTRS is a Problem

21 instance IsProblem ConfProblem CR where

22 getProblemType (Problem ConfProblem ) = ConfProblem
23

24 −− A CTRS is a Confluence Problem

25 instance IsConfProblem ConfProblem CR CR where

26 getConfProblem (Problem ConfProblem trs) = trs

By using type classes, we can reuse methods among problems. In this case, a joinability problem

is also a confluence problem because they share common methods.
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27 −− A Pair (CR,CP) is a Problem

28 instance IsProblem JoinProblem JO where

29 getProblemType (Problem JoinProblem ) = JoinProblem
30

31 −− A Conditional TRS and a ( possibly conditional ) Critical Pair is a Confluence Problem

32 instance IsConfProblem JoinProblem JO CR where

33 getConfProblem (Problem JoinProblem jopair) = josystem jopair
34

35 −− A Conditional TRS and a ( possible conditional ) Critical Pair is a Joinability Problem

36 instance IsJoinProblem JoinProblem JO InCritPair where

37 getCPair (Problem JoinProblem jopair) = joccpair jopair
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Processors. After defining our problems, we need to find the way of defining processors in practice.

The notion of processors is defined as abstractly as possible, allowing us to encapsulate every possible

technique applied to a problem. Also, the implementation is kept as abstract as possible:

38 −− | Each processor is an instance of the class ’Processor ’. The

39 −− output problem depends of the input problem and the applied processor

40 class Processor tag o d | tag o −> d where

41 apply :: tag −> o −> Proof d

Each processor has its own name (tag). In the implementation, when a processor is applied, it

yields a proof node. A proof contains the resulting set of problems or the refutation together with the

infomation about the obtaind proof.

An example of proccessor can be the following dummy processor, a successful processor that

returns a empty list of subproblems. Each processor returns information about its proof:

42 −− | Processor that returns an empty list

43 data SuccessProcessor = SuccessProcessor
44

45 −− | The information of the proof is just the input problem

46 data SuccessProcInfo problem = SuccessProcInfo { inSuccessProcInfoProblem :: problem }
47

48 −− | Returns an empty list of processors

49 instance Processor SuccessProcessor (Problem typ problem) (Problem typ problem) where

50 apply SuccessProcessor inP
51 = andP (SuccessProcInfo inP) inP []

The processor PHE presented above accepts confluence problems as an input but returns joinability

problems instead. Thus, the instances have the following form:

52 instance Processor HuetProcessor (Problem ConfProblem problem1)
53 (Problem JoinProblem problem2) where

54 ...
55

56 instance Processor CanCRProcessor (Problem ConfProblem problem1)
57 (Problem ConfProblem problem2) where

58 ...

Our framework is designed to be flexible enough to accommodate such processors.

We do not delve into implementation details of processors as they can vary significantly for each

technique.

Proof trees. A proof node consists of the result of the applied processor in the form of an info data

structure, the input problem, and a list of subproblems if the processor returns a set of subproblems.

Consequently, we require a structure similar to the following:

59 −− | Proof Tree constructors

60 data ProofF k =
61 And { procInfo :: SomeProcInfo, problem :: SomeProblem, subProblems :: [k] }
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62 | Success { procInfo :: SomeProcInfo, problem :: SomeProblem }
63 | Refuted { procInfo :: SomeProcInfo, problem :: SomeProblem }
64 | DontKnow { procInfo :: SomeProcInfo, problem :: SomeProblem }
65 | Search !([k ])

Success is not necessary because it represents an And node with empty subproblems, but it aids us

during the process of processing the solution. DontKnow is used to indicate a failure in the application

of the processor, while Search is associated with the possibility of returning multiple solutions in the

proof tree. Search is closely tied to how we define our strategies. It is important to note that Haskell

utilizes lazy evaluation. As a result, we initially apply a strategy to the initial problem, and only when

we traverse it to obtain the solution, the different processors are applied. Consequently, we may have

a list of solutions, but ultimately we select the first successful one.

In our implementation, our proof is constructed by combining ProofF and Problem structures. By

utilizing free monads [51], we can integrate the two types of nodes within the proof construction. The

pure nodes (Problem instances) are represented as pure values encapsulated within the free monad,

while the impure nodes (ProofF instances) are represented as impure effects within the free monad.

66 −− | ’Proof’ is a Free Monad.

67 type Proof a = Free ProofF a

Because in our framework we have several kinds of problems and many types of processor an-

swers, in the ProofF node we hide the type of problems using SomeProblem for the problems and

SomeProcInfo for the processor answers. For this purpose, we use Generalized Algebraic Data Types

(GADTs):

68 −− | ’SomeProblem’ hides the type of the Problem

69 data SomeProblem where

70 SomeProblem :: p −> SomeProblem
71

72 −− | ’SomeProcInfo’ hides the type of the Process Output

73 data SomeProcInfo where

74 SomeProcInfo :: p −> SomeProcInfo
75

76 −− | wraps the type of the problem

77 someProblem :: p −> SomeProblem
78 someProblem = SomeProblem
79

80 −− | wraps the type of the processor output

81 someProcInfo :: p −> SomeProcInfo
82 someProcInfo = SomeProcInfo

We define functions to simplify the returning of proofs by the processors:

83 −− | Return a success node

84 success :: procInfo −> problem1 −> Proof problem2
85 success pi p0 = Impure (Success (someProcInfo pi) (someProblem p0))
86

87 −− | Return a refuted node
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88 refuted :: procInfo −> problem1 −> Proof problem2
89 refuted pi p0 = Impure (Refuted (someProcInfo pi) (someProblem p0))
90

91 −− | Return a dontKnow node

92 dontKnow :: procInfo −> problem1 −> Proof problem2
93 dontKnow pi p0 = Impure (DontKnow (someProcInfo pi) (someProblem p0))
94

95 −− | Return a list of subproblems

96 andP :: procInfo −> problem1 −> [problem2] −> Proof problem2
97 andP pi p0 [] = success pi p0
98 andP pi p0 pp = Impure (And (someProcInfo pi) (someProblem p0) (map return pp))

Strategies. Finally, to define proof strategies, we use two strategy combinators, the sequential com-

binator and the alternative combinator. This is implemented using the two functions10

99 −− | And strategy combinator

100 (.&.) :: (a −> Proof b) −> (b −> Proof c) −> a −> Proof c
101 (.&.) = (>=>)
102

103 −− | Or strategy combinator

104 (.|.) :: (a −> Proof b) −> (a −> Proof b) −> a −> Proof b
105 ( f .|. g) p = ( f p) ‘mplus‘ (g p)

In this section, we have introduced two types of problems: ConfProblem and JoinProblem.

To enhance our strategy in practice, we can create new problem types that encapsulate desirable

properties. By doing so, we can define specific strategies tailored to those problem types. This is

particularly relevant when dealing with termination, where we can transition from ConfProblem to

TermConfProblem and apply specialized strategies aimed at achieving finiteness.

The execution of our framework in the Main module can be summarized in the following three

lines:

106 let proof = crewstrat timeout problem
107 let sol = runProof proof
108 putStr . show . pPrint $ sol

where csrewstrat is a proof strategy of processors connected with combinators and runProof tra-

verses the proof tree hopefully obtaining the solution. In our case, we follow a Breadth-First Search

strategy, but other alternatives can be implemented.

8. Experimental results

CONFident participated in the 202211 and 202312 International Confluence Competition (CoCo) in

the categories TRS, SRS, CSR, and CTRS. Table 7 summarizes the results obtained by the tool in the

10The strategies used in an alternative combinator could be also executed in parallel.
11http://project-coco.uibk.ac.at/2022/
12http://project-coco.uibk.ac.at/2023/

http://project-coco.uibk.ac.at/2022/
http://project-coco.uibk.ac.at/2023/
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different categories. Detailed information can be obtained from competition full run web page which

can be reached, for the different categories and years, from the following URL:

http://cops.uibk.ac.at/results/

Table 7. CONFident at the CoCo 2022 Full Run (left) and at the CoCo 2023 Full Run (right)

COPS cat.

TRS

CTRS

CS-TRS

CS-CTRS

Yes No Maybe Solved Total

108 138 331 246 577

82 43 36 125 161

25 87 64 112 176

88 41 158 129 287

Yes No Maybe Solved Total

109 138 330 247 577

81 38 42 119 161

49 83 44 132 176

94 47 146 141 287

CONFident obtained good results in the CTRS and CSR categories that we describe in the following.

Table 8. CTRS Category: CoCo 2022 Full Run (left) and CoCo 2023 Full Run (right)

Tool

ACP

CO3

CONFident

Yes No Maybe Solved Total

54 26 81 80 161

57 32 72 89 161

82 43 36 125 161

Yes No Maybe Solved Total

54 25 82 79 161

57 35 69 92 161

81 38 42 119 161

CONFident at the CTRS category of CoCo 2022 and 2023. Table 8 summarizes the results on the

COPS collection of CTRSs used in the CoCo 2022 and 2023 full-run which we use below to provide

an analysis of use of our processors. There was a bug in the 2022 version of the tool which was fixed

in the 2023 version. From the second row in Table 8 we can see that a CTRS (actually COPS #1289, as

can be seen on CoCo 2023 full-run web page) was proved confluent by CONFident 2022, but could

not be handled by CONFident 2023. Also, 5 examples (actually, COPS #311, #312, #353, #524, and

#1138) were proved non-confluent by CONFident 2022, but could not be handled by CONFident

2023. The reason is that the 2023 version of the tool could not deliver a proof within the 60′′ timeout

of the competition. It can be checked that the five examples can be proved by the online version of

CONFident if the default 120′′ timeout is used; furthermore, if a timeout of 60′′ is selected, the proofs

are not obtained. By lack of time, we could not appropriately tune the 2023 version to reproduce on

CoCo 2023 all good results obtained in CoCo 2022.

Taking CoCo 2023 as a reference, we see that CONFident solves almost 74% of the 161 CTRS

problems in COPS mainly using the techniques described in [1, 22] orchestrated within the confluence

framework described here. From the 161 examples, 28 of them (more than 17%) were proved by

CONFident only. There were 5 problems (COPS #286, #311, #312, #353 and #406) that CONFident

could not prove but were proved by ACP.

Still, CONFident obtained the first place in the CTRS category.

http://cops.uibk.ac.at/results/
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CONFident at the CSR category of CoCo 2022 and 2023. With respect to CSR, a demonstration

subcategory of confluence of CSR was hosted as part of CoCo 2022 and a competitive subcategory was

hosted at CoCo 2023, see http://project-coco.uibk.ac.at/2022/categories/csr.php. CON-

Fident and ConfCSR participated in 2023. The results on the CoCo 2023 full-run for the CSR cat-

egory, consisting of 176 CS-TRSs (COPS problems #1161 – #1164; #1167 – #1274; and #1298 –

#1361) and 287 CS-CTRSs (COPS problems #1362 – #1648) are summarized in Table 9, see http://cops.uibk.ac.at/r

for complete details, where both CS-TRSs and CS-CTRSs are displayed in a single table. CONFident

was buggy in the PJO processor in 2022, but it was fixed and improved in the 2023 version.

Table 9. CSR Category: CoCo 2023 Full Run

Tool

ConfCSR

CONFident 2022

CONFident 2023

Yes No Maybe Erroneous Solved Total

28 83 352 0 111 463

113 124 222 4 237 463

143 130 190 0 273 463

Table 10. Confluence of CSR: CS-TRSs (left) and CS-CTRSs (right)

Tool

ConfCSR

CONFident 2024

Yes No Maybe Solved Total

28 83 65 111 176

49 83 44 132 176

Yes No Maybe Solved Total

– – – – –

105 93 89 198 287

Unfortunately, due to a recently discovered bug in the implementation of the 2023 version of

CONFident, processor PUconf
was used in proofs of confluence of CS-CTRSs, even though no theo-

retical result gives support to this yet. As a consequence, a number of CS-CTRSs were reported as

confluent under no solid basis. We have fixed this problem and reproduced the full-run benchmarks

with the new 2024 version of CONFident. Table 10 summarizes the obtained results. We separately

show the results for CS-TRSs13 and CS-CTRSs.14 Although ConfCSR does not handle CS-CTRSs,

for CS-TRSs we also include the results obtained by ConfCSR in the full-run of the CSR category of

CoCo 2023.

Some observations follow:

1. The results on CS-TRSs obtained by CONFident 2023 & 2024, and summarized in Tables 9 and

10 are partly due to the implementation of results only recently reported in [52] which are

included as part of processor POrth (not explicit in the description of the processor in Section

5.4.3, but included in the statistical account of Table 11).

2. Except for 8 cases, (COPS #1423, #1424, #1467, #1583, #1587, #1588, #1609 and #1610) all

positive answers of CONFident 2023 for CS-CTRSs due to the buggy application of PUconf

have been confirmed by CONFident 2024 by using other techniques. This suggests that using

13Complete details in http://zenon.dsic.upv.es/confident/benchmarks/fi24/cstrs/
14Complete details in http://zenon.dsic.upv.es/confident/benchmarks/fi24/csctrs/

http://project-coco.uibk.ac.at/2022/categories/csr.php
http://cops.uibk.ac.at/results/?y=2023-full-run&c=CSR
http://zenon.dsic.upv.es/confident/benchmarks/fi24/cstrs/
http://zenon.dsic.upv.es/confident/benchmarks/fi24/csctrs/
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PUconf
with CS-CTRSs is probably correct; a formal proof of this conjecture should be provided,

though.

3. After removing the use of PUconf
from CONFident 2024 proof strategy for CS-CTRSs, we are

able to handle more CS-CTRSs: in 2023 we were able to (dis)prove confluence of 273− 132 =
141 CS-CTRSs. In contrast, CONFident 2024 solves 198 CS-CTRSs. Since no other change

has been introduced, this shows the impact of the appropriate selection and order of use of

processors in the proof strategy of automated analysis tools.

Table 11. Use of processors in the experiments

#Y #N PEVar PSimp PInl PMD PUconf
POrth PWCR PSCR PKB PCanCR PHE PJO

TRS 109 138 0 37 0 20 − 46 137 37 35 16 175 518

CTRS 81 38 0 51 24 8 34 72 44 0 16 0 39 71

CS-TRS 49 83 0 0 0 − − 49 87 0 0 − 83 84

CS-CTRS 105 93 9 99 40 − − 95 32 0 46 − 59 125

TOTAL 344 349 9 187 64 28 34 262 300 37 97 16 356 798

Use of processors. Table 11 summarizes the use of processors in the latest version of CONFident.

We display the number of uses of each processor along the whole benchmark set. Some remarks are

in order:

1. According to Tables 3,5, and 6:

• Proofs of confluence eventually use the (sound) processors POrth , PHE , or PKB on CR-

problems in the proof tree. This is because they are able to either (i) finish proof branches

with a positive result (e.g., POrth and PKB ), or (ii) translate the original CR-problem into a

WCR/SCR-problem (using PWCR or PSCR) which is then handled by PHE and ultimately

by PJO to obtain a positive result.

• Proofs of non-confluence are due to the use of (complete) processors on CR-problems like

PEVar (which finishes a proof branch with a negative result which is propagated to the

root of the proof tree), PWCR (which translates the CR-problem into a WCR-problem),

and then PHE (which returns JO-problems which can be qualified as negative by PJO ).

2. Regarding the second row (CTRSs): although CONFident does not implement any modularity

result for CTRSs (yet), processor PMD is used in some proofs with CTRSs, but only after

transforming them into TRSs by applying other processors, e.g., PSimp , PInl , or PUconf
.

3. Processor PEVar is used in some proofs with CS-CTRSs (fourth row) due to the presence of

rules with extra variables in some of the COPS examples (see, e.g., COPS/1367.trs).

4. Some processors were not used in the competition (e.g., PU or PCanJ , possibly due to their

“low” position in the strategy; or PCnvJ , which was not available yet). Thus, they are not

mentioned in the table.
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5. Some processors are used several times to solve a single example. For instance, in the CTRS

category (see Table 8), the 38 proofs of non-confluence required 39 uses of PHE due to one

of the decompositions introduced by PMD . Similarly, the 81 positive proofs obtained required

72+16 = 88 uses of POrth or PKB due to the remaining 7 decompositions introduced by PMD .

Table 12. Use of heuristics and joinability methods within PJO

H1 H2 H3 J1 J2 J3 infChecker Other

TRSs 0 4 0 10 211 189 58 47

CTRSs 2 0 2 5 21 0 40 6

CS-TRSs 0 4 0 5 78 0 0 0

CS-CTRSs 4 0 3 14 11 0 4 175

Use of heuristics and joinability techniques. Table 12 summarizes the use of heuristics (H1, H2,

and H3 for Proposition 5.32, see Remark 5.33) and joinability techniques (J1, J2, and J3, see Remark

5.38) in the implementation of PJO in CoCo 2022 (see Section 5.5). We display the number of uses of

each heuristic or technique for each category. Besides, we report on uses of infChecker to prove join-

ability using other results in Proposition 5.35, or other techniques (e.g., use of Mace4 and Prover9).

Some remarks are in order:

1. First row (TRSs): H2 is used with TRSs due to the use of PCanCR which transforms a conflu-

ence problem for a TRS into a confluence problem for a CS-TRS (see the first row in Table 11).

This may lead to compute LHµ-critical pairs whose non-joinability is treated using Proposition

Proposition 5.32 and hence the heuristics in Remark 5.33.

2. J3 (for strong joinability) is not used with CTRSs, CS-TRSs, or CS-CTRSs because, for SCR-

problems, PHE (which would eventually require it through a call to PJO ) is defined for linear

TRSs only, see Section 5.3.

9. Related work

Several tools can be used to automatically prove and disprove confluence of TRSs and oriented CTRSs.

ACP (Automated Confluence Prover) [53] implements a divide-and-conquer approach in two steps:

first, a decomposition step is applied (based on modularity results); then, direct techniques are applied

to each decomposition. ConCon [54] first tries to simplify rules and remove infeasible rules from

the input system, then it employs a number of confluence criteria for (oriented) 3-CTRSs. ConCon

uses several confluence criteria, and tree automata techniques on reachability to prove (in)feasibility

of conditional parts. In parallel, ConCon tries to show non-confluence using conditional narrowing

(and some other heuristics). CSI [55] uses a set of techniques (Knuth and Bendix’ criterion, non-

confluence criterion, order-sorted decomposition, development closed criterion, decreasing diagrams

and extended rules) and a strategy language to combine them. CoLL-Saigawa [56] is the combination

of two tools: CoLL and Saigawa. If the input system is left-linear, it uses CoLL; otherwise, it uses

Saigawa. Among the techniques used by these tools are Hindley’s commutation theorem together with
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the three commutation criteria, almost development closedness, rule labeling with weight function,

Church-Rosser modulo AC, criteria based on different kinds of critical pairs, rule labeling, parallel

closedness based on parallel critical pairs, simultaneous closedness, parallel-upside closedness, and

outside closedness. CO3 [57] uses confluence (and termination) of U(R) and Uopt(R) (which is a

variant of U(R), see [58, Section 7] for a discussion), in addition to narrowing trees for checking

infeasibility of conditional parts in proofs of confluence of CTRSs. Hakusan [59] is a confluence tool

for left-linear TRSs that analyzes confluence by using two compositional confluence criteria [60]. It

returns certified outputs for rule labeling and develops a novel reduction method.

To demonstrate confluence of CSR, apart from CONFident, only ConfCSR [61] is able to prove

confluence of CS-TRSs by using, essentially, the results in [25] while relying on AProVE to prove

termination of CSR.

Although the previous tools also use combinations of different techniques to obtain proofs of con-

fluence, to the best of our knowledge, none of them formalize such a combination as done in this

paper, where the confluence framework provides a systematic way to organize and decompose proofs

of (local, strong) confluence problems by transforming them into other (possibly simpler) problems.

Also, an important difference between CONFident and all previous tools is the encoding of (non-

)joinability of (conditional) pairs as combinations of (in)feasibility problems [16]. As explained in

[62] and further developed in [1, 22, 25], this is possible due to the logic-based treatment of rewrite

systems as first-order theories. This is also the key for CONFident to be able to smoothly handle

join, oriented, and semi-equational CTRSs, something which is also a novel feature of the tool in

comparison with the aforementioned tools. Furthermore, as far as we know, CONFident is the only

tool implementing confluence criteria depending on termination of CTRSs rather than more restric-

tive termination properties like quasi-decreasingness [7, Def. 7.2.39], see [1, Section 8] for a deeper

discussion and further motivation.

10. Conclusions and future work

CONFident is a tool which is able to automatically prove and disprove confluence of variants of

rewrite systems: TRSs, CS-TRSs, and Join, Oriented, and Semi-Equational CTRSs and CS-CTRSs.

The proofs are obtained by combining different techniques in what we call Confluence Framework,

which we have introduced here, where different variants of confluence and joinability problems are

handled (simplified, transformed, etc.) by means of processors, which can be freely combined to

obtain the proofs which are displayed as a proof tree (Definition 4.5 and Theorem 4.6). In this paper,

we have introduced 16 processors which can be used in the confluence framework. Some of them just

integrate existing results by other authors as processors to be used in the confluence framework (see

the description of the processors and the corresponding references to the used methods and supporting

results in Section 5). We believe that other results not considered here, possibly involving

• other approaches like the compositional approach developed in [60] which reformulates and

somehow unifies a number of well-known confluence results for TRSs from an abstract com-

positional presentation, and then obtains improvements from them by applying the technique

developed by the authors; or
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• other kind of confluence problems (e.g., ground confluence, i.e., confluence of rewriting re-

stricted to ground terms only); or

• rewriting forms (e.g., rewriting modulo a set of equations [63], nominal rewriting [64], etc.),

see, e.g., [65, 66, 67, 68, 69, 70], etc.,

could also be ported into the confluence framework. This may involve the definition of new problems:

for instance GCR(R) for ground confluence of a GTRS R and ECR(R) for confluence modulo of

an Equational GTRS R (which, essentially, are GTRSs extended with a set of conditional equations,

see [70, Definition 10]). Whether new kind of problems have been considered or not, we think that

available or forthcoming techniques for proving such problems positive or negative can be integrated in

the confluence framework by means of appropriate processors so that they can be smoothly combined

with other processors implementing different techniques to obtain a more powerful framework to

prove confluence.

We have shown how to implement the confluence framework using the declarative programming

language Haskell. CONFident has proved to be a powerful tool for proving confluence of CTRSs.

This is witnessed by the first position obtained in the CTRS category of CoCo 2021, 2022 and 2023

and also by the good results obtained in the CSR category at CoCo 2023, where both CS-TRSs and

CS-CTRSs were considered.

Future work. First of all, CONFident should be extended to deal with arbitrary GTRSs. Providing

direct access to proofs of local and strong confluence (and even joinability of terms) would also be

interesting by using the specific problems introduced here and their treatment within the confluence

framework. Also, some features of the discussed processors are not implemented yet (e.g., modularity

of local and strong confluence of TRSs) and we should also include existing results for CTRSs (see,

e.g., [33, Table 8.4]). Besides, as far as we know, modularity of confluence of CSR, either for CS-

TRSs or for CS-CTRSs has not been investigated yet. Also considering confluence of order-sorted

rewrite systems [71] and equational rewrite systems [66] could be an interesting task for future work.
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A. Proof of Proposition 5.3

Proposition 5.3 LetR = (F ,Π, µ,H,R) be a GTRS, α ∈ R, i, and x as in Definition 5.2. Let s and

t be terms.

1. If s→R t, then s→∗
Rα,x,i

t.

2. If s→Rα,x,i
t, then s→R t.

Proof:

As for the first claim (s →R t implies s →∗
Rα,x,i

t), by using the version for GTRSs of [1, Theorem

10] for CTRSs (see [1, Section 7.5]), s→R t iffR ⊢ s↓ → t↓. We proceed by induction on the length

n ≥ 0 of a Hilbert-like proof of s↓ → t↓ fromR. Base: n = 0. With s↓ → t↓ we are using (HC)α for

some unconditional rule α : ℓ → r ∈ R such that s↓ = σ(ℓ) and t↓ = σ(r). Since all unconditional

rules in R are also in Rα,x,i, by also using (Rf) and (Co) we conclude s↓ →∗
Rα,x,i

t↓, as required.

Induction step: n > 0. We have two possibilities:

1. A sentence (Pr)f,i is used for some f ∈ F and i ∈ µ(f). Then, s↓ = f(s1, . . . , si, . . . , sk) and

t↓ = f(s1, . . . , ti, . . . , sk) for some (ground) terms s1, . . . , sk and ti and R ⊢ si → ti has been

proved in less than n steps. By the induction hypothesis, Rα,x,i ⊢ si → ti holds as well. Thus,

by using again (Pr)f,i (which is part ofRα,x,i), we conclude s↓ →Rα,x,i
t↓.

2. A sentence (HC)β has been used for some β ∈ R. If β 6= α, then β is also a rule of Rα,x,i and

by using the induction hypothesis, we conclude s↓ →Rα,x,i
t↓. Otherwise, β = α and s↓ = ς(ℓ)

and t↓ = ς(r) for some substitution ς , and also (by the induction hypothesis and because α is

an O-rule), for all 1 ≤ j ≤ n,

ς(sj)→
∗
Rα,x,i

ς(tj) (50)

In Rα,x,i for σ = {x 7→ si}, we have αx,i : ℓ → σ(r) ⇐ σ(s1) ≈ t1, · · · , σ(si−1) ≈
ti−1, σ(si+1) ≈ ti+1, · · · , σ(sn) ≈ tn instead of α. Note that αx,i contains n−1 conditions. For

all 1 ≤ j ≤ n, (a) if x /∈ Var(sj), then σ(sj) = sj and we have ς(sj) = ς(σ(sj))→
∗ ς(tj); and

(b) if x ∈ Var(sj), then we can write sj = Cj[x]Pj
for some context Cj and set Pj of positions

of x in sj and therefore, σ(sj) = Cj [si]Pj
. Since, by (50), we have ς(si)→

∗
Rα,x,i

ς(ti) = ς(x)
and also (by (13)) x is not frozen in sj (and it does not occur in si), we have

ς(σ(sj)) = ς(Cj [si]Pj
)

= ς(Cj)[ς(si)]Pj

→∗
Rα,x,i

ς(Cj)[ς(x)]Pj

= ς(Cj [x]Pj
)

= ς(sj)

→∗
Rα,x,i

ς(tj)

where the last rewriting sequence is proved by using (50) again, now for ς(sj). Therefore, all

conditions σ(sj) → tj , 1 ≤ j ≤ n, j 6= i in α, x, i are satisfied by ς . Thus, since x /∈ Var(ℓ),
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we have s↓ = ς(ℓ) →Rα,x,i
ς(r). Again, (a) if x /∈ Var(r), then σ(r) = r and we have

ς(r) = t↓, as required. Otherwise, if (b) x ∈ Var(r), then r = C[x]P for some context C
and set P of positions of x in r, and σ(r) = C[si]P . Since (by (13)) x is not frozen in r (i.e.,

P ⊆ Posµ(r)), we have

ς(σ(r)) = ς(C[si]P ) = ς(C)[ς(si)]P →
∗
Rα,x,i

ς(C)[ς(x)]P = ς(C[x]P ) = ς(r) = t↓

Therefore, s↓ →∗
Rα,x,i

t↓, as required.

Regarding the second claim (s →Rα,x,i
t implies s →R t), we proceed by induction on length n ≥ 0

of a Hilbert-like proof of s↓ → t↓ from Rα,x,i. Base: n = 0. With s↓ → t↓ we are using (HC)α for

some unconditional rule α : λ → ρ such that s↓ = ς(λ) and t↓ = ς(ρ). The only possibility for an

unconditional rule inRα,x,i of not being inR is αx,i, provided that the conditional part of α consists

of a single condition s ≈ x. In this case, αx,i is ℓ → r[s]P where P are the positions of x in r, i.e.,

r = r[x]P . Hence, s↓ = ς(ℓ) and t↓ = ς(r[s]P ). Since x /∈ Var(ℓ, s), we can assume that ς does not

instantiate x. Define a substitution ς ′ as follows: ς ′(x) = ς(s) and for all y ∈ X − {x}, ς ′(y) = ς(y).
Note that ς ′(ℓ) = ς(ℓ) and ς ′(s) = ς(s). Then, the only condition s ≈ x in the conditional part of α is

trivially satisfied by ς ′. Therefore, since x is not frozen in r (by (13)), we have

s↓ = ς(ℓ) = ς ′(ℓ)→α ς ′(r) = ς ′(r[x]P ) = ς ′(r)[ς(s)]P = ς(r)[ς(s)]P = ς(r[s]P ) = t↓

as desired, as the conditional part s ≈ x of α is satisfied by ς ′: ς ′(s) = ς(s) = ς ′(x). Induction step:

n > 0. We have two possibilities:

1. A sentence (Pr)f,i is used for some f ∈ F and i ∈ µ(f) . Analogous to the corresponding case

of the first claim.

2. A sentence (HC)β has been used for some conditional rule β. If β 6= αx,i, then β ∈ R; hence

s↓ →R t↓. Otherwise, if β = αx,i, then s↓ = ς(ℓ)→Rα,x,i
ς(r[s]P ) = t↓ for some substitution

ς such that ς(sj [s]Pj
)→∗

Rα,x,i
ς(tj) holds for all 1 ≤ j ≤ n, j 6= i. By the induction hypothesis

(and repeatedly using (Co) and (Rf)), ς(sj [s]Pj
) →∗

R ς(tj) holds for all 1 ≤ j ≤ n, j 6= i.
Define ς ′ as follows: ς ′(y) = ς(y) if y 6= x, and ς ′(x) = ς(s). For all 1 ≤ j ≤ n, j 6= i,

ς ′(sj) = ς ′(sj [x]Pj
) = ς(sj)[ς(x)]Pj

= ς(sj)[s]Pj
= ς(sj [s]Pj

)→∗
R ς(tj) = ς ′(tj)

because x /∈ Var(s) and x /∈ Var(tj). We also have

ς ′(si) = ς ′(s) = ς(s) = ς ′(x)

Therefore, we finally have

s↓ = ς ′(ℓ)→R ς ′(r) = ς ′(r[x]P ) = ς(r)[ς(s)]p = ς(r[s]P ) = t↓

as required. ⊓⊔
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