
Fundamenta Informaticae 192(3-4) : 219–259 (2024) 219
Available at IOS Press through:
https://doi.org/10.3233/FI-242194

Myhill-Nerode Theorem for Higher-Dimensional Automata

Uli Fahrenberg*

EPITA Research Laboratory (LRE), France

uli@lrde.epita.fr

Krzysztof Ziemiański
University of Warsaw, Poland

ziemians@mimuw.edu.pl

Abstract. We establish a Myhill-Nerode type theorem for higher-dimensional automata (HDAs),
stating that a language is regular if and only if it has finite prefix quotient. HDAs extend stan-
dard automata with additional structure, making it possible to distinguish between interleavings
and concurrency. We also introduce deterministic HDAs and show that not all HDAs are de-
terminizable, that is, there exist regular languages that cannot be recognised by a deterministic
HDA. Using our theorem, we develop an internal characterisation of deterministic languages.
Lastly, we develop analogues of the Myhill-Nerode construction and of determinacy for HDAs
with interfaces.

Keywords: higher-dimensional automaton; Myhill-Nerode theorem; concurrency theory; deter-
minism

1. Introduction

Higher-dimensional automata (HDAs), introduced by Pratt and van Glabbeek [1–3], extend standard
automata with additional structure that makes it possible to distinguish between interleavings and con-
currency. That puts them in a class with other non-interleaving models for concurrency such as Petri
nets [4], event structures [5], configuration structures [6, 7], asynchronous transition systems [8, 9],

*Address for correspondence: EPITA Research Laboratory (LRE), France.

ar
X

iv
:2

21
0.

08
29

8v
5

 [
cs

.F
L

]
 1

1
Se

p
20

24

220 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

a b

a b

b a

a b

b a

a b

Figure 1: Petri net and HDA models distinguishing interleaving from non-interleaving concurrency.
Left: Petri net and HDA models for a.b+ b.a; right: HDA and Petri net models for a ∥ b.

and similar approaches [10–13], while retaining some of the properties and intuition of automata-like
models. As an example, Figure 1 shows Petri net and HDA models for a system with two events,
labelled a and b. The Petri net and HDA on the left side model the (mutually exclusive) interleaving
of a and b as either a.b or b.a; those to the right model concurrent execution of a and b. In the HDA,
this independence is indicated by a filled-in square.

We have recently introduced languages of HDAs [14], which consist of partially ordered multisets
with interfaces (ipomsets), and shown a Kleene theorem for them [15, 16]. Here we continue to
develop the language theory of HDAs. Our first contribution is a Myhill-Nerode type theorem for
HDAs, stating that a language is regular if and only if it has finite prefix quotient. This provides
a necessary and sufficient condition for regularity. Our proof is inspired by the standard proofs of
the Myhill-Nerode theorem, but the higher-dimensional structure introduces some difficulties. For
example, we cannot use the standard prefix quotient relation but need to develop a stronger one which
takes concurrency of events into account.

As a second contribution, we give a precise definition of deterministic HDAs and show that there
exist regular languages that cannot be recognised by deterministic HDAs. Our Myhill-Nerode con-
struction will produce a deterministic HDA for such deterministic languages, and a non-deterministic
HDA otherwise. Our definition of determinism is more subtle than for standard automata as it is not
always possible to remove non-accessible parts of HDAs. We develop a language-internal characteri-
sation of deterministic languages.

Thirdly, we develop a variant of the Myhill-Nerode construction and of determinism which uses
higher-dimensional automata with interfaces (iHDAs). These were introduced in [15] and allow for
some components to be missing which in HDAs would have to exist solely for structural reasons.
In iHDAs, non-accessible parts may be removed, which allows for a more principled Myhill-Nerode
construction. HDAs and iHDAs are related via mappings called resolution and closure which preserve
languages.

We start this paper by introducing languages of ipomsets in Section 2. Section 3 develops impor-
tant decomposition properties of ipomsets needed in the sequel, and HDAs are introduced in Section 4.
Section 5 then states and proves our Myhill-Nerode theorem, and Section 6 introduces deterministic
HDAs. HDAs with interfaces are defined in Section 7, the Myhill-Nerode theorem using iHDAs is
in Section 8, and deterministic iHDAs are treated in Section 9. This paper is based on [17] which
was presented at the 44th International Conference on Application and Theory of Petri Nets and Con-
currency. Compared to this conference paper, proofs have been added and errors corrected, and the
material in Sections 8 and 9 is new.

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 221

2. Pomsets with interfaces

HDAs model systems in which labelled events have duration and may happen concurrently. Every
event has a time interval during which it is active: it starts at some point, then remains active until
its termination and never reappears. Events may be concurrent, that is, their activity intervals may
overlap; otherwise, one of the events precedes the other. We also need to consider executions in which
some events are already active at the beginning (source events) or are still active at the end (target
events).

At any moment of an execution we observe a list of currently active events (such lists are called
conclists below). The relative position of any two concurrent events on these lists remains the same,
regardless of the point in time. This provides a secondary relation between events, which we call event
order.

To make the above precise, let Σ be a finite alphabet. A conclist (for “concurrency list”) (U, 99K, λ)
is a finite set U with a total order 99K called the event order and a labelling function λ : U → Σ.
Conclists (or rather their isomorphism classes) are effectively strings but consist of concurrent, not
subsequent, events.

A labelled poset with event order (lposet) (P,<, 99K, λ) consists of a finite set P with two rela-
tions: precedence < and event order 99K, together with a labelling function λ : P → Σ. Note that
different events may carry the same label: we do not exclude autoconcurrency. We require that both <
and 99K are strict partial orders, that is, they are irreflexive and transitive (and thus asymmetric). We
also require that for each x ̸= y in P , at least one of x < y or y < x or x 99K y or y 99K x must hold;
that is, if x and y are concurrent, then they must be related by 99K.

Conclists may be regarded as lposets with empty precedence relation; the last condition enforces
that their elements are totally ordered by 99K. A temporary state of an execution is described by a
conclist, while the whole execution provides an lposet of its events. The precedence order expresses
that one event terminates before the other starts. The event order of an lposet is generated by the event
orders of temporary conclists. Hence any two events which are active concurrently are unrelated by <
but related by 99K.

In order to accommodate source and target events, we need to introduce lposets with interfaces
(iposets). An iposet (P,<, 99K, S, T, λ) consists of an lposet (P,<, 99K, λ) together with subsets
S, T ⊆ P of source and target interfaces. Elements of S must be <-minimal and those of T <-
maximal; hence both S and T are conclists. We often denote an iposet as above by SPT or (S, P, T),
ignoring the orders and labelling, or use SP = S and TP = T if convenient. Source and target events
will be marked by “•” at the left or right side, and if the event order is not shown, we assume that it
goes downwards.

Example 2.1. Figure 2 shows some simple examples of activity intervals of events and the corre-
sponding iposets. The left iposet consists of three totally ordered events, given that the intervals do
not overlap; the event a is already active at the beginning and hence in the source interface. In the
other iposets, the activity intervals do overlap and hence the precedence order is partial (and the event
order non-trivial).

222 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

a

b

c

a•

c

b

a

b

c

a•

c

b

a

b

c

a•

c

b

a

b

c

a•

c

b

Figure 2: Activity intervals (top) and corresponding iposets (bottom), see Example 2.1. Full arrows
indicate precedence order; dashed arrows indicate event order; bullets indicate interfaces.

Given that the precedence relation < of an iposet represents activity intervals of events, it is an
interval order [18]. In other words, any of the iposets we will encounter admits an interval rep-
resentation: functions b and e from P to real numbers such that b(x) ≤ e(x) for all x ∈ P and
x <P y ⇐⇒ e(x) < b(y) for all x, y ∈ P . We will only consider interval iposets in this paper and
hence omit the qualification “interval”. This is not a restriction, but rather induced by the semantics.
The following property is trivial, but we will make heavy use of it later.

Lemma 2.2. If P is an (interval) iposet and A ⊆ P , then the set difference P − A is an (interval)
iposet as well.

Iposets may be refined by shortening the activity intervals of events, so that some events stop being
concurrent. This corresponds to expanding the precedence relation < (and, potentially, removing event
order). The inverse to refinement is called subsumption and defined as follows. For iposets P and Q,
we say that Q subsumes P (or that P is a refinement of Q) and write P ⊑ Q if there exists a bijection
f : P → Q (a subsumption) which

• respects interfaces and labels: f(SP) = SQ, f(TP) = TQ, and λQ ◦ f = λP ;

• reflects precedence: f(x) <Q f(y) implies x <P y; and

• preserves essential event order: x 99KP y implies f(x) 99KQ f(y) whenever x and y are
concurrent (that is, x ̸<P y and y ̸<P x).

(Event order is essential for concurrent events, but by transitivity, it also appears between non-concurrent
events; subsumptions may ignore such non-essential event order.)

Example 2.3. In Figure 2, there is a sequence of refinements from right to left, each time shortening
some activity intervals. Conversely, there is a sequence of subsumptions from left to right:

a•

c
b ⊑

a•

c
b ⊑

a•

c
b ⊑

a•

c
b

Interfaces need to be preserved across subsumptions, so in our example, the left endpoint of the a-
interval must stay at the boundary.

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 223

Iposets and subsumptions form a category. The isomorphisms in that category are invertible
subsumptions, and isomorphism classes of iposets are called ipomsets. Concretely, an isomorphism
f : P → Q of iposets is a bijection which

• respects interfaces and labels: f(SP) = SQ, f(TP) = TQ, and λQ ◦ f = λP ;

• respects precedence: x <P y ⇐⇒ f(x) <Q f(y); and

• respects essential event order: x 99KP y ⇐⇒ f(x) 99KQ f(y) whenever x ̸<P y and y ̸<P x.

Isomorphisms between iposets are unique (because of the requirement that all elements be ordered by
< or 99K), hence we may switch freely between ipomsets and concrete representations, see [15] for
details. We write P ∼= Q if iposets P and Q are isomorphic and let iiPoms denote the set of (interval)
ipomsets.

Ipomsets may be glued, using a generalisation of the standard serial composition of pomsets [19].
For ipomsets P and Q, their gluing P ∗ Q is defined if the targets of P match the sources of Q:
TP

∼= SQ. In that case, its carrier set is the quotient (P ⊔ Q)/x≡f(x), where f : TP → SQ is the
unique isomorphism, the interfaces are SP∗Q = SP and TP∗Q = TQ, 99KP∗Q is the transitive closure
of 99KP ∪ 99KQ, and x <P∗Q y if and only if x <P y, or x <Q y, or x ∈ P − TP and y ∈ Q− SQ.
We will often omit the “∗” in gluing compositions. For ipomsets with empty interfaces, ∗ is serial
pomset composition; in the general case, matching interface points are glued, see [14,20] or below for
examples.

A language is, a priori, a set of ipomsets L ⊆ iiPoms. However, we will assume that languages are
closed under refinement (inverse subsumption), so that refinements of any ipomset in L are also in L:

Definition 2.4. A language is a subset L ⊆ iiPoms such that P ⊑ Q and Q ∈ L imply P ∈ L.

Using interval representations, this means that languages are closed under shortening activity in-
tervals of events. The set of all languages is denoted L ⊆ 2iiPoms.

For X ⊆ iiPoms an arbitrary set of ipomsets, we denote by

X↓ = {P ∈ iiPoms | ∃Q ∈ X : P ⊑ Q}

its downward subsumption closure, that is, the smallest language which contains X . Then

L = {X ⊆ iiPoms | X↓ = X}.

3. Step decompositions

An ipomset P is discrete if <P is empty and 99KP total. Conclists are discrete ipomsets with empty
interfaces. Discrete ipomsets UUU are identities for gluing composition and written idU . A starter is
an ipomset U−AUU , a terminator is UUU−A; these will be written A↑U and U↓A, respectively.

Any ipomset can be presented as a gluing of starters and terminators [20, Proposition 21]. (This
is related to the fact that a partial order is interval if and only if its antichain order is total, see [18, 21,
22]). Such a presentation we call a step decomposition; if starters and terminators are alternating, the
decomposition is sparse.

224 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

 a c

•b• d

[

a c

•b• d

]

a

b

c

d

 a

b

•

• •

a↑

[
a

b

]

a

b

 a

b

•

• •

[
a

b

]
↓a

a

b

 c

b

•

• •

c↑

[
c

b

]

c

b

 c

b

• •

•

[
c

b

]
↓b

c

b

 c

d

• •

•

d↑

[
c

d

]

c

d

 c

d

•

• •

[
c

d

]
↓c

c

d

= ∗ ∗ ∗ ∗ ∗

= ∗ ∗ ∗ ∗ ∗

= ∗ ∗ ∗ ∗ ∗

Figure 3: Sparse decomposition of ipomset into starters and terminators.

Example 3.1. Figure 3 shows a sparse decomposition of an ipomset into starters and terminators. The
top line shows the graphical representation, in the middle the representation using the notation we have
introduced for starters and terminators, and the bottom line shows activity intervals.

We show that sparse step decompositions of ipomsets are unique. For an ipomset P , we denote by
Pm ⊆ P the subset of <-minimal elements and

P s = {p ∈ P | ∀ p′ ∈ P − Pm : p < p′}.

That is, P s contains precisely those minimal elements which have arrows to all non-minimal elements.
Clearly, both Pm and P s are conclists, and P s ⊆ Pm ⊇ SP . We need a few technical lemmas.

Lemma 3.2. Let P be an ipomset, U a conclist, and A ⊆ U .

1. Assume that U ∼= SP and P ′ = A↑U ∗P . Then P ′ and P are isomorphic as pomsets, TP
∼= TP ′

and SP ′ ∼= SP −A.

2. Assume that U − A ∼= SP and P ′ = U↓A ∗ P . Then P ′ ∼= P ∪ A as sets, and P ∼= P ′ − A as
pomsets, TP

∼= TP ′ and SP ′ ∼= U .

Proof:
Simple calculations. ⊓⊔

Consider a presentation P ∼= QR. From the definition follows that Pm ∼= Qm and SP
∼= SQ This

implies:

Lemma 3.3. Assume that P ∼= QR and Q is either a (non-identity) starter or a terminator. Then Q is
a starter iff SP ⊊ Pm, and Q is a terminator iff SP = Pm.

Proof:
We have Pm ∼= Q = Qm and SP

∼= SQ. But Q is a terminator if and only if SQ = Q, and a (non-
identity) starter if and only if SQ ⊊ Q. ⊓⊔

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 225

Lemma 3.4. Assume that P ∼= QQ′R.

1. If Q is a non-identity starter and Q′ is a non-identity terminator, then Q ∼= Pm−SP
↑Pm.

2. If Q is a non-identity terminator and Q′ is a non-identity starter, then Q ∼= Pm↓P s .

Proof:
Consider the first case. Then P and Q′R are isomorphic as pomsets, and

Q = TQ
∼= SQ′R

Lemma 3.3
= (Q′R)m

Lemma 3.2∼= Pm.

Equality SQ = SP follows immediately from the definition.

In the second case, we have Q = SQ
∼= SP

Lemma 3.3
= Pm, and Q′R ∼= P − (Q− TQ) as pomsets

(Lemma 3.2). By Lemma 3.3 we have

Pm ∩ (Q′R) = Q ∩ (Q′R) = TQ
∼= SQ′R

Lemma 3.3
⊊ (Q′R)m.

Hence there exists an element p ∈ Q′R that is minimal in Q′R but not in P . For every p′ ∈ P s we
have p′ < p and, therefore, p′ ̸∈ Q′R. As a consequence, P s ⊆ P − (Q′R) = Q− TQ (Lemma 3.2).

On the other hand, if p′ ∈ Pm − P s, then there exists p ∈ P − Pm = P − Q such that p′ ̸< p.
Thus, p′ must belong to TQ. ⊓⊔

Proposition 3.5. Every ipomset P has a unique sparse step decomposition.

Proof:
Let P = P1 ∗ · · · ∗Pn = Q1 ∗ · · · ∗Qm be two sparse presentations. If n = 1, then m = 1 and equality
follows trivially, so assume n,m ≥ 2 and write P2 ∗ · · · ∗ Pn = P ′ and Q2 ∗ · · · ∗Qm = Q′.

Assume first that P1 is a starter. By Lemma 3.4, P1
∼= Pm−SP

↑Pm. By Lemma 3.2, SP
∼=

SP ′ −(Pm−SP). Hence SP ′ ∼= Pm, implying SP ⊊ Pm. By Lemma 3.3, Q1 is a starter. By Lemma
3.4, Q1

∼= Pm−SP
↑Pm. Thus P1

∼= Q1, and we may proceed inductively with P ′ = Q′.
Now assume instead that P1 is a terminator. By Lemma 3.4, P1

∼= Pm↓P s . By Lemma 3.2,
SP

∼= Pm. By Lemma 3.3, Q1 is a terminator. By Lemma 3.4, Q1
∼= Pm↓P s . Thus P1

∼= Q1, and we
may proceed inductively with P ′ = Q′. ⊓⊔

4. Higher-dimensional automata and their languages

An HDA is a collection of cells which are connected according to specified face maps. Each cell
has an associated list of labelled events which are interpreted as being executed in that cell, and the
face maps may terminate some events or, inversely, indicate cells in which some of the current events
were not yet started. Additionally, some cells are designated start cells and some others accept cells;
computations of an HDA begin in a start cell and proceed by starting and terminating events until they
reach an accept cell.

226 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

4.1. Precubical sets and HDAs

To make the above precise, let □ denote the set of conclists. A precubical set consists of a set of cells
X together with a mapping ev : X → □ which to every cell assigns its list of active events. For
a conclist U we write X[U] = {x ∈ X | ev(x) = U} for the cells of type U . Further, for every
U ∈ □ and subset A ⊆ U there are face maps δ0A, δ

1
A : X[U] → X[U − A]. The upper face maps

δ1A terminate the events in A, whereas the lower face maps δ0A “unstart” these events: they map cells
x ∈ X[U] to cells δ0A(x) ∈ X[U −A] where the events in A are not yet active.

If A,B ⊆ U are disjoint, then the order in which events in A and B are terminated or unstarted
should not matter, so we require that δνAδ

µ
B = δµBδ

ν
A for ν, µ ∈ {0, 1}: the precubical identities. A

higher-dimensional automaton (HDA) is a precubical set X together with subsets ⊥X ,⊤X ⊆ X of
start and accept cells. For a precubical set X and subsets Y,Z ⊆ X we denote by XZ

Y the HDA with
precubical set X , start cells Y and accept cells Z. We do not generally assume that precubical sets or
HDAs are finite. The dimension of an HDA X is dim(X) = sup{|ev(x)| | x ∈ X} ∈ N ∪ {∞}.

Example 4.1. One-dimensional HDAs X are standard automata. Cells in X[∅] are states, cells in
X[a] for a ∈ Σ are a-labelled transitions. Face maps δ0a and δ1a attach source and target states to
transitions. In contrast to ordinary automata we allow start and accept transitions instead of merely
states, so languages of such automata may contain not only words but also “words with interfaces”. In
any case, at most one event is active at any point in time, so the event order is unnecessary.

v

x

w

y

e

f

g hq

X[∅] = {v, w, x, y}

X[a] = {e, f}

X[b] = {g, h}

X[ab] = {q}

δ0a δ1a

δ0a δ1a

δ0a δ1a

δ0b

δ1b

δ0b

δ1b

δ0b

δ1b
δ1ab

δ0ab

⊥

⊤

⊤

⊥X = {v}

⊤X = {h, y}

a

b

⊥

⊤

⊤

Figure 4: A two-dimensional HDA X on Σ = {a, b}, see Example 4.2.

Example 4.2. Figure 4 shows a two-dimensional HDA X both as a combinatorial object (left) and
in a more geometric realisation (right). We write isomorphism classes of conclists as lists of labels
and omit the set braces in δ0{a} etc. X has four zero-dimensional cells, or states, displayed in grey on
the left; four one-dimensional transitions, two labelled a and displayed in red and two labelled b and
shown in green; and one two-dimensional cell displayed in yellow.

An HDA-map between HDAs X and Y is a function f : X → Y that preserves structure: types
of cells (evY ◦ f = evX), face maps (f(δνA(x)) = δνA(f(x))) and start/accept cells (f(⊥X) ⊆ ⊥Y ,
f(⊤X) ⊆ ⊤Y). Similarly, a precubical map is a function that preserves the first two of these three.
HDAs and HDA-maps form a category, as do precubical sets and precubical maps.

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 227

4.2. Paths and their labels

Computations of HDAs are paths: sequences of cells connected by face maps. A path in X is, thus, a
sequence

α = (x0, φ1, x1, . . . , xn−1, φn, xn), (1)

where the xi are cells of X and the φi indicate types of face maps: for every i, (xi−1, φi, xi) is either

• (δ0A(xi),↗A, xi) for A ⊆ ev(xi) (an upstep)

• or (xi−1,↘B, δ
1
B(xi−1)) for B ⊆ ev(xi−1) (a downstep).

Upsteps start events in A while downsteps terminate events in B. The source and target of α as in (1)
are src(α) = x0 and tgt(α) = xn.

The set of all paths in X starting at Y ⊆ X and terminating in Z ⊆ X is denoted by Path(X)ZY ;
we write Path(X)Y = Path(X)XY , Path(X)Z = Path(X)ZX , and Path(X) = Path(X)XX . A path α is
accepting if src(α) ∈ ⊥X and tgt(α) ∈ ⊤X . Paths α and β may be concatenated if tgt(α) = src(β);
their concatenation is written α ∗ β, and we omit the “∗” in concatenations if convenient.

Path equivalence is the congruence ≃ generated by (z ↗A y ↗B x) ≃ (z ↗A∪B x), (x ↘A

y ↘B z) ≃ (x ↘A∪B z), and γαδ ≃ γβδ whenever α ≃ β. Intuitively, this relation allows to
assemble subsequent upsteps or downsteps into one “bigger” step. A path is sparse if its upsteps and
downsteps are alternating, so that no more such assembling may take place. Every equivalence class
of paths contains a unique sparse path.

Example 4.3. In one-dimensional HDAs, paths are sequences of transitions connected at states. Path
equivalence is a trivial relation, and all paths are sparse.

Example 4.4. The HDA X of Figure 4 admits five sparse accepting paths:

v ↗a e ↘a w ↗b h, v ↗a e ↘a w ↗b h ↘b y,

v ↗ab q ↘a h, v ↗ab q ↘ab y, v ↗b g ↘b x ↗a f ↘a y.

The observable content or event ipomset ev(α) of a path α is defined recursively as follows:

• If α = (x), then ev(α) = idev(x).

• If α = (y ↗A x), then ev(α) = A↑ev(x).

• If α = (x ↘B y), then ev(α) = ev(x)↓B .

• If α = α1 ∗ · · · ∗ αn is a concatenation, then ev(α) = ev(α1) ∗ · · · ∗ ev(αn).

[15, Lemma 8] shows that α ≃ β implies ev(α) = ev(β). Further, if α = α1 ∗ · · · ∗ αn is a sparse
path, then ev(α) = ev(α1) ∗ · · · ∗ ev(αn) is a sparse step decomposition.

Example 4.5. Event ipomsets of paths in one-dimensional HDAs are words, possibly with interfaces.
Sparse step decompositions of words are obtained by splitting symbols into starts and terminations,
for example, •ab = •a ∗ b• ∗ •b.

228 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

a c

d

b⊥

⊤

x y

z

Figure 5: HDA Y consisting of three squares glued along common faces.

Example 4.6. The event ipomsets of the five sparse accepting paths in the HDA X of Figure 4 are
ab•, ab, [ab•], [

a
b], and ba. Figure 5 shows another HDA, which admits an accepting path

(δ0ax ↗a x ↘a δ1ax ↗c y ↘b δ
1
by ↗d z ↘c δ

1
cz).

Its event ipomset is precisely the ipomset of Figure 3, with the indicated sparse step decomposition
arising from the sparse presentation above.

4.3. Languages of HDAs

The language of an HDA X is

Lang(X) = {ev(α) | α accepting path in X}.

[15, Proposition 10] shows that languages of HDAs are sets of ipomsets which are closed under sub-
sumption, i.e., languages in the sense of Definition 2.4.

A language is regular if it is the language of a finite HDA.

Example 4.7. The languages of our example HDAs are

Lang(X) =
{
[ab•] , [

a
b]
}
↓ =

{
[ab•] , ab•, [

a
b] , ab, ba

}
and

Lang(Y) =

{[
a c

•b• d

]}
↓.

We say that a cell x ∈ X in an HDA X is

• accessible if Path(X)x⊥ ̸= ∅, i.e., x can be reached by a path from a start cell;

• coaccessible if Path(X)⊤x ̸= ∅, i.e., there is a path from x to an accept cell;

• essential if it is both accessible and coaccessible.

A path is essential if its source and target cells are essential. This implies that all its cells are essential.
Segments of accepting paths are always essential.

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 229

The set of essential cells of X is denoted by ess(X); this is not necessarily a sub-HDA of X given
that faces of essential cells may be non-essential. For example, all bottom cells of the HDA Y in
Figure 5 are inaccessible and hence non-essential.

Lemma 4.8. Let X be an HDA. There exists a smallest sub-HDA Xess ⊆ X that contains all essential
cells, and Lang(Xess) = Lang(X). If ess(X) is finite, then Xess is also finite.

Proof:
The set of all faces of essential cells

Xess = {δ0Aδ1B(x) | x ∈ ess(X), A,B ⊆ ev(x), A ∩B = ∅}

is a sub-HDA of X . Clearly every sub-HDA of X that contains ess(X) must also contain Xess. Since
all accepting paths are essential, Lang(Xess) = Lang(X). If |ess(X)| = n and |ev(x)| ≤ d for all
x ∈ ess(X), then |Xess| ≤ n · 3d, since a cell of dimension ≤ d has at most 3d faces. ⊓⊔

4.4. Track objects

Track objects, introduced in [14], provide a mapping from ipomsets to HDAs and are a powerful tool
for reasoning about languages. Below we adapt the definition from [14, Section 5.3].

Definition 4.9. The track object of an ipomset P is the HDA □P defined as follows:

• □P is the set of all functions x : P → {0, ∗, 1} such that

p < q =⇒ (x(p), x(q)) ∈ {(0, 0), (∗, 0), (1, 0), (1, ∗), (1, 1)}.

• For x ∈ □P , ev(x) = x−1(∗) (the condition above ensures that x−1(∗) is discrete);

• For x ∈ □P , ν ∈ {0, 1} and A ⊆ ev(x),

δνA(x)(p) =

{
ν for p ∈ A,

x(p) for p ̸∈ A;

• ⊥□P = {cP⊥} and ⊤□P = {c⊤P }, where

cP⊥(p) =

{
∗ if p ∈ SP ,

0 if p ̸∈ SP ,
c⊤P (p) =

{
∗ if p ∈ TP ,

1 if p ̸∈ TP ;

We list some properties of track objects needed later.

Lemma 4.10. Let X be an HDA, x, y ∈ X and P ∈ iiPoms. The following conditions are equivalent:

1. There exists a path α ∈ Path(X)yx such that ev(α) = P .

2. There is an HDA-map f : □P → Xy
x (i.e., f(cP⊥) = x and f(c⊤P) = y).

230 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

Proof:
This is an immediate consequence of [14, Proposition 89]. ⊓⊔

Lemma 4.11. If P,Q ∈ iiPoms are such that P ⊑ Q, then there exists an HDA-map □P → □Q.

Proof:
This is [14, Lemma 63]. ⊓⊔

Lemma 4.12. Let X be an HDA, x, y ∈ X , β ∈ Path(X)yx and P ⊑ Q = ev(β). Then there exists
α ∈ Path(X)yx such that ev(α) = P .

Proof:
This follows immediately from Lemmas 4.10 and 4.11. ⊓⊔

Lemma 4.13. Let X be an HDA, x, y ∈ X and γ ∈ Path(X)yx. Assume that ev(γ) = P ∗ Q for
ipomsets P and Q. Then there exist paths α ∈ Path(X)x and β ∈ Path(X)y such that ev(α) = P ,
ev(β) = Q and tgt(α) = src(β).

Proof:
By Lemma 4.10, there is an HDA-map f : □PQ → Xy

x . By [14, Lemma 65], there exist precubical
maps jP : □P → □PQ, jQ : □Q → □PQ such that jP (cP⊥) = cPQ

⊥ , jP (c⊤P) = jQ(c
Q
⊥) and

jQ(c
⊤
Q) = c⊤PQ. Let z = f(jP (c

P
⊥)), then f ◦ jP : □P → Xz

x and f ◦ jQ : □Q → Xy
z are HDA-maps,

and by applying Lemma 4.10 again to jP and jQ we obtain α and β. ⊓⊔

5. Myhill-Nerode theorem

The prefix quotient of a language L ∈ L by an ipomset P is the language

P \L = {Q ∈ iiPoms | PQ ∈ L}.

Similarly, the suffix quotient of L by P is L/P = {Q ∈ iiPoms | QP ∈ L}. Denote

suff(L) = {P \L | P ∈ iiPoms}, pref(L) = {L/P | P ∈ iiPoms}.

We record the following property of quotient languages.

Lemma 5.1. If L is a language and P ⊑ Q, then Q \L ⊆ P \L.

Proof:
If P ⊑ Q, then PR ⊑ QR. Thus,

R ∈ Q \L ⇐⇒ QR ∈ L =⇒ PR ∈ L ⇐⇒ R ∈ P \L. ⊓⊔

The main goal of this section is to show the following.

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 231

Theorem 5.2. For a language L ∈ L the following conditions are equivalent.

(a) L is regular.

(b) The set suff(L) ⊆ L is finite.

(c) The set pref(L) ⊆ L is finite.

We prove only the equivalence between (a) and (b); equivalence between (a) and (c) is symmetric.
First we prove the implication (a) =⇒ (b). Let X be an HDA with Lang(X) = L. For x ∈ X define
languages Pre(x) = Lang(Xx

⊥) and Post(x) = Lang(X⊤
x).

Lemma 5.3. For every P ∈ iiPoms, P \L =
⋃
{Post(x) | x ∈ X, P ∈ Pre(x)}.

Proof:
We have

Q ∈ P \L ⇐⇒ PQ ∈ L
Lem. 4.10⇐⇒ ∃ f : □PQ → X = X⊤

⊥
Lem. 4.13⇐⇒ ∃ x ∈ X, g : □P → Xx

⊥, h : □Q → X⊤
x

Lem. 4.10⇐⇒ ∃ x ∈ X : P ∈ Lang(Xx
⊥), Q ∈ Lang(X⊤

x)

⇐⇒ ∃ x ∈ X : P ∈ Pre(x), Q ∈ Post(x).

The last condition says that Q belongs to the right-hand side of the equation. ⊓⊔

Proof of Theorem 5.2, (a) =⇒ (b):
The family of languages {P \L | P ∈ iiPoms} is a subfamily of {

⋃
x∈Y Post(x)

∣∣ Y ⊆ X} which is
finite. ⊓⊔

5.1. HDA construction

Now we show that (b) implies (a). Fix a language L ∈ L , with suff(L) finite or infinite. We will
construct an HDA MN(L) that recognises L and show that if suff(L) is finite, then the essential part
MN(L)ess is finite. The cells of MN(L) are equivalence classes of ipomsets under a relation ≈L

induced by L which we will introduce below. The relation ≈L is defined using prefix quotients, but
needs to be stronger than prefix quotient equivalence. This is because events may be concurrent and
because ipomsets have interfaces. We give examples just after the construction.

For an ipomset SPT define its (target) signature to be the starter fin(P) = T−S↑T . Thus fin(P)
collects all target events of P , and its source interface contains those events that are also in the source
interface of P . We also write rfin(P) = T − S ⊆ fin(P): the set of all target events of P that are not
source events. An important property is that removing elements of rfin(P) does not change the source
interface of P . For example,

fin
([

•a•
•a
c•

])
= [•a•c•] , fin ([•ac•• b •]) = [c•

•b•] , fin ([ac•b •]) = [c•b•] ;

rfin is {c} in the first two examples and equal to [cb] in the last.

232 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

We define two equivalence relations on iiPoms induced by L:

• Ipomsets P and Q are weakly equivalent (P ∼L Q) if fin(P) ∼= fin(Q) and P \L = Q \L.
Obviously, P ∼L Q implies TP

∼= TQ and rfin(P) ∼= rfin(Q).

• Ipomsets P and Q are strongly equivalent (P ≈L Q) if P ∼L Q and for all A ⊆ rfin(P) ∼=
rfin(Q) we have (P −A) \L = (Q−A) \L.

Evidently P ≈L Q implies P ∼L Q, but the inverse does not always hold. We explain in Example
5.6 below why ≈L, and not ∼L, is the proper relation to use for constructing MN(L).

Lemma 5.4. If P ≈L Q, then P −A ≈L Q−A for all A ⊆ rfin(P) ∼= rfin(Q).

Proof:
For every A we have (P −A) \L = (Q−A) \L, and

fin(P −A) = fin(P)−A ∼= fin(Q)−A = fin(Q−A),

Thus, P −A ∼L Q−A. Further, for every B ⊆ rfin(P −A) ∼= rfin(Q−A),

((P −A)−B) \L = (P − (A ∪B)) \L = (Q− (A ∪B)) \L = ((Q−A)−B) \L,

which shows that P −A ≈L Q−A. ⊓⊔

Now define an HDA MN(L) as follows. For U ∈ □, write iiPomsU = {P ∈ iiPoms | TP
∼= U}

and let
MN(L)[U] = iiPomsU/≈L ∪ {wU},

where the wU are new subsidiary cells which are introduced solely to define some lower faces. (They
will not affect the language of MN(L)).

The ≈L-equivalence class of P will be denoted by ⟨P ⟩ (but often just P in examples). Face maps
are defined as follows, for A ⊆ U ∈ □ and P ∈ iiPomsU :

δ0A(⟨P ⟩) =

{
⟨P −A⟩ if A ⊆ rfin(P),

wU−A otherwise,
δ1A(⟨P ⟩) = ⟨P ∗ U↓A⟩, (2)

δ0A(wU) = δ1A(wU) = wU−A.

In other words, if A has no source events of P , then δ0A removes A from P (the source interface of P
is unchanged). If A contains any source event, then δ0A(P) is a subsidiary cell.

Finally, start and accept cells are given by

⊥MN(L) = {⟨idU ⟩}U∈□, ⊤MN(L) = {⟨P ⟩ | P ∈ L}.

The cells ⟨P ⟩ will be called regular. They are ≈L-equivalence classes of ipomsets, lower face maps
unstart events, and upper face maps terminate events. All faces of subsidiary cells wU are subsidiary,
and upper faces of regular cells are regular. Below we present several examples, in which we show
only the essential part MN(L)ess of MN(L).

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 233

ε
⊥

a

b [ab]
⊤

ab
⊤

a•

b• [ab•]

ba•

ab•

abc•

[a•b•]

MN(L)[∅]
P P \L
ε L

a {b, bc}
b {a}
ab {ε, c}
[ab] {ε}

MN(L)[a]

P P \L
a• {[•ab] , •ab, •abc}
ba• {•a}

MN(L)[b]

P P \L
b• {[a

•b] , •ba}
ab• {•b, •bc}
[ab•] {•b}

MN(L)[c]

P P \L
abc• {•c}

MN(L)[[ab]]

P P \L
[a•b•] {[•a•b]}

Figure 6: HDA MN(L) of Example 5.5, showing names of cells instead of labels (labels are target
interfaces of names). Tables show essential cells together with prefix quotients.

Example 5.5. Let L = {[ab] , abc}↓ = {[ab] , ab, ba, abc}. Figure 6 shows the HDA MN(L)ess to-
gether with a list of essential cells of M(L) and their prefix quotients in L. Note that the state ⟨a⟩
has two outgoing b-labelled edges: ⟨ab•⟩ and ⟨[ab•]⟩. The generating ipomsets have different prefix
quotients because of {[ab] , abc} ⊆ L, but the same lower face ⟨a⟩. (Note that ⟨ba•⟩ = ⟨[a•b]⟩.)

Intuitively, MN(L)ess is thus non-deterministic; this is interesting because the standard Myhill-
Nerode theorem for finite automata constructs deterministic automata. We will give a precise definition
of determinism for HDAs in the next section and show in Example 6.5 that no deterministic HDA X
exists with Lang(X) = L.

Example 5.6. Here we explain why we need to use ≈L-equivalence classes and not ∼L-equivalence
classes. The example is one-dimensional, which means that it applies to standard finite automata. The
reason one does not see the problem in the standard Myhill-Nerode construction for finite automata is
that this operates only on states and not on transitions.

Let L = {aa, ab, ba}, then MN(L)ess is as below.

ε
⊥

a

b

aa
⊤

a•

b•

aa•

ab•

ba•

We have aa• \L = ba• \L = {•a}, thus aa• ∼L ba•. Yet aa• and ba• are not strongly equivalent,
because a \L = {a, b} ̸= {a} = b \L. This provides an example of weakly equivalent ipomsets
whose lower faces are not weakly equivalent and shows why we cannot use ∼L to construct MN(L).

234 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

Remark 5.7. As the previous example indicates, if L is one-dimensional and all words in L have
empty interfaces, then ess(MN(L)) is the standard Myhill-Nerode finite automaton for L.

Example 5.8. The language L = {[•aa•• a •]} is recognised by the HDA MN(L)ess below:

wε wε

wε y

wε

y

wa

wa

wa

y•a• ya•

y•a•[•a••a•] [•aa•• a •]⊥
⊤

Cells with the same names are identified. Here we see subsidiary cells wε and wa, and regular cells
that are not coaccessible (denoted by y indexed with their signature). The middle vertical edge is
⟨[•a•a•]⟩, y•a• = ⟨[•a••a]⟩ = ⟨[•aa• a •]⟩, ya• = ⟨[•aa•• a]⟩, and y = ⟨[•a•a]⟩ = ⟨[•aa• a]⟩.

5.2. MN(L) is well-defined

We need to show that MN(L) is well-defined, i.e., that the formulas (2) do not depend on the choice
of a representative in ⟨P ⟩ and that the precubical identities are satisfied.

Lemma 5.9. Let P , Q and R be ipomsets with TP = TQ = SR. Then

P \L ⊆ Q \L =⇒ (PR) \L ⊆ (QR) \L.

In particular, P \L = Q \L implies (PR) \L = (QR) \L.

Proof:
For N ∈ iiPoms we have

N ∈ (PR) \L ⇐⇒ PRN ∈ L ⇐⇒ RN ∈ P \L
=⇒ RN ∈ Q \L ⇐⇒ QRN ∈ L ⇐⇒ N ∈ (QR) \L. ⊓⊔

The next lemma shows an operation to “add order” to an ipomset P . This is done by first removing
some points A ⊆ TP and then adding them back in, forcing arrows from all other points in P . The
result is obviously subsumed by P .

Lemma 5.10. For P ∈ iiPoms and A ⊆ rfin(P), (P −A) ∗ A↑TP ⊑ P .

The next two lemmas, whose proofs are again obvious, state that events may be unstarted or
terminated in any order.

Lemma 5.11. Let U be a conclist and A,B ⊆ U disjoint subsets. Then

U↓B ∗ (U −B)↓A = U↓A∪B = U↓A ∗ (U −A)↓B.

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 235

Lemma 5.12. Let P ∈ iiPoms and A,B ⊆ TP disjoint subsets. Then

(P ∗ TP ↓B)−A = (P −A) ∗ (TP −A)↓B.

Lemma 5.13. Assume that P ≈L Q for P,Q ∈ iiPomsU . Then P ∗ U↓B ≈L Q ∗ U↓B for every
B ⊆ U .

Proof:
Obviously fin(P ∗U↓B) = fin(P)−B ∼= fin(Q)−B = fin(Q∗U↓B). For every A ⊆ rfin(P)−B ≃
rfin(Q)−B we have

((P −A) ∗ (U −A)↓B) \L = ((Q−A) ∗ (U −A)↓B) \L

by assumption and Lemma 5.9. But (P ∗U↓B)−A = (P −A) ∗ (U −A)↓B and (Q ∗U↓B)−A =
(Q−A) ∗ (U −A)↓B by Lemma 5.12. ⊓⊔

Proposition 5.14. MN(L) is a well-defined HDA.

Proof:
The face maps are well-defined: for δ0A this follows from Lemma 5.4, for δ1B from Lemma 5.13. The
precubical identities δνAδ

µ
B = δµBδ

ν
A are clear for ν = µ = 0, follow from Lemma 5.11 for ν = µ = 1,

and from Lemma 5.12 for {ν, µ} = {0, 1}. ⊓⊔

5.3. Paths and essential cells of MN(L)

The next lemma provides paths in MN(L).

Lemma 5.15. For every N,P ∈ iiPoms such that TN
∼= SP there exists a path α ∈ Path(MN(L))

⟨NP ⟩
⟨N⟩

such that ev(α) = P .

Proof:
Choose a decomposition P = Q1 ∗ · · · ∗Qn into starters and terminators. Denote Uk = TQk

= SQk+1

and define

xk = ⟨N ∗Q1 ∗ · · · ∗Qk⟩, φk =

{
↗A if Qk = A↑Uk,

↘B if Qk = Uk−1↓B

for k = 1, . . . , n. If φk =↗A and Qk = A↑Uk, then

δ0A(xk) = ⟨N ∗Q1 ∗ · · · ∗Qk−1 ∗ A↑Uk −A⟩ = ⟨N ∗Q1 ∗ · · · ∗Qk−1 ∗ idUk−A⟩ = xk−1.

If φk =↘B and Qk = Uk−1↓B , then

δ1B(xk−1) = ⟨N ∗Q1 ∗ · · · ∗Qk−1 ∗ Uk−1↓B⟩ = xk.

Thus, α = (x0, φ1, x1, . . . , φn, xn) is a path with ev(α) = P , src(α) = ⟨N⟩ and tgt(α) = ⟨N ∗ P ⟩.
⊓⊔

236 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

Our goal is now to describe essential cells of MN(L).

Lemma 5.16. All regular cells of MN(L) are accessible. If P \L ̸= ∅, then ⟨P ⟩ is coaccessible.

Proof:
Both claims follow from Lemma 5.15. For every P there exists a path from ⟨idSP

⟩ to ⟨idSP
∗ P ⟩ =

⟨P ⟩. If Q ∈ P \L, then there exists a path α ∈ Path(MN(L))
⟨PQ⟩
⟨P ⟩ , and PQ ∈ L entails that

⟨PQ⟩ ∈ ⊤MN(L). ⊓⊔

Lemma 5.17. Subsidiary cells of MN(L) are not accessible. If P \L = ∅, then the cell ⟨P ⟩ is not
coaccessible.

Proof:
If α ∈ Path(MN(L))wU

⊥ , then it contains a step β from a regular cell to a subsidiary cell (since all start
cells are regular). Yet β can be neither an upstep (since lower faces of subsidiary cells are subsidiary)
nor a downstep (since upper faces of regular cells are regular). This contradiction proves the first
claim.

To prove the second part we use a similar argument. If P \L = ∅, then a path α ∈ Path(MN(L))⊤⟨P ⟩
contains only regular cells (as shown above). Given that R \L ̸= ∅ for all ⟨R⟩ ∈ ⊤MN(L), α must
contain a step β from ⟨Q⟩ to ⟨R⟩ such that Q \L = ∅ and R \L ̸= ∅. If β is a downstep, i.e.,
β = (⟨Q⟩ ↘A ⟨Q ∗ U↓A⟩), and N ∈ R \L = (Q ∗ U↓A) \L, then U↓A ∗ N ∈ Q \L ̸= ∅: a
contradiction. If β = (⟨R−A⟩ ↗A ⟨R⟩) is an upstep and N ∈ R \L, then, by Lemma 5.10,

(R−A) ∗ A↑U ∗N ⊑ R ∗N ∈ L,

implying that Q \L = (R−A) \L ̸= ∅ by Lemma 5.1: another contradiction. ⊓⊔

Lemmas 5.16 and 5.17 together immediately imply the following.

Proposition 5.18. ess(MN(L)) = {⟨P ⟩ | P \L ̸= ∅}.

5.4. MN(L) recognises L

We are finally ready to show that Lang(MN(L)) = L. One inclusion follows directly from Lemma
5.15:

Lemma 5.19. L ⊆ Lang(MN(L)).

Proof:
For every P ∈ iiPoms there exists a path α ∈ Path(MN(L))

⟨P ⟩
⟨idSP

⟩ such that ev(α) = P . If P ∈ L,

then ε ∈ P \L, i.e., ⟨P ⟩ is an accept cell. Thus α is accepting and P = ev(α) ∈ Lang(MN(L)). ⊓⊔

The converse inclusion requires more work. For a regular cell ⟨P ⟩ of MN(L) denote ⟨P ⟩ \L =
P \L (this obviously does not depend on the choice of P).

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 237

Lemma 5.20. If S ∈ □ and α ∈ Path(MN(L))⟨idS⟩, then tgt(α) \L ⊆ ev(α) \L.

Proof:
By Lemma 5.17, all cells appearing along α are regular. We proceed by induction on the length of α.
For α = (⟨idS⟩) the claim is obvious. If α is non-trivial, we have two cases.

• α = β ∗ (δ0A(⟨P ⟩) ↗A ⟨P ⟩), where ⟨P ⟩ ∈ MN(L)[U] and A ⊆ rfin(P) ⊆ U ∼= TP . By the
induction hypothesis,

(P −A) \L = δ0A(⟨P ⟩) \L = tgt(β) \L ⊆ ev(β) \L.

For Q ∈ iiPoms we have

Q ∈ P \L ⇐⇒ PQ ∈ L =⇒ (P −A) ∗ A↑U ∗Q ∈ L (Lemma 5.10)

⇐⇒ A↑U ∗Q ∈ (P −A) \L
=⇒ A↑U ∗Q ∈ ev(β) \L (induction hypothesis)

⇐⇒ ev(β) ∗ A↑U ∗Q ∈ L

⇐⇒ ev(α) ∗Q ∈ L ⇐⇒ Q ∈ ev(α) \L.

Thus, ⟨P ⟩ \L = P \L ⊆ ev(α) \L.

• α = β ∗ (⟨P ⟩ ↘B δ1B(⟨P ⟩)), where ⟨P ⟩ ∈ MN(L)[U] and B ⊆ U ∼= TP . By inductive
assumption, P \L = tgt(β) \L ⊆ ev(β) \L. Thus,

tgt(α) \L = δ1B(⟨P ⟩) \L = ⟨P ∗ U↓B⟩ \L ⊆ (ev(β) ∗ U↓B) \L = ev(α) \L.

The inclusion above follows from Lemma 5.9. ⊓⊔

Proposition 5.21. Lang(MN(L)) = L.

Proof:
The inclusion L ⊆ Lang(MN(L)) is shown in Lemma 5.19. For the converse, let S ∈ □ and α ∈
Path(MN(L))⟨idS⟩, then Lemma 5.20 implies

tgt(α) ∈ ⊤MN(L) ⇐⇒ ε ∈ tgt(α) \L =⇒ ε ∈ ev(α) \L ⇐⇒ ev(α) ∈ L,

that is, if α is accepting, then ev(α) ∈ L. ⊓⊔

5.5. Finiteness of MN(L)

The HDA MN(L) is not finite, since it contains infinitely many subsidiary cells wU . Below we show
that its essential part MN(L)ess is finite if L has finitely many prefix quotients.

Lemma 5.22. If suff(L) is finite, then ess(MN(L)) is finite.

238 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

Proof:
For ⟨P ⟩, ⟨Q⟩ ∈ ess(L), we have ⟨P ⟩ = ⟨Q⟩ ⇐⇒ f(⟨P ⟩) = f(⟨Q⟩), where

f(⟨P ⟩) = (P \L, fin(P), ((P −A) \L)A⊆rfin(P)).

We will show that f takes only finitely many values on ess(L). Indeed, P \L belongs to the finite
set suff(L). Further, all ipomsets in P \L have source interfaces equal to TP . Since P \L is non-
empty, fin(P) is a starter with TP as underlying conclist. Yet, there are only finitely many starters on
any conclist. The last coordinate also may take only finitely many values, since rfin(P) is finite and
(P −A) \L ∈ suff(L). ⊓⊔

Proof of Theorem 5.2, (b) =⇒ (a):
By Lemma 5.22 and Lemma 4.8, MN(L)ess is a finite HDA. With Proposition 5.21, Lang(MN(L)ess) =
Lang(MN(L)) = L. ⊓⊔

Example 5.23. We finish this section with another example, which shows some subtleties related to
higher-dimensional loops. Let L be the language of the HDA shown to the left of Figure 7 (a looping
version of the HDA of Figure 5), then

L = {•a•} ∪ {[•aa•b]n | n ≥ 1}↓.

Our construction yields MN(L)ess as shown on the right of the figure. Here, e = ⟨[•ab•]⟩, and the two
e-labelled edges and their corresponding faces are identified. These identifications follow from the
fact that [•aabb•] ≈L [•ab•], [

•aa
bb] ≈L [•ab], and [•aab] ≈L •a. Note that [•a•b•] and [•aa•bb•] are not strongly

equivalent, since they have different signatures: [•a•b•] and [a•b•], respectively.

wε •a

wε [•ab]

•aa

•a

[•ab] b [•ab]

•a•

⊥⊤

wa

•aa•

[•a•b]

e

[•aa•b]

[•aa•bb]

⊤
[•aa•b •]

e[•ab] b•

[•a•b•] [•aa•b •]

[•aa•bb•]

a

a

b b

⊥⊤

⊥⊤

Figure 7: Two HDAs recognising the language of Example 5.23. On the left side, start/accept edges
are identified; on the right, e-labelled edges are identified.

6. Determinism

We now make precise our notion of determinism and show that not all HDAs may be determinised.
Recall that we do not assume finiteness.

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 239

Definition 6.1. An HDA X is deterministic if

1. for every U ∈ □ there is at most one initial cell in X[U], and

2. for all V ∈ □, A ⊆ V and any essential cell x ∈ X[V − A] there exists at most one essential
cell y ∈ X[V] such that x = δ0A(y).

That is, in any essential cell x in a deterministic HDA X and for any set A of events, there is at
most one way to start A in x and remain in the essential part of X (recall that termination of events is
always deterministic). We allow multiple initial cells because ipomsets in Lang(X) may have different
source interfaces; for each source interface in Lang(X), there can be at most one matching start cell
in X . Note that we must restrict our definition to essential cells as inessential cells may not always be
removed (in contrast to the case of standard automata).

A language is deterministic if it is recognised by a deterministic HDA. We develop a language-
internal criterion for being deterministic.

Definition 6.2. A language L is swap-invariant if it holds for all P,Q, P ′, Q′ ∈ iiPoms that PP ′ ∈ L,
QQ′ ∈ L and P ⊑ Q imply QP ′ ∈ L.

That is, if the P prefix of PP ′ ∈ L is subsumed by Q (which is, thus, “more concurrent” than P),
and if Q itself may be extended to an ipomset in L, then P may be swapped for Q in the ipomset PP ′

to yield QP ′ ∈ L.

Lemma 6.3. L is swap-invariant if and only if P ⊑ Q implies P \L = Q \L for all P,Q ∈ iiPoms,
unless Q \L = ∅.

Proof:
Assume that L is swap-invariant and let P ⊑ Q. The inclusion Q \L ⊆ P \L follows from Lemma
5.1, and

R ∈ Q \L, R′ ∈ P \L ⇐⇒ QR,PR′ ∈ L =⇒ QR′ ∈ L ⇐⇒ R′ ∈ Q \L

implies that P \L ⊆ Q \L. The calculation

PP ′, QQ′ ∈ L, P ⊑ Q ⇐⇒ P ′ ∈ P \L, Q′ ∈ Q \L, P ⊑ Q =⇒ P ′ ∈ Q \L ⇐⇒ QP ′ ∈ L

shows the converse. ⊓⊔

Our main goal is to show the following criterion, which will be implied by Propositions 6.10 and
6.12 below.

Theorem 6.4. A language L is deterministic if and only if it is swap-invariant.

Example 6.5. The regular language L = {[ab] , ab, ba, abc} from Example 5.5 is not swap-invariant:
using Lemma 6.3, ab• ⊑ [ab•], but {ab•} \L = {•b, •bc} ̸= {•b} = {[ab•]} \L. Hence L is not
deterministic.

240 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

The next examples explain why we need to restrict to essential cells in the definition of determin-
istic HDAs.

Example 6.6. The HDA in Example 5.8 is deterministic. There are two different a-labelled edges
starting at wε (wa and ⟨[•a•a•]⟩), yet it does not disturb determinism since wε is not accessible.

Example 6.7. Let L = {ab, [a•b•]}. Then MN(L)ess is as follows:

ε⊥ a

y y

ab
⊤

a•

b•

ab•

ya•

yb•[a•b•]
⊤

It is deterministic: there are two b-labelled edges leaving a, namely yb• and ab•, but only the latter is
coaccessible.

The next lemma shows that up to path equivalence, paths on deterministic HDAs are determined
by their labels. That is, up to path equivalence, deterministic HDAs are unambiguous. Note that [23]
shows that non-deterministic HDAs may exhibit unbounded ambiguity.

Lemma 6.8. Let X be a deterministic HDA and α, β ∈ Path(X)⊥ with tgt(α), tgt(β) ∈ ess(X). If
ev(α) = ev(β), then α ≃ β.

Proof:
We can assume that α = α1 ∗ · · · ∗αn and β = β1 ∗ · · · ∗ βm are sparse; note that all of these cells are
essential. We show that αk = βk for all k which implies the claim.

Denote P = ev(α) = ev(β), then

P = ev(α1) ∗ · · · ∗ ev(αn)

is a sparse step decomposition of P . Similarly, P = ev(β1) ∗ · · · ∗ ev(βm) is a sparse step de-
composition. Yet sparse step decompositions are unique by Proposition 3.5; hence, m = n and
ev(αk) = ev(βk) for every k.

We show by induction that αk = βk. First, ev(α0) = ev(β0) implies α0 = β0 by determinism.
Now assume that αk−1 = βk−1. Let x = src(αk) = tgt(αk−1) = tgt(βk−1) = src(βk). If Pk =
ev(αk) = ev(βk) is a terminator U↓B , then αk = δ1B(x) = βk. If Pk is a starter A↑U , then there are
y, z ∈ X such that δ0A(y) = δ0A(z) = x. As y and z are essential and X is deterministic, this implies
y = z and αk = βk. ⊓⊔

Lemma 6.9. Let α and β be essential paths on a deterministic HDA X . Assume that src(α) = src(β)
and ev(α) ⊑ ev(β). Then tgt(α) = tgt(β).

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 241

Proof:
By Lemma 4.12, there exists a path γ ∈ Path(X)

tgt(β)
src(β) such that ev(γ) = ev(α). Lemma 6.8 implies

that γ ≃ α and then tgt(α) = tgt(γ) = tgt(β). ⊓⊔

Proposition 6.10. If L is deterministic, then L is swap-invariant.

Proof:
Let X be a deterministic HDA that recognises L and fix ipomsets P ⊑ Q. From Lemma 5.1 follows
that Q \L ⊆ P \L. It remains to prove that if Q \L ̸= ∅, then P \L ⊆ Q \L. Denote U ∼= SP

∼= SQ.
Let R ∈ Q \L and let ω ∈ Path(X)⊤⟨idU ⟩ be an accepting path that recognises QR. By Lemma

4.13, there exists a path β ∈ Path(X)⟨idU ⟩ such that ev(β) = Q.
Now assume that R′ ∈ P \L, and let ω′ ∈ Path(X)⊤⟨idU ⟩ be a path such that ev(ω′) = PR′. By

Lemma 4.13, there exist paths α ∈ Path(X)⟨idU ⟩ and γ ∈ Path(X)tgt(ω
′) such that tgt(α) = src(γ),

ev(α) = P and ev(γ) = R′. From Lemma 6.9 and P ⊑ Q follows that tgt(α) = tgt(β). Thus, β
and γ may be concatenated to an accepting path β ∗ γ. By ev(β ∗ γ) = QR′ we have QR′ ∈ L, i.e.,
R′ ∈ Q \L. ⊓⊔

Lemma 6.11. If ⟨P ⟩ ∈ ess(MN(L)) and A ⊆ rfin(P), then ⟨P −A⟩ ∈ ess(MN(L)).

Proof:
By Lemma 5.16, ⟨P −A⟩ is accessible. By assumption, ⟨P ⟩ is coaccessible and (⟨P −A⟩ ↗A ⟨P ⟩)
is a path, so ⟨P −A⟩ is also coaccessible. ⊓⊔

Proposition 6.12. If L is swap-invariant, then MN(L) and MN(L)ess are deterministic.

Proof:
Since MN(L)ess is a sub-HDA of MN(L), it suffices to prove that MN(L) is deterministic. MN(L)
contains only one start cell ⟨idU ⟩ for every U ∈ □.

Fix U ∈ □, P,Q ∈ iiPomsU and A ⊆ U . Assume that δ0A(⟨P ⟩) = δ0A(⟨Q⟩), i.e., ⟨P −A⟩ =
⟨Q−A⟩, and ⟨P ⟩, ⟨Q⟩, ⟨P −A⟩ ∈ ess(MN(L)). We will prove that ⟨P ⟩ = ⟨Q⟩, or equivalently,
P ≈L Q.

We have fin(P −A) = fin(Q−A) =: S↑(U −A). First, notice that A, regarded as a subset of P
(or Q), contains no start events: else, we would have δ0A(⟨P ⟩) = wU−A (or δ0A(⟨Q⟩) = wU−A). As a
consequence, fin(P) = fin(Q) = S↑U .

For every B ⊆ rfin(P) = rfin(Q) we have

P −A ≈L Q−A =⇒ (P − (A ∪B)) \L = (Q− (A ∪B)) \L
=⇒ ((P − (A ∪B)) ∗ (A−B)↑U) \L = ((Q− (A ∪B)) ∗ (A−B)↑U) \L.

The first implication follows from the definition, and the second from Lemma 5.9. From Lemma 5.10
follows that

(P − (A ∪B)) ∗ (A−B)↑U ⊑ P −B, (Q− (A ∪B)) ∗ (A−B)↑U ⊑ Q−B.

Thus, by swap-invariance we have (P −B) \L = (Q−B) \L; note that Lemma 6.11 guarantees that
neither of these languages is empty. ⊓⊔

242 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

7. Higher-dimensional automata with interfaces

Higher-dimensional automata with interfaces (iHDAs) were introduced in [15] as a tool that allowed
to prove a Kleene theorem for HDAs. Both HDAs and iHDAs recognise the same class of languages,
yet, compared to iHDAs, HDAs have a flaw: they enforce introducing non-essential cells that serve
solely as faces of other cells. We will show below that essential parts of iHDAs are again iHDAs, a fact
which allows us to give a Myhill-Nerode construction using iHDAs which proceeds along different
lines and, we believe, is more simple and principled.

We will also provide a notion of deterministic iHDAs which, again, is simpler in that it does not
have to restrict to essential cells, and show that the notions of deterministic languages of HDAs and
iHDAs agree.

7.1. Iprecubical sets and iHDAs

The main difference between HDAs and iHDAs is that events in iHDAs may be marked as source
events or target events. Accepting runs may never terminate target events and, similarly, source events
must have been present from the very beginning of an accepting run.

A concurrency list with interfaces (iconclist) (U, 99K, S, T, λ) is a conclist (U, 99K, λ) together
with subsets S, T ⊆ U . Equivalently, iconclists are iposets with empty precedence relation; conclists
are iconclists with empty interfaces. We write SUT for an iconclist as above.

Let I□ denote the set of iconclists. An iprecubical set consists of a set of cells X together with a
mapping iev : X → I□. For an iconclist SUT we write X[SUT] = {x ∈ X | iev(x) = SUT }. Face
maps in iprecubical sets cannot unstart events in source interfaces neither terminate events in target
interfaces. That is, for every iconclist SUT and subsets A,B ⊆ U such that A∩S = B ∩T = ∅ there
are face maps

δ0A : X[SUT] → X[S(U −A)(T−A)], δ1B : X[SUT] → X[(S−B)(U −B)T].

Further, for A,B ⊆ U with A ∩B = ∅ and ν, µ ∈ {0, 1}, δνAδ
µ
B = δµBδ

ν
A whenever these are defined.

A higher-dimensional automaton with interfaces (iHDA) is an iprecubical set X together with
subsets ⊥X ,⊤X ⊆ X of start and accept cells such that for all x ∈ ⊥X with iev(x) = SUT , S = U
and for all x ∈ ⊤X with iev(x) = SUT , T = U . That is, events in start cells are source events and
cannot be unstarted, and events in accept cells are target events and cannot be terminated.

Remark 7.1. Every precubical set X may be regarded as an iprecubical set X ′ such that X ′[∅U∅] =
X[U] and X ′[SUT] = ∅ whenever S ̸= ∅ or T ̸= ∅. If X is an HDA and all its start and accept cells
are vertices (elements of X[∅]), then X ′ may be regarded as an iHDA as well. This fails in presence
of higher-dimensional start or accept cells due to the condition on event iconclists of such cells.

Example 7.2. Let X be the iHDA defined by X = {x, e1, e2, e3, e4}, ev(x) = ∅,

ev(e1) = aaa, ev(e2) = aa∅, ev(e3) = ∅a∅, ev(e4) = ∅aa,

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 243

δ1a(e2) = δ0a(e3) = δ1a(e3) = δ0a(e4) = x, and ⊥X = {e1, e2}, ⊤X = {e1, e4}. Note that e1 has
neither an upper nor a lower face since its only event a is in both interfaces. For the opposite reason,
the edge e3 can be neither start nor accept cell.

x

e3

⊥
e2 ⊤

e4⊥
⊤e1

Example 7.3. Figure 8 shows an example of a two-dimensional iHDA. The initial cell has event
iconclist aa∅ and hence no lower face. This lack of lower face propagates to the left two-dimensional
cell, with event iconclist [•ab]. Hence iHDAs are partial HDAs in the sense of [24, 25], but the notion
of partiality is more restricted here, given that it is on the level of events.

∅

∅

[•a]

⊥

⊤

[c•]

[•a]

[b]

[c•]

[d•]

[•ab] [c•b]

[c•d•]

Figure 8: An example of an iHDA. Cells are marked with their event iconclists.

7.2. Paths and languages

Paths on iHDAs are defined as for HDAs. Namely, a path is a sequence α = (x0, φ1, x1, . . . , xn) such
that each (xi−1, φi, xi) is either

• an upstep (δ0A(xi),↗A, xi) for xi ∈ X[SUT], A ⊆ U − S, or

• a downstep (xi−1,↘B, δ
1
B(xi−1)) for xi−1 ∈ X[SUT], B ⊆ U − T .

A path α is accepting if src(α) = x0 is a start cell and tgt(α) = xn is an accept cell.

For a cell x ∈ X of an iHDA X we denote by ev(x) the underlying conclist of iev(x); note that

iev(x) = (Siev(x), ev(x), Tiev(x)).

The event ipomset of a path α is defined inductively as before: ev((x)) = idev(x), ev(y ↗A x) =

A↑ev(x), ev(x ↘B y) = ev(x)↓B , and ev(α ∗ β) = ev(α) ∗ ev(β). The language of an iHDA X is

Lang(X) = {ev(α) | α accepting path in X}.

244 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

Example 7.4. The language of the iHDA from Example 7.2 is {•a•} ∪ {•aana• | n ≥ 0}. The
language of the iHDA from Example 7.3 is{[

a c •

b

•

d •

]}
↓.

Because of the requirement that events in start cells may not be unstarted and those in accept
cells may not be terminated, an event in an iHDA carries information whether it will be eventually
terminated, and whether it has been present from the beginning. This is expressed by the following
lemma which shows that iconclists of cells may be recovered from ipomsets of accepting paths:

Lemma 7.5. Let X be an iHDA, α be a path in X and P = ev(α).

1. If src(α) ∈ ⊥X , then iev(tgt(α)) ∼= (SP ∩ TP , TP , Z) for some Z ⊆ TP .

2. If tgt(α) ∈ ⊤X , then iev(src(α)) ∼= (Y, SP , SP ∩ TP) for some Y ⊆ SP .

3. If α is accepting, then iev(src(α) ∼= (SP , SP , SP ∩ TP) and iev(tgt(α) ∼= (SP ∩ TP , TP , TP).

Proof:
It is sufficient to prove 1., 2. is then obtained by reversal and 3. follows from 1. and 2. Induction with
respect to the length of α. If α = (x), then P = idU = (U,U, U) and iev(x) = (U,U, Z).

If α = β ∗ (δ0A(x) ↗A x), iev(x) = (S,U, T), and A ⊆ U − S, then ev(β) = P −A and

iev(δ0A(x)) = (S,U −A, T −A) = (SP−A ∩ TP−A, TP−A, Z) = (SP ∩ TP , TP −A,Z)

by the inductive hypothesis for β. Thus, (S,U, T) = (SP ∩ TP , TP , Z).

Finally, let α = β ∗ (y ↘B δ1B(y)), iev(y) = (S,U, T), and B ⊆ U −T . Denote ev(β) = Q, then
we have P = Q ∗ TQ↓B , SP = SQ and TP = TQ −B. Therefore,

iev(tgt(α)) = (S −B,U −B, T) = (S,U, T)−B = iev(tgt(β))−B
ind.
=

(SQ ∩ TQ, TQ, Z)−B = (SQ ∩ (TQ −B), TQ −B,Z −B) = (SP ∩ TP , TP , Z −B).

The proof is complete. ⊓⊔

7.3. HDAs vs. iHDAs

HDAs and iHDAs are related via a pair of adjoint functors: resolution which maps an HDA X to an
iHDA Res(X) by adjoining all possible assignments of interfaces, and its left adjoint closure, which
maps an iHDA X to an HDA Cl(X) by filling in missing faces. These are introduced in [16] and
have the important property that they preserve languages. We define them below and develop some
lemmas.

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 245

The resolution of an HDA X is the iHDA Res(X) defined as follows. For SUT ∈ I□, A ⊆ U − S
and B ⊆ U − T we put

Res(X)[SUT] = {(x;S, T) | x ∈ X[U]},
δ0A((x;S, T)) = (δ0A(x);S, T −A), δ1B((x;S, T)) = (δ1B(x);S −B, T).

A cell (x;S, T) ∈ Res(X)[SUT] is a start cell if x ∈ X⊥ and S = U , and an accept cell if x ∈ X⊤

and T = U . Every cell x ∈ X[U] thus produces 4|U | cells in Res(X), hence if X is finite, then so is
Res(X).

Example 7.6. For the precubical set X with X[a] = {x} and X[∅] = {v, w} we have

Res

v

w

x

 =

(x; ∅, ∅)

(x; a, ∅)

(x; ∅, a)

(x; a, a)

(v; ∅, ∅)

(w; ∅, ∅)

If ((x0;S0, T0), φ1, (x1;S1, T1), φ2, . . . , φn, (xn;Sn, Tn)) is an accepting path in Res(X), then
(x0, φ1, x1, φ2 . . . , φn, xn) is an accepting path in X with the same event ipomset. Conversely, for
every accepting path α = (x0, φ1, . . . , xn) in X there exists unique subsets Sk, Tk ⊆ ev(xk) such
that ((x0;S0, T0), φ1, . . . , (xn;Sn, Tn)) is an accepting path in Res(X). (Indeed, S0 = ev(x0), Tn =
ev(xn), Sk and φk determine Sk+1, Tk+1 and φk determine Tk). As a consequence we obtain:

Lemma 7.7. Let X be an HDA. If (x;S, T) ∈ Res(X) is essential, then x ∈ X is essential.

Lemma 7.8. ([16, Prop. 11.2])
For any HDA X , Lang(Res(X)) = Lang(X).

The closure of an iHDA X is the HDA Cl(X) defined, for all U ∈ □, by

• Cl(X) = {[x;A,B] | x ∈ X, A ⊆ Siev(x), B ⊆ Tiev(x), A ∩B = ∅};

• ev([x;A,B]) = ev(x)− (A ∪B) for [x;A,B] ∈ Cl(X);

• δ0C([x;A,B]) = [δ0C−Siev(x)
(x);A ∪ (C ∩ Siev(x)), B] for C ⊆ ev([x;A,B]);

• δ1D([x;A,B]) = [δ1D−Tiev(x)
(x);A,B ∪ (D ∩ Tiev(x))] for D ⊆ ev([x;A,B]);

• ⊤Cl(X) = {[x; ∅, ∅] | x ∈ ⊥X}, ⊤Cl(X) = {[x; ∅, ∅] | x ∈ ⊤X}.

Intuitively, closure fills in the missing cells of the iHDA X . Lower face maps δ0C of Cl(X) take as
much of the face map of X as possible, while the remaining events are added to the set A; similarly
for upper faces.

246 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

Lemma 7.9. Let X be an iHDA and x, y ∈ X . The function Φ : Path(X)yx → Path(Cl(X))
[y;∅,∅]
[x;∅,∅],

Φ(x0, φ1, x1, . . . , xn) = ([x0; ∅, ∅], φ1, [x1; ∅, ∅], . . . , [xn; ∅, ∅])

is a bijection. Moreover, ev(α) = ev(Φ(α)) for all α.

Proof:
Injectivity of Φ is clear. Let α = ([x0, A0, B0], φ1, . . . , φn, [xn, An, Bn]) ∈ Path(Cl(X))

[y;∅,∅]
[x;∅,∅].

For every step ([xk;Ak, Bk], φk, [xk+1;Ak+1, Bk+1]) it follows from the definition of face maps that
|Ak| ≥ |Ak+1| and |Bk| ≤ |Bk+1|. Thus, Ak ⊆ A0 = ∅ and Bk ⊆ Bn = ∅ for all k and then
α = Φ(x0, φ1, x1, . . . , xn). The second claim is obvious. ⊓⊔

Lemma 7.10. ([16, Prop. 11.4])
For any iHDA X , Lang(Cl(X)) = Lang(X).

The following two lemmas are analogues to Lemmas 4.12 and 4.13 for iHDAs.

Lemma 7.11. Let X be an iHDA, x, y ∈ X , α ∈ Path(X)yx and P ⊑ Q = ev(α). Then there exists
β ∈ Path(X)yx such that ev(β) = P .

Proof:
This follows from Lemma 4.12 applied to Cl(X) and Lemma 7.9. ⊓⊔

Lemma 7.12. Let X be an iHDA, x, y ∈ X and γ ∈ Path(X)yx. Assume that ev(γ) = P ∗ Q for
ipomsets P and Q. Then there exist paths α ∈ Path(X)x and β ∈ Path(X)y such that ev(α) = P ,
ev(β) = Q and tgt(α) = src(β).

Proof:
We apply Lemma 4.13 to the path Φ(γ) and obtain that there are paths α′ and β′ in Cl(X) such that
ev(α′) = P , ev(β′) = Q and tgt(α′) = src(β′). By Lemma 7.9, α = Φ−1(α′) and β = Φ−1(β′)
satisfy the required conditions. ⊓⊔

7.4. Essential iHDAs

As for HDAs, we say that a cell x ∈ X of an iHDA X is essential if it accessible and coaccessible.
Let ess(X) ⊆ X be the set of essential cells. We show below that, contrary to the situation for HDAs,
ess(X) is itself an iHDA.

Let dist(x, y) be the minimal length of a path from x to y. A cell y is accessible if dist(x, y) < ∞
for some x ∈ ⊥X and is coaccessible if dist(y, z) < ∞ for some z ∈ ⊤X . The following follows
directly.

Lemma 7.13. Let y ∈ X[SUT], A ⊆ U − S and B ⊆ U − T .

• For any x ∈ X , dist(x, y) ≤ dist(x, δ0A(y)) + 1 and dist(x, δ1B(y)) ≤ dist(x, y) + 1.

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 247

• For any z ∈ X , dist(y, z) ≤ dist(δ1B(y), z) + 1 and dist(δ0A(y), z) ≤ dist(y, z) + 1.

The next lemma only holds because of the special properties of start and accept cells in iHDAs.

Lemma 7.14. Let y ∈ X[SUT], A ⊆ U − S and B ⊆ U − T .

• For every x ∈ ⊥X , dist(x, δ0A(y)) ≤ dist(x, y).

• For every z ∈ ⊤X , dist(y, z) ≥ dist(δ1B(y), z).

Proof:
We only show the first inequality; the second is symmetric. We fix x and proceed by induction on
cells y with respect to dist(x, y). If dist(x, y) = 0, then y = x is a start cell. Thus, S = U , A = ∅ and
δ0A(y) = y.

Now let n = dist(x, y) > 0. Without loss of generality we may assume that A = {a}. Let α be a
path from x to y of length n, and let α = β ∗ γ be a decomposition with γ having length 1. Clearly,
dist(x, src(γ)) = n− 1. Consider three cases:

• γ = (δ0B(y) ↗B y) and a ∈ B. Then β ∗ (δ0B(y) ↗B−a δ0a(y)) has length n.

• γ = (δ0B(y) ↗B y) and a ̸∈ B. Then dist(x, δ0a(δ
0
B(y))) = dist(x, δ0B(δ

0
a(y))) ≤ n − 1 by

induction, and then by Lemma 7.13, dist(x, δ0a(y)) ≤ dist(x, δ0B(δ
0
a(y))) + 1 ≤ n.

• γ = (z ↘B y). Then y = δ1B(z), and dist(x, δ0a(z)) ≤ dist(x, z) = n − 1 by induction. By
Lemma 7.13, dist(x, δ0a(y)) = dist(x, δ1B(δ

0
a(z))) ≤ dist(x, δ0a(z)) + 1 ≤ n.

⊓⊔

Proposition 7.15. For every iHDA X , ess(X) ⊆ X is an iHDA.

Proof:
Let y ∈ X[SUT] be essential. We show that all faces of y are also essential. There exist x ∈
⊥X and z ∈ ⊤X such that dist(x, y), dist(y, z) < ∞. By Lemmas 7.13 and 7.14, dist(x, δ0A(y)),
dist(x, δ1B(y)) < ∞ and dist(δ0A(y), z), dist(δ

1
B(y), z) < ∞ for all A ⊆ U − S, B ⊆ U − T as well.

Thus, all faces of y are essential, which concludes the proof. ⊓⊔

8. Myhill-Nerode construction for iHDAs

We now develop a Myhill-Nerode construction which for a given regular language L constructs an
iHDA iMN(L). Our construction proceeds in several steps. First we construct a universal iHDA iFree
which recognises all ipomsets, then we restrict iFree depending on the given language, and finally we
quotient this iFree(L) by an equivalence relation which preserves its language and ensures that the
quotient is finite if L is regular.

248 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

8.1. iFree

The universal iHDA iFree is defined as follows:

iFree = {(P,Z) | P ∈ iiPoms, Z ⊆ TP }, iev(P,Z) = (SP ∩ TP , TP , Z),

δ0A(P,Z) = (P −A,Z −A) for (P,Z) ∈ iFree[SUT], A ⊆ U − S ∼= TP − SP ,

δ1B(P,Z) = (P ∗ TP ↓B, Z) for (P,Z) ∈ iFree[SUT], B ⊆ U − T ∼= TP − Z,

⊥iFree = {(idU , T) | T ⊆ U ∈ □}, ⊤iFree = {(P, TP) | P ∈ iiPoms}.

It is clear that iFree is well-defined; the precubical identities follow easily from Lemmas 5.11 and
5.12. We need some lemmas about existence and uniqueness (up to subsumption) of paths in iFree.

Lemma 8.1. Let P and Q be ipomsets such that TQ
∼= SP , let Z ⊆ TP , and Y = SP ∩Z ∼= TQ∩Z ⊆

TQ. There exists a path α ∈ Path(iFree)
(QP,Z)
(Q,Y) with ev(α) = P .

Proof:
We use induction on a step decomposition of P . If P = idTQ

, then Y = Z, and α = ((Q,Y))
satisfies the required conditions. If P = P ′ ∗ A↑U , then P ′ = P − A and by induction there exists
β ∈ Path(iFree)

(QP ′,Z−A)
(PQ,Y) such that ev(β) = P ′. Thus, ev(β ∗ ((QP ′, Z − A) ↗A (QP,Z)) = P .

Finally, if P = P ′ ∗ TP ′↓B , TP
∼= TP ′ −B, then ev(β ∗ ((QP ′, Z) ↘B (QP,Z)) = P . ⊓⊔

Lemma 8.2. For every (P,Z) ∈ iFree and Y ⊆ SP we have

{
ev(α)

∣∣ α ∈ Path(iFree)
(P,Z)
(idSP

,Y)

}
=

{
{P}↓ if Y = SP ∩ Z,
∅ otherwise.

Proof:
(⊆). It is enough to show that for every path α ∈ Path(iFree)

(P,Z)
(idV ,Y) we have V ∼= SP , ev(α) ⊑ P

and Y = SP ∩Z. The first statement is clear; the rest we prove by induction on the length of α. If α is
constant, then P = idSP

, Y = Z, and thus ev(α) = idSP
= P . If α = β∗((P−A,Z−A) ↗A (P,Z))

is a concatenation with an upstep, then

ev(α) = ev(β) ∗ A↑TP

ind.
⊑ (P −A) ∗ A↑TP

L. 5.10
⊑ P

and Y
ind.
= S(P−A) ∩ (Z − A) = SP ∩ Z, since A ∩ SP = ∅. If α = β ∗ ((Q,Z) ↘B (P,Z)) and

P ∼= Q ∗ TQ↓B , then

ev(α) = ev(β) ∗ TQ↓B
ind.
⊑ Q ∗ TQ↓B = P

and Y = SQ ∩ Z = SP ∩ Z.

(⊇). This follows from Lemma 8.1 for Q = idSP
and Lemma 7.11. ⊓⊔

Corollary 8.3. Lang(iFree) = iiPoms.

Proof:
For every ipomset P there is a path α ∈ Path(iFree)

(P,TP)
(idSP

,SP∩TP) such that ev(α) = P . ⊓⊔

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 249

8.2. iFree(L)

Fix a language L; we will restrict iFree to an iHDA that recognises L. Let ⊤L = {(P, TP) | P ∈ L}
and define

iFree(L) = ess((iFree,⊥iFree,⊤L)).

That is, we restrict accept cells of iFree to the ones that accept ipomsets in L and then reduce to the
essential part.

Lemma 8.4. Lang(iFree(L)) = L.

Proof:
This follows from Lemma 8.2:

Lang(iFree(L)) =
⋃
P∈L

{
ev(α)

∣∣ α ∈ Path(iFree)
(P,TP)
(idSP

,SP∩TP)

}
=

⋃
P∈L

{P}↓ = L.
⊓⊔

We provide a description of iFree(L) in terms of quotient languages. For an ipomset P and Z ⊆
TP define the partial quotient language by

P \Z L = {Q ∈ iiPoms | PQ ∈ L, SQ ∩ TQ = Z} = {Q ∈ P \L | SQ ∩ TQ = Z}.

In other words, P \Z L consists of all “continuations” of P that do not terminate events of Z (and
terminate all other target events of P). Obviously, P \L =

⊔
Z⊆TP

P \Z L.

Example 8.5. Let L = {[ab•]}↓ ∪ {ab} = {[ab•] , ab•, ab}. Then P \∅ L = P \L whenever TP = ∅,
and

a• \∅ L = {[•ab•]}↓ ∪ {•ab}, a• \a L = ∅,
b• \∅ L = ∅, b• \b L = {[a

•b•]},
ab• \∅ L = {•b}, ab• \b L = {•b•},

[a•b•] \b L = {[•a•b•]}, and [a•b•] \∅ L = [a•b•] \a L = [a•b•] \a,b L = ∅.

Lemma 8.6. A cell (P,Z) ∈ iFree belongs to iFree(L) if and only if P \Z L ̸= ∅.

Proof:
By construction, (P,Z) ∈ iFree is accessible. We show that (P,Z) is coaccessible if and only if
P \Z L ̸= ∅. If P \Z L ̸= ∅, then there is Q such that PQ ∈ L and SQ ∩ TQ = Z. By Lemma 8.1,
there exists a path from (P,Z) to (PQ, TQ), showing that (P,Z) is coaccessible.

If (P,Z) is coaccessible, then there is a path β in iFree with src(β) = (P,Z) and tgt(β) ∈ ⊤L.
Let Q = ev(β). We also have a path α from ⊥iFree to (P,Z). The concatenation α ∗ β is a path in
iFree(L) with ev(α ∗ β) = PQ. Hence PQ ∈ L. Further, TQ = ev(tgt(α ∗ β)) = Z, since tgt(α ∗ β)
is an accept cell. That is, Q ∈ P \Z L. ⊓⊔

250 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

Example 8.7. Let L = {[ab] , abc}↓ = {[ab] , ab, ba, abc} be the language of Example 5.5. We con-
struct iFree(L). First, note that iFree(L)[SUT] = ∅ if S ̸= ∅, given that P \L = ∅ if SP ̸= ∅.
Similarly, iFree(L)[SUT] = ∅ if T ̸= ∅, as all ipomsets in L have empty terminating interface.

That is, iFree(L)[U] is only non-empty for conclists U (without interfaces). For these,

iFree(L)[∅] = {(ε, ∅), (a, ∅), (b, ∅), (ab, ∅), (ba, ∅), ([ab] , ∅), (abc, ∅)},
iFree(L)[a] = {(a•, ∅), (ba•, ∅), ([a•b] , ∅)},
iFree(L)[b] = {(b•, ∅), (ab•, ∅), ([ab•] , ∅)},
iFree(L)[c] = {(abc•, ∅)},

iFree(L)[[ab]] = {([a•b•] , ∅)}.

(Compare these with the cells of MN(L) in Figure 6.) Geometrically, iFree(L) looks as in Figure 9;
note that it is an HDA in the sense of Remark 7.1.

ε
⊥

a

b ba
⊤

[ab]
⊤

ab
⊤

abc
⊤

a•

b•

[ab•]

ba•

[a•b]

ab• abc•

[a•b•]

Figure 9: iFree(L) for L = {[ab] , abc}↓, see Example 8.7.

8.3. iMN(L)

The iHDA iFree(L) is infinite as soon as L is. (It contains at least one accept cell for every element of
L.) Analogously to the construction in Section 5.1, we introduce an equivalence relation depending
on L. Now however, the relation is not defined on ipomsets but directly on iFree(L). In order for the
quotient iHDA to be well-defined, we will need our equivalence to be a congruence in the sense that
faces of equivalent cells are again equivalent.

We say that (P,Z), (Q,Y) ∈ iFree(L)[SUT] are weakly equivalent, and write (P,Z) ∼L (Q,Y),
if P \Z L = Q \Y L. (This is the analogue of the relation ∼L of Section 5.1.) This relation is not
necessarily a congruence, for example, if L = {[ab] , aa}↓ (cf. Example 5.6), then (aa•, ∅) ∼L (ba•, ∅)
but

δ0a(aa•, ∅) = (a, ∅) ̸∼L (b, ∅) = δ0a(ba•, ∅).

Thus we introduce the maximal congruence contained in ∼L. Say that (P,Z), (Q,Y) ∈ iFree(L)[SUT]
are strongly equivalent, denoted (P,Z) ≈L (Q,Y), if

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 251

• δ0A(P,Z) ∼L δ0A(Q,Y) for all A ⊆ U − S, and

• δ1B(P,Z) ∼L δ1B(Q,Y) for all B ⊆ U − T .

The first is equivalent to the condition (P − A) \Z−A L = (Q − A) \Y−A L for every A ⊆ U − S
(cf. the conditions for ≈L in Section 5.1); and the latter is always satisfied. It is obvious that every

congruence contained in ∼L must be contained in ≈L as well. Below we show that ≈L is indeed a
congruence, hence the biggest congruence contained in ∼L, and describe its quotient iHDA.

Lemma 8.8. Let (P,Z), (Q,Y) ∈ iFree(L)[SUT]. If (P,Z) ≈L (Q,Y), then

1. δ0A(P,Z) ≈L δ0A(Q,Y) for A ⊆ U − S;

2. δ1B(P,Z) ≈L δ1B(Q,Y) for B ⊆ U − T ;

3. (P,Z) ∈ ⊥iFree(L) =⇒ (P,Z) = (Q,Y),

4. (P,Z) ∈ ⊤iFree(L) ⇐⇒ (Q,Y) ∈ ⊤iFree(L).

Proof:
1. We have δ0A(P,Z) = (P −A,Z −A), δ0A(Q,Y) = (Q−A, Y −A) ∈ iFree[(S,U −A, T −A)].
For every C ⊆ U − (S ∪A),

(P −A)− C \(Z−A)−C L = P − (A ∪ C) \Z−(A∪C) L

≈L Q− (A ∪ C) \Y−(A∪C) L = (Q−A)− C \(Y−A)−C L.

2. We have δ1B(P,Z) = (P ∗ U↓B, Z), δ1B(Q,Y) = (Q ∗ U↓B, Y) ∈ iFree[(S −B,U −B, T)]. For
every C ⊆ U − (S ∪B),

(P,Z) ≈L (Q,Z) =⇒ (P − C) \Z−C L = (Q− C) \Y−C L

L. 5.9
=⇒ (P − C) ∗ (U − C)↓B \Z−C L = (Q− C) ∗ (U − C)↓B \Y−C L

L. 5.11⇐⇒ (P ∗ U↓B − C) \Z−C L = (Q ∗ U↓B − C) \Y−C L.

3. If (P,Z) ∈ ⊥iFree(L), then P = idU and Z = U = T : the only start cell in iFree(L)[SUT].
4. If (P,Z) ∈ ⊤iFree(L), then Z = TP = T and idT ∈ P \Z L. Since (P,Z) ≈L (Q,Y), we have
idTQ

∼= idT ∈ Q \Z L, and Z = Y = TQ. Thus, (Y,Z) ∈ ⊤iFree(L). ⊓⊔

We may thus define the iHDA iMN(L) as the quotient of iFree(L) by ≈L:

iMN(L)[SUT] = iFree(L)[SUT]/≈L,

⊥iMN(L) = {⟨(P,Z)⟩ | (P,Z) ∈ ⊥iFree(L)}, ⊤iMN(L) = {⟨(P,Z)⟩ | (P,Z) ∈ ⊤iFree(L)}.

Remark 8.9. If all ipomsets in L have empty interfaces, then iMN(L)[SUT] = ∅ unless S = T = ∅
(cf. Example 8.7). Further, iMN(L)[∅U∅] = ess(MN(L))[U], so both constructions effectively coin-
cide. We will see below that this is not the case if L contains ipomsets with non-empty interfaces.

252 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

8.4. Examples

Cells of iHDAs iMN(L) correspond to equivalence classes of pairs (P,Z) for Z ⊆ P . For greater
clarity, in the examples below we label a cell ⟨(P,Z)⟩ only by the ipomset P but mark target events
belonging to Z by asterisks instead of bullets: for example (a•, {a}) is written as a∗ and (a•, ∅) as a•.

Example 8.10. Let L = {•a•} ∪ {•aana• | n ≥ 0}. Then iMN(L) is the iHDA from Example 7.2,
and

e1 = •a∗ = ⟨(•a•, a)⟩, e2 = •a• = ⟨(•a•, ∅)⟩, e3 = {(ana•, ∅) | n ≥ 0},
e4 = {(ana•, a) | n ≥ 0}, x = {(•aan, ∅) | n ≥ 0}.

Example 8.11. For the language L = {[ab•]}↓∪ {ab} = {[ab•] , ab•, ab} of Example 8.5, iMN(L) and
MN(L) are as follows:

ε⊥ a aba•

b∗

ab•

[ab∗] ≈L ab∗[a•b∗]
⊤

⊤

iMN(L) :

ε⊥ a

y∅ y∅

aba•

b•

ab•

ya•

[ab•][a•b•]
⊤

⊤ ⊤

MN(L) :

Note that [ab∗] = ([ab•] , {b}) ≈L (ab•, {b}) = ab∗, but [ab•] ̸≈L ab•: the relation ≈L on cells of
iFree(L) is finer than the strong equivalence ≈L on ipomsets used in the construction of MN(L) in
Section 5.1.

Example 8.12. Let L = {ab, [a•b•]}. Then iMN(L) is the same as iFree(L) and looks as follows:

ε⊥

a ab
⊤

a∗

b∗ [a∗b∗]
⊤

a•

ab•

Example 8.13. Let L = {•a•}∪{[•aa•b]n | n ≥ 1}↓ be the language of Example 5.23, then iMN(L) is
displayed in Figure 10. Blue arrows marked e are identified, as well as their corresponding endpoints.
We have e = ⟨[•ab•]⟩ = ⟨ab•⟩ and ev(e) = ∅b∅.

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 253

•a

[•ab]

•aa

•a

[•ab] b [•ab]

•a•

⊥
•aa•

[•a•b]

e

[•aa•b]

[•aa•bb]

⊤

[•aa•b •]

e[•ab] b•

•aa∗

[•aa∗b]

[•a•b•] [•aa•b •]

[•aa•bb•] [•a∗b •]

⊥
⊤•a∗

Figure 10: iMN(L) for L = {•a•} ∪ {[•aa•b]n | n ≥ 1}↓, see Example 8.13.

8.5. iMN(L) recognises L

For a cell x ∈ iMN(L) denote x \L := P \Z L for any (P,Z) ∈ x. This clearly does not depend on
the choice of a representative.

Lemma 8.14. Assume that x ∈ iMN(L)[SUT], A ⊆ U − S, B ⊆ U − T . Then

1. Q ∈ x \L =⇒ A↑U ∗Q ∈ δ0A(x) \L,

2. U↓B ∗Q ∈ x \L ⇐⇒ Q ∈ δ1B(x) \L.

Proof:
Fix (P,Z) ∈ x. Recall that (SQ, SQ, SQ ∩ TQ) ∼= UUZ for every Q ∈ x \L. For the first part,

Q ∈ x \L ⇐⇒ Q ∈ P \Z L ⇐⇒ PQ ∈ L

=⇒ (P −A) ∗ A↑U ∗Q ∈ L (Lem. 5.1 & 5.10)

⇐⇒ A↑U ∗Q ∈ (P −A) \Z−A L

⇐⇒ A↑U ∗Q ∈ δ0A(x) \L.

For the second part of the lemma,

Q ∈ δ1B(x) \L ⇐⇒ Q ∈ (P ∗ U↓B) \Z L ⇐⇒ P ∗ U↓B ∗Q ∈ L

⇐⇒ U↓B ∗Q ∈ P \Z L ⇐⇒ U↓B ∗Q ∈ x \L. ⊓⊔

Lemma 8.15. If α ∈ Path(iMN(L))⊥ and tgt(α) ∈ iMN(L)[SUT], then tgt(α) \L ⊆ ev(α) \T L.

Proof:
Induction on the length of the path α. If α = (x) for x = ⟨(idU , T)⟩, then

x \L = (idU) \T L = ev(α) \T L.

254 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

If α = β ∗ (δ0A(x) ↗A x) for x ∈ iMN(L)[SUT] and A ⊆ U − S, then ev(α) = ev(β) ∗ A↑U and

Q ∈ x \L Lem. 8.14
=⇒ A↑U ∗Q ∈ δ0A(x) \L

ind.
=⇒ A↑U ∗Q ∈ ev(β) \T−A L ⇐⇒ Q ∈ ev(α) \T L.

If α = β ∗ (x ↘B δ1B(x)), then ev(α) = ev(β) ∗ U↓B and

Q ∈ δ1B(x) \L
Lem. 8.14⇐⇒ U↓B ∗Q ∈ x \L ind.

=⇒↓UB ∗Q ∈ ev(β) \T L ⇐⇒ Q ∈ ev(α) \T L.
⊓⊔

Example 8.16. Let L = {[ab]}↓ ∪ {baa, cda, cdaa}, then iMN(L) is as follows:

ε

a

b

[ab]

c

baa•

b•

[a•b]

[ab•]

c• cd•

ba•

baa•

[a•b•]

⊤

⊤

⊥

Note that there are two paths recognising cda. One of them ends at [ab], yet there is no P such that
cda ⊑ P and P ≈L [ab]. This explains why Lemma 8.15 cannot be strengthened.

Lemma 8.17. Let x ∈ iMN(L)[SUT]. Then x ∈ ⊤iMN(L) if and only if idT ∈ x \L.

Proof:
We have x ∈ ⊤iMN(L) if and only if there exists an ipomset P ∈ L such that x = ⟨(P, TP)⟩ and
TP

∼= U = T . But P ∈ L if and only if idT ∈ P \T L = x \L. ⊓⊔

Proposition 8.18. Lang(iMN(L)) = L.

Proof:
The quotient map iFree(L) → iMN(L) is an iHDA-map, hence it induces an inclusion of languages.
By Lemma 8.4, L = Lang(iFree(L)) ⊆ iMN(L).

For the other direction, let α be an accepting path in iMN(L). Since tgt(α) ∈ iMN(L)[SUU] is
an accept cell, there exists Q ∈ L such that tgt(α) = ⟨(Q,TQ)⟩ with TQ

∼= U . Thus, by Lemma
8.17, idU ∈ Q \U L = tgt(α) \L. By Lemma 8.15, idU ∈ tgt(α) \L ⊆ ev(α) \U L, which implies
ev(α) ∈ L. This proves Lang(iMN(L)) ⊆ L. ⊓⊔

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 255

9. Determinism in iHDAs

The notion of determinism for iHDAs is different from the one for HDAs, given that we do not have
to restrict to essential cells. Yet we will show that languages recognised by deterministic HDAs and
deterministic iHDAs are the same.

Definition 9.1. An iHDA X is deterministic if

1. for every UUT ∈ I□ there is at most one start cell in X[UUT], and

2. for every SUT ∈ I□, A ⊆ U − S and x ∈ X[(S,U − A, T − A)], there is at most one cell
y ∈ X[SUT] such that x = δ0A(y).

Compared to deterministic HDAs, we now allow one start cell for every pair U ⊇ T of source
interface and target interface. That is because the information of which events may be terminated in
an accepting path is already contained in the target interface of its source cell, cf. Lemma 7.5.

Lemma 9.2. If HDA X is deterministic, then the iHDA ess(Res(X)) is also deterministic.

Proof:
The first condition is clear. To prove the second, fix SUT ∈ I□, A ⊆ U − S and (x;S, T − A) ∈
ess(Res(X))[(S,U −A, T −A)]. There is at most one essential y ∈ X[U] such that δ0A(y) = x.

Let (z;S, T) ∈ ess(Res(X))[SUT] such that δ0A(z;S, T) = (x, S, T −A). By definition, δ0A(z) =
x, and by Lemma 7.7 we obtain that z is essential; as a consequence, y = z. ⊓⊔

From Lemmas 7.8 and 9.2 we conclude:

Corollary 9.3. If L is recognised by a deterministic HDA, then it is recognised by a deterministic
iHDA.

The following two lemmas provide analogues to the unambiguity Lemma 6.8 for deterministic
HDAs.

Lemma 9.4. Let X be a deterministic iHDA and α, β ∈ Path(X)⊤⊥. If ev(α) = ev(β), then α ≃ β.

Proof:
Denote P = ev(α) = ev(β). Without loss of generality we may assume that α = α1 ∗ · · · ∗ αn and
β = β1 ∗ · · · ∗ βm are sparse. We show that n = m and αk = βk for all k which implies the claim.

Both P = ev(α1) ∗ · · · ∗ ev(αn) and P = ev(β1) ∗ · · · ∗ ev(βm) are sparse step decomposition of
P . Proposition 3.5 implies that m = n and ev(αk) = ev(βk) for every k.

Denote x0 = src(α) = src(α1), xk = tgt(αk) = src(αk+1), xn = tgt(α) = tgt(αn) and
y0 = src(β) = src(β1), yk = tgt(βk) = src(βk+1), yn = tgt(β) = tgt(βn). Fix k and denote
iev(xk) = (S,U, T). By Lemma 7.5.1, (S,U) is determined by Q = ev(α1 ∗ · · · ∗ αk), and by
Lemma 7.5.2, (U, T) is determined by R = ev(αk+1 ∗ · · · ∗ αn). Similarly, iev(yk) is determined by
ev(β1 ∗ · · · ∗ βk) and ev(βk+1 ∗ · · · ∗ βn). As a consequence, iev(xk) = iev(yk) for all k.

256 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

We show by induction that xk = yk. Since X is deterministic, iev(x0) = iev(y0) implies x0 = y0.
For k > 0 assume that xk−1 = yk−1. If ev(αk) = ev(βk) = A↑U is a starter, then conditions
iev(xk) = iev(yk) and δ0A(xk) = δ0A(yk) imply xk = yk by determinism of X . If ev(αk) = ev(βk) =
U↓B is a terminator, then xk = δ1B(xk−1) = δ1B(yk−1) = yk. ⊓⊔

Lemma 9.5. Let X be a deterministic iHDA and α, β ∈ Path(X)⊥. If ev(α) = ev(β) and iev(tgt(α)) =
iev(tgt(β)), then α ≃ β.

Proof:
Again, we assume that α and β are sparse. Denote x = tgt(α), y = tgt(β), SUT = iev(x) = iev(y).
Modify X by adding accept cells

x′ = δ1U−T (x), y
′ = δ1U−T (y) ∈ X[SUU].

The paths α′ = α ∗ (x ↘U−T x′) and β′ = β ∗ (y ↘U−T y′) are accepting, and ev(α′) = ev(β′) =
ev(α) ∗ U↓U−T . Let α′′ and β′′ be sparse paths that are equivalent to α′ and β′, respectively. By
Lemma 9.4, α′′ = β′′ and thus both α′ and β′ are refinements of γ := α′′ = β′′. If U − T = ∅, then
α = β = γ. Otherwise, decompose γ = γ′ ∗ ω, where ω is the last step of γ. Then ω is a downstep
(z ↘B x′) such that U − T ⊆ B and α = β = γ′ ∗ (z ↘B−T δ1B−T (z)). ⊓⊔

Lemma 9.6. Let X be a deterministic iHDA and α, β ∈ Path(X)⊥. If ev(α) ⊑ ev(β) and iev(tgt(α)) =
iev(tgt(β)), then tgt(α) = tgt(β).

Proof:
By Lemma 7.11 there exists α′ ∈ Path(X)

tgt(β)
src(β) such that ev(α′) = ev(α). From Lemma 9.5 follows

that tgt(α) = tgt(α′) = tgt(β). ⊓⊔

Proposition 9.7. If L is recognised by a deterministic iHDA, then L is swap-invariant.

Proof:
Like the proof of Proposition 6.10, swapping out the applications of Lemma 4.13 with Lemma 7.12
and the one of Lemma 6.9 with Lemma 9.6. ⊓⊔

Together with Theorem 6.4, Corollary 9.3 and Proposition 9.7 now imply that a language is recog-
nised by a deterministic iHDA if and only if it is swap-invariant.

10. Conclusion and further work

We have proven a Myhill-Nerode type theorem for higher-dimensional automata (HDAs), stating that
a language is regular if and only if it has finite prefix quotient. We have also introduced deterministic
HDAs and shown that not all finite HDAs are determinizable. Lastly, we have seen that both notions
are somewhat simpler when using higher-dimensional automata with interfaces (iHDAs), given that
no restrictions to essential parts are necessary.

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 257

HDAs are arguably simpler than iHDAs, and also somewhat more standard as a model for concur-
rent computations. On the other hand, we have seen in [15, 16] and now also here that because of the
structural axioms of HDAs, certain concepts are easier to state and prove for iHDAs than for HDAs.
This same observation has led to the introduction of partial HDAs in [24, 25], of which iHDAs are a
more restricted event-based version. In particular, it appears that the trees of Dubut’s [25] are related
to some of our iHDA constructions developed here.

Our Myhill-Nerode theorem provides a language-internal criterion for whether a language is reg-
ular, and we have developed a similar one to distinguish deterministic languages. Another important
aspect is the decidability of these questions, together with other standard problems such as member-
ship or language inclusion. Together with coauthors A. Amrane and H. Bazille, we show in [23] that
these are decidable.

Given that we have shown that not all regular languages are deterministic, one might ask for the
approximation of deterministic languages by other, less restrictive notions. It is shown in [23] that
non-deterministic HDAs may exhibit unbounded ambiguity, but other approaches such as for example
history-determinism [26] or residuality [27] remain to be explored. It appears that our Myhill-Nerode
HDAs may be residual in some sense, which would open connections to for example automata learning
[28–30].

Acknowledgement

We are indebted to members and associates of the (i)Po(m)set Project1 for numerous discussions
regarding the subjects of this paper; any errors, however, are exclusively ours.

References
[1] Pratt VR. Modeling Concurrency with Geometry. In: POPL. ACM Press, New York City, 1991 pp.

311–322.

[2] van Glabbeek RJ. Bisimulations for Higher Dimensional Automata. Email message, 1991. http://
theory.stanford.edu/~rvg/hda.

[3] van Glabbeek RJ. On the Expressiveness of Higher Dimensional Automata. Theoretical Computer Sci-
ence, 2006. 356(3):265–290. See also [31].

[4] Petri CA. Kommunikation mit Automaten. Number 2 in Schriften des IIM. Institut für Instrumentelle
Mathematik, Bonn, 1962.

[5] Nielsen M, Plotkin GD, Winskel G. Petri Nets, Event Structures and Domains, Part I. Theoretical Com-
puter Science, 1981. 13:85–108.

[6] van Glabbeek RJ, Plotkin GD. Configuration Structures. In: LICS. IEEE Computer Society, 1995 pp.
199–209. doi:10.1109/LICS.1995.523257. URL http://doi.ieeecomputersociety.org/10.1109/
LICS.1995.523257.

[7] van Glabbeek RJ, Plotkin GD. Configuration Structures, Event Structures and Petri Nets. Theoretical
Computer Science, 2009. 410(41):4111–4159. doi:10.1016/j.tcs.2009.06.014. URL http://dx.doi.
org/10.1016/j.tcs.2009.06.014.

1https://ulifahrenberg.github.io/pomsetproject/

http://theory.stanford.edu/~rvg/hda
http://theory.stanford.edu/~rvg/hda
http://doi.ieeecomputersociety.org/10.1109/LICS.1995.523257
http://doi.ieeecomputersociety.org/10.1109/LICS.1995.523257
http://dx.doi.org/10.1016/j.tcs.2009.06.014
http://dx.doi.org/10.1016/j.tcs.2009.06.014
https://ulifahrenberg.github.io/pomsetproject/

258 U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata

[8] Bednarczyk MA. Categories of Asynchronous Systems. Ph.D. thesis, University of Sussex, UK, 1987.

[9] Shields MW. Concurrent Machines. Comput. J., 1985. 28(5):449–465.

[10] Pratt VR. Chu Spaces and their Interpretation as Concurrent Objects. In: Computer Science Today: Recent
Trends and Developments, volume 1000 of Lecture Notes in Computer Science, pp. 392–405. Springer,
1995.

[11] van Glabbeek RJ, Goltz U. Refinement of actions and equivalence notions for concurrent systems. Acta
Informatica, 2001. 37(4/5):229–327.

[12] Pratt VR. Transition And Cancellation In Concurrency And Branching Time. Mathematical Structures in
Computer Science, 2003. 13(4):485–529.

[13] Johansen C. ST-Structures. Journal of Logic and Algebraic Methods in Programming, 2015. 85(6):1201–
1233. doi:\url{10.1016/j.jlamp.2015.10.009}. https://arxiv.org/abs/1406.0641.

[14] Fahrenberg U, Johansen C, Struth G, Ziemiański K. Languages of Higher-Dimensional Automata. Math-
ematical Structures in Computer Science, 2021. 31(5):575–613. doi:10.1017/S0960129521000293.
https://arxiv.org/abs/2103.07557, URL https://doi.org/10.1017/S0960129521000293.

[15] Fahrenberg U, Johansen C, Struth G, Ziemiański K. A Kleene Theorem for Higher-Dimensional Au-
tomata. In: Klin B, Lasota S, Muscholl A (eds.), CONCUR, volume 243 of Leibniz International Pro-
ceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-
246-4, 2022 pp. 29:1–29:18. doi:10.4230/LIPIcs.CONCUR.2022.29. URL https://drops.dagstuhl.
de/opus/volltexte/2022/17092.

[16] Fahrenberg U, Johansen C, Struth G, Ziemiański K. Kleene Theorem for Higher-Dimensional Automata.
CoRR, 2022. abs/2202.03791. https://arxiv.org/abs/2202.03791. Long version of [15], 2202.
03791, URL https://arxiv.org/abs/2202.03791.

[17] Fahrenberg U, Ziemiański K. A Myhill-Nerode Theorem for Higher-Dimensional Automata. In:
Gomes L, Lorenz R (eds.), PETRI NETS, volume 13929 of Lecture Notes in Computer Science.
Springer, 2023 pp. 167–188. doi:10.1007/978-3-031-33620-1_9. URL https://doi.org/10.1007/
978-3-031-33620-1_9.

[18] Fishburn PC. Interval Orders and Interval Graphs: A Study of Partially Ordered Sets. Wiley, 1985. ISBN
9780471812845.

[19] Grabowski J. On partial languages. Fundamentae Informatica, 1981. 4(2):427.

[20] Fahrenberg U, Johansen C, Struth G, Ziemiański K. Posets With Interfaces as a Model for Concurrency.
Information and Computation, 2022. 285(B):104914. doi:10.1016/j.ic.2022.104914. https://arxiv.
org/abs/2106.10895, URL https://doi.org/10.1016/j.ic.2022.104914.

[21] Janicki R, Koutny M. Structure of Concurrency. Theoretical Computer Science, 1993. 112(1):5–52.
doi:10.1016/0304-3975(93)90238-O. URL https://doi.org/10.1016/0304-3975(93)90238-O.

[22] Janicki R, Koutny M. Operational Semantics, Interval Orders and Sequences of Antichains. Fundamentae
Informatica, 2019. 169(1-2):31–55. doi:10.3233/FI-2019-1838. URL https://doi.org/10.3233/
FI-2019-1838.

[23] Amrane A, Bazille H, Fahrenberg U, Ziemiański K. Closure and Decision Properties for Higher-
Dimensional Automata. In: Ábrahám E, Dubslaff C, Tarifa SLT (eds.), ICTAC, volume 14446 of Lecture
Notes in Computer Science. Springer, 2023 pp. 295–312. doi:10.1007/978-3-031-47963-2_18. https:
//arxiv.org/abs/2305.02873, URL https://doi.org/10.1007/978-3-031-47963-2_18.

https://arxiv.org/abs/1406.0641
https://arxiv.org/abs/2103.07557
https://doi.org/10.1017/S0960129521000293
https://drops.dagstuhl.de/opus/volltexte/2022/17092
https://drops.dagstuhl.de/opus/volltexte/2022/17092
https://arxiv.org/abs/2202.03791
2202.03791
2202.03791
https://arxiv.org/abs/2202.03791
https://doi.org/10.1007/978-3-031-33620-1_9
https://doi.org/10.1007/978-3-031-33620-1_9
https://arxiv.org/abs/2106.10895
https://arxiv.org/abs/2106.10895
https://doi.org/10.1016/j.ic.2022.104914
https://doi.org/10.1016/0304-3975(93)90238-O
https://doi.org/10.3233/FI-2019-1838
https://doi.org/10.3233/FI-2019-1838
https://arxiv.org/abs/2305.02873
https://arxiv.org/abs/2305.02873
https://doi.org/10.1007/978-3-031-47963-2_18

U. Fahrenberg and K. Ziemiański / Myhill-Nerode Theorem for Higher-Dimensional Automata 259

[24] Fahrenberg U, Legay A. Partial Higher-dimensional Automata. In: Moss LS, Sobocinski P (eds.),
CALCO, volume 35 of Leibniz International Proceedings in Informatics. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik. ISBN 978-3-939897-84-2, 2015 pp. 101–115. doi:10.4230/LIPIcs.CALCO.
2015.101. URL http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.101.

[25] Dubut J. Trees in Partial Higher Dimensional Automata. In: Bojańczyk M, Simpson A (eds.), FOSSACS,
volume 11425 of Lecture Notes in Computer Science. Springer. ISBN 978-3-030-17126-1, 2019 pp. 224–
241. doi:10.1007/978-3-030-17127-8_13. URL https://doi.org/10.1007/978-3-030-17127-8_
13.

[26] Boker U, Lehtinen K. When a Little Nondeterminism Goes a Long Way: An Introduction to History-
Determinism. ACM SIGLOG News, 2023. 10(1):24–51. doi:10.1145/3584676.3584682. URL https:
//doi.org/10.1145/3584676.3584682.

[27] Denis F, Lemay A, Terlutte A. Residual Finite State Automata. In: Ferreira A, Reichel H (eds.),
STACS, volume 2010 of Lecture Notes in Computer Science. Springer, 2001 pp. 144–157. doi:
10.1007/3-540-44693-1_13. URL https://doi.org/10.1007/3-540-44693-1_13.

[28] Angluin D. Learning Regular Sets from Queries and Counterexamples. Information and Computa-
tion, 1987. 75(2):87–106. doi:10.1016/0890-5401(87)90052-6. URL https://doi.org/10.1016/
0890-5401(87)90052-6.

[29] Bollig B, Habermehl P, Kern C, Leucker M. Angluin-Style Learning of NFA. In: Boutilier C (ed.), IJCAI.
2009 pp. 1004–1009. URL http://ijcai.org/Proceedings/09/Papers/170.pdf.

[30] van Heerdt G, Kappé T, Rot J, Silva A. Learning Pomset Automata. In: Kiefer S, Tasson C (eds.),
FOSSACS, volume 12650 of Lecture Notes in Computer Science. Springer, 2021 pp. 510–530. doi:10.
1007/978-3-030-71995-1_26. URL https://doi.org/10.1007/978-3-030-71995-1_26.

[31] van Glabbeek RJ. Erratum to “On the Expressiveness of Higher Dimensional Automata”. Theoretical
Computer Science, 2006. 368(1-2):168–194.

http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.101
https://doi.org/10.1007/978-3-030-17127-8_13
https://doi.org/10.1007/978-3-030-17127-8_13
https://doi.org/10.1145/3584676.3584682
https://doi.org/10.1145/3584676.3584682
https://doi.org/10.1007/3-540-44693-1_13
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
http://ijcai.org/Proceedings/09/Papers/170.pdf
https://doi.org/10.1007/978-3-030-71995-1_26

	Introduction
	Pomsets with interfaces
	Step decompositions
	Higher-dimensional automata and their languages
	Precubical sets and HDAs
	Paths and their labels
	Languages of HDAs
	Track objects

	Myhill-Nerode theorem
	HDA construction
	MN(L) is well-defined
	Paths and essential cells of MN(L)
	MN(L) recognises L
	Finiteness of MN(L)

	Determinism
	Higher-dimensional automata with interfaces
	Iprecubical sets and iHDAs
	Paths and languages
	HDAs vs. iHDAs
	Essential iHDAs

	Myhill-Nerode construction for iHDAs
	iFree
	iFree(L)
	iMN(L)
	Examples
	iMN(L) recognises L

	Determinism in iHDAs
	Conclusion and further work

