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For a class of safe high-level Petri nets, we generalize the well-known algorithm by Esparza et
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Introduction

Petri nets [2], also called P/T (for Place/Transition) Petri nets or low-level Petri nets, are a well-
established formalism for describing distributed systems. High-level Petri nets [3] (also called colored
Petri nets) are a concise representation of P/T Petri nets, allowing the places to carry tokens of different
colors. Every high-level Petri net represents a P/T Petri net, here called its expansion1, where the
process of constructing this P/T net is called expanding the high-level net.

Unfoldings of P/T Petri nets are introduced by Nielsen et al. in [5]. Engelfriet generalizes this
concept in [6] by introducing the notion of branching processes, and shows that the unfolding of a
net is its maximal branching process. 0n [7], McMillan gives an algorithm to compute a complete
finite prefix of the unfolding of a given Petri net. In a well-known paper [8], Esparza, Römer, and
Vogler improve this algorithm by defining and exploiting a total order on the set of configurations in
the unfolding. We call the improved algorithm the “ERV-algorithm”. It leads to a comparably small
complete finite prefix of the unfolding. In [9], Khomenko and Koutny describe how to construct the
unfolding of the expansion of a high-level Petri net without first expanding it.

High-level representations on the one hand and processes (resp. unfoldings) of P/T Petri nets on
the other, at first glance seem to be conflicting concepts; one being a more concise, the other a more
detailed description of the net(’s behavior). However, in [10], Ehrig et al. define processes of high-level
Petri nets, and in [11], Chatain and Jard define symbolic branching processes and unfoldings of high-
level Petri nets. The work on the latter is built upon in [4] by Chatain and Fabre, where they consider
so-called “puzzle nets”. Based on the construction of a symbolic unfolding, in [12], complete finite
prefixes of safe time Petri nets are constructed, using time constraints associated with timed processes.
In [13], using a simple example, Chatain argues that in general there exists no complete finite prefix
of the symbolic unfolding of a high-level Petri net. However, this is only true for high-level Petri
nets with infinitely many reachable markings such that the number of steps needed to reach them is
unbounded, in which case the same arguments work for P/T Petri nets.

In this paper, we lift the concepts of complete prefixes and adequate orders to the level of symbolic
unfoldings of high-level Petri nets. We consider the class of safe high-level Petri nets (i.e., in all
reachable markings, every place carries at most one token) that have decidable guards and finitely
many reachable markings. This class generalizes safe P/T Petri nets, and we obtain a generalized
version of the ERV-algorithm creating a complete finite prefix of the symbolic unfolding of such a
given high-level Petri net. Our results are a generalization of [8] in the sense that if a P/T Petri net is
viewed as a high-level Petri net, the new definitions of adequate orders and completeness of prefixes on
the symbolic level, as well as the algorithm producing them, all coincide with their P/T counterparts.

We proceed to identify an even more general class of so-called symbolically compact high-level
Petri nets; we drop the assumption of finitely many reachable markings, and instead assume the ex-
istence of a bound on the number of steps needed to reach all reachable markings. In such a case,
the expansion is possibly not finite, and the original ERV-algorithm from [8] therefore not applicable.
We adapt the generalized ERV-algorithm by weakening the cut-off criterion to ensure finiteness of
the resulting prefix. Still, in this cut-off criterion we have to compare infinite sets of markings. We

1The Petri net being represented is commonly referred to as the unfolding of the high-level Petri net in the literature. To
prevent any potential confusion, we opt for the term expansion, as, for instance, in [4].
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overcome this obstacle by symbolically representing these sets, using the decidability of the guards to
decide cut-offs. Finally, we present four new benchmark families for which we report on the results
of applying a prototype implementation of the generalized ERV-algorithm.

Distinctions from the Conference Version

This extended version incorporates numerous textual enhancements compared to our original work
in [1]. Apart from that, we made the following changes and additions:

• The proofs that were excluded in the conference version have now been integrated into the main
body of the paper.

• We substituted the running example with a more intricate and compelling one (Fig. 1 in Sec. 1),
and discuss it in greater detail. Additionally, we present an example for the central concept
“color conflict”.

• Sec. 3 has been completely revised.

• We introduced a new subsection, found in Sec. 4.2, where we demonstrate that the generalized
ERV-algorithm may not terminate when applied to input nets from NSC. This further motivates
the work from the conference version of finding a new cut-off criterion (Sec. 4.3). In another
new subsection, found in Sec. 4.4 we discuss the feasibility of symbolically compact nets and
provide an outlook into the potential development of a symbolic reachability graph.

• We changed the definition of pred⊙ in Sec. 5 (formerly Section 4.3). This allows for a better
presentation of Theorem 5.3, and an easier proof.

• In a new section, found in Sec. 6, we report in Sec. 6.1 on a new prototype implementation of the
generalized ERV-algorithm from Sec. 2.2. In Sec. 6.2 we present four new benchmark families
of high-level Petri nets. In Sec. 6.3 we discuss a property of high-level Petri nets which we call
mode-determinism, leading to an indicator for whether the symbolic unfolding is expected to be
faster to construct than the low-level unfolding. In Sec. 6.4, we present the results of applying
the implementation to the benchmarks from Sec. 6.2.

1. High-level Petri nets & symbolic unfoldings

In [11], symbolic unfoldings for high-level Petri nets are introduced. In Sections 1.1 and 1.2, we recall
the definitions and formalism for high-level Petri nets and symbolic unfoldings from [11].

Multi-sets. For a set X , we call a function A : X → N a multi-set over X . We denote x ∈ A if
A(x) ≥ 1. For two multi-sets A,A′ over the same set X , we write A ≤ A′ iff ∀x ∈ X : A(x) ≤
A′(x), and denote by A+A′ and A−A′ the multi-sets over X given by (A+A′)(x) = A(x)+A′(x)
and (A−A′)(x) = max(A(x)−A′(x), 0). We use the notation {| . . . |} as introduced in [9]: elements in
a multi-set can be listed explicitly as in {|x1, x1, x2 |}, which describes the multi-set A with A(x1) = 2,
A(x2) = 1, and A(x) = 0 for all x ∈ X \ {x1, x2}. A multi-set A is finite if there are finitely many
x ∈ X such that x ∈ A. In such a case, {| f(x) | x ∈ A |}, with f(x) being an object constructed
from x ∈ X , denotes the multi-set A′ such that A′ =

∑
x∈X A(x) · f(x), where the A(x) · y is the

multi-set containing exactly A(x) copies of y.
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1.1. High-level Petri nets

A (high-level) net structure is a tupleN = (Col ,Var , P, T, F, ι) with the following components: Col
and Var are the sets of colors and variables, and P and T are sets of places and transitions such that
the four sets are pairwise disjoint. The flow function is given by F : (P×Var×T )∪(T×Var×P )→
N. For t ∈ T , let Var(t) = {v ∈ Var | ∃p ∈ P : (p, v, t) ∈ F ∨ (t, v, p) ∈ F}. The function ι
maps each t ∈ T to a predicate ι(t) on Var(t), called the guard of t. By this, ι(t) can contain other
(bounded) variables, but all free variables in ι(t) must appear on arcs to or from t. A marking in N is
a multi-set M over P ×Col , describing how often each color c ∈ Col currently resides on each place
p ∈ P . A high-level Petri net N = (N ,M0) is a net structureN together with a nonempty setM0 of
initial markings, where we assume ∀M0,M

′
0 ∈M0 : {| p | (p, c) ∈M0 |} = {| p | (p, c) ∈M ′

0 |}, i.e.,
in all initial markings, the same places are marked with the same number of colors. We often assume
the two sets Col of colors and Var of variables to be fixed. In this case, we denote a high-level net
structure (resp. high-level Petri net) by N = (P, T, F, ι) (resp. N = (P, T, F, ι,M0)).

For two nodes x, y ∈ P ∪ T , we write x → y, if there exists a variable v such that (x, v, y) ∈ F .
The reflexive and irreflexive transitive closures of → are denoted respectively by ≤ and <. For a
transition t ∈ T , we denote by pre (t) = {| (p, v) | (p, v, t) ∈ F |} and post (t) = {| (p, v) | (t, v, p) ∈
F |} the preset and postset of t. A firing mode of t is a mapping σ : Var(t) → Col such that ι(t)
evaluates to true under the substitution given by σ, denoted by ι(t)[σ] ≡ true . We then denote
pre (t, σ) = {| (p, σ(v)) | (p, v) ∈ pre (t) |} and post (t, σ) = {| (p, σ(v)) | (p, v) ∈ post (t) |}. The
set of modes of t is denoted by Σ(t). Note that such a “binding” of variables to colors is always only
local, when firing the respective transition. t can fire in such a mode σ from a marking M if M ≥
pre (t, σ), denoted by M [t, σ⟩. This firing leads to a new marking M ′ = (M−pre (t, σ))+post (t, σ),
which is denoted by M [t, σ⟩M ′. We collect in the set R(N ,M) the markings reachable by firing a
sequence of transitions in N from any marking in a set of markingsM. We say N resp. N is finite
if P , T and F are finite. In this paper, we in particular aim to analyze the behavior of high-level
Petri nets. To avoid any issues concerning undecidability regarding the firing relation, we assume that
guards are expressed in a decidable logic, with Col as its domain of discourse.

Let N = (P, T, F, ι) and N ′ = (P ′, T ′, F ′, ι′) be two net structures with the same sets of colors
and variables. A function h : P ∪ T → P ′ ∪ T ′ is called a (high-level Petri net) homomorphism, if:

i) it maps places and transitions in N into the corresponding sets in N ′, i.e.,
h(P ) ⊆ P ′ and h(T ) ⊆ T ′;

ii) it is “compatible” with the guard, preset, and postset, of transitions, i.e.,
for all t ∈ T we have ι(t) = ι′(h(t)) and pre (h(t)) = {| (h(p), v) | (p, v) ∈ pre (t) |} and
post (h(t)) = {| (h(p), v) | (p, v) ∈ post (t) |}.

For N = (N ,M0) and N ′ = (N ′,M′
0), the homomorphisms between N and N ′ are the homomor-

phisms between N and N ′. Such a homomorphism h is called initial if additionally {{| (h(p), c) |
(p, c) ∈ M0 |} | M0 ∈ M0} = M′

0 holds, i.e., the initial markings in N are mapped to the initial
markings in N ′.
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We define P/T Petri nets as high-level Petri nets with singletons Col = {•} and Var = {v•} for
colors and variables, i.e., in a marking, every place holds a number of tokens •, which is the only
value ever assigned to the variable v• on every arc. The guard of every transition in a P/T Petri net
is true .

a 0 b0

α x > 0 βx > 0

c d
t

y = 3 · x

ε
z, w > 0

x x

x y

x y

z w

Col = N

(a) A safe high-level Petri net N .

a′ b′

⊥

α′ xα′ > 0 β′xβ′ > 0

c′ d′

t′

xt′ = xα′ ∧ yt′ = xβ′ ∧ yt′ = 3 · xt′

ε′

xε′ = xα′ ∧ yε′ = xβ′

∧zε′ , wε′ > 0

c′′ d′′

t′′

xt′′ = zε′ ∧ yt′′ = wε′ ∧ yt′′ = 3 · xt′′

ε′′
xε′′ = zε′ ∧ yε′′ = wε′

∧zε′′ , wε′′ > 0

c′′′ d′′′

t′′′

ε′′′

x y

x y

. . .

...

x x

x y

x y

x y

x y

z w

z w

(b) The symbolic unfolding Υ (N) of the net N in (a).

Figure 1: A safe high-level Petri net N in (a), discussed in Example 1.1, and (a prefix of) the infinite
symbolic unfolding U(N) in (b), discussed in Example 1.3.

Example 1.1. Let Col = {0, . . . ,m} for a fixed m, and Var = {x, y, z, w} be the given sets of colors
and variables. In Figure 1a, the running example N of a high-level Petri net is depicted. Places are
drawn as circles, and transitions as squares. The flow is described by labeled arrows, and the guards
are written next to the respective transition. The set of initial markings is a singletonM0 = {M0}
with M0 = {| (a, 0), (b, 0) |}, which is depicted in the net. In all our examples we view 0 as a “special”
color, in the sense that we employ unlabeled arcs as an abbreviation for arcs labeled with an additional
variable x0, and the guard of the respective transition having an additional term x0 = 0 in its guard.
Thus, we handle 0 as we would the token • in the P/T case.
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From M0, both α and β can fire, taking the color 0 from place a resp. b and placing a color
k ∈ {1, . . . ,m} on place c resp. d when firing in mode {x ← k}. The mode {x ← 0} is for both
transitions excluded by their respective guard. When both α and β fire, the net arrives at a marking
{| (c, k), (d, ℓ) |}. From there, ε can fire arbitrarily often, always replacing the colors k, ℓ currently
residing on c, d by any colors 0 < k′, ℓ′ ≤ m by firing in mode {x ← k, y ← ℓ, z ← k′, w ← ℓ′}.
From every marking {| (c, k), (d, ℓ) |} satisfying ℓ = 3 · k, transition t can fire, ending the execution.

1.2. Symbolic branching processes and unfoldings

A high-level net structure N = (Col ,Var , P, T, F, ι) is called ordinary if there is at most one arc
connecting any two nodes inN , i.e., ∀(x, y) ∈ (P ×T )∪ (T ×P ) :

∑
v∈Var F (x, v, y) ≤ 1. For such

an ordinary net structure, analogously to the well-known low-level case, two nodes x, y ∈ P ∪ T are
in structural conflict, denoted by x♯y, if ∃p ∈ P ∃t, t′ ∈ T : t ̸= t′ ∧ p→ t∧ p→ t′ ∧ t ≤ x∧ t′ ≤ y.

A high-level occurrence net (defined below) is a high-level Petri net with an ordinary net structure
that satisfies certain properties. In such a net, we call the places conditions and denote them by B.
Transition are called events (denoted by E), and reachable markings are called cuts, where the set of
initial cuts is denoted by K0. The flow relation is denoted by H .

The properties i) – iii) in the definition below are exactly the same as in the low-level case and
concern solely the net structure. Property iv) generalizes the corresponding requirement of low-level
occurrence nets to the current situation, in which, just as in the low-level case, every condition has at
most one event in its preset, and that those conditions having an empty preset constitute the initial cut.
Case iv.a) describes the conditions that initially hold a color, at the “top” of the net. Case iv.b) on the
other hand describes the conditions “deeper” in the net, which initially do not hold a color.

Definition 1.2. (High-level occurrence net [11])
A high-level occurrence net is a high-level Petri net O = (Col ,Var , B,E,H, ι,K0) with an ordinary
net structure (Col ,Var , B,E,H, ι) such that

i) No event is in structural self-conflict, i.e., ∀e ∈ E : ¬(e♯e).
ii) No node is its own causal predecessor, i.e., ∀x ∈ B ∪ E : ¬(x < x).

iii) The relation < is well-founded, i.e., contains no infinite decreasing sequence.

iv) For every b ∈ B, exactly one of the following holds:

a) ∀K0 ∈ K0 :
∑

c∈Col K0(b, c) = 1 and {e | e→ b} = ∅.
In this case we denote pre (b) = (⊥, vb).

b) ∀K0 ∈ K0 :
∑

c∈Col K0(b, c) = 0 and there exists a unique pair (e, v) s.t. (e, v, b) ∈ H .
In this case we denote pre (b) = (e, v)

We denote by B0 = {b ∈ B | ∃K0 ∈ K0 ∃c ∈ Col : (b, c) ∈ K0} the conditions from iv.a)
occupied in all initial cuts. ⊥ can be seen as a “special event” that fires only once to initialize the
net, and produces the initial cuts K0 ∈ K0 by assigning values to the variables vb on “special arcs”
(⊥, vb, b) towards the conditions b ∈ B0.
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In a crucial notation for this paper, we define in case iv.a) e(b) = ⊥, and v(b) = vb, and in
case iv.b) we identify the event e by e(b) and the variable v by v(b). By this notation, ∀b ∈ B :
pre (b) = (e(b),v(b)). We can say that whenever a condition b holds a color c, then it got placed there
by firing e(b) in a mode that binds v(b) to the color c.

In a high-level occurrence net, we define for every event e the predicates loc-pred(e) and pred(e).
The predicate pred(e) is satisfiable iff e is not dead, i.e., there are cuts K0, . . . ,Kn with K0 ∈ K0 and
events e1, . . . , en, s.t. K0[e1⟩ . . . [en⟩Kn[e⟩. This predicate is obtained by building a conjunction over
all local predicates of events e′ with e′ ≤ e, and the predicate of the special event ⊥.

The local predicate of e is, in its turn, a conjunction of two predicates expressing that (i) the guard
of the event e is satisfied, and (ii) that for any (b, v) ∈ pre (e), the value of the variable v coincides
with the color that the event e(b) placed in b. To realize this, the variables v ∈ Var(e) are instantiated
by the index e, so that ve describes the value assigned to v by a mode of e. Having the definition of
e(b) and v(b) from above in mind, for a condition b, we abbreviate ve(b) = v(b)e(b). Formally, we
have

loc-pred(e) = ι(e)[v ← ve]v∈Var(e) ∧
∧

(b,v)∈pre (e)
ve = ve(b)

pred(e) = pred(⊥) ∧
∧

e′≤e

loc-pred(e′),

where pred(⊥) = ∨
K0∈K0

∧
(b,c)∈K0

(vb⊥ = c) symbolically represents the set of initial cuts.

A symbolic branching process of a high-level Petri net N is a pair β = (O, h) with an occurrence
net O = (Col ,Var , B,E,H, ι,K0) in which pred(e) is satisfiable for all e ∈ E, and an initial
homomorphism h : O → N that is injective on events with the same preset, i.e., ∀e, e′ ∈ E :
(pre (e) = pre (e′) ∧ h(e) = h(e′))⇒ e = e′.

For two symbolic branching processes β = (O, h) and β′ = (O′, h′) of a high-level Petri net, β is
a prefix of β′ if there exists an injective initial homomorphism ϕ from O into O′, such that h′ ◦ϕ = h.
In [11] it is stated that for any given high-level Petri net N there exists a unique maximal branching
process (maximal w.r.t. the prefix relation and unique up to isomorphism). This branching process is
called the symbolic unfolding, and denoted by Υ (N) = (U(N), πN ). The value πN (x) is called the
label of a node x in U(N).

Example 1.3. Consider again the high-level Petri net N from Figure 1a. In Figure 1b we see (a prefix
of) the infinite occurrence net U(N) of the symbolic unfolding Υ (N). We depict the prefix with
two instances of each t and ε. Each node in the unfolding is named after the represented place resp.
transition (i.e., its label), equipped with a superscript. We include the “special event” ⊥, that can only
fire once, in the drawing. The guards of events are omitted, since they have the same guards as their
label. Instead, the local predicate of each event is written next to it.

The local predicate of α′, namely xα′ > 0 expresses that the assignment of colors to variables by
a mode of α′ must satisfy the constraint given by the guard of its label α. Analogously for β′. The
same is expressed in the local predicate of t′ by yt′ = 3 · xt′ , coming from the guard y = 3 · x of
πN (t′) = t. Additionally, the first part of the conjunction formalizes that, since (c′, x) ∈ pre (t′), the
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value that a mode of t′ assigns to x must be the same that a mode of e(c′) = α′ assigned to v(c′) = x.
This is expressed as xt′ = xα′ . The second part of the conjunction formalizes the same for y and d′.
The whole predicate of t′ is then given by

pred(t′) = xα′ > 0 ∧ xβ′ > 0 ∧ xt′ = xα′ ∧ yt′ = xβ′ ∧ yt′ = 3 · xt′ .

Since it is satisfiable for example by {xα′ ← 1, xβ′ ← 3, xt′ ← 1, yt′ ← 3} (meaning that t can fire
in mode {x← 1, y ← 3} after α fired in mode {x← 1} and β fired in mode {x← 3}), the node t′ is
not dead and an event in the unfolding.

The blue shading of event ε′′ and t′′ indicates that they are what we later term cut-off events, which
leads to the complete finite prefix being marked by the blue thick lines being obtained by Alg. 1, as
described later. The unfolding itself is infinite.

As we see in the definition of high-level occurrence nets, the notion of causality and structural
conflict are the same as in the low-level case. However, a set of events in an occurrence net can also be
in what we call color conflict, meaning that the conjunction of their predicates is not satisfiable. In a
symbolic branching process, this means that the constraints on the values of the firing modes, coming
from the guards of the transitions, prevent joint occurrence of all events from such a set in any one run
of the net:

The nodes in a set X ⊆ E ∪B are in color conflict if
∧

e∈X∩E
pred(e) ∧

∧

b∈X∩B
pred(e(b))

is not satisfiable. The nodes of X are concurrent if they are not in color conflict, and for each x, x′ ∈
X ′, neither x < x′ , nor x′ < x, nor x♯x′ holds. A set of concurrent conditions is called a co-set.

Note that while a set of nodes is defined to be in structural conflict if and only if two nodes in it are
in structural conflict, the same does not hold for color conflict: it is possible to have a set {x1, x2, x3}
of nodes that are in color conflict, but for which every subset of cardinality 2 is not in color conflict.
We demonstrate this on an example.

Example 1.4. (Color conflict)
In Figure 2a, a high-level Petri net with initial marking {| (p0, 0) |} is depicted. The only enabled
transition is t0, placing the same color σ(x) ∈ Z = {. . . ,−1, 0, 1, 2, . . . } on each of the three places
p1, p2, p3 when fired in mode σ = {x← σ(x)}. From each of these places, the color σ(x) may be
taken by a respective transition. The three transitions t1, t2, t3, however, each have a guard: ι(t1) =
(x ≤ 0), ι(t2) = (x ̸= 0), and ι(t3) = (x ≥ 0). Depending on the mode σ in which t0 fired, always
two of the three transitions are fireable: if σ(x) = 0 then t1 and t3 can both fire (in mode {x ← 0}),
if σ(x) < 0 then t1 and t2 can fire, and if σ(x) > 0 then t2 and t3 can fire.

Since the high-level Petri net in Figure 2a is a high-level occurrence net and all predicates are
satisfiable, it has the same structure as its own symbolic unfolding in Figure 2b. The set {b1, b2, b3} is
a co-set, since the conditions are neither in conflict, nor causally related, and

∧
b∈{b1,b2,b3} pred(e(b)),

which is equivalent to true , is satisfiable, i.e., the conditions are not in color conflict. Consequently,
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p0

0

t0

p1

p2

p3

t1

x ≤ 0

t2

x ̸= 0

t3

x ≥ 0

p′1

p′2

p′3

x

x

x

x x

x x

x x

(a) A high-level Petri net with Col = Z and Var =
{x}.

b0

e0

b1

b2

b3

e1

xe1 ≤ 0 ∧ xe1 = xe0

e2

xe2 ̸= 0 ∧ xe2 = xe0

e3

xe3 ≥ 0 ∧ xe3 = xe0

b′1

b′2

b′3

x

x

x

x x

x x

x x

⊥

(b) The symbolic unfolding of the net in (a), with the
events {e1, e2, e3} in color conflict.

Figure 2: Illustration and example of nodes in color conflict.

the set {e1, e2, e3} is also not in structural conflict, and the events are not causally related. However,
there now is a color conflict between these three events, since

∧
e∈{e1,e2,e3} pred(e) implies xe0 ≤

0 ∧ xe0 ̸= 0 ∧ xe0 ≥ 0, which obviously is not satisfiable. In contrast, each of the sets {ei, ej} with
i, j ∈ {1, 2, 3}, i ̸= j is not in color conflict. This makes each of the sets {b′i, b′j} a co-set, while
{b′1, b′2, b′3} is not a co-set.

Having employed the notions of conflict, we come to one of the most important definitions when
dealing with unfoldings, namely configurations.

Definition 1.5. (Configuration [11])
A (symbolic) configuration is a set of high-level events that is free of structural conflict and color
conflict, and causally closed. The configurations in a symbolic branching process β are collected
in the set C(β).

Recall that B0 are the initial conditions occupied in all initial cuts. For a configuration C, we
define by cut(C) := (B0 ∪ (C →)) \ (→ C) the high-level conditions that are occupied after any
execution of C. Note that cut(C) is a co-set, and that ∅ is a configuration with cut(∅) = B0.

Let e ∈ E be a high-level event. We define the so-called cone configuration [e] := {e′ ∈ E |
e′ ≤ e}. Additionally, we define the sets Vare := {ve | v ∈ Var(e)} and Var⊥ := {vb⊥ | b ∈ B0}
of indexed variables, and for a set E′ ⊆ E ∪ {⊥} we denote VarE′ :=

⋃
e∈E′ Vare. Note that, for

every event e, pred(e) is a predicate over the variables Var [e]∪{⊥}.

1.3. Properties of the symbolic unfolding.

Having recalled the definitions and formal language from [11], we now delve into the novel aspects of
this paper. We state three analogues of well-known properties of the Unfolding of P/T Petri nets for
the symbolic unfolding of high-level nets. These properties are:

(i) The cuts in the unfolding represent precisely the reachable markings in the net.
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(ii) For every transition that can occur in the net, there is an event in the unfolding with correspond-
ing label (and vice versa).

(iii) The unfolding is complete in the sense that for any configuration, the part of the unfolding that
“lies after” that configuration is the unfolding of the original net with the initial markings being
the ones represented by the configurations cut.

The properties are stated in Prop. 1.7, Prop. 1.8, and Prop. 1.9, respectively.
To express these properties, we introduce the notion of instantiations of configurations C, choos-

ing a mode for every event in C without creating color conflicts. This is realized by assigning to each
variable ve ∈ VarC∪{⊥} a value in Col , such that the above defined predicates evaluate to true . For
each e ∈ C, the assignment of values to the indexed variables in Vare corresponds to a mode of e.

Definition 1.6. (Instantiation of Configuration)
For a given configuration C, an instantiation of C is a function θ : VarC∪{⊥} → Col , such that
∀e ∈ C ∪ {⊥} : pred(e)[θ] ≡ true , i.e., it satisfies all predicates in the configuration. The set of
instantiations of a given configurations C is denoted by Θ(C).

Note that, by definition, every configuration C has an instantiation θ. We denote by cut(C, θ) :=
{(b, c) | b ∈ cut(C) ∧ θ(ve(b)) = c} ⊆ B × Col the cut of an “instantiated configuration”,
and by mark(C, θ) := {| (h(b), c) | (b, c) ∈ cut(C, θ) |} its marking. We collect both of these in
K(C) := {cut(C, θ) | θ ∈ Θ(C)} and M(C) := {mark(C, θ) | θ ∈ Θ(C)}. Note that in this
notation, for the empty configuration we have K(∅) = K0 andM(∅) =M0.

Proposition 1.7. Let N be a high-level Petri net and Υ its symbolic unfolding. Then R(N) =
{mark(C, θ) | C ∈ C(Υ ), θ ∈ Θ(C)}.

Proof:
The proof is an easy induction over the number n of transitions/events needed to reach a respective
marking/cut. The induction anchor n = 0 is proved by using that π is an initial homomorphism which
gives M0 = {{| (π(b), c) | (b, c) ∈ K0 |} | K0 ∈ K0} = {{| (π(b), c) | (b, c) ∈ K |} | K ∈
K(∅)} = {mark(∅.θ) | θ ∈ Θ(∅)}. The induction step is realized by Prop. 1.8. ⊓⊔

Proposition 1.8. The symbolic unfolding Υ = (U, π) with events E of a high-level Petri net N =
(P, T, F, ι,M0) satisfies ∀C ∈ C(Υ ) ∀θ ∈ Θ(C) ∀t ∈ T ∀σ ∈ Σ(t) :

mark(C, θ)[t, σ⟩ ⇔ ∃e ∈ E : π(e) = t ∧ cut(C, θ)[e, σ⟩.

Proof:
Let U = (B,E,H, ι,K0), and let C ∈ C(Υ ), θ ∈ Θ(C), t ∈ T, σ ∈ Σ(t).

Let mark(C, θ)[t, σ⟩, which means

pre (t, σ) ≤ mark(C, θ) = {| (π(b), θ(ve(b))) | (b, θ(ve(b))) ∈ cut(C, θ) |},

Let B′ ⊆ cut(C) be a set of conditions s.t.

pre (t, σ) = {| (π(b), θ(ve(b))) | b ∈ B′ |}.
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Aiming a contradiction, assume there is no e ∈ E s.t. π(e) = t and cut(C, θ)[e, σ⟩: we extend Υ by
such an event. We add to E an event ẽ with π(ẽ) = t and ι(ẽ) = ι(t). Choose for every b ∈ B′ a
variable vb ∈ Var s.t.

{| (π(b), vb) | b ∈ B′ |} = {| (p, v) | (p, v) ∈ pre (t) |} (= pre (t)).

We define pre (ẽ) = {| (b, vb) | b ∈ B′ |}. Then we have {| (π(b), v) | (b, v) ∈ pre (ẽ) |} = pre (t) =
pre (π(ẽ)). For every (p, v) ∈ post (t), we then add post (t)(p, v) conditions b with π(b) = p to B
and add (ẽ, v, b) to H . We thus get post (π(ẽ)) = {| (π(b), v) | (b, v) ∈ post (ẽ) |}. We now created a
symbolic branching process bigger than Υ , contradicting that Υ is the symbolic unfolding.

Conversely, assume ∃e ∈ E : π(e) = t ∧ cut(C, θ)[e, σ⟩. Then pre (e, σ) ≤ cut(C, θ), and there-
fore, pre (t) = {| (π(b), v) | (b, v) ∈ pre (e) |} ≤ {| (π(b), v) | (b, v) ∈ cut(C, θ) |} = mark(C, θ),
meaning mark(C, θ)[t, σ⟩. ⊓⊔

Given a configuration C of a symbolic branching process β = (O, h), we define ⇑C as the pair
(O′, h′), where O′ is the unique subnet of O whose set of nodes is {x ∈ B ∪ E | x /∈ (C∪ →
C) ∧ ∀y ∈ C : ¬(y♯x) ∧ (C ∪ {x} is not in color conflict)} with the set K(C) of initial cuts, and h′

is the restriction of h to the nodes of O′. The branching process ⇑C is referred to as the future of C.

Proposition 1.9. If β is a symbolic branching process of (N ,M0) and C is a configuration of β, then
⇑C is a branching process of (N ,M(C)). Moreover, if β is the unfolding of (N ,M0), then ⇑C is
the unfolding of (N ,M(C)).

Proof:
Let ⇑C = (O′, h′) with O′ = (B′, E′, F ′, ι′,K(C)). To show that O′ is an occurrence net, we have
to show i – iv from the Definition 1.2. i – iii are purely structural properties and follow from the fact
that O is an occurrence net. iv is satisfied since ∀b ∈ cut(C) ∀K ∈ K(C) :

∑
c∈Col K(b, c) = 1 and

∀b ∈ B′ \ cut(C) ∀K ∈ K(C) :
∑

c∈Col K(b, c) = 0. h′ is a homomorphism that is injective on
events with the same preset since h is, and that h′ is initial follows by Prop. 1.7 and Prop. 1.8.

When β is the symbolic unfolding of (N ,M0), then the maximality of ⇑C follows from the
maximality of β, making ⇑C the symbolic unfolding of (N ,M(C)). ⊓⊔

2. Finite & complete prefixes of symbolic unfoldings

We combine ideas from [8] (computing small finite and complete prefixes of unfoldings) with results
from [11] (symbolic unfoldings of high-level Petri nets) to define and construct complete finite prefixes
of symbolic unfoldings of high-level Petri nets. We generalize the concepts and the ERV-algorithm
from [8] for safe P/T Petri nets to a class of safe high-level Petri nets, and compare this generalization
to the original. We will see that for P/T nets interpreted as high-level nets, all generalized concepts
(i.e., complete prefixes, adequate orders, cut-off events), and, as a consequence, the result of the
generalized ERV-algorithm, all coincide with their P/T counterparts.

We start by lifting the definition of completeness to the level of symbolic unfoldings. Together
with Prop. 1.7 and Prop. 1.8, this can be seen as a direct translation from the low-level case described,
e.g., in [8].
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Definition 2.1. (Complete prefix)
Let β = (O, h) be a prefix of the symbolic unfolding of a high-level Petri net N , with events E′. Then
β is called complete if for every reachable marking M in N there exists C ∈ C(β) and θ ∈ Θ(C) s.t.

i) M = mark(C, θ), and

ii) ∀t ∈ T ∀σ ∈ Σ(t) : M [t, σ⟩ ⇒ ∃e ∈ E′ : h(e) = t ∧ cut(C, θ)[e, σ⟩.
We now define the class NF of high-level Petri nets for which we generalize the construction of

finite and complete prefixes of the unfolding of safe P/T Petri nets from [8]. We discuss the properties
defining this class, and describe how it generalizes safe P/T nets.

Definition 2.2. (Class NF)
The class NF contains all finite high-level Petri nets N = (P, T, F, ι,M0) satisfying the following
three properties:

(1) The net is safe, i.e., in every reachable marking there lies at most 1 color on every place (formally;
∀M ∈ R(N) ∀p ∈ P :

∑
c∈Col M(p, c) ≤ 1).

(2) Guards are written in a decidable theory with the set Col as its domain of discourse.

(3) The net has finitely many reachable markings (formally; |R(N)| <∞).

We require the safety property (1) for two reasons; on the one hand, to avoid adding to the already
heavy notation. On the other hand, while we think that a generalization to bounded high-level Petri
nets is possible, it comes with all the troubles known from going from safe to k-bounded in the P/T
case in [8], plus the problems arising from the expressive power of the high-level formalism. We
therefore postpone this generalization to future work. Note that, under the safety condition, we can
w.l.o.g. assume N to be ordinary (i.e., ∀x, y ∈ P ∪ T :

∑
v∈Var F (x, v, y) ≤ 1), since transitions

violating this property could never fire. The finiteness of N implies that we can assume Var to be
finite.

While property (2) seems very strong, the goal is an algorithm that generates a complete finite
prefix of the symbolic unfolding of a given high-level Petri net. The definition of symbolic branching
processes requires the predicate of every event added to the prefix to be satisfiable, and the predicates
are build from the guards in the given net. Thus, satisfiability checks in the generation of the prefix
seem for now inevitable. An example for such a theory is Presburger arithmetic [14], which is a first-
order theory of the natural numbers with addition. The guards in the example from Figure 1a are
expressible in Presburger arithmetic.

We need property (3) to ensure that the generalized version of the cut-off criterion from [8] yields
a finite prefix constructed in the generalized ERV-Algorithm. |R(N)| <∞ can be ensured by having
a finite set Col of colors. In Sec. 4, we identify a class of high-level Petri nets with infinitely many
reachable markings for which the algorithm works with an adapted cut-off criterion.

Under these three assumptions we generalize the finite safe P/T Petri nets considered in [8]: every
such P/T net can be seen as a high-level Petri net with Col = {•} and all guards being true , and thus
satisfying the three properties above. Replacing the safety property (1) by a respective “k-bounded
property” would result in a generalization of k-bounded P/T nets. In Sec. 3, we compare the result
of the generalized ERV-algorithm Alg. 1 applied to a high-level net to the result of the original ERV-
algorithm from [8] applied to the high-level net’s expansion.



N. Würdemann et al. / Taking Complete Finite Prefixes To High Level, Symbolically 325

For the rest of the section let N = (P, T, F, ι,M0) ∈ NF with symbolic unfolding Υ = (U, π) =
(B,E,H, ι,K0, π).

2.1. Generalizing adequate orders and cut-off events

We lift the concept of adequate orders on the configurations of an occurrence net to the level of
symbolic unfoldings. A main property of adequate orders is the preservation by finite extensions,
which are defined as for P/T-nets (cp. [8]):

Given a configuration C, we denote C∪D by C⊕D if C∪D is a configuration such that C∩D = ∅.
We say that C⊕D is an extension of C, and that D is a suffix of C. Obviously, for a configuration
C ′, if C ⊊ C ′ then there is a nonempty suffix D of C such that C⊕D = C ′. For a configuration
C⊕D, denote by O(C|D) = (cut(C) ∪ →D ∪ D→, D,H ′,K(C)) the occurrence net “around D”
from cut(C), where H ′ is the restriction of H to the nodes of O(C|D). Note that for every finite
configuration C with an extension C⊕D, we have that D is a configuration of ⇑C.

We abbreviate for a marking M the fact ∃θ ∈ Θ(C⊕D) : mark(C, θ|VarC∪{⊥}) = M by CJMKD
to improve readability. Thus, CJMKD means that the transitions corresponding to the events in D can
fire from M ∈M(C).

Since we consider safe high-level Petri nets, we can relate two cuts representing the same set of
places in the following way:

Definition 2.3. Let C1, C2 ∈ C(Υ ) with π(cut(C1)) = π(cut(C2)). Then there is a unique bijection
ϕ : cut(C1)→ cut(C2) preserving π. We call this mapping ϕC2

C1
.

The now stated Prop. 2.4 is a weak version of the arguments in [8], where the Esparza et al.
infer from the low-level version of Prop. 1.9 that if the cuts of two low-level configurations represent
the same marking in the low-level net, then their futures are isomorphic, and the respective (unique)
isomorphism maps the suffixes of one configuration to the suffixes of the other.

Proposition 2.4. Let C1 and C2 be two finite configurations in Υ , and let D be a suffix of C1. If
there is a marking M ∈ M(C1) ∩ M(C2) s.t. C1JMKD, then there is a unique monomorphism
φ2
1,D : O(C1|D)→ ⇑C2 that satisfies φ2

1,D(cut(C1)) = cut(C2) and preserves the labeling π.
For this monomorphism we have that φ2

1,D(D) is a suffix of C2.

Notation. For functions f : X → Y and f ′ : X ′ → Y with X∩X ′ = ∅we define f⊎f ′ : X∪X ′ → Y
by mapping x to f(x) if x ∈ X and to f ′(x) if x ∈ X ′.

Proof:
By induction over the size k = |D| of the suffix D.

Base case k = 0. This means D = ∅. Then O(C1|D) = (cut(C1), ∅, ∅,K(C1)). Since M ∈
M(C1) ∩M(C2), we know that π(cut(C1)) = π(cut(C2)). Since we only consider safe nets, φ2

1,D

is uniquely realized by ϕC2
C1

: cut(C1)→ cut(C2) from Def. 2.3.
Induction step. Let k > 0. Let θ ∈ Θ(C1⊕D) s.t. mark(C1, θ|VarC1∪{⊥}) = M . Let e ∈

Min(D). Then for σ = [v ← θ(ve)]v∈Var(e) we have M [π(e), σ⟩. Thus, by Prop. 1.8, ∃e′ ∈ E :
π(e′) = π(e) ∧C2⊕{e′} ∈ C(Υ ). This means→e′ ⊆ (B0 ∪ (C2→)) \ (→C2); else, C2⊕{e′} would
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not be a configuration. Thus, e′ is an event in ⇑C2. Since π(e) = π(e′), we get by definition of
homomorphisms that {(π(b), v) | (b, v) ∈ post (e)} = {(π(b), v) | (b, v) ∈ post (e′)}. The net N
is safe, therefore we can define the bijection ϕ1 : (e→) → (e′→) by ϕ1(b) = b′ ⇔ π(b) = π(b′).
We now define φ1 : O(C1|{e}) → ⇑C2 by φ1 = ϕC2

C1
⊎ {e 7→ e′} ⊎ ϕ1, which is a homomorphism

satisfying the claimed conditions.
Let now C ′

1 = C1 ∪ {e}, C ′
2 = C2 ∪ {φ1(e)} and D′ = D \ {e}. We then have for M ′

given by M [π(e), σ⟩M ′ that C ′
1JM

′KD′, M ′ ∈ M(C ′
1) ∩ M(C ′

2), and |D′| < k. Thus, by the
induction hypothesis, we get that there is a unique monomorphism φ2 : O(C ′

1|D′)→ ⇑C ′
2 satisfying

the conditions above. Since φ1 and φ2 coincide on cut(C ′
1), we can now define φ2

1,D by “gluing
together” φ1 and φ2 at cut(C ′

1).
This proves the claim for finite extensions. For an infinite extension, every node also contained in

a finite extension. Due to uniqueness of the homomorphisms, we can define the φ2
1,D in the case of an

infinite D as the union of all homomorphisms of smaller finite extensions. ⊓⊔

Equipped with Prop. 2.4, we can now lift the concept of adequate order to the level of symbolic
branching processes. Compared to [7, 8], the monomorphism φ2

1,D defined above replaces the iso-
morphism I21 between ⇑C1 and ⇑C2 for two low-level configurations C1, C2 representing the same
marking.

Definition 2.5. (Adequate order)
A partial order ≺ on the set of finite configurations of the symbolic unfolding of a high-level Petri net
is an adequate order if:

i) ≺ is well-founded,

ii) C1 ⊂ C2 implies C1 ≺ C2, and

iii) ≺ is preserved by finite extensions in the following way: if C1, C2 are two finite configurations,
and C1⊕D is a finite extension of C1 such that there is a marking M ∈ M(C1) ∩ M(C2)
satisfying C1JMKD, then the monomorphism φ2

1,D from above satisfies C1 ≺ C2 ⇒ C1⊕D ≺
C2⊕φ2

1,D(D).

In the case of a P/T net we have |M(C)| = 1 for every configuration C, and therefore, Def. 2.5
coincides with its P/T version [8]. We could alternatively generalize the P/T case by replacing ‘∃M ∈
M(C1) ∩M(C2) s.t. C1JMKD’ by ‘M(C1) =M(C2)’, and use the isomorphism I21 between ⇑C1

and ⇑C2 to define preservation by finite extension. However, in the upcoming generalization of the
ERV-algorithm from [8], the generalized cut-off criterion exploits property iii) of adequate orders.
Using ‘M(C1) =M(C2)’ would produce an exponential blowup of the generated prefix’s size. This
is circumvented by using ‘∃M ∈M(C1) ∩M(C2) s.t. C1JMKD’, which however leads to obtaining
merely a monomorphism that depends on the considered suffix D, instead of an isomorphism between
the futures. We now show that this monomorphism sufficient:

The upcoming proof that the generalized ERV-algorithm is complete is structurally analogous to
the respective proof in [8]. It uses that, under the conditions of Def. 2.5 iii), we also have C2 ≺ C1 ⇒
C2⊕φ2

1,D(D) ≺ C1⊕D. This result would directly be obtained if φ2
1,D was an isomorphism, as I21 is

in the low-level case. However, a monomorphism is an isomorphism when its codomain is restricted
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to its range. This idea is used in the proof of the following proposition, which states that φ2
1,D indeed

satisfies the above property.

Proposition 2.6. Let ≺ be an adequate order. Under the conditions of Def. 2.5 iii) the monomor-
phism φ2

1,D also satisfies C2 ≺ C1 ⇒ C2⊕φ2
1,D(D) ≺ C1⊕D.

Proof:
Let D′ = φ2

1,D(D). We first show that φ1
2,D′(D′) = D.

Let φ1 : O(C1|D) → φ2
1,D(O(C1|D)) be the isomorphism that acts on O(C1|D) as φ2

1,D does,
and let φ2 : O(C2|D′)→ φ1

2,D′(O(C2|D′)) be the isomorphism that acts on O(C2|D′) as φ1
2,D′ does.

Since φ−1
1 : φ2

1,D(O(C1|D))→ O(C1|D) and O(C1|D) ⊂ ⇑C1, and φ−1
1 (φ2

1,D(D)) = D is a suffix
of C1, we get by Prop. 2.4 that φ−1

1 = φ2, which means φ1
2,D′(D′) = D.

Assume now C2 ≺ C1. From the proof of Prop. 2.4 we see that C2JMKφ2
1,D(D). Thus, we get by

the definition of adequate order and the result above that C2⊕φ2
1,D(D) ≺ C1⊕φ1

2,φ2
1,D(D)

(φ2
1,D(D))

= C1⊕D. ⊓⊔

In [8], Esparza et al. discuss three adequate orders on the configurations of the low-level unfolding.
In particular, they present a total adequate order that uses the Foata normal form of configurations.
Using such a total order in the algorithm limits the size of the resulting finite and complete prefix: it
contains at most |R(N)| non cut-off events. All three adequate orders presented in [8] can be directly
lifted to the configurations of the symbolic unfolding by exchanging every low-level term by its high-
level counterpart. The lifted order using the Foata normal form is still a total order. We include these
discussions in App. A.1.

We now define cut-off events in a symbolic unfolding. In the low-level case [8], e is a cut-off event
if there is another event e′ satisfying [e′] ≺ [e] and mark([e]) = mark([e′]), which ensures that the
future of e needs not be considered further. In the high-level case, we generalize these conditions to
high-level events e. However, we do not require the existence of one other high-level event e′ with
[e′] ≺ [e] andM([e]) =M([e′]). While this would still be a valid cut-off criterion and would lead to
finite and complete prefixes, the upper bound on the size of such a prefix would be exponential in the
number of markings in the original net. Instead, we check whetherM([e]) is contained in the union
of all M([e′]) with [e′] ≺ [e]. This criterion expresses that we have already seen every marking in
M([e]) in the prefix β under construction, and therefore need not consider the future of e any further.
By this, we obtain the same upper bounds as in [8], as discussed later.

Definition 2.7. (Cut-off event)
Let ≺ be an adequate order on the configurations of the symbolic unfolding of a high-level Petri net.
Let β be a prefix of the symbolic unfolding containing a high-level event e. The high-level event e is
a cut-off event in β (w.r.t. ≺) ifM([e]) ⊆ ⋃

[e′]≺[e]M([e′]).

For P/T Petri nets, this definition corresponds to the cut-off events defined in [8], since in this case
|M([e])| = 1 for all events e.
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2.2. The generalized ERV-algorithm

We present the algorithm for constructing a finite and complete prefix of the symbolic unfolding of a
given high-level Petri net. It is a generalization of the ERV-algorithm from [8], and is structurally equal
(and therefore looks very similar). However, the algorithm is contingent upon the previous section’s
work of generalizing adequate orders and cut-off events, which ultimately enables us to adopt this
structure.

A crucial concept of the ERV-algorithm is the notion of “possible extensions”, i.e., the set of
individual events that extend a given prefix of the unfolding. In Def. 2.8, we lift this concept to the
high-level formalism. We do so by isolating the procedure of adding high-level events in the algorithm
from [11] which generates the complete symbolic unfolding of a given high-level Petri net (but does
not terminate if the symbolic unfolding is infinite).

We define the data structures similarly to [8]. There, an event is given by a tuple e = (t,B′) with
h(e) = t ∈ T and pre (e) = B′ ⊆ B, and a condition given by a tuple b = (p, e) with h(b) = p ∈ P
and pre (b) = {e} ⊆ E. The finite and complete prefix is a set of such events and transitions.

In the high-level case, we need more information inside the tuples. A high-level event is given
by a tuple e = (t,X, pred) described by h(e) = t, pre (e) = X ⊆ B × Var , and pred(e) =
pred . Analogously, a high-level condition is given by a tuple b = (p, (e, v), pred), where h(b) = p,
pre (b) = (e, v) ∈ (E ×Var) ∪ ({⊥} × {vb | b ∈ B0}), and pred(e(b)) = pred .

Definition 2.8. (Possible extensions)
Let β = (O, h) be a branching process of a high-level Petri net N . The possible extensions PE (β)
are the set of tuples e = (t,X, pred) where t is a transition of N , and X ⊆ B ×Var satisfying

• {b | (b, v) ∈ X} is a co-set, and pre (t) = {(h(b), v) | (b, v) ∈ X},
• pred = loc-pred ∧

(∧
(b,v)∈X pred(e(b))

)
is satisfiable,

where loc-pred = ι(t)[v ← ve]v∈Var(e) ∧
(∧

(b,v)∈X ve = ve(b)
)
,

• β does not contain (t,X, pred).

Since the notion of co-set in high-level occurrence nets is achieved by the direct translation from low-
level occurrence nets plus the “color conflict freedom”, possible extensions in a prefix β can be found
by searching first for sets of conditions that are not in structural conflict as in the low-level case, and
then checking whether these sets are in color conflict.

Alg. 1 is a generalization of the ERV-Algorithm in [8] for complete finite prefixes of the low-
level unfolding. The structure is taken from there, with the only difference being the special initial
transition ⊥. It takes as input a high-level Petri net N ∈ NF and assumes a given adequate order ≺.

Example 2.9. Consider the running example N from Figure 1a. Alg. 1 produces the complete finite
prefix marked by the blue line in Figure 1b. Cut-off events are shaded blue.

Starting with the initial conditions a′ and b′, the possible extensions are α′ and β′. assuming
[α′] ≺ [β′], we first attach α′ and a condition c′ corresponding to the output place c of α, and then
analogously β′ and the condition d′.

For α′ we haveM([α′]) = {{| (c, n), (b, 0) |} | n ∈ {1, . . . ,m}} and analogously, for β′ we have
M([β′]) = {{| (a, 0), (d, n) |} | n ∈ {1, . . . ,m}}. Since we have not seen these markings before,
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Algorithm 1: Generalization of the ERV-Algorithm from [8] for complete finite prefixes.
Data: High-level Petri net N = (P, T, F, ι,M0) ∈ NF.
Result: A complete finite prefix Fin of the symbolic unfolding of N .
Fin ← {⊥};
pred(⊥)← ∨

M0∈M0

∧
(p,c)∈M0

v
bp
⊥ = c;

foreach p ∈ P0 do
Create a fresh condition bp = (p, (⊥, vbp), pred(⊥));
Fin ← Fin ∪ {b};

end
pe ← PE (Fin);
cut-off ← ∅;
while pe ̸= ∅ do

Pick e = (t,X, pred) from pe such that [e] is minimal w.r.t. ≺;
if [e] ∩ cut-off = ∅ then

Fin ← Fin ∪ {e};
foreach (p, v) ∈ post (t) do

Create a fresh condition b = (p, (e, v), pred);
Fin ← Fin ∪ {b};

end
pe ← PE (Fin);
if e is a cut-off event of Fin then

cut-off ← cut-off ∪{e};
end

else
pe ← pe \ {e}

end
end

neither α′ nor β′ is a cut-off event. Thus, we have the possible extensions t′ and ε′. For t′ we have
M([t′]) = {{| |}}, since no tokens are in the net after firing t. However, we have not seen the empty
marking {| |} before, so formally, t′ is not a cut-off event.

For ε′ we have M([ε′]) = {{| (c, n), (d, n′) |} | n, n′ ∈ {1, . . . ,m}}. Corresponding cuts can
be reached in the prefix constructed so far by concurrently firing α′ and β′. However, no marking
{| (c, n), (d, n′) |} is represented by a cone configuration before ε′, and therefore ε′ does not satisfy
M([ε′]) ⊆ ⋃

[e′]≺[ε′]M([e′]). This means ε′ is not a cut-off event and we have to proceed with the
possible extensions t′′ and ε′′.

SinceM([t′′]) = {{| |}} =M([t′]) with [t′] ≺ [t′′], have that t′′ is a cut-off event. This, however,
has no impact on the prefix since we cannot continue after t′′ anyway. For ε′′ we have M([ε′′]) =
{{| (c, n), (d, n′) |} | n, n′ ∈ {1, . . . ,m}} = M([ε′]) with [ε′] ≺ [ε′′]. This makes ε′′ also a cut-off
event. We therefore have no more possible extensions, and the algorithm terminates. In the figure, this
is indicated by the blue lines.
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We now prove correctness of Alg. 1 analogously to [8], by stating two propositions – one each
to show that the prefix is finite and complete, respectively. The proof structure is also as in [8], but
adapted to the setting of high-level Petri nets and symbolic unfoldings.

Proposition 2.10. After applying Alg. 1 to a high-level Petri net N ∈ NF, the result Fin is finite.

Given an event e, define the depth of e as the length of the longest chain of events e1 < e2 < · · · < e;
the depth of e is denoted by d(e).

Proof:
As in [8], we prove the following results (1) – (3):

(1) For every event e of Fin , d(e) ≤ |R(N)|+ 1,

(2) For every event e of Fin , the sets pre (e) and post (e) are finite, and

(3) For every k ≥ 0, Fin contains only finitely many events e such that d(e) ≤ k.

This works exactly as in [8], with minor adaptations to the generalization of cut-offs in the symbolic
unfolding in (1):

(1) Let n = |R(N)|. Every chain of events e1 < e2 < · · · < en < en+1 in the unfolding contains
an event ei, i > 1, s.t. M([ei]) ⊆

⋃i−1
j=1M([ej ]), since, if every M([ej ]), j = 1, . . . , n,

contains a marking not contained in
⋃j−1

k=1M([ek]), then finally
⋃n

j=1M([ej ]) contains all n
markings. This makes en+1 a cut-off event.

(2) By the construction in the algorithm we see that there is a bijection between post (e) and
post (h(e)), and similarly for pre (e) and pre (h(e)). The result then follows from the finite-
ness of N .

(3) By complete induction on k. The base case, k = 0, is trivial. Let Ek be the set of events of depth
at most k. We prove that if Ek is finite then Ek+1 is finite. By (2) and the induction hypothesis,
post (Ek) is finite. Since {b | ∃v ∈ Var : (b, v) ∈ pre (Ek+1)} ⊆ {b | ∃v ∈ Var : (b, v) ∈
post (Ek)}, we get by property iv in the definition of occurrence nets that Ek+1 is finite.

⊓⊔

Proposition 2.11. After applying Alg. 1 to a high-level Petri net N ∈ NF, the result Fin is complete.

The proof of this proposition also has the same general structure as the respective proof in [8]. How-
ever here we use the generalizations of adequate order, possible extensions, and the cut-off criterion
to symbolic branching processes.

Proof:
We first show that for every reachable marking in N there exists a configuration in Υ satisfying a)
from the definition of complete prefixes, and then show that one of these configurations (a minimal
one) also satisfies b).
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(1) Let M be an arbitrary reachable marking in N . Then by Prop. 1.7, we have that there is a C1 ∈
C(Υ ) s.t. M ∈ M(C1). Let θ1 ∈ Θ(C1) s.t. M = mark(C1.θ1). If C is not a configuration
in Fin , then it contains a cut-off event e1, and so C1 = [e1]⊕D for some set D of events. Let
M1 = mark([e1].θ1|Var [e1]∪{⊥}) ∈ M([e1]). By the definition of cut-off event, there exists an
event e2 with [e2] ≺ [e1] and M1 ∈ M([e2]). Since we have C1JM1KD, we get by Prop. 2.4
that the monomorphism φ1 := φ

[e2]
[e1],D

: O([e1]|D)→ ⇑[e2] exists and that φ1(D) is a suffix of
[e2]. By Prop. 2.6 we know

C2 := [e2]⊕φ1(D) ≺ [e1]⊕D = C1.

Let θ′2 ∈ Θ([e2]) s.t. M1 = mark([e2], θ
′
2). Define now θ2 ∈ Θ(C2) by θ2 = θ′2 ⊎ θ′′2 ,

where θ′′2 : Varφ1(D) → Col is given by θ′′2(vφ1(e)) = θ1(ve). By this construction we get
M = mark(C2, θ2) ∈M(C2).

If C2 is not a configuration of Fin , then we can iterate the procedure and find a configuration C3

such that C3 ≺ C2 and M ∈M(C3). The procedure cannot be iterated infinitely often because
≺ is well-founded. Therefore, it terminates in a configuration of Fin .

(2) Let now C be a minimal configuration w.r.t. ≺ s.t. M ∈ M(C), and let t ∈ T , σ ∈ Σ(t)
s.t. M [t, σ⟩. If C contains some cut-off event, then we can apply the arguments of a) to
conclude that Fin contains a configuration C ′ ≺ C such that M ∈ M(C ′). This con-
tradicts the minimality of C. So C contains no cut-off events. Let θ ∈ Θ(C) s.t. M =
mark(C, θ). Since pre (t.σ) ⊆M , we have that there is a co-set Bt,σ ⊆ cut(C) s.t. pre (t, σ) =
{(h(b), θ(ve(b))) | b ∈ Bt,σ}.

Let now X := {(b, v) | b ∈ Bt,σ, (h(b), v) ∈ pre (t)}. We then have ∀(b, v) ∈ X : σ(v) =
θ(ve(b)).

We now show that

pred := ι(t)[v ← ve]v∈Var(e) ∧
( ∧

(b,v)∈X
ve = ve(b)

)
∧

∧

(b,v)∈X
pred(e(b))

is satisfiable. Let θ′ := θ ⊎ (σ ◦ [ve 7→ v]v∈Var(e)). Then

• ι(t)[v ← ve]v∈Var(e)[θ′] ≡ ι(t)[σ] ≡ true , and
•
(∧

(b,v)∈X ve = ve(b)
)
[θ′] ≡

(∧
(b,v)∈X σ(v) = θ(ve(b))

)
≡ true , and

•
∧

(b,v)∈X pred(e(b))[θ′] ≡ ∧
(b,v)∈X pred(e(b))[θ] ≡ true , since θ ∈ Θ(C).

Thus, pred [θ′] ≡ true . Therefore, e = (t,X, pred) is a possible extension and added in the ex-
ecution of the algorithm. Then we directly have e /∈ C, h(e) = t, and with the same arguments
as in a), we get C ∪ {e} ∈ C(Fin) and θ ⊎ (σ ◦ [ve 7→ v]v∈Var(e)) ∈ Θ(C ∪ {e}), which means
cut(C, θ)[e, σ⟩. Since we chose θ independently of t and σ, this concludes the proof.

⊓⊔
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Notice that by this construction, as described in [8], we get that if ≺ is a total order, then Fin contains
at most |R(N)| non cut-off events. As mentioned in Sec. 2.1, the total adequate order defined in [8]
can be lifted to the configurations in the symbolic unfolding, where it again is total (cp. App. A.1).
Thus, we generalized the possibility to construct such a small complete finite prefix by application of
Alg. 1 with ≺ being a total adequate order.

3. High-level versus P/T expansion

Every high-level Petri net represents a P/T Petri net (in which the places can only carry a number
tokens with color •) with the same behavior, called its expansion. Markings in a P/T Petri net describe
only how many tokens lie on each place. Each transitions only has one possible firing mode that takes
and/or places a fixed number of tokens from resp. onto each connected place.

In this section we state in Lemma 3.2 that the expansion of a finite complete prefix of the unfolding
of a high-level Petri net is a finite and complete prefix of the unfolding of the expanded high-level
Petri net. This means the generalization of complete prefixes is “canonical”, and compatible with the
established low-level concepts. We then compare for our running example the results of

• applying the generalized ERV-algorithm Alg. 1 to obtain a complete finite prefix of the symbolic
unfolding of a given high-level Petri net, and

• first expanding a given high-level Petri net and then applying the ERV-algorithm from [8] for a
complete finite prefix of the (P/T) unfolding.

The procedure of constructing the represented P/T Petri net Exp(N) (called the expansion) of a
high-level Petri net N is well established (cp., e.g., Chapter 2.4 in [3]), and we describe it here only
briefly; the places of Exp(N) are given by P = {p.c | p ∈ P, c ∈ Col}, and its transitions by
T = {t.σ | t ∈ T, σ ∈ Σ(t)}. There is an arc from p.c to t.σ iff (p, c) ∈ pre (t, σ), and analogously
for arcs from transitions to places. Markings in Exp(N) are functions M : P → N, describing how
often the only color • lies on each place p.c. Every such marking corresponds to a marking M in the
high-level net N , with M(p, c) = M(p.c), and a transition t can fire in mode σ from M iff t.σ can
fire from M. Thus, we say that N and Exp(N) have the same behavior. For a finite high-level Petri
net N , the expansion Exp(N) is finite iff Col is finite.

The (low-level) unfolding of a P/T Petri net N is a tuple Υ(N) = (U(N), πN), where U(N) is an
occurrence net, and πN : U(N)→ N is a Petri net homomorphism such that (U(N), πN) is a maximum
branching process of N. Since the definition of (low-level) branching processes and homomorphisms
is firstly well established in the literature, and secondly so similar to their corresponding high-level
definitions, we omit them here and refer the reader for example to [6, 8].

With the notation of low-level unfoldings of P/T nets we can define for a high-level occurrence
net O, the P/T occurrence net ExpO(O) := U(Exp(O)) (i.e., the occurrence net from the unfold-
ing Υ(Exp(O)) = (U(Exp(O)), πExp(O))). We abbreviate πExp(O) by πO. The operator ExpO
therefore maps high-level occurrence nets to occurrence nets (cf. [4]). Let now β = (O, h) be a
symbolic branching process of N . Then we can define the expanded symbolic branching process
ExpO(β) = (ExpO(O), h) of Exp(N) with the homomorphism h : ExpO(O) → Exp(N), defined
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by h(e) = t.σ ⇔ πO(e) = e.σ ∧ h(e) = t and h(b) = p.c ⇔ πO(b) = b.c ∧ h(b) = p for events e
resp. conditions b in ExpO(O). The following diagram serves as an overview:

N O β (O, h)

Exp(O) ⇝

Exp(N) ExpO(O) U(Exp(O)) ExpO(β) (ExpO(O), h)

Exp

h

Exp

ExpO ExpO

=

h

πO

= =

The following result is shown in [4]. It states that, for a high-level Petri net N , the unfolding
of N ’s expansion is isomorphic to the expanded symbolic unfolding of N .

Lemma 3.1. ([4], Sec. 4.1)
Υ(Exp(N)) ≃ ExpO(Υ (N)).

With this result, we state the following:

Lemma 3.2. Let N be a high-level Petri net and β be a prefix of Υ (N). Then β is finite and complete
if and only if ExpO(β) is a finite and complete prefix of Υ(Exp(N)).

The proof uses the results from Prop. 1.7 and Prop. 1.8, since the definition of completeness on the
symbolic level is a direct translation from its P/T analogue.

Proof:
Let β = (O, h) be finite and complete. From Lemma 3.1 we already know that ExpO(O) ⊆
U(Exp(N)). Since ExpO(β) is a branching process of Exp(N), we see that is a prefix of the un-
folding of Exp(N). Also, ExpO(β) is obviously finite since O is a finite high-level occurrence net.

We now prove that ExpO(β) = (ExpO(O), h) is complete. Let M be a reachable marking in
Exp(N). Then the high-level marking M defined by M(p, c) = M(p.c) is reachable in N . Thus,
since β is complete, there is a configuration C ∈ C(β) and an instantiation θ ∈ Θ(C) satisfying
a) and b) from Def. 2.1. This means there is a firing sequence K0[e1, σ1⟩K1 . . . [en, σn⟩Kn with
{e1, . . . , en} = C, σi = θ ◦ [v 7→ vei ]v∈Var(ei), and Kn = cut(C, θ) (meaning M = mark(C, θ) =
{| (h(b), c) | (b, c) ∈ Kn |}). Then, in Exp(O), the marking {| b.c | (b, c) ∈ Kn |} is reachable from
the initial marking {| b.c | (b, c) ∈ K0 |} by the firing sequence (e1.σ1, . . . , en.σn). Thus, there is a
configuration C = {e1, . . . , en} in U(Exp(O)) = ExpO(O) with ∀i : πO(ei) = ei.σi. Then, by the
definition of h, we get markh(C) := {| h(b) | b ∈ cut(C) |} = {|h(b).c | (b, c) ∈ Kn |} = M.

Let now t.σ ∈ T s.t. M[t.σ⟩. Then M [t, σ⟩. Since C, θ satisfy property b) from Def. 2.1, we know
that ∃e ∈ E s.t. e /∈ C, h(e) = t, and C, θ[e, σ⟩. This means, in Exp(β), we have {| b.c | (b, c) ∈
Kn |}[e.σ⟩. Thus, there exists an e in U(Exp(β)) such that C[e⟩ and πO(e) = e.σ, which again means
that h(e) = h(e).σ = t.σ. This proves that ExpO(β) is complete.

The other direction works analogously. ⊓⊔
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We can now compare the two complete finite prefixes resulting from the original ERV-algorithm
from [8] applied to Exp(N) and the generalized ERV-algorithm Alg. 1 applied to N ∈ NF. From
the definition of the generalized cut-off criterion we get that both these prefixes have the same depth.
However, due to the high-level representation, the breadth of the symbolic prefix can be substan-
tially smaller. This is the case for our running example:

a

α

c.1

α

c.m

m events

m conds.

b

β

d.1

β

d.m

m events

m conds.

ε

c.1 d.1

ε

c.1 d.2

ε

c.m d.m

ε

c.m d.m

ε

c.m − 1 d.m
.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

m4 events

2m4 conds.

⊥

m4 (cut-off) events

2m4 conds.

ε ε

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

t.(1, 3) t.(2, 6) t.(⌊m
3
⌋, 3⌊m

3
⌋)

⌊m
3
⌋ events

⌊m
3
⌋ (cut-off) eventst t

Figure 3: The complete finite prefix of Υ(Exp(N)) of the running example N from Figure 1a calcu-
lated by the original ERV-Algorithm.

Example 3.3. Consider again N ∈ NF from Figure 1a with Col = {0, 1, . . . ,m} for a fixed m > 0.
The finite complete prefix of Υ(Exp(N)) is depicted in Fig. 3. Instead of giving each event/condition
a distinct name, we indicated the label of each node inside of it. For events with label ε we even
omitted the mode, since it is derivable from the connected conditions. Cut-off events and their output
conditions are again shaded blue, and the blue line indicates the complete finite prefix resulting from
the original ERV-algorithm.

After firing an instance of α and an instance of β, we arrive at conditions with labels c.k and d.ℓ.
If these satisfy ℓ = k · 3 then we can fire an instance of t, which means we have ⌊m3 ⌋ such events.
Only the first is no cut-off event, since their configurations all represent the same (empty) marking.
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This empty marking is however also the reason why we cannot continue even after the first instance
of t.

For each combination of an output condition of an instance of α (the m instances of c) and an
output condition of an instance of β (the m instances of d), we have m2 possibilities to fire an instance
of ε. The reason for this is that in the high-level net N , the output variables are independent of the
input variables. This leads to m4 many ε-events of depth 2.

All except the first m2 of those are cut-off events. After the non cut-off events, however, we have
to repeat the part from above for the ERV-algorithm to terminate. All in all the complete finite prefix
contains 6m4 +4m+2⌊m3 ⌋+2 nodes for every fixed m in the color class Col = {0, 1, . . . ,m}. The
complete finite prefix of the symbolic unfolding Υ (N) that is shown in Figure 1b, on the other hand
has the same number of nodes for every m.

Generalizing this example to a family of nets gives the following proposition:

Proposition 3.4. For every n ∈ N, there is a family (Nn
m)m∈N>0 of high-level nets in Nn

m ∈ NF such
that every Nn

m has the set of colors Col = {0, . . . ,m} and satisfies that

• the complete finite prefix of Υ (Nn
m) obtained by Alg. 1 has the same number of nodes for

every m,

• the number of nodes in the low-level prefix of Υ(Exp(Nn
m)) obtained by the original ERV-

algorithm is greater than mn.

In particular, the benchmark family Fork And Join, presented in Sec. 6.2.1 satisfies this property.

4. Handling infinitely many reachable markings

Unfoldings of unbounded P/T Petri nets (i.e., with infinitely many markings) have been investigated
in [15, 16], and in [17] concurrent well-structured transition systems with infinite state space are un-
folded. When applying the generalized ERV-algorithm, Alg. 1, to high-level Petri nets with infinitely
many reachable markings (therefore violating (3) from the definition of NF), the proof for finiteness
of the resulting prefix does not hold anymore: the proof of Prop. 2.10, step (1), is a generalization of
the proof of the respective claim in [8] (which uses the pigeonhole principle). It is argued that we can-
not have |R(N)| + 1 consecutive events s.t. their cone configurations each generate a marking in the
net not seen before, and we thus have a cut-off event. When we deal with infinitely many markings,
this argument cannot be made.

In this section, we introduce a class NSC of safe high-level nets, called symbolically compact, that
have possibly infinitely many reachable markings (and therefore an infinite expansion), generalizing
the class NF. We then proceed to make adaptions to Alg. 1 (i.e., to the used cut-off criterion), so that
it generates a finite and complete prefix of the symbolic unfolding for any N ∈ NSC.

The following Lemma precisely describes the finite high-level Petri nets for which a finite and
complete prefix of the symbolic unfolding exists. They are characterized by having a bound on the
number of steps needed to arrive at every reachable marking. For the proof we argue that in the case
of such a bound, the symbolic unfolding up to depth n+ 1 is a finite and complete prefix, and that in
the absence of such a bound no depth of a prefix suffices for it to be complete.
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Lemma 4.1. For a finite high-level Petri net N = (N ,M0) there exists a finite and complete prefix
of Υ (N) if and only if there exists a bound n ∈ N such that every marking inR(N) is reachable from
a marking inM0 by firing at most n transitions.

Proof:
From Prop. 1.7 and Prop. 1.8 we see that for a finite high-level Petri net with such a bound n, the prefix
of the symbolic unfolding containing exactly the events e with d(e) ≤ n + 1 is complete. Finiteness
of this prefix follows from the finiteness of the original net and the definition of homomorphism.

Assume now that no such bound exists, and, for the purpose of contradiction, assume that there is
a finite and complete prefix β of Υ (N). Denote ñ = max{|C| | C ∈ C(β)} <∞. Then there exists
a marking M ∈ R(N) for which we have to fire at least ñ + 1 transitions to reach it. Again from
Prop. 1.7 and Prop. 1.8 it follows that a configuration C with M ∈M(C) must contain at least ñ+ 1
events, contradicting that β is complete. ⊓⊔

4.1. Symbolically compact high-level Petri nets

We use the result of Lemma 4.1 to define the class NSC of high-level nets for which we adapt the
algorithm for constructing finite and complete prefixes of the symbolic unfolding.

Definition 4.2. (Class NSC)
A finite high-level Petri net N is called symbolically compact if it satisfies (1) and (2) from Def. 2.2,
and
(3*) There is a bound n ∈ N on the number of transition firings needed to reach all markings inR(N).
We denote the class containing all symbolically compact high-level Petri nets by NSC.

Note that in the case of a (finite, safe) P/T net, property (3*) is equivalent to (3) (i.e., |R(N)| <
∞). However, this is not true for all high-level nets N : while |R(N)| <∞ still implies (3*) (meaning
NF ⊆ NSC), the reverse implication does not hold, as our running example from Figure 1a demon-
strates when we change the set of colors to Col = N: it then still satisfies (1) and (2), with R(N) =
{{| (a, 0), (b, 0) |}, {| |}} ∪ {{| (c, n), (b, 0) |}, {| (a, 0), (d, n′) |}, {| (c, n), (d, n′) |} | n, n′ ∈ N}. So we
have infinitely many markings that can all be reached by firing at most two transitions, meaning the
net satisfies (3*) and is therefore symbolically compact.

Lemma 4.1 implies that the class NSC of symbolically compact nets contains exactly all high-
level Petri nets satisfying (1) and (2) for which a finite and complete prefix of the symbolic unfolding
exists (independently of whether the number of reachable markings is finite). Since the reachable
markings of a high-level Petri net and its expansion correspond to each other, this observation leads to
an interesting subclass NSC \NF of symbolically compact high-level Petri nets that have infinitely
many reachable markings. For every net N in this subclass

• there exists a finite and complete prefix of Υ (N), but

• there does not exist a finite and complete prefix of Υ (Exp(N)).

In particular, the original ERV-algorithm cannot be applied to Exp(N), since this expansion is an
infinite net.
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An example for such a net is our running example from Figure 1a when we replace the color class
Col = {0, 1, . . . ,m} by Col = N. Much simpler is the following net, also with Col = N:

p 0 t

x

y

Obviously, every reachable marking {| (p, n) |} with n ∈ N can be reached by firing t one time in mode
{x ← 0, y ← n}, so the net is symbolically compact. The expansion of this net however is infinite,
and the original ERV-algorithm does not terminate when applied to it.

4.2. Insufficiency of the cut-off criterion for NSC

Naturally, the question arises whether the generalized ERV-Algorithm, Alg. 1, also yields a finite and
complete prefix of a symbolically compact input net. For many examples (like the simple one above)
this is the case. However, there are symbolically compact high-level Petri nets for which Alg. 1 does
not terminate.

The criterion for nontermination of Alg. 1 is that in the unfolding of the net, there is an infinite
sequence of cone configurations [e1], [e2], . . . with [e1] ≺ [e2] ≺ . . . such that

• ∀i ∈ N>0 : {e1, . . . , ei} ∈ C(Υ ), i.e., (e1, e2, . . . ) is a fireable sequence in the symbolic
unfolding,

• ∀i ∈ N>0 :M([ei]) ̸⊆
⋃

[e′]≺[ei]
M([e′]), i.e., no event ei is a cut-off event.

Note that in the second condition, the e′ in the union are arbitrary events in the unfolding, and not
restricted to the sequence (e1, e2, . . . ). An example for such a net is shown in Figure 4a:

The set of colors is given by Col = N. Initially there is a token 0 in each of the places a and c. The
token on a can cycle between a and b by transitions α and β. Analogously, the other token can cycle
between c and d by γ and δ. Additionally, in the inital marking, there is a color 1 on place p. This
number can be increased by 1 by firing t. Thus, every number n can be placed on p by n − 1 firings
of t. When, however, the two cycling tokens of color 0 are on places b and d, an arbitrary number n
can be placed directly on p by firing ε. The net therefore is symbolically compact.

Examine now the unfolding in Figure 4b. Cut-off events and their output conditions are again
shaded blue. For a cleaner presentation do not write the local predicate next to each event. For the
event ε′ we haveM([ε′]) = {{| (b, 0), (d, 0), (p, n) |} | n ∈ N}. This means by firing no event, only
β′′, only δ′′, or both β′′ and δ′′ from the corresponding cut, we can represent every reachable marking
in the net.

The sequence [t1], [t2], . . . of cone configurations, with the corresponding events shaded orange,
now satisfies the criterion from above: The first condition is obviously satisfied. The sequence of
events corresponds to firing t infinitely often, always increasing the number on p by 1. The cones [ti]
are the only cone configurations where the cuts represent markings with no tokens on the two places
b and d. For all other cones in the unfolding, there is a 0 on b and/or a 0 on d. Thus, no event ti is a
cut-off event. This means if Alg. 1 is applied to the net in Figure 4a it does not terminate, building a
prefix containing every ti with i ∈ N+.
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a 0

α

β

b ε d

γ

δ

c0

1p

t

y z

y y + 1

(a) A symbolically compact net with Col = N.
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...
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...
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...

(b) A prefix of the symbolic unfolding of the net in (a).

Figure 4: A symbolically compact net in (a) where Alg. 1, trying to build a complete finite prefix of
the symbolic unfolding shown in (b), does not terminate.

We have now shown that there are nets in NSC \NF where Alg. 1 does not terminate due to the
insufficient cut-off criterion. A compelling avenue for further research lies in exploring the existence
of subclasses N between NF and NSC (i.e., NF ⊂ N ⊂ NSC) for which the cut-off criterion suffices
and the algorithm terminates.
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4.3. The finite prefix algorithm for symbolically compact nets

As previously discussed, the argument that states the existence of one event in a chain of |R(N)|+ 1
consecutive events, such that every marking represented by its cone configuration is contained in the
union of all markings represented by previous cone configurations, cannot be applied in the case of an
infinite number of reachable markings. Consequently, Alg. 1 may not terminate when applied to a net
in NSC\NF. However, condition (3*) guarantees that every marking reached by a cone configuration
[e] with depth > n can be reached by a configuration C containing no more than n events.

For the algorithm to terminate, we need to adjust the cut-off criterion since we do not know
whether C is also a cone configuration, as demanded in Def. 2.7. Therefore, we define cut-off* events,
that generalize cut-off events. They only require that every marking inM([e]) has been observed in a
setM(C) for any configuration C ≺ [e], rather than just considering cone configurations:

Definition 4.3. (Cut-off* event)
Under the assumptions of Def. 2.7, the high-level event e is a cut-off* event (w.r.t. ≺) if M([e]) ⊆⋃

C≺[e]M(C).

We additionally assume that the used adequate order satisfies |C1| < |C2| ⇒ C1 ≺ C2, so that every
event with depth > n will be a cut-off event. Since all adequate orders discussed in [8] satisfy this this
property (cp. App. A.1), this is a reasonable requirement. This adaption and assumption now lead to:

Theorem 4.4. Assume a given adequate order ≺ to satisfy |C1| < |C2| ⇒ C1 ≺ C2. When replacing
in Alg. 1 the term “cut-off event” by “cut-off* event”, it terminates for any input net N ∈ NSC, and
generates a complete finite prefix of Υ (N).

Proof:
The properties of symbolic unfoldings that we stated in Sec. 1.3 are independent on the class of high-
level nets. Def. 2.3 only uses that the considered net is safe, and so do Prop. 2.4 and Prop. 2.6. We
therefore only have to check that the correctness proof for the algorithm still holds. In the proof of
Prop. 2.10 (Fin is finite), the steps (2) and (3) are independent of the used cut-off criterion. In step (1),
however, it is shown that the depth of events never exceeds |R(N)| + 1. This is not applicable when
|R(N)| =∞, as argued above. Instead we show:

(1*) For every event e of Fin , d(e) ≤ n+1, where n is the bound on the number of transitions needed
to reach all markings inR(N).

In the proof of Prop. 2.11, the cut-off criterion is used to show (by an infinite descent approach), for
any marking M ∈ R(N) the existence of a minimal configuration C ∈ Fin with M ∈ M(C). Due
to the similarity of cut-off and cut-off*, this proof can easily be adapted to work as before:

Assume that at some point during the algorithm, we reach a state (B′, E′, H ′, ι′,K′
0) of the prefix

under construction, such that there occurs a chain of events e1 < e2 < · · · < en+1. We prove that
en+1 must be a cut-off* event. Let M ∈ M([en+1]). Then, by definition of NSC, M can be reached
by firing at most n transitions. Accordingly, from Prop. 1.8, we get that there is a configuration C ∈ Υ
containing at most n events such that M ∈ M(C). As in the proof of Prop. 2.11, we can now follow
that there is a configuration C̃ ∈ C(Υ ) such that M ∈ M(C̃) and C̃ ≺ C, that contains no cut-off
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event and is therefore in Fin . Since |C| ≤ n < n+ 1 ≤ |[en+1]|, we follow C̃ ≺ [en+1]. So we have
that ∀M ∈ M([en+1])∃C̃ ≺ [en+1], which means that en+1 is a cut-off* event. This proves that Fin
is finite.

It remains to show termination. In the case of nets in NF, every object is finite, which, together
with Prop. 2.10, leads to termination of the algorithm. For nets in NSC \NF, however, there is at least
one event e in Fin s.t. |M([e])| =∞. Thus, we have to show that we can check the cut-off* criterion
in finite time. This follows from Cor. 5.4 in the next section, which is dedicated to symbolically
representing markings generated by configurations. ⊓⊔

4.4. Feasibility of symbolically compact nets and cut-off*

To check the cut-off* criterion of an event added to a prefix of the unfolding, we have to compare the
set of markings represented by the cut of the event’s cone configuration to all markings represented
by cuts of smaller configurations. This means that we possibly have to store the whole state space.

This realization gives rise to two questions. Firstly, how do we manage the storage of an infinite
number of markings? This query is addressed in Sec. 5, where we demonstrate how to symbolically
represent the markings represented by a configuration’s cut and how to check the cut-off* criterion
within finite time. The prototype implementation outlined in Sec. 6.1 utilizes these methods for the
NF-case.

The second question that arises asks how the complete finite prefix resulting from the generalized
ERV-algorithm with the cut-off* criterion relates to a reachability graph – both in terms of size and
computation time. However, as symbolically compact nets possibly have an infinite expansion, the
reachability graph can be infinitely broad. Thus, at present this method provides a more viable solution
compared to calculating the infinite reachability graph. However, we give an outlook on how a (finite)
symbolic reachability tree of a symbolically compact net could possibly be constructed.

Outlook: Symbolic Reachability Trees of Symbolically Compact Nets. The idea of a symbolic
reachability tree has been realized for algebraic Petri nets in [18] by Karsten Wolf. However, in
contrast to this work, we think that for the class of symbolically compact nets we can build a symbolic
reachability tree that is complete.

The idea is to gradually extend for every subset P ′ of places a formula RP ′ that symbolically
describes all reachable markings that we have seen so far and have colors on exactly all places in P ′.
Initially, all formulae are false , except for RP0 , where P0 are the initially marked places. RP0 sym-
bolically represents the set of initial markings.

The symbolic reachability tree is then constructed by starting with a root n0 labeled with fn0 =
RP0 representing the set of initial markings. For every transition t, we can determine whether t can
fire in any mode from any marking represented by fn0 by a satisfiability check. If t can fire, we add
a new node n′, and label it with a formula f ′ that symbolically represents all markings reached from
firing t in any mode from any marking inM0. In all these markings, there are colors on the same set
of places P ′. If f ′ ⇒ RP ′ then we end this branch. We then extendRP ′ toRP ′ ∨ f ′.

By repeating this procedure in breadth-first order, we build a tree that symbolically represents
all reachable markings. This tree should correspond to the complete finite prefix of the symbolic
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unfolding of the net to which you added a shared resource (in form of a new place) that every transition
consumes and recreates. This makes the system sequential without changing the sequential semantics.
We give here only the idea of the tree, and not a formal definition. In future work we want to further
investigate on this idea. We can then compare the complete finite prefix of the symbolic unfolding to
the symbolic reachability tree.

5. Checking cut-offs symbolically

We show how to check whether a high-level event e is a cut-off* event symbolically in finite time. By
definition, this means checking whetherM([e]) ⊆ ⋃

C≺[e]M(C). However, since the cut of a con-
figuration can represent infinitely many markings, when applying the adapted algorithm we cannot
simply store the setM(C) for every C ∈ C(Fin). Instead, we now define constraints that symboli-
cally describe the markings represented by a configuration’s cut. Checking the inclusion above then
reduces to checking an implication of these constraints. Since we consider high-level Petri nets with
guards written in a decidable theory, such implications can be checked in finite time.

At the end we see that this method can be easily adapted to symbolically check whether, in a prefix
of the symbolic unfolding of a net N ∈ NF, an event e is a cut-off event in the sense of Def. 2.7. This
method is also used in the implementation described in Sec. 6.1.

For the rest of this section, let N = (P, T, F, ι,M0) ∈ NSC with symbolic unfolding Υ (N) =
(U, π) = (B,E,H, ι,K0, π).

We first define for every condition b a new predicate pred⊙(b) by

pred⊙(b) := pred(e(b)) ∧ (π(b) = ve(b)).

This predicate now has (in an abuse of notation) an extra variable, named after its label π(b).
The remaining variables in pred⊙(b) are coming from pred(e(b)) and given by Var [e(b)]∪{⊥}. As we
know, pred(e(b)) evaluates to true under an assignment θ : Var [e(b)]∪{⊥} → Col if and only if a
concurrent execution of [e(b)] with the assigned modes is possible (i.e., under every instantiation of
[e(b)]). In such an execution, θ(ve(b)) ∈ Col is placed on b. The predicate pred⊙(b) therefore can
only be true if π(b) is assigned a color that can be placed on b.

We now define for a co-set B′ ⊆ B of high-level conditions the constraint on B′ as an expression
with free variables π(B′) = {π(b) | b ∈ B′}, describing which color combinations can lie on the
places represented by the high-level conditions. We build the conjunction over all predicates pred⊙(b)
for b ∈ B′ and quantify over all appearing variables ve: the constraint on B′ is defined by

κ(B′) := ∃⋃
b∈B′ Var [e(b)]∪{⊥} :

∧

b∈B′
pred⊙(b).

We denote by Ξ(B′) the set of variable assignments ϑ : π(B′)→ Col that satisfy κ(B′)[ϑ] ≡ true .

For a configuration C, we have that B′ = cut(C) is a co-set, π(B′) = π(cut(C)) describes the set
of places occupied in every marking inM(C). Note that in this case, we have

⋃
b∈cut(C)Var [e(b)] =

VarC , i.e., the bounded variables in κ(cut(C)) are exactly the variables appearing in predicates in C.
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For every instantiation θ of C we define a variable assignment ϑθ : π(cut(C)) → Col by setting
∀π(b) ∈ π(cut(C)) : ϑθ(b) = θ(ve(b)). Instantiations of a configuration and the constraint on its cut
are related as follows.

Lemma 5.1. Let C ∈ C(Υ (N)). Then Ξ(cut(C)) = {ϑθ | θ ∈ Θ(C)}.

Proof:
The proof follows by construction of pred⊙ and ϑθ: Let ϑ ∈ Ξ(cut(C)). Then true ≡ κ(cut(C))[ϑ].
Thus, there exists θ : VarC∪{⊥} → Col s.t.

(∧
b∈cut(C) pred

⊙(b)
)
[ϑ][θ] ≡ true and therefore

( ∧

b∈cut(C)

pred(e(b))[θ]
)
∧

( ∧

b∈cut(C)

ϑ(π(b)) = θ(ve(b))
)
≡ true. (1)

From the inductive definition of pred then follows that ∀e ∈ C ∪ {⊥} : pred(e)[θ] ≡ true . Thus, θ is
an instantiation of C, and ϑθ = ϑ, as shown by the posterior conjunction in (1).

Let on the other hand θ ∈ Θ(cut(C)). Then directly, by the definition of pred⊙(b) and ϑθ, we get(∧
b∈cut(C) pred

⊙(b)
)
[ϑθ][θ] ≡ true and by the definition of κ(cut(C)) that κ(cut(C))[ϑθ] ≡ true ,

i.e., ϑθ ∈ Ξ(cut(C)). ⊓⊔

From the definition of K(C) andM(C) we get:

Corollary 5.2. Let C ∈ C(Υ (N)). Then K(C) = {{(b, ϑ(π(b))) | b ∈ cut(C)} | ϑ ∈ Ξ(cut(C))}
andM(C) = {{| (π(b), ϑ(π(b))) | b ∈ cut(C) |} | ϑ ∈ Ξ(cut(C))}.
We now show how to check whether an event is a cut-off* event via the constraints defined above.
For that, we first look at general configurations in Theorem 5.3, and then explicitly apply this result to
cone configurations [e] in Corollary 5.4.

Theorem 5.3. Let C,C1, . . . , Cn be finite configurations in the symbolic unfolding of a safe high-
level Petri net s.t. ∀1 ≤ i ≤ n : π(cut(C)) = π(cut(Ci)). Then

M(C) ⊆
n⋃

i=1

M(Ci) if and only if κ(cut(C))⇒
n∨

i=1

κ(cut(Ci)).

Proof:
AssumeM(C) ⊆ ⋃n

i=1M(Ci) and let ϑ ∈ Ξ(cut(C)). We have that Mϑ := {(π(b), ϑ(π(b))) | b ∈
cut(C)} ∈ M(C) by Cor. 5.2. Thus, ∃1 ≤ i ≤ n : Mϑ ∈ M(Ci). This, again by Cor. 5.2, means
∃ϑi ∈ Ξ(cut(Ci)) :

Mϑ = {(π(b′), ϑi(π(b
′))) | b′ ∈ cut(Ci)}

This shows that ϑ = ϑi. Thus, κ(cut(Ci))[ϑ] ≡ true , which proves the implication.

Assume on the other hand κ(cut(C)) ⇒ ∨n
i=1 κ(cut(Ci)). Let M ∈ M(C). Then ∃ϑ ∈

Ξ(cut(C)) : M = {(π(b), ϑ(π(b))) | b ∈ cut(C)}. Thus, ∃1 ≤ i ≤ n : κ(cut(Ci))[ϑ] ≡ true .
Let ϑi = ϑ. Then ϑi ∈ Ξ(cut(Ci)), and M = {(π(b′), ϑi(π(b

′))) | b′ ∈ cut(Ci)} ∈ M(Ci), which
completes the proof. ⊓⊔
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The following Corollary now gives us a characterization of cut-off* events in a symbolic branch-
ing process. It follows from Theorem 5.3 together with the facts that M(C1) ∩ M(C2) ̸= ∅ ⇒
π(cut(C1)) = π(cut(C2)), and that ≺[e] is finite.

Corollary 5.4. Let β be a symbolic branching process and e an event in β. Then e is a cut-off* event
in β if and only if

κ(cut([e]))⇒
∨

C≺[e]
h(cut(C))=h(cut([e]))

κ(cut(C)).

Thus, we showed how to decide for any event e added to a prefix of the unfolding whether it is a cut-
off* event, namely, by checking the above implication in Cor. 5.4. Note that we can also check whether
e is a cut-off event (w.r.t. Def. 2.7) by the implication in Cor. 5.4 when we replace all occurrences of
“C” by “[e′]” .

6. Implementation and experimental results

In this section, we delve into the implementation details of the generalized ERV-algorithm and discuss
the results of our experiments. We give a concise overview of the technical decisions made during
implementation and provide an evaluation of its performance across four novel benchmark families.
We identify a property called “mode-determinism” that offers an indicator for whether it is faster to
construct (a complete finite prefix of) the symbolic unfolding or the low-level unfolding.

6.1. Implementation specifics

Other tools designed for generating (prefixes of) P/T Petri net unfoldings include MOLE [19], CUNF

[20, 21], and PUNF [22]. However, as these tools are specifically optimized for their intended purpose
and do not cater to high-level Petri nets, we opted not to integrate the new algorithms into any of these
frameworks. Furthermore, we refrain from conducting a speed comparison between our implementa-
tion and the aforementioned tools. The objective of Section 6 is to provide a comparison between two
approaches: calculating a respective complete finite prefix of the low-level or the symbolic unfolding.

We have devised a prototype implementation called COLORUNFOLDER [23] written in the Java
programming language. It serves a dual purpose as an implementation of the low-level approach as a
base for comparisons and the novel symbolic approach. It can calculate a finite complete prefix of the
low-level unfolding for a given high-level Petri net, combining the concepts from [8] (complete finite
prefixes) and [9] (generating the low-level unfolding without expansion). Additionally, it is capable
of computing a complete finite prefix of the net’s symbolic unfolding, utilizing a modified version of
Alg. 1. Since we want to compare the low-level with the high-level case, we restricted ourselves to
nets from the class NF to guarantee that the low-level unfolding exists.

Both, the generalized (Alg. 1) and the original ([8]) ERV-algorithm create possible extensions that
are structurally dependent cut-off events, whereas in the implementation a cut-off event never triggers
the calculation of possible extension. With the same idea, conditions in the postset of cut-off events
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are never considered for finding co-sets. This leaves the finite complete prefix unmodified, as it only
eliminates unnecessary work.

More importantly, the tool operates on a modified unfolding since an implementation using the
predicates defined here turned out to be very slow. It rewrites the predicates in the unfolding and
modifies arc labels to drastically reduce the number of variables. We achieve this by associating with
each condition just one variable, the internal variable. Every condition then has this internal variable
on all outgoing edges, as on the ingoing edge. We choose the variable name such that it uniquely
identifies the event that chooses the color of the token. We say an event chooses a color if its transition
has a variable on an outgoing edge that is on no ingoing edge. This is in contrast to the case where the
variable on the outgoing edge was also on an ingoing edge. In that case the event only forwards the
color choice of a previous event. For example, in the unfolding from Figure 2b, COLORUNFOLDER

replaces the four variables by a single variable.
As a consequence of this renaming, we might need to modify guards in order to preserve the

behavior of the original net. A transition in the original net then can have two ingoing edges with the
same variable, but the corresponding event has distinct internal variables in those positions. In that
case we add a guard that requires equality of those internal variables. After a finite complete prefix
of the modified unfolding is found, the result can be easily transformed into the expected result with
barely any overhead.

This optimization yields a significant speed up. However, when working on the symbolic unfold-
ing, in our experiments still more than 99 percent of the time is spent evaluating the satisfiability of
predicates to identify cut-off events using Cor. 5.4, and to detect when to discard event candidates
because of a color conflict. For this task we chose the CVC5 SMT solver [24]. It performed best in
the relevant category (non-linear arithmetic with equality and quantifiers) of the Satisfiability Modulo
Theories Competition 2023 (SMT-COMP 2023)2.

6.2. Benchmark families

In this section, we present four new benchmark families on which we tested the calculation (resp.
verification on) of the symbolic unfolding and compared it to the calculation of (resp. verification on)
the low-level unfolding.

6.2.1. Fork And Join

The simplest of our benchmark families is called Fork And Join. In the initial marking, a token lies
on place p0. A transition t takes this token from p and places an arbitrary color on each of its output
places. A transition ε then takes these colors from all places, ending the nets execution. We have
two parameters: the first parameter, m ∈ N, determines the set of colors Col = {0, . . . ,m}. The
second parameter, n ∈ N, determines the number of output places of t. Fig. 5 shows the independent
diamonds for n = 2 in (a) and for n = 4 in (b).

2https://smt-comp.github.io/2023/results/equality-nonlineararith-single-query

https://smt-comp.github.io/2023/results/equality-nonlineararith-single-query
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(a) n = 2.
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Figure 5: Fork And Join for n = 2 in (a) and n = 4 in (b).

The symbolic unfolding of a Fork And Join has n + 3 nodes as it is structurally equal to the net
itself. The low-level unfolding of the expansion has (n+ 2)(m+ 1)n + 1 nodes (since t is fireable in
(m+ 1)n modes), cp. App. A.2.

6.2.2. The water pouring puzzle

This benchmark family generalizes the following logic puzzle (cf., e.g., [25]):

“You have an infinite supply of water and two buckets. One holds 5 liters, the other holds
3 liters. Measure exactly 4 liters of water in one bucket.”

In our generalization we have two parameters. The first parameter is a finite list n = [n1, . . . , nk] of
natural numbers. Each entry ni represents an available bucket holding ni liters. The second parameter,
m ∈ N is the amount of water that should be measured.

i1 i2

0bucket-1 0 bucket-2

1-transfer -2

(o2 ≤ 3 ∧ o1 = 0 ∧ o2 = i1 + i2)
∨(o2 = 3 ∧ o1 = i1− (3− i2))

2-transfer -1
(o1 ≤ 5 ∧ o2 = 0 ∧ o1 = i2 + i1)
∨(o1 = 5 ∧ o2 = i2− (5− i1))

fill -1

o = 5

fill -2

o = 3

empty-1

o = 0

empty-2

o = 0

i o

io

i o

io

i1

o1

i2

o2

i1

o1

i2

o2

Col = N

goal

i1 = 4 ∨ i2 = 4

Figure 6: The Water Pouring Puzzle with 2 buckets holding 5 resp. 3 liters.
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Fig. 6 shows the high-level Petri net corresponding to the parameters n = [3, 5] and m = 4,
corresponding to the puzzle above. Independently of the parameters, we have Col = N. The current
fill level of each bucket i is represented by a place bucket-i, with an initial color 0, and two attached
transitions fill -i and empty-i, that, when fired, replace the color on bucket-i by ni or 0, respectively.
Additionally, for each pair of buckets i, j, there are two transitions i-transfer -j and j-transfer -i that
transfer as much water as possible from one bucket to the other without overflowing it. When at least
one bucket contains m liters, the goal transition can fire. We include a prefix the symbolic unfolding
of the net from Fig. 6 in App. A.2.

6.2.3. Hobbits And Orcs

The Hobbits And Orcs problem3 is another logic puzzle (in particular one of many “river crossing
problems”, cf., e.g., [26, 27]) and goes as follows:

“Three Hobbits and three Orcs must cross a river using a boat which can carry at most two
passengers. For both river banks, if there are Hobbits present on the bank, they cannot be
outnumbered by orcs (if they were, the Orcs would attack the Hobbits). The boat cannot
cross the river by itself with no one on board.”

We generalize this problem by introducing two parameters. The first parameter, m ∈ N is the
number of both Hobbits and Orcs. We always have equally many of the two parties. The second
parameter, n ∈ N is the number of passengers the boat can carry. We additionally assume that also on
the boat, if there are Hobbits present, they cannot be outnumbered by Orcs.

Figure 7a shows an illustration of the original puzzle presented above, with three of both, Hobbits
and Orcs, and a boat fitting two passengers. Figure 7b shows the corresponding high-level Petri game.
The colors are given by Col = N× N, where a tuples describes the number of Hobbits and Orcs at a
location – the left bank, the boat, or the right bank. We start with three Hobbits and three Orcs on the
left bank, indicated by the tuple (3, 3) on the place bank -ℓ. The four center places describe the current
state of the boat, being either empty and docked on a bank, or loaded and on the river. Initially, there is
a tuple (0, 0) on docked -ℓ, indicating an empty boat the left bank. Via the transitions load and unload
left and right, the boat can be loaded or unloaded, with the guards ensuring all the conditions from the
riddle regarding the number of Hobbits and Orcs on both banks and on the boat. When all creatures
are on the right bank, the goal transition can fire, ending the net’s execution.

6.2.4. Mastermind

The last benchmark family models a generalization of the classic code-breaking game Mastermind
developed in the early Seventies and completely solved in 1993 [28, 29]. The game is played between
two players. The code maker secretly chooses an ordered, four digit color code, with six available
colors. The code breaker then guesses the code. The code maker evaluates the guess by a number of
red pins indicating how many colors in the guess are in the correct position, and a number of white

3The problem is also known as “Missionaries and Cannibals”, and is a variation of the “Jealous Husbands” problem.
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(a) An illustration of the “Hobbits And Orcs” problem.4
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(b) The problem modeled as a high-level Petri net.

Figure 7: The Hobbits And Orcs problem with 3 Hobbits, 3 Orcs, and a boat fitting 2 passengers.

pins indicating how many colors in the guess appear at a different position in the code. Using this
knowledge, the code breaker makes the next guess, with up to twelve attempts.

In our generalization we have three parameters. The first parameter, m ∈ N, describes the number
of available colors. The second parameter, n ∈ N, describes the length of the code. The third pa-

4The "Boat" icon used in Figure 7a is by DinosoftLabs from Noun Project, https://thenounproject.com/
dinosoftlab/.

https://thenounproject.com/dinosoftlab/
https://thenounproject.com/dinosoftlab/
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code-maker 0

pick -code
∀i : ci ∈ {1, . . . , 6}
∀i, j : i ̸= j ⇒ ci ̸= cj

code-1 code-4code-2 code-3

c1 c2 c1 c2

tuple

code

guess-1 guess-2 guess-3 guess-4

guess∀i : ci ∈ {1, . . . , 6}
∀i, j : i ̸= j ⇒ gi ̸= gj

code-breaker 0

g1 g2 g3 g4

evaluate
r =

∑4
i=1 ci == gi

w =
∑4

i=1

∑4
j=1,j ̸=i ci == gj

g1
g2 g3

g4

(c1, c2, c3, c4) (c1, c2, c3, c4)

c1
c2 c3

c4

(c1, c2, c3, c4)

result retry

r ̸= 4
y < 12

1

attempt
(r, w) (r, w)

y

y + 1

Col = N

Figure 8: The Mastermind game with a code of length 4, 6 possible colors, and 12 attempts.

rameter, k ∈ N, describes the number of guesses the code breaker can make. To simplify the net, we
restricted the allowed codes to not contain any color twice.

Fig. 8 shows the high-level Petri net with m = 6 available colors, a code of length n = 4, and
k = 12 possible attempts, i.e., the scenario described above. The code maker places one color on each
of the four places code-i by firing pick -code. Transition tuple puts these colors into a tuple on place
code. The purpose of this (for the model unimportant) transition is to make the symbolic unfolding
(cp. App. A.2) resemble an actual game board of Mastermind. The code breaker, analogously to
the code maker, concurrently guesses a code via transition guess . Transition evaluate compares this
guess to the code and places the result, i.e., the corresponding number of red and white pins, on result .
From there, the code breaker either wins if the guessed code was correct, or resets with transition retry ,
provided that he has another attempt left.
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6.3. Mode-deterministic high-level Petri nets

In the experiments presented in the next section we identified an important indicator for whether the
symbolic approach for a finite complete prefix presented in this paper is expected to outperform, the
complete finite prefix of the low-level unfolding, combining the concepts of [8] and [9].

The identified net property is that in every reachable marking of N , every transition can fire in at
most one mode. We call a high-level Petri net with this property mode-deterministic, formally:

Definition 6.1. A high-level Petri net N with transitions T is called mode-deterministic iff

∀M ∈ R(N) ∀t ∈ T ∃≤1σ ∈ Σ(t) : M [t, σ⟩.

In the case of a mode-deterministic net N , the skeleton of N ’s symbolic unfolding (essentially, the
core structure of the high-level occurrence net, devoid of arc labels and guards, and interpreted as a
P/T Petri net) is equivalent in structure to the low-level unfolding of N ’s expansion. This implies that
the high-level abstraction does not offer any computational advantage in the unfolding process. To the
best of our knowledge, this property has not been studied elsewhere.

We borrow terminology from “regular” determinism and say that a high-level Petri net is mode-
nondeterministic if it does not satisfy the above property, and implicitly describe by a high or low
“degree” of mode-nondeterminism that there are many resp. few transition-mode combinations mak-
ing the net mode-nondeterministic.

An illustrative example of a family of mode-deterministic nets is the benchmark family Water
Pouring Puzzle introduced in Sec. 6.2.2. Although this property may not be immediately apparent,
it is true that in every state of the system, all transitions can fire in at most one mode. Specifically,
transitions fill -i and fill -i replace the color on bucket-i with a predetermined one. Every transition
i -transfer -j emulates the transfer of all water from bucket i that can fit into bucket j.

A condition that guarantees N to be a mode-deterministic net is as follows: “For any conceivable
assignment of variables on input arcs, there exists at most one possible mode that completes this
assignment to all variables.” The nets in the Water Pouring Puzzle family fulfill this criterion, since
all output variables (o) are either predetermined or derived from the input variables (i).

An example for a highly mode-nondeterministic nets is the benchmark family Fork And Join from
Sec. 6.2.1. There are only two transitions in the net, but from the initial marking, t can fire in every
of its mn modes. This structural pattern of Fork And Join can also be observed in the Mastermind
benchmark family (Sec. 6.2.4), making these nets also mode-nondeterministic.

The Hobbits and Orcs family (Sec. 6.2.3), on the other hand, falls in between and is notably
contingent on the parameters involved. When there are only two seats on the boat, there are merely five
potential modes of load -ℓ from the initial marking (reflecting the possible ways to occupy one or both
seats with two types of creatures). However, in the scenario where there are n seats on the boat, along
with m Hobbits and Orcs, and m > n, the total number of possibilities is

∑n
i=1 i + 1 = 1

2n(n + 3).
It’s worth noting that approximately half of these possibilities would result in more orcs than hobbits
on the boat, rendering them non-modes. Hence, given the condition m > n, the “degree” of mode-
determinism remains unaffected by an increase in m, but solely varies with the parameter n.
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In the subsequent section, we empirically validate the hypothesis that the level of mode-determinism
is inversely proportional to the benefit gained from employing symbolic unfolding compared to low-
level unfolding.

6.4. Experiments and results

We now present the experimental results of applying our implementation to the four benchmark fami-
lies presented above. COLORUNFOLDER can check the reachability of a (set of) marking(s) by adding
a respective transition to the net. It then executes Alg. 1 but stops when an instance of this transition
is added to the prefix under construction, which means that the respective (set of) marking(s) is/are
reachable. When the algorithm terminates without such an instance, the completeness of the prefix
implies that the marking is not reachable.

For the nets from the Fork And Join benchmark family, the complete unfolding (being its own
smallest finite and complete prefix) is calculated. For the benchmark families Water Pouring Puzzle
and Hobbits And Orcs, the reachability of the goal state of the riddle is checked. This is done by
adding the respective goal transition that is depicted in each of the two figures Fig. 6 and Fig. 7.
This transition is not part of the input net. Finally, for nets in the Mastermind benchmark family,
reachability of a marking with the result of n− 1 red pins and 1 white pin is checked. Such a marking
is never reachable, so always the complete (but finite) unfolding is calculated.

The tasks described above are checked twice, once using the symbolic unfolding and once us-
ing the low-level unfolding as described in Sec. 6.1. The experiments are calculated with commit
124b1735 of COLORUNFOLDER [23] on an otherwise idle system with an Intel i7-6700K CPU at 4.0
GHz and 16 GB RAM.
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Figure 9: Time needed to calculate unfolding (a) and symbolic unfolding (b) of Fork & Join.
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Fork & Join. The results for Fork & Join are shown in Fig. 9.
In Fig. 9a, the elapsed time for calculating the low-level unfolding for the instance with n places

(x-axis) and m colors (y-axis) is indicated by the heatmap intensity of the respective cell. Empty
cells exceeded a 5-minute timeout. We see that the low-level approach is only viable if at least one
parameter is very small. It takes exponentially more time with a growing color class and with growing
number of places.

Since the symbolic approach outperforms the low-level approach by a wide margin, we present it
in its own figure, Fig. 9b. For all the cases from Fig. 9a, the symbolic approach takes around 200 ms to
complete the symbolic unfolding. This is independent of the color class {0, . . . ,m}. This corresponds
to the fact that the symbolic unfolding of Fork & Join is, for a fixed number of places n, independent
of the color class Col = {0, . . . ,m}. This even does not change for Col = N. Since cvc5 (the tool
used for checking satisfiability, cp. Sec. 6.1) can handle such infinite color domains, we fix Col = N,
and Fig. 9b shows the elapsed time (y-axis) for calculating the symbolic unfolding of the Fork & Join
instance with n places (x-axis). This approach is very fast (but not linear in the number of places).

The symbolic approach is faster for all choices of the parameters. Only for the smallest choices
are both approaches equally fast within the margin of error. This behavior was expected since the Petri
nets are “highly non mode-deterministic”, as explained above, and the low-level unfolding is much
broader than the symbolic unfolding.

Water Pouring Puzzle. For the Water Pouring Puzzle we cannot get interesting results by varying
one parameter while holing the others fixed, because the complexity of the solution is highly volatile
and dependent on the combination of all parameters. Since the nets are mode-deterministic, the low-
level and symbolic unfolding, as well as their prefixes, are isomorphic.

Table 1: Results of the Water Pouring Puzzle benchmark.

buckets n target m solvable |B| |E| time low-level time symbolic

3, 5 4 yes, 6 steps 90 75 95ms 1.2 s

15, 17 10 yes, 18 steps 258 195 220ms 36 s

57, 73 51 yes, 92 steps 1294 935 1.7 s > 1 h

9, 12 4 no 106 74 130ms 1.8 s

10, 16 5 no 190 134 140ms 11 s

8, 14, 17 2 yes, 4 steps 411 642 300ms 26 s

14, 26, 27 14 yes, 15 steps 21635 15279 7.7 s > 1 h

12, 15, 18 10 no 2391 1442 550ms 20min

12, 21, 27 8 no 4029 2444 1.0 s 88min

Table 1 presents the results for this benchmark. The original puzzle with n = [3, 5] and m = 4
is included in the first line. Additionally, we randomly selected eight parameter sets such that we
consider four scenarios involving 2 buckets and four scenarios involving 3 buckets.
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We indicate in each scenario whether the puzzle is solvable, and in the positive case, how many
steps a minimal solution has. We compare the time to check the reachability of a goal state (fireability
of the goal transition, cp. above) of the low-level and symbolic approach. The faster approach is
highlighted with bold font. Additionally, we notate the number of conditions (|B|) and events (|E|) of
the generated prefix. Each of these two numbers coincides between the two approaches.

When we pick the parameters at random the low-level approach generally is much faster. We can,
however, construct examples in which the symbolic approach outspeeds the low-level approach. In
these constructed cases we have a large color domain but can reach the goal quite quickly, e.g., with
two buckets of capacity 106 and 106 + 1, and a target of m = 1.
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Figure 10: Results for Hobbits And Orcs problem for a fixed boat capacity n in (a), (b), (c), and
population with m of each Hobbits and Orcs on the x-axis. The orange line shows the time needed by
the symbolic approach and the blue line shows the low-level approach.

Hobbits And Orcs. For the Hobbits And Orcs benchmark we vary the and the capacity n of the boat
fixed in Figures 10a, 10b, 10c, and number the of each Hobbits and Orcs, m, plotted on the x-axis. We
indicate the time needed by the low-level approach in blue and by the symbolic approach in orange,
with a timeout of 3 minutes.

We find that the low-level approach performs better when the boat capacity is smaller. For n = 2,
the symbolic approach gets a timeout at m = 13 while the low-level approach can calculate the prefix
up to m = 33. We expected this behavior, because a smaller the boat capacity yields a higher degree
of mode-determinism in the net. When the capacity increases, the net is ‘less’ mode-deterministic.
For n ≥ 6 the symbolic approach is faster for all population sizes. Independent of the boat size n,
both approaches take exponentially more time with growing population size.

Mastermind. We present some results for the Mastermind benchmark in Table 2. We compare the
time needed by the low-level and symbolic approach to generate the unfolding, with a timeout of two
minutes. The table also shows the number of nodes (conditions |B| resp. |B|, and events |E| resp. |E|)
in the unfolding. In each row the faster time is highlighted in bold font.
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Table 2: Results of the Mastermind benchmark.

Low-level Symbolic
k n m time |B| |E| time |B| |E|
12 4 6 > 2min - - 1min 149 36
1 3 3 86ms 219 48 62ms 14 3
1 3 5 1.8 s 18363 3720 54ms 14 3
1 3 6 18 s 72723 14640 61ms 14 3
1 3 7 > 2min - - 54ms 14 3
1 3 1000 > 2min - - 53ms 14 3
1 4 4 1 s 3651 624 60ms 17 3
1 4 5 > 2min - - 67ms 17 3
1 5 1000 > 2min - - 77ms 20 3
1 28 1000 > 2min - - 1 s 89 3
2 3 3 215ms 1719 438 206ms 24 6
2 3 4 3.3 s 110115 27672 120ms 24 6
2 3 5 111 s 1726443 432060 124ms 24 6
2 3 6 > 2min - - 119ms 24 6
2 3 1000 > 2min - - 127ms 29 6
2 4 4 5.5 s 137235 27672 1.3 s 29 6
2 4 5 > 2min - - 116ms 29 6
2 4 1000 > 2min - - 162ms 29 6
2 10 1000 > 2min - - 1 s 59 6
3 4 4 > 2min - - 35 s 41 9
4 3 3 2.6 s 46719 12138 803ms 44 12
5 3 3 39 s 234219 60888 1.3 s 54 15
6 3 3 > 2min - - 1.8 s 64 18

The first line shows the original problem with k = 12 attempts, a code length of n = 4, and
m = 6 colors. We observe that in the low-level approach, time and size grow exponentially with
respect to the number m of colors, whereas the high-level approach remains constant. When we
increase the parameter n controlling the length of the code, both approaches grow exponentially in
time. Interestingly the high-level approach only grows linear in size (number of nodes). This is due to
the size of the guard of the evaluate transition increasing exponentially (n choose 2).

Overall, the symbolic approach is the clear winner of the Mastermind benchmark. The low-level
approach can only barely compete for the smallest instances of the problem.

We also observe that, in comparison to other parameters, the performance of the high-level ap-
proach drops when n = m. We currently have no explanation for this. This could be a quirk of
the SMT solvers, or alternatively, the formulas may be inherently more challenging to solve in this
particular case. The low-level approach is not impacted negatively by this case, but still much slower
than the symbolic approach, as seen in lines with parameters (1, 3, 3), (1, 4, 4), (2, 3, 3), (2, 4, 4), and
in the last four lines.
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7. Conclusions and outlook

We introduced the notion of complete finite prefixes of symbolic unfoldings of high-level Petri nets.
We identified a class of 1-safe high-level nets generalizing 1-safe P/T nets, for which we general-
ized the well-known algorithm by Esparza et al. to compute such a finite and complete prefix. This
constitutes a consolidation and generalization of the concepts of [8, 13, 4, 11]. While the resulting
symbolic prefix has the same depth as a finite and complete prefix of the unfolding of the represented
P/T net, it can be significantly smaller due to less branching. In the case of infinitely many reachable
markings (where the original algorithm is not applicable) we identified the class of so-called symbol-
ically compact nets for which an adapted version of the generalized algorithm effectively computes a
finite complete prefix of the symbolic unfolding. For that, we showed how to check an adapted cut-
off criterion by symbolically describing sets of markings. We implemented the generalized algorithm
and tested it against four novel benchmark families. This experimentation validated an indicator for
whether the symbolic approach is expected to outperform the low-level approach. This indicator relies
on the concept of a net property we call “mode-determinism”.

Future works include the construction of a symbolic reachability graph for symbolically compact
nets and a comparison with the complete finite prefix, as outlined in Sec. 4.4. Additionally, a general-
ization for k-bounded high-level Petri nets seems possible. Furthermore, we want to apply the results
to high-level Petri games [30, 31] to find “symbolic strategies” with techniques similar to [32] or
[33, 34], employing a successively increasing bound on size of the considered prefix of the symbolic
unfolding.

We sincerely thank the anonymous reviewers for their valuable feedback, which significantly im-
proved this paper, and Paul Hannibal for the discussions about the insufficiency of the cut-off criterion
for symbolically compact nets.
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A. Appendix

A.1. Examples of adequate orders

We show that the adequate order used in [7], as well as the orders ≺E and ≺F treated in [8], when
lifted to the symbolic unfolding, are still adequate orders. In particular we show that ≺F is a total
adequate order on the symbolic unfolding, limiting the size of the later constructed finite prefix. The
definition of these orders does not change, so we take most of the following notation directly from [8].

The orders ≺M and ≺E . The order ≺M used in [7] is defined by C1 ≺M C2 :⇔ |C1| < |C2|. It is
trivial to see that≺M satisfies i) and ii) from Def. 2.5. Since φ2

1,D is a injective, we have |φ2
1,D(D)| =

|D|, which yields iii).
For a high-level Petri net N , let ≪ be an arbitrary total order on the transitions of N . Given a

set E′ of events in the unfolding of N , let p(E′) be that sequence of transitions which is ordered
according to≪, and contains each transition t as often as there are events in E′ with label t. We say
p(E1)≪ p(E2) if p(E1) is lexicographically smaller than p(E2) with respect to the order≪.

The order ≺E is then defined as follows: let C1, C2 be two configurations of the symbolic un-
foldings of a high-level Petri net. C1 ≺E C2 holds if either |C1| < |C2|, or |C1| = |C2| and
p(C1)≪ p(C2). The proof that ≺E is an adequate order works exactly as in [8]:
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It is easy to show that ≺E is a well-founded partial order implied by inclusion. We now show that
≺E is preserved by finite extensions. As already mentioned above, |D| = |φ2

1,D(D)|. Additionally,
we have p(D) = p(φ2

1,D(D)), since φ2
1,D preserves the labeling of events.

Assume C1 ≺E C2. If |C1| < |C2|, then |C1⊕D| < |C2⊕φ2
1,D(D)|. If |C1| = |C2| and

p(C1) ≪ p(C2), then |C1⊕D| = |C2⊕φ2
1,D(D)| and, by the properties of the lexicographic order,

p(C1⊕D)≪ p(C2⊕φ2
1,D(D)).

The Total Adequate Order ≺F . The Foata normal form FC of a configuration C is obtained by
starting with FC empty, and iteratively deleting the set Min(C) from C and appending it to FC , until
C is empty.

Given two configurations C1, C2, we can compare their Foata normal forms FC 1 = C11 . . . C1n1

and FC 2 = C21 . . . C2n2 with respect to the order≪ by saying FC 1 ≪ FC 2 if there exists i ≤ i ≤ n1

such that p(C1j) = p(C2j) for every 1 ≤ j < i, and p(C1i)≪ p(C2i).

Definition A.1. (Order ≺F )
let C1 and C2 be two configurations of the symbolic unfolding of a high-level Petri net. C1 ≺F C2

holds if

• |C1| < |C2|, or

• |C1| = |C2| and p(C1)≪ p(C2), or

• p(C1) = p(C2) and FC 1 ≪ FC 2.

We prove that ≺F is a total adequate order. In the proof, (a) – (c) are taken directly from [8],
with small adaptations due to the high-level formalism. While the ideas from (d) also come directly
from [8], we have work with the monomorphism φ2

1,D instead of the isomorphism I21 , and the new
definition of adequate order. This is where the only deviation from [8] happens.

Let β = (O, h) be the symbolic unfolding of N = (N ,M0).

(a) ≺F is a well-founded partial order.

This follows immediately from the fact that ≺E is a well-founded partial order as is the lexico-
graphic order on transition sequences of some fixed length.

(b) C1 ⊂ C2 implies C1 ≺F C2.

This is obvious, since C1 ⊂ C2 implies |C1| < |C2|.
(c) ≺F is total.

Assume that C1 and C2 are two incomparable configurations under ≺F , i.e., |C1| = |C2|,
p(C1) = p(C2), and p(FC 1) = p(FC 2). We prove C1 = C2 by induction on the common
size k = |C1| = |C2|.
The base case k = 0 gives C1 = C2 = ∅, so assume k > 0.

We first prove Min(C1) = Min(C2). Aiming a contradiction, assume w.l.o.g. that e1 ∈
Min(C1) \Min(C2). Since p(Min(C1)) = p(Min(C2)), Min(C2) contains an event e2 s.t.
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h(e1) = h(e2). Since→Min(C1) and→Min(C2) are subsets of B0, and all conditions of B0

carry different labels, we have→e1 =→e2, and thus, pre (e1) = pre (e2). This contradicts the
definition of symbolic branching processes.

Since Min(C1) = Min(C2), both C1 \Min(C1) and C2 \Min(C1) are configurations of the
branching process ⇑Min(C1) of (N ,M(Min(C1))), and they are incomparable under ≺F by
construction. Since the common size of C1 \ Min(C1) and C2 \ Min(C1) is strictly smaller
than k, we can apply the induction hypothesis and conclude C1 = C2.

(d) ≺F is preserved by finite extensions.

Take two finite configurations C1 and C2, let D be a finite suffix of C1, and let M ∈ M(C1) ∩
M(C2) such that C1JMKD. We have to show that C1 ≺ C2 implies C1⊕D ≺ C2⊕φ2

1,D(D).

First, notice that we can assume D = {e}: For e ∈ Min(D) we have from C1JMKD that ∃θ ∈
Θ(C1⊕D) : mark(C1.θ|VarC1∪{⊥}) = M . Thus, for M ′ s.t. M [h(e).σ⟩M ′ with σ = θ ◦ [v 7→
ve]v∈Var(e), we have that M ′ ∈ M(C1⊕{e}) ∩M(C2⊕{φ2

1,D(e)}) and (C1⊕{e})JM ′K(D \
{e}).
Second, the cases |C1| < |C2| and C1 ≺E C2 in (i), (and the respective cases |C2| < |C1| and
C2 ≺E C1 in (ii)) are easy (shown above). Hence, assume |C1| = |C2| and p(C1) = p(C2).

Third, we show that under these two assumptions e is a minimal event of C ′
1 := C1 ∪{e} if and

only if φ2
1,D(e) is a minimal event of C ′

2 := C2 ∪ {φ2
1,D(e)}. Let e be minimal in C ′

1, i.e., the
transition h(e) can be fired in a mode in one initial marking. Let p ∈ →h(e); then no condition
in→C∪C→ is labeled p, since these conditions would be concurrent to the p-labeled condition
in→e, contradicting that (N ,M0) is safe. Thus, C1 contains no event e′ with p ∈ →h(e′), and
the same holds for C2, since p(C1) = p(C2). Therefore, the conditions in cut(C2) with label in
→h(e) are minimal conditions of β, and φ2

1,D(e) = e is minimal in C ′
2. The reverse implication

holds analogously, since about C1 and C2 we have only used the hypothesis p(C1) = p(C2).

With this knowledge, we now show the implication. Assume C1 ≺F C2. We show C ′
1 ≺F C ′

2.

If Min(C1) ≺E Min(C2), then we now see Min(C ′
1) ≺E Min(C ′

2), hence p(FC ′
1) ≪

p(FC ′
2) and so we are done. If p(Min(C1)) = p(Min(C2)) and e ∈ Min(C ′

1), then

C ′
1 \Min(C ′

1) = C1 \Min(C1) ≺F C2 \Min(C2) = C ′
2 \Min(C ′

2),

hence C ′
1 ≺F C ′

2. Finally, if p(Min(C1)) = p(Min(C2)) and e /∈ Min(C ′
1), we again argue

that Min(C1) = Min(C2) and that, hence, C \Min(C1) and C2 \Min(C1) are configurations
of the branching process ⇑Min(C1) of (N ,M(Min(C1))). With an inductive argument we get
C ′
1 \Min(C ′

1) ≺F C ′
2 \Min(C ′

2) and are also done in this case.

A.2. More symbolic and low-level unfoldings

In this appendix we present unfoldings omitted in the main body of the paper.
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Low-level Unfolding of Fork And Join. Since the symbolic unfolding of any Fork And Join is
structurally equal to the net itself we do not display it here. Fig. 11 shows the low-level unfolding with
(n+ 2)(m+ 1)n + 1 nodes for a Fork And Join.

p
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n conds.

...
...

...
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Figure 11: The symbolic unfolding of a Fork And Join, depending on the parameters m and n.
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Figure 12: A prefix of the symbolic unfolding of the Water Pouring Puzzle for n = [3, 5] and m = 4,
produced by COLORUNFOLDER.
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Symbolic Unfolding of Water Pouring Puzzle. Figure 12 shows the complete finite prefix of the
symbolic unfolding of the Water Pouring Puzzle from Fig. 6 with n = [5, 3] and m = 4, calculated
by our implementation COLORUNFOLDER [23] of the generalized ERV-algorithm, Alg. 1. The figure
is automatically produced from the output of COLORUNFOLDER. Cut-off events are marked by a red
border. Additionally marked by a red border are the events representing the added goal transition
that checks the target states. Since the net is mode-deterministic, the symbolic unfolding’s skeleton
coincides with the low-level unfolding. Thus, the skeleton of the complete finite prefix in Figure 12
coincides with the complete finite prefix of the low-level unfolding generated by the original ERV-
algorithm from [8].

Symbolic Unfolding of Mastermind. Figure 13 shows a prefix of the symbolic unfolding of the
Mastermind net from Fig. 8 with 6 available colors, a code of length 4, and 12 possible attempts.
Combinatorial arguments give that the low-level unfolding has more than 1037 nodes, so we do not
present it here.
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Figure 13: A prefix of the symbolic unfolding of the Mastermind net from Fig. 8.


	High-level Petri nets & symbolic unfoldings
	High-level Petri nets
	Symbolic branching processes and unfoldings
	Properties of the symbolic unfolding.

	Finite & complete prefixes of symbolic unfoldings
	Generalizing adequate orders and cut-off events
	The generalized ERV-algorithm

	High-level versus P/T expansion
	Handling infinitely many reachable markings
	Symbolically compact high-level Petri nets
	Insufficiency of the cut-off criterion for 
	The finite prefix algorithm for symbolically compact nets
	Feasibility of symbolically compact nets and cut-off*

	Checking cut-offs symbolically
	Implementation and experimental results
	Implementation specifics
	Benchmark families
	Fork And Join
	The water pouring puzzle
	Hobbits And Orcs
	Mastermind

	Mode-deterministic high-level Petri nets
	Experiments and results

	Conclusions and outlook
	Appendix
	Examples of adequate orders
	More symbolic and low-level unfoldings


