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Abstract. In the paper we argue that performance of the classifiers based on Empirical Risk
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scheme may significantly deteriorate when applied to a single-sample scenario. We reveal why
their behavior depends, in all but very specific cases, on the scenario. Also, we introduce a single-
sample case analogue of the popular non-negative risk classifier designed for case-control data
and compare its performance with the original proposal. We show that the significant differences
occur between them, especially when half or more positive of observations are labeled. The
opposite case when ERM minimizer designed for the case-control case is applied for single-
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of scenarios requires a sole, but crucial, change in the definition of the Empirical Risk.
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1. Notions and auxiliary results

We first introduce basic notations for two scenarios which are commonly encountered when collecting
positive unlabeled (PU) data. Let X be a random variable corresponding to feature vector, Y ∈
{−1, 1} be a true class label and S ∈ {−1, 1} an indicator of an example being labeled (S = 1) or
not (S = −1). Only positive examples (Y = 1) from class P can be labeled, i.e. P (S = 1|X,Y =
−1) = 0. Thus we know that Y = 1 when S = 1 but when S = −1, Y can be either 1 or −1.
Such situation commonly occurs in medicine when only a part of patients is tested and diagnosed
with a certain disease (S = 1); for the remaining untested patients it is not known whether they are
ill (Y = 1) or not (Y = −1). Other areas when such type of restricted observability is encountered
include recommendation systems [1], survey analysis [2], text and image annotation [3] and biology
of ecosystems [4]. The setup is frequently described as missing or weak labels, see e.g. [5]. In
a single-sample scenario (abbreviated to s-s; also called single-training-set or censoring scenario)
we assume that there is some unknown distribution PY,X,S such that (Yi, Xi, Si), i = 1, . . . , n are
independent and identically distributed (iid) random variables drawn from it. Observed data consists
of (Xi, Si), i = 1, . . . , n. Throughout we will assume that the positive observations are selected
completely at random for labeling, i.e. labeling does not depend on particular features

P (S = 1|Y = 1, X = x) = P (S = 1|Y = 1) (1)

(SCAR assumption). This in particular implies that the labeled samples are generated from the same
distribution as the observations from the positive class i.e. PX|S=1 = PX|Y=1, see Proposition 1.1
below. For a treatment of a more general case when the left hand side of (1), called a propensity
score, depends on x see e.g. [6], [7] and [8]. In contrast, in case-control (c-c) scenario we observe
two samples, the first, called labeled class L, X1, . . . , Xn1 pertaining to the positive class P and
the second Xn1+1, . . . , Xn1+n2 drawn from a general population being the mixture of distributions
PX = πPX|Y=1 + (1 − π)PX|Y=−1 (unlabeled class U ). Note that c-c scenario is applicable when
the samples are drawn from two separate data bases; one pertaining to a general population and the
other to patients suffering from a certain disease. On the other hand, when e.g. a poll is conducted
for a randomly chosen group of people who are asked whether they text while driving (Y = 1) or not
(Y = −1), this corresponds to s-s scenario (with affirmative answer resulting in S = 1). We refrain
from using labeling variable S in the context of c-c data in order to avoid confusion. Note that although
for c-c case it would still denote a signed deterministic class indicator (labeled or unlabeled): S =
2× I{observation belongs to L}− 1, it would be deterministic and not have probabilistic connotation
as in s-s case. We remark that the SCAR assumption is automatically satisfied in c-c case if we
consider the observations X1, . . . , Xn1 as labeled: they are all generated from the distribution PX|Y=1

and Xn1+1, . . . , Xn1+n2 are generated from PX .

Observe that apart from minor differences concerning sample sizes, which are random for single-
sample scenario and deterministic for case-control and the important fact that π can not be estimated
in c-c case; the main difference between the two scenarios lies in a structure of unlabeled sample. In
the case-control scenario it corresponds to a general population which is a mixture of PX|Y=1 and
PX|Y=−1 with mixing proportion π = P (Y = 1). In contrast, for s-s case it corresponds to the
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mixture with different mixing proportion

PX|S=−1 =
π − πc

1− πc
PX|Y=1 +

1− π

1− πc
PX|Y=−1, (2)

where c = P (S = 1|Y = 1). This easily follows after noticing that out of proportion π of positive
observations, proportion πc is labeled and π − πc is unlabeled. In particular, we note that it follows
from (2) that probability that positive element occurs among unlabeled data equals π × 1−c

1−πc and
is smaller or equal π being the probability of such occurrence in an original sample. Thus, indeed,
distributions of unlabeled samples differ in those cases. In particular note that for c ≈ 1 unlabeled
group in s-s case consists mostly of negative observations in contrast to c-c case when it corresponds
to the original mixture. We refer in this context to [2], which contains a discussion of both setups.
Figure 1 shows this behavior for two unit variance normal densities with means −2 and 2, respectively,
π = 0.5 and c = 0.1, 0.5 and 0.9. Note that whereas for c = 0.1 the distributions between unlabeled
data in both cases are almost indistinguishable, for c = 0.9 there is a striking difference between
unlabeled distributions, the distribution being symmetric and bimodal in c-c case whereas in s-s case
the second mode is barely discernible.
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Figure 1. Comparison of labeled and unlabeled class density for s-s and c-c data

There is a legion of papers devoted to inference for PU data, and although they are mostly devoted
to c-c scenario (see the comprehensive review [2]), there are also many approaches which specifically
deal with s-s setup, starting from the seminal paper of Elkan and Noto [9]. However, it seems that
understanding of the importance of sampling scenario for behavior of developed classifiers is limited
and one can find many examples of careless use of c-c-developed methods in s-s scenario – sometimes
accidentally, but often even after clearly stating the scenario assumptions. This also includes com-
paring performance of methods designed for a specific scenario with methods for the other scenario,
which puts the latter at disadvantage. The purpose of this paper is to show that this has important
consequences and may lead to misleading conclusions especially when establishing a ranking of the
classifiers with respect to some performance metrics. This is analyzed here for a particular case of
Empirical Risk Minimizers, which play an important role in PU inference. We first state a basic fact
concerning SCAR scenario.
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Proposition 1.1. Under SCAR we have for single sample case that PX|S=1 = PX|Y=1.

Proof:
This easily follows after noting that switching the conditioning we have

P (X = x|S = 1) =
P (S = 1|X = x)PX(X = x)

P (S = 1)

and that in view of the fact S = 1 implies Y = 1 and (1) we have

P (S = 1|X = x) = P (S = 1|Y = 1, X = x)P (Y = 1|X = x)

=P (S = 1|Y = 1)P (Y = 1|X = x) =
P (S = 1)

P (Y = 1)
P (Y = 1|X = x).

Plugging in the formula for P (S = 1|X = x) into the first equation we obtain P (X = x|Y = 1)
after switching back the conditioning. ⊓⊔

We now derive the form of risk function of classification function g(X) in both scenarios. Let
g(x) : Rp → R be a classification function with the corresponding classifier being d(x) = 2 I{g(x) ≥
0} − 1 (i.e. classifying to positive class Y = 1 for g(x) ≥ 0 and to the negative one in the op-
posite case). Moreover, ℓ : R × {−1, 1} → R+ is a loss function, with ℓ(g(x), y) standing for
the loss incurred for classification function g(x), when the true class indicator is y. Let R(g) =
EX,Y ℓ (g(X), Y ) be the risk (expected loss) for classification function g. From now on, abusing the
notion slightly, we consider the losses of the form ℓ(g(x), y) := ℓ(g(x)y), where ℓ is defined now on
R. Thus

R(g) = EX,Y ℓ(Y g(X)) = πEX|Y=1ℓ(g(X)) + (1− π)EX|Y=−1ℓ(−g(X)).

We have the following general formula for the risk R(g) which holds regardless the scenario
considered:

R(g) = EX,Y ℓ(Y g(X)) = πEX|Y=1ℓ(g(X)) + EX (ℓ(−g(X)))− πEX|Y=1 (ℓ(−g(X))) . (3)

This immediately follows after noticing that

EX (ℓ(−g(X))) = πEX|Y=1ℓ(−g(X)) + (1− π)EX|Y=−1ℓ(−g(X)). (4)

The formula (3) is directly applicable in case-control scenario as samples pertaining to PX = PU and
PX|Y=1 are readily available. In the case of s-s scenario distribution PX corresponds to distribution
of X samples regardless their labels and distribution PX|Y=1 equals to the distribution of the labeled
samples PX|S=1 in view of Proposition 1.1. Note that −g(x) corresponds to classification function
which classifies to the opposite class than g(x).

For single-sample scenario we prove a formula for R(g) which relies solely on PX|S=1 and
PX|S=−1 and which provides additional insight how procedures designed for c-c case perform in
s-s case. This is given by the following Proposition which is a special case of representation of R(g)
in [2], p. 23, line 3. We note that although (5) is valid in s-s framework, it formally coincides with (3)
when EX|S=−1 is replaced by EX , P (S = −1) by 1 and P (Y = 1, S = −1) by π.
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Proposition 1.2. In s-s scenario under SCAR R(g) equals

R(g) = πEX|S=1ℓ(g(X)) + P (S = −1)EX|S=−1ℓ(−g(X))

− P (Y = 1, S = −1)EX|S=1ℓ(−g(X)).
(5)

Proof:
We show below how (5) follows from another insightful representation (see [10]), which states that
(E stands for EX,Y ):

E (ℓ(Y g(X))) = E (ℓ(Sg(X))) + E ([ℓ(g(X))− ℓ(−g(X))] I{Y = 1, S = −1}) (6)

holds regardless SCAR condition is valid or not. The above equality can be easily justified by noting
that when assigning all unlabeled observations (S = −1) to a negative class (Y = −1) we commit
an error on the set A = {Y = 1, S = −1}. Thus in order to account for this on set A we subtract
erroneous part of risk corresponding to ℓ(−g(X)) and add the correct one ℓ(g(X)).

In order to prove (5) note that Right-hand Side (RHS) of (6) can be written in the following form

R(g) = E(ℓ(g(X)) I{S = 1}) + E(ℓ(−g(X)) I{S = −1})
+ E ([ℓ(g(X))− ℓ(−g(X))] I{Y = 1, S = −1})
=: I + II + III + IV.

(7)

Observe that

I + III = P (S = 1)EX|S=1ℓ(g(X))

+ P (Y = 1, S = −1)EX|Y=1,S=−1ℓ(g(X))

= P (S = 1)EX|S=1ℓ(g(X)) + P (Y = 1, S = −1)EX|Y=1ℓ(g(X))

= P (S = 1)EX|S=1ℓ(g(X)) + P (Y = 1, S = −1)EX|S=1ℓ(g(X))

= P (Y = 1)EX|S=1ℓ(g(X)),

(8)

where the second equality follows from the conditional independence of X and S given Y under
SCAR assumption and the third uses the fact that distributions of X given Y = 1 and X given S = 1
coincide. Using the same argument we have

IV = −P (Y = 1, S = −1)EX|Y=1,S=−1ℓ(−g(X))

= −P (Y = 1, S = −1)EX|Y=1ℓ(−g(X))

= −P (Y = 1, S = −1)EX|S=1ℓ(−g(X)).

(9)

Moreover we have
II = P (S = −1)EX|S=−1ℓ(−g(X)). (10)

From the last three equalities the conclusion follows. ⊓⊔

Remark 1.3. As a side note we remark that in the case of logistic loss ℓ(s) = log(1+ e−s) for which
ℓ(s)− ℓ(−s) = −s, equality (6) for linear classification function g(x) = βTx simplifies to

R(g) = R(β) = E
(
ℓ(SβTX)

)
− P (Y = 1, S = −1)βTEX|Y=1,S=−1EX,

for which correction term E (ℓ(Y g(X)))− E (ℓ(Sg(X))) is linear function of β.
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2. Main result

We give now the formal reason why application of ERM classifiers designed for one scenario will fail
in the other scenario, save very specific cases. We assume throughout that probability π of positive
class is known; the assumption being adopted for most of the papers in PU c-c framework and justified
by a reasonable assumption that π can be precisely approximated from an independent data base. We
will focus on Empirical Risk Minimization (ERM) approach, consisting in finding minimizer of an
empirical counterpart of the theoretical risk. Consider now a situation when it is applied for s-s data
using characteristics of the samples valid in c-c case, namely that labeled samples pertain to PX|Y=1

distribution and unlabeled ones are generated from PX . Under SCAR the first assumption is valid as
PX|Y=1 = PX|S=1, whereas the second is not in view of (2). Consequently although the first terms in
(3) and (5) are equal the second and the third terms in both expressions do not match, suggesting that
Empirical Risk Minimization approach for case control situation can not be directly applied to single
sample scenario and vice versa. Indeed, closer scrutiny of (3) and (5) yields the following fact.

Proposition 2.1.
(i) Applying formula (3) for s-s scenario under assumption that PU = PX|S=−1 = PX , is valid only
when

EX|S=1ℓ(−g(X)) = EX|S=−1ℓ(−g(X)), (11)

provided P (S = 1) > 0.

(ii) Conversely, provided P (S = 1) > 0, formula (5) for c-c scenario under assumption that PU =
PX|S=−1 = PX , is valid only when

EX|S=1ℓ(−g(X)) = EXℓ(−g(X)). (12)

Proof:
Application of (3) for s-s scenario means that unlabeled population is treated as the original population,
i.e. PU = PX|S=−1 = PX and thus (3) will take the form

πEX|S=1ℓ(g(X)) + EX|S=−1ℓ(−g(X))− πEX|S=1ℓ(−g(X)) (13)

as EX|Y=1 = EX|S=1. This would be valid formula for R(g) in s-s scenario provided the above
expression equals (5), which, taking into account again that under SCAR PX|Y=1 = PX|S=1, yields

EX|S=−1ℓ(−g(X))− πEX|S=1ℓ(−g(X))

= P (S = −1)EX|S=−1ℓ(−g(X))

− P (Y = 1, S = −1)EX|S=1ℓ(−g(X)).

(14)

Thus, using π − P (Y = 1, S = −1) = P (S = 1), we have that the equality above is equivalent to

P (S = 1)EX|S=−1ℓ(−g(X)) = P (S = 1)EX|S=1ℓ(−g(X)), (15)

which yields the conclusion of (i).
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Proof of (ii) is analogous. Formula (5) under assumption PU = PX|S=−1 = PX takes the form

πEX|S=1ℓ(g(X)) + P (S = −1)EXℓ(−g(X))− P (Y = 1, S = −1)EX|S=1ℓ(−g(X))

and equating it to (3) yields condition (12). ⊓⊔

Thus it follows that applying Empirical Risk Minimization (ERM) methods suitable for c-c PU
data (such as popular uPU and nnPU methods) to s-s data directly, without modifying them, puts
them at disadvantage.

Other methods derived for PU case-control situation will also be affected when applied to single-
sample data. This is due to the fact that they necessarily use the information that unlabeled obser-
vations follow the general distribution. We have focused here on ERM methods as in this case it
is possible to formally analyze the impact of scenario on the method; see Proposition 2.1. In the
following we compare performance of nnPUcc, which optimizes non-negative modification of the
empirical version of (3), with its counterpart adapted to s-s data, which will be called nnPUss in the
sequel. We compare their performance in a single-sample case (when nnPUss should be used) and in
a case-control case (when the alternative method should be used).

Remark 2.2. We note that both (11) and (12) are implied by PX|S=1 = PX|S=−1. However, it is easy
to check that due to (2) and equality PX|Y=1 = PX|S=1, this is equivalent to PX|Y=1 = PX|Y=−1,
which makes the original problem void, as distinguishing between classes is clearly impossible in this
case.

2.1. Empirical risks

Consider first two popular estimators of (3) constructed for c-c data. Note that R(g) in equation (3)
can be split into three components: the first, corresponding to the labeled sample risk (which we
will denote as RL in the algorithm), the second – to the risk with respect to the general distribution
PX (denoted by RD), as well as PU SCAR correction of the second term (Rcorr). The first and
the third component of Eq. (3) are independent of the scenario. The general distribution component
EX l(−g(X)) can be consistently approximated by empirical average over U as observations in U are
distributed according to PX . Thus the direct plug-in estimator of (3) is ([11])

R̂uPUcc(g) =
π

nL

∑
i:Xi∈L

ℓ(g(Xi)) +
1

nU

∑
i:Xi∈U

ℓ(−g(X))

− π

nL

∑
i:Xi∈L

ℓ(−g(Xi)).
(16)

The minimizer of (16) is called unbiased PU estimator (uPU ) and the index ’cc’ is added in order to
stress that it is derived for c-c data. The nonnegative version (nnPU ) is obtained when truncating the
sum of the two last elements in (16) at 0. This is motivated by the fact that its theoretical counterpart
EXℓ(−g(X))− πEX|Y=1ℓ(−g(X)) is nonnegative.
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Thus nnPUcc estimator is minimizer of (see [12]):

R̂nnPUcc(g) =
π

nL

∑
i:Xi∈L

ℓ(g(Xi))

+ max

 1

nU

∑
i:Xi∈U

ℓ(−g(Xi))−
π

nL

∑
i:Xi∈L

ℓ(−g(Xi)), 0

 ,

(17)

We consider now nnPUss estimator defined as the minimizer of the risk R(g) for s-s scenario based
on (3). Note that for this scenario term EX l(−g(X)) can be approximated by empirical average over
all observations disregarding their labels and thus we have direct plug-in estimator R̂uPUss

R̂uPUss =
π

nL

∑
Xi∈L

l(g(Xi))

+
1

n

∑
Xi∈L∪U

l(−g(Xi))−
π

nL

∑
x∈L

l(−g(Xi))
(18)

and its nonnegative version R̂nnPUss :

R̂nnPUss =
π

nL

∑
Xi∈Li

l(g(Xi))

+ max

 1

n

∑
Xi∈L∪U

l(−g(Xi))−
π

nLi

∑
x∈L

l(−g(Xi)), 0

 .

(19)

The final, labeling-scenario-aware training procedure is described in detail in Algorithm 1. Note
that algorithm incorporates the change of the gradient sign when truncation occurs as advocated in the
original nnPU algorithm ([13]). We also note that in order to obtain the version of nnPUss algorithm
it is only necessary to change in the definition of R̂uPUss , the value of RD to the average calculated
over all data and not over U sample.

Remark 2.3. We also note that it is possible to obtain R̂uPUss based on (5). Namely plug-in version
of (5) has the form

π

nL

∑
i:Xi∈L

ℓ(g(Xi)) +
1

n

∑
i:Xi∈U

ℓ(−g(X))

−
(
π − nL

n

) 1

n

∑
i:Xi∈L

ℓ(−g(Xi)),

(20)

where nL = |{i : Si = 1}| and nU = n − nL and P (Y = 1, S = −1) is estimated by π − P̂ (S =
1) = π − nL

n . Its non-negative version is defined analogously. However, by splitting the sum
1
n

∑
Xi∈L∪U l(−g(Xi)) into the sums over L and U it is easy to see that (20) equals (18). The form

of the risk function in (18), while less useful from the theoretical point of view, has an important ad-
vantage: namely that only a single component differs between (16) and (18). This allows for easier
comparison of those risks over the course of our experiments and is thus used in our implementation
of the nnPUss algorithm.
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We discuss the reason the negative part of R̂uPUcc is biased downwards when applied to single
sample data. The first and the third terms in (16) are consistent estimators of their theoretical counter-
parts, the problem occurs for the second term. Namely, large contribution to the sum

∑
i∈U ℓ(−g(Xi))

pertains to positive elements which are likely to be assigned to positive class by classification function
g(x) but will be assigned to negative class by −g(x) thus producing large loss. However, when uPUcc

is applied to s-s data the proportion of positive elements among unlabeled data is smaller than in the
general population as discussed in the introduction. This results in downward bias of the negative part
of ERM. Thus truncation at 0 is more likely to occur here than for c-c scenario. Conversely, when
nnPUss is applied for c-c data the term n−1

∑
i:Si=−1 ℓ(−g(Xi)) in (20) is larger than for s-s data

as the proportion of positive observations among unlabeled observations is larger. Note that the both
cases of misuse are not entirely symmetric as erroneous application of R̂nnPUcc(g) to s-s data results
in more likely truncation, whereas for R̂nnPUss(g) used for c-c data truncation is less likely.

3. Numerical experiments

We consider two sampling scenarios:

(a) Single-sample scenario. For a given data set for which π is taken as a fraction of positive class
in it, we sample n = 1000 elements randomly without replacement and label them using SCAR
scenario with varying c = P (S = 1|Y = 1). We apply s-s and c-c methods to the sample
obtained.

(b) Case-control scenario. In the following n again will stand for the total number of observations.
In order to ensure that the expected fraction of labeled observations for a given c is the same in
both scenarios we pick c×π×n observations from positive class and (1−c)×n from the whole
data set. Thus c×π×n+π×(1−c)×n = π×n is an expected number of observations from the
positive class in the sample and fraction c of them will be labeled on average. In order to ensure
that the chosen sample has size equal to n both sizes should be increased A = (1− c(1−π))−1

times i.e. size of chosen labeled sample should be A × c × π × n and A × (1 − c) × n for
the unlabeled one. Note that both samples are not necessarily disjoint but this should not affect
the performance of the rule as empirical risk function is an unbiased estimator of theoretical
risk also in this case. We stress that examination of these two sampling scenarios shows that
the meaning of some parameters is different in both methods, e.g. for single-sample scenario
c = P (S = 1|Y = 1) = 1 means that every positive observation will be labeled and thus the
sample (Xi, Si)

n
i=1 is generated from the distribution PX,Y . In case control scenario it means

that every observation for positive class is sampled, however unlabeled set will be empty as
otherwise (see the calculation above) c will be strictly smaller than 1.

We performed experiments on a collection of 18 diverse datasets from different domains: image,
text and tabular classification. Dataset details are shown in table 1 – the test ensemble contains datasets
of various sizes and class balances. In order to focus on risk function differences rather than on tuning
particular network architectures, as well as to shorten training time, we used pretrained embeddings
for text and image data (all-MiniLM-L6-v2 [14] and swiftformer-xs [15] respectively). For
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processed data classification, we used 5-layer feed-forward neural network, matching the one used in
[13]. Similarly to this paper, we kept the default values of hyper-parameters: β = 0 and γ = 1 (see
Algorithm 1 for their description). Based on the each dataset, we synthetically created both single-
sample and case-control problem, as described above. We either use a pre-existing train-test split or,
in cases where it is not available, split dataset with a 80-20 training-test ratio.

Table 1. Dataset statistics

Dataset Data type Samples Features π

CIFAR Image 50000 10780 0.60
MNIST Image 60000 10780 0.51
FashionMNIST Image 60000 10780 0.50
EuroSAT Image 21600 10780 0.30
Chest X-ray Image 4077 10780 0.73
Snacks Image 4838 10780 0.41
DogFood Image 2250 10780 0.33
Beans Image 1034 10780 0.33
Oxford Pets Image 5912 10780 0.33
20News Text 11314 384 0.56
IMDB Text 25000 384 0.50
HateSpeech Text 8561 384 0.11
SMSSpam Text 4459 384 0.13
PoemSentiment Text 892 384 0.15
Credit Tabular 13371 10 0.50
California Tabular 16507 8 0.50
Wine Tabular 2043 11 0.51
Electricity Tabular 30779 7 0.50

During testing, multiple label frequency c levels, ranging from 0.1 to 0.9, were applied. Each
experiment (for a given dataset, scenario, label frequency and method combination) was repeated 10
times with a different random seed. As the paper’s aim is to emphasize impact of correct method
selection, we focused on comparing nnPUss and nnPUcc methods and did not include comparisons
with any external classifiers. Implementation of Algorithm 1 and all experiments’ code are publicly
available on GitHub1.

3.1. Results

Experiment results are summarized in Tables 2 and 3, for s-s and c-c data respectively (results for
metrics other than accuracy: precision, recall and F1 score can be found in the GitHub repository;
observations for F1 score largely correlate with the accuracy-based analysis below). The key obser-
vation is that in both cases the advantage of the correctly specified method (defined as the difference
of respective accuracies and denoted by ∆) starts for c as low c = 0.1, but as the proportion of la-

1https://github.com/wawrzenczyka/nnPUss

https://github.com/wawrzenczyka/nnPUss


J. Mielniczuk and A. Wawrzeńczyk / Single-sample Versus Case-control Sampling Schemes for PU Data 39

Algorithm 1: Scenario-aware nnPU algorithm
Input: Positive-unlabeled dataset X = (L,U), π – class prior, n – number of training items,

hyperparameters β and γ (as described in detail in [13]).
1 repeat
2 Split X into k minibatches
3 forall minibatch Mi = (Li, Ui) in X do
4 Calculate labeled risk component RL

RL = π
1

nLi

∑
x∈Li

l(g(x)),

5 if nnPUss then
6 Calculate general distribution component RD based on the whole dataset

RD = RD
ss =

1

n

∑
x∈Li∪Ui

l(−g(x)),

7 else if nnPUcc then
8 Calculate general distribution component RD based on the unlabeled set

RD = RD
cc =

1

nUi

∑
x∈Ui

l(−g(x)),

9 Calculate PU SCAR correction Rcorr

Rcorr = π
1

nLi

∑
x∈Li

l(−g(x)),

if nonnegative risk component RD −Rcorr ≤ −β then
10 Perform gradient descent for unbiased risk R = RL + (RD −Rcorr) with step

size η.
11 else
12 Update model parameters using surrogate Rsurr = Rcorr −RD with discounted

step size γη.
13 end
14 end
15 until not converged;
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Table 2. Test accuracy, single-sample datasets. ∆ indicates accuracy difference between scenario-appropriate
nnPUss method and ill-specified nnPUcc method.

c Model Beans CIFAR Chest X-ray DogFood EuroSAT FashionMNIST MNIST Oxford Pets Snacks

0.1
nnPUcc 81.88 92.69 88.93 87.69 90.26 97.16 95.16 86.80 74.96
nnPUss 79.22 91.53 89.62 86.15 87.77 95.14 93.71 83.50 75.05

∆ -2.66 -1.16 0.69 -1.55 -2.49 -2.02 -1.45 -3.29 0.09

0.3
nnPUcc 89.92 92.01 91.49 97.56 94.19 96.68 95.23 95.86 80.68
nnPUss 89.06 93.80 92.71 95.21 91.71 96.96 96.77 89.76 81.34

∆ -0.86 1.78 1.22 -2.35 -2.48 0.28 1.53 -6.10 0.66

0.5
nnPUcc 91.09 87.52 91.25 98.77 93.56 94.86 92.41 98.12 81.83
nnPUss 91.80 95.04 93.40 98.13 94.21 97.98 98.23 93.50 84.96

∆ 0.70 7.52 2.15 -0.64 0.65 3.12 5.82 -4.62 3.13

0.7
nnPUcc 91.64 80.18 88.83 98.84 90.62 82.96 85.41 97.50 81.63
nnPUss 94.22 96.46 94.05 99.33 95.67 99.10 98.98 96.20 87.25

∆ 2.58 16.27 5.22 0.49 5.06 16.14 13.57 -1.30 5.62

0.9
nnPUcc 91.33 75.28 85.09 98.61 87.60 68.54 67.81 96.39 81.39
nnPUss 95.70 97.57 95.15 99.80 96.94 99.43 99.19 98.95 89.39

∆ 4.37 22.29 10.07 1.19 9.34 30.89 31.38 2.55 8.00

c Model California Credit Electricity Wine 20News HateSpeech IMDB PoemSentiment SMSSpam

0.1
nnPUcc 81.71 64.48 75.16 69.22 79.95 88.94 73.31 84.71 88.70
nnPUss 81.77 64.48 74.93 68.51 78.61 88.94 72.79 84.81 89.39

∆ 0.06 0.01 -0.23 -0.70 -1.34 0.00 -0.52 0.10 0.69

0.3
nnPUcc 83.20 66.59 78.42 73.89 82.50 89.52 77.00 85.00 96.55
nnPUss 84.09 67.85 78.00 74.03 81.38 89.41 75.68 85.87 95.62

∆ 0.89 1.26 -0.42 0.14 -1.12 -0.10 -1.32 0.87 -0.92

0.5
nnPUcc 82.46 63.99 79.54 75.95 81.87 89.29 78.00 86.15 97.87
nnPUss 85.31 66.23 79.64 75.97 83.28 89.32 76.83 87.60 97.18

∆ 2.85 2.24 0.11 0.02 1.40 0.03 -1.16 1.44 -0.68

0.7
nnPUcc 80.13 62.18 78.55 76.18 78.99 89.01 77.13 89.04 98.48
nnPUss 86.27 63.56 80.67 78.16 84.43 89.51 78.27 89.71 98.15

∆ 6.14 1.37 2.12 1.98 5.44 0.50 1.15 0.67 -0.32

0.9
nnPUcc 76.82 61.33 75.87 74.72 74.27 88.82 74.76 90.00 98.72
nnPUss 86.36 60.54 81.20 79.47 85.75 89.65 79.34 90.87 98.33

∆ 9.54 -0.79 5.33 4.76 11.48 0.83 4.58 0.87 -0.39
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Table 3. Test accuracy, case-control datasets. ∆ indicates accuracy difference between scenario-appropriate
nnPUcc method and ill-specified nnPUss method.

c Model Beans CIFAR Chest X-ray DogFood EuroSAT Fashion MNIST MNIST Oxford Pets Snacks

0.1
nnPUss 77.91 93.06 89.60 85.75 86.30 94.68 93.36 82.98 73.10
nnPUcc 78.37 93.52 88.83 86.92 89.39 96.93 95.49 86.30 72.67

∆ 0.47 0.46 -0.77 1.16 3.09 2.25 2.13 3.31 -0.43

0.3
nnPUss 83.88 94.40 92.99 92.43 88.26 94.00 93.50 84.24 80.40
nnPUcc 83.64 95.48 92.15 96.44 93.26 98.47 97.56 92.56 80.77

∆ -0.23 1.08 -0.84 4.01 5.00 4.47 4.06 8.32 0.37

0.5
nnPUss 85.81 89.25 92.58 93.46 84.07 85.91 83.70 84.98 74.28
nnPUcc 85.66 96.75 93.20 97.50 94.54 99.12 98.58 95.16 83.04

∆ -0.16 7.50 0.62 4.05 10.47 13.21 14.88 10.19 8.76

0.7
nnPUss 81.94 81.83 82.27 88.26 76.42 83.24 85.71 79.87 69.13
nnPUcc 85.04 97.74 90.38 96.14 95.31 99.37 99.05 96.38 80.30

∆ 3.10 15.91 8.11 7.88 18.89 16.13 13.33 16.51 11.18

0.9
nnPUss 44.34 89.43 85.44 30.24 24.56 87.21 86.61 25.70 46.79
nnPUcc 62.40 98.71 79.86 74.77 95.55 99.58 99.25 91.36 68.05

∆ 18.06 9.28 -5.57 44.53 70.99 12.37 12.64 65.67 21.26

c Model California Credit Electricity Wine 20News HateSpeech IMDB PoemSentiment SMSSpam

0.1
nnPUss 81.27 63.93 74.60 68.42 78.46 88.00 72.55 82.57 89.27
nnPUcc 81.27 64.07 74.82 69.61 79.82 88.00 73.14 82.76 88.68

∆ 0.00 0.14 0.22 1.19 1.36 0.00 0.59 0.19 -0.58

0.3
nnPUss 83.74 67.59 76.33 69.96 79.63 86.40 71.35 82.86 94.20
nnPUcc 84.60 67.89 76.95 73.55 83.53 86.44 75.72 82.86 95.64

∆ 0.86 0.30 0.62 3.59 3.90 0.05 4.36 0.00 1.43

0.5
nnPUss 84.03 69.67 77.08 72.15 73.08 83.00 71.01 82.10 92.26
nnPUcc 85.78 70.68 77.51 76.46 85.86 84.28 76.32 82.38 96.83

∆ 1.75 1.01 0.43 4.32 12.78 1.28 5.31 0.29 4.57

0.7
nnPUss 85.45 71.69 77.47 72.11 72.80 71.71 70.83 72.38 77.40
nnPUcc 87.44 73.94 78.20 78.63 88.64 80.01 77.38 79.90 96.48

∆ 1.99 2.25 0.73 6.52 15.84 8.31 6.55 7.52 19.08

0.9
nnPUss 83.13 71.34 76.06 70.78 81.35 44.69 70.96 34.57 40.71
nnPUcc 89.85 76.13 79.58 82.97 92.80 63.64 79.70 59.14 89.85

∆ 6.72 4.79 3.51 12.19 11.46 18.95 8.74 24.57 49.14
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Figure 2. Change of accuracy with label frequency increase for single-sample datasets
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Figure 3. Test accuracy per epoch, selected single-sample datasets, c = 0.9

beled examples in the dataset increases it tends to significantly increase. Upon closer inspection, this
is expected – as apparent in Figure 1, the difference in unlabeled sample structure is subtle when
label frequency is low, but becomes very apparent when c increases. That causes both methods’ per-
formance to be close when label frequency is low, but for high c values, when scenario dependency
deepens, they start to diverge.

Due to the reasons above, it is worth inspecting results for c = 0.9 in detail, as this is when
scenario differences are the most distinctive. In the vast majority of cases, the advantage of correctly
specified method is very significant – this is most apparent for some image datasets, such as MNIST
and CIFAR. Rare cases where performance of both methods is similar are more common for text and
tabular data. Note that the for the correct method, in vast majority of cases accuracy tends to steadily
increase as the label frequency rises, while the alternative methods’ performance starts to drop off.
Figure 2 illustrates this phenomenon for s-s datasets, but the former statement holds true for case-
control data as well. Depicted behavior seems to indicate overfitting of the ill-specified method for
high c values, which, as apparent in Figure 3, occurs on multiple datasets and is the major cause of the
classification performance deterioration. We stress that as in the positive-unlabeled problems we have
no access to the fully labeled validation dataset, robustness to overfitting is drastically more important
for any PU learning method than in the binary classification task. Overall, ill-specified methods are
prone to overfitting after only a couple of epochs. Rare cases, where they do not overfit, match cases,
where the overall accuracy of both methods stay close.
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Figure 4. Risk components per epoch, Snacks dataset, c = 0.9. ,,Method” values refer to risk values obtained
during training, whereas ,,Correct” values – to the ones which would be obtained in the given epoch if scenario-
aware risk would be applied.

In order to understand the behavior of both methods better, closer inspection of a change of risk
values during training is crucial. Figure 4 illustrates a typical risk component changes throughout
the learning process for both nnPUss and nnPUcc. Note that even when wrong method is applied
(nnPUcc for single-sample datasets and vice versa) the ,,correct” risk values still decrease throughout
training. This suggests that for both nnPUss and nnPUcc gradients might point in the similar direc-
tions, and explains why (especially in the initial training epochs) learning does not fail completely. It
is also interesting to consider reasons why this does not hold true throughout whole training. When
attempting to train nnPUss on the case-control data (Fig. 4, upper right), note that for the correct,
case-control-tailored risk value, non-negative risk component RD−Rcorr drops well below 0 – which
is strongly undesirable and is normally discouraged in Algorithm 1, step 11. Due to this, severe over-
fitting occurs only a few epochs into training. In the symmetric case, nnPUcc on the single-sample
data (Fig. 4, lower left), the problem is slightly different. Due to RD being underestimated by the
algorithm (as it expect more positive samples in the unlabeled dataset), nonnegative component of the
risk quickly falls towards 0 and starts oscillating in its vicinity. This time step 11 of algorithm 1 is
activated very early. However, by the view of the correct, scenario-aware risk function, these updates
are counterproductive – they are only valid when nonnegative component stops being positive – and
counteract quasi-valid updates of the model, causing performance decline.

4. Conclusions

In this paper, we discussed issues with automatic application of PU learning methods without taking
into account labeling scenario constraints. To this end, we introduced nnPUss – a tailored to s-s
scenario equivalent of nnPU (denoted in this paper as nnPUcc), a popular benchmark method in PU
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learning papers – and through experiments, we exposed dangers of incorrect method selection, and
identified reasons for such behavior. Obtained results indicate that for high-enough label frequencies
(approximately c ≥ 0.5), using algorithms not devised for a particular scenario might incur a major
performance loss, and – especially in the case of ranking classifiers according to their performance
– might put the method investigated at the huge disadvantage. We also introduced a correct form
of nnPUss classifier for s-s data and indicated that its algorithm can be easily obtained from the
algorithm of nnPUss classifier by changing one line of its code. Future research on this topic might
include expanding this analysis to more types of methods, as well as identify dependence of this
phenomenon on methods’ complexity and/or its training parameters. It would be also desirable to
analyze which of the methods devised for c-c scenario can be easily adapted, as it is the case for ERM
classifiers, to s-s set up.
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