
Fundamenta Informaticae 193(1), 2024 11

On Completely Edge-Independent Spanning Trees
in Locally Twisted Cubes

Xiaorui Li*, Baolei Chengc,∗, Jianxi Fan, Yan Wang
School of Computer Science and Technology, Soochow University,

Suzhou 215006, China

20224227038@stu.suda.edu.cn,{chengbaolei,jxfan,wangyanme}@suda.edu.cn

Dajin Wang
School of Computing, Montclair State University

Upper Montclair, NJ 07043, USA

wangd@montclair.edu

Abstract. A network can contain numerous spanning trees. If two spanning trees Ti, Tj do not
share any common edges, Ti and Tj are said to be pairwisely edge-disjoint. For spanning trees
T1, T2, ..., Tm, if every two of them are pairwisely edge-disjoint, they are called completely edge-
independent spanning trees (CEISTs for short). CEISTs can facilitate many network functional-
ities, and constructing CEISTs as maximally allowed as possible in a given network is a worthy
undertaking. In this paper, we establish the maximal number of CEISTs in the locally twisted
cube network, and propose an algorithm to construct ⌊n2 ⌋ CEISTs in LTQn, the n-dimensional
locally twisted cube. The proposed algorithm has been actually implemented, and we present the
outputs. Network broadcasting in the LTQn was simulated using ⌊n2 ⌋ CEISTs, and the perfor-
mance compared with broadcasting using a single tree.

Keywords: Broadcasting; Edge-disjoint; CEISTs; Locally twisted cubes; Spanning trees; Tree
embedding.

*Also works: Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, Suzhou
215006, China.
cAddress for correspondence: School of Computer Science and Technology, Soochow University, Suzhou 215006, China.

Received January 2024; accepted November 2024.

ar
X

iv
:2

40
1.

01
58

5v
4

 [
cs

.D
C

]
 2

1
D

ec
 2

02
4

12 X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes

1. Introduction

One important indicator for a network’s robustness is its ability to effectively embed useful structures,
such as paths, rings, trees, etc. that satisfy certain constraints in the network. In recent years, the ques-
tion of finding completely edge-independent spanning trees (CEISTs) in interconnection networks has
particularly interested researchers in the field. The completely edge-independent spanning trees in a
network can be an instrumental facilitator of many network functions, such as reliable communica-
tion, fault-tolerant broadcasting, secure messages distribution, etc [1, 2, 3, 4]. If we can determine
the maximum number of CEISTs to optimize the utilization of the edges in a given network, we can
achieve the maximum channel utilization, and reduce the communication delay. If there are k CEISTs
in a network, then the network can tolerate, in the worst-case scenario, as many as (k − 1)× (n− 1)
tree-edges to be faulty, and still achieve broadcasting.

In the study of computer networks, a network is almost exclusively modeled by a graph G =
(V,E) as in graph theory, with V being the set of vertices (nodes in network terms), and E being the
set of edges (links/lines/channels between nodes). In this paper, these terms—graphs and networks,
vertices and nodes, edges and links/lines/channels—will be used interchangeably.

There are several different categories of independent spanning trees, and they are broadly classified
into edge-independent spanning trees (EISTs), node-independent spanning trees (NISTs), completely
independent spanning trees (CISTs), and edge-disjoint spanning trees (EDSTs), etc. (see [4] for all
these definitions). In general, EISTs is a set of spanning trees rooted at u in G such that there are no
common internal edges between u and any other node among the paths in these spanning trees [4],
and the difference between EISTs and EDSTs is that in EISTs, all spanning trees share one particular
node as their common root, while all spanning trees in EDSTs are rootless. For that reason, CEISTs
as EDSTs have been interchangeably used in the literature.

However, we noted that the definition of EDSTs in [21] is actually our definition of EISTs. Fur-
thermore, Lin et al. proved that Hsieh and Tu’s spanning trees are indeed node-independent spanning
trees [27], that is, the spanning trees they constructed are rooted trees. Therefore, the spanning trees
dealt with in our paper are different than those in [21]. Following the nomenclature of CIST (where
“completely” means “rootless”), in the rest of this paper we employ the term CEISTs instead of EDSTs
to avoid further confusion.

The hypercube, denoted by Qn, is a classical interconnection network that has many desirable
properties, such as low diameter, high connectivity, symmetry, etc. [5, 6, 7]. The CEISTs in Qn have
been extensively studied. Barden et al. proposed a method for obtaining the maximum number of
CEISTs in Qn, and proved that there exist ⌊n2 ⌋ CEISTs in Qn [8]. For the Cartesian product network
G × F , Ku et al. gave two methods to embed CEISTs [9]. The first method constructed n1 + n2

CEISTs in G × F with certain assumptions, while the second one with no assumptions constructed
n1 + n2 − 1 CEISTs in G × F , where n1 (resp. n2) is the number of CEISTs in G (resp. F). In
2021, Zhou et al. proposed the maximum number of CEISTs and edge-disjoint spanning c-forests of
equiarboreal graphs [10]. In 2022, Wang et al. proposed an algorithm that constructed completely
independent spanning trees in the line graph of graph G based on G’s CEISTs [15]. Furthermore,
CEISTs have also been studied for some special networks [11, 12, 13, 14].

X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes 13

Fan et al. introduced the notion of bijective connection networks (BC networks for short) [16, 28],
which include many well-known networks, such as hypercubes, locally twisted cubes, crossed cubes,
etc., and other less known networks. Based on BC networks, conditional BC networks were defined
by Cheng et al. in [17]. It has been shown that hypercubes, crossed cubes, locally twisted cubes, and
Möbius cubes all belong to conditional BC networks. As of today, CEISTs in hypercubes [8] and
crossed cubes [18] have been obtained, while CEISTs in locally twisted cubes and Möbius cubes [24]
still remain unsolved.

As a prominent variant of the hypercube, the locally twisted cube LTQn, proposed by Yang et al.
[19], has advantageous properties including low diameter and low fault-diameter. Hsieh et al. proved
that LTQn is (2n−5)-Hamiltonian (for n ≥ 3) if each vertex in LTQn is associated with at least two
fault edges [20]. In this paper, we study how to embed the maximal number of CEISTs in the LTQn.
Our work in this paper can be outlined as follows:

1) We propose a recursive algorithm, named CEISTs LTQ, that constructs ⌊n2 ⌋ CEISTs T1, T2, ...,
T⌊n

2
⌋ in the LTQn;

2) We prove theoretically the correctness of CEISTs LTQ, and determine its time complexity as
O(n · 2n), where n is the dimension of LTQ;

3) To solidly validate the algorithm, CEISTs LTQ has been actually implemented, and we present
the running outputs;

4) We have simulated the broadcasting in LTQn using CEISTs, and the outcomes are presented
and discussed.

It is worth pointing out that the CEISTs-construction methods developed earlier for the hypercube
and the crossed cube [8, 18] cannot be directly applied to LTQ. The link connection between subcubes
in LTQ is more complicated than in the hypercube/crossed cube, calling for different, new approaches
in the CEISTs-construction process.

The rest of this paper proceeds as follows. Section 2 provides the preliminaries. Section 3 in-
cludes the paper’s main work—describing the algorithm for constructing ⌊n2 ⌋ CEISTs in LTQn,
proving its correctness, and analyzing its time complexity. Section 3 also discusses the technical sim-
ilarity/difference between CEISTs LTQ and existing CEISTs algorithms for hypercubes and crossed
cubes. Section 4 presents the simulation experiments to verify the validity of the algorithm, and eval-
uates its performance in efficient broadcasting. Section 5 concludes the paper.

2. Preliminaries

2.1. Terminology and notation

A network can be abstracted as a graph G(V (G), E(G)), where V (G) denotes the vertex set and E(G)
denotes the edge set, representing the servers and the links between them respectively. As pointed out
earlier, graphs and networks are interchangeably used throughout this paper.

14 X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes

T is said to be a spanning tree of graph G, if (1) T contains all the vertices of G; (2) T has exactly
|V (G)| − 1 edges from E(G). A path started from u and ended at v is denoted (u, v)-path. Given
two (u, v)-paths P and Q started at u and ended with v, P and Q are edge-disjoint if they share no
common edges. Let T1, T2, ..., Tm be spanning trees in graph G, if for every pair of them do not
contain the common edges, then T1, T2, ..., Tm are called completely edge-independent spanning trees
(CEISTs for short) in G.

A binary string u with length n can be written as un−1un−2...uiui−1...u0 ,where ui ∈ {0, 1} and
0 ≤ i ≤ n − 1. The complement of ui will be denoted by ui (0 = 1 and 1 = 0). |u| is the decimal
value of u. A path P from v(1) to v(n) can be denoted as v(1)-v(2)-· · · -v(n). |u| − |v| means the
decimal value of vertex u minus the decimal value of vertex v.

2.2. Locally twisted cubes

We adopt the definition of LTQn as follows.

Definition 1 [19]. For integer n ≥ 2. The n-dimensional locally twisted cube, denoted by LTQn, is
defined recursively as follows.

(1) LTQ2 is a graph consisting of four vertices labeled with 00, 01, 10, and 11, respectively,
connected by four edges (00, 01), (00, 10), (01, 11), and (10, 11).

(2) For integer n ≥ 3, LTQn is built from two disjoint copies of LTQn−1 according to the fol-
lowing steps. Let LTQ0

n−1 (respectively, LTQ1
n−1) denote the graph obtained by prefixing the label

of each vertex in one copy of LTQn−1 with 0 (respectively, 1). Each vertex u = 0(un−2un−3...u0) in
LTQ0

n−1 is connected with the vertex 1(un−2⊕u0)un−3...u0 in LTQ1
n−1 by an edge, where“⊕”represents

the modulo 2 addition.

The locally twisted cube LTQn can also be equivalently defined in the following non-recursive
fashion.

Definition 2 [19]. For integer n ≥ 2, the n-dimensional locally twisted cube, LTQn, is a graph with
{0, 1}n as the vertex set. Two vertices u = un−1un−2...u0 and v = vn−1vn−2...v0 in LTQn are
adjacent if and only if either (1) For some 2 ≤ i ≤ n− 1, ui = vi and ui−1 = vi−1⊕u0 , and uj = vj
for all the remaining bits or, (2) For some i ∈ {0, 1}, ui = vi , and uj = vj for all the remaining bits.

Fig. 1 shows the examples of LTQ3 and LTQ4.

(a) (b)

Figure 1. (a) LTQ3; (b) LTQ4.

X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes 15

It follows that LTQn is an n-regular graph, and any two adjacent vertices in LTQn differ by at
most two consecutive bits. Moreover, the following lemma holds.

Lemma 1. [21] Let u = un−1un−2...u0 and v = vn−1vn−2...v0 be two adjacent vertices in LTQn(n ≥
2) with u > v. Then, the following statements hold.

(1) If |u| is even, then |u| − |v| = 2i for some 0 ≤ i ≤ n− 1.
(2) If |u| is odd, then either |u|− |v| = 2i for some i ∈ {0, 1} or |u|− |v| = 2i−

[
(−1)ui−1 × 2i−1

]
for some i ≥ 2.

When two adjacent vertices u and v have a leftmost differing bit at position d, that is ud ̸= vd and
un−1un−2...ud+1 = vn−1vn−2...vd+1. Furthermore, for W ⊆ V (LTQn), Nd(W) = {Nd(w)|w ∈W}
denotes the set of the d-neighbors of all vertices in W . When two vertices u and v are adjacent, and
both u’s decimal value and v’s decimal value are even (odd), we say (u, v) is even (odd) edge.

3. Completely edge-independent spanning trees in locally twisted cubes

In this section, we propose an algorithm to construct ⌊n2 ⌋ CEISTs in LTQn, where n ≥ 2, prove its
correctness, and analyze its time complexity. In what follows, we represent each vertex in the trees by
its decimal value.

3.1. Construction Algorithm of CEISTs for locally twisted cubes

A CEIST can be constructed easily in LTQ2 and an example is presented in Fig. 2.

Figure 2. CEIST T1 in LTQ2.

For n ≥ 3 and n is odd, LTQn consists of two subcubes LTQ0
n−1 and LTQ1

n−1, denoted by A
and B. If there are ⌊n2 ⌋ CEISTs in A, we can construct ⌊n2 ⌋ CEISTs that are one-to-one isomorphic
with ⌊n2 ⌋ trees of A in B accordingly. Then, for every two isomorphic trees in LTQn, we expect to
connect them through specific edges to obtain ⌊n2 ⌋ CEISTs in LTQn. Based on the above discussion,
we propose a function (see algorithm Odd CEISTs) to obtain ⌊n2 ⌋ CEISTs in LTQn.

Algorithm Odd CEISTs
Input: γA (n− 1), and PA : v1A-v

2
A-· · · -v

⌈n
2
⌉

A .

(PA is constructed recursively by algorithm CEISTs LTQ).

Output: γ (n).

16 X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes

Begin

Step 1. Construct TB
1 , TB

2 ,..., TB
⌊n
2
⌋ and the path PB : v1B-v

2
B-· · · -v

⌈n
2
⌉

B .

1: for i = 1 to ⌊n2 ⌋ do

2: Construct tree TB
i by adding 2n−1 to each vertex in TA

i .

3: end for

4: for i = 1 to ⌈n2 ⌉ do

5: |viB| = |viA| + 2n−1.

6: end for

Step 2. Construct T1, T2,..., and T⌊n
2
⌋ as follows.

7: for i = 1 to ⌊n2 ⌋ do

8: V (Ti) = V (LTQn).
9: E(Ti) = E(TA

i) ∪ E(TB
i) ∪ {(viA, viB)}.

10: end for

11: return γ (n) = {T1, T2,..., T⌊n
2
⌋}.

end

Example 1. By algorithm Odd CEISTs, Fig. 3 demonstrates the construction of CEIST T1 in LTQ3,
and Fig. 4 demonstrates the construction of two CEISTs T1 and T2 in LTQ5. We take the LTQ5 as
an example. Firstly, the two CEISTs γA(4) = {TA

1 , TA
2 } and the path PA : 0-2-10 in LTQ4 as the

input of the algorithm are presented in Fig. 5. Next, according to the step 1 of the algorithm, TB
1 , TB

2

and PB : 16-18-26 are obtained. Then, according to the step 2 of the algorithm, T1 is constructed by
connecting TA

1 and TB
1 through edge (0, 16). T2 is constructed by connecting TA

2 and TB
2 through

edge (2, 18).

Figure 3. CEIST T1 in LTQ3.

For n ≥ 4 and n is even, LTQn consists of four subcubes LTQ00
n−2, LTQ10

n−2, LTQ11
n−2 and

LTQ01
n−2, denoted by A, B, C and D, which have the common prefix 00, 10, 11 and 01, respectively.

If there are n−2
2 CEISTs in A, we can construct n−2

2 CEISTs that are one-to-one isomorphic with
n−2
2 trees of A in B accordingly, and so are C and D. Then, for every four isomorphic trees in

LTQn, we expect to connect them through specific edges to obtain ⌊n2 ⌋ CEISTs in LTQn, and after
the construction of ⌊n2 ⌋ CEISTs, we also expect to get n

2 unused edges to form exactly path. Based
on the above discussion, we propose a function (see algorithm Even CEISTs) to obtain ⌊n2 ⌋ CEISTs
in LTQn.

X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes 17

(a) T1 (b) T2

Figure 4. Two CEISTs T1 and T2 in LTQ5.

Algorithm Even CEISTs
Input: γA (n− 2) and PA : v1A-v

2
A-· · · -v

n
2
A.

(PA is constructed recursively by algorithm CEISTs LTQ).

Output: γ (n), and P : v1-v2-· · · -v
n
2
+1.

Begin

Step 1. For 1 ≤ i ≤ n−2
2 , construct TB

i , TC
i , TD

i , PB, PC , PD.

1: for i = 1 to n−2
2 do

2: Construct TB
i , TC

i , TD
i by adding 2n−1, 3 ∗ 2n−2, 2n−2 to

each vertex in TA
i , respectively.

3: end for

4: Construct paths PB, PC , PD by adding 2n−1, 3 ∗ 2n−2, 2n−2 to

each vertex in PA, respectively.

Step 2. Construct Ti, for 1 ≤ i ≤ n
2 − 2.

5: V (Ti) = V (LTQn),

6: E(Ti) = E(T
ϵ∈{A,B,C,D}
i) ∪ {(viA, viB)} ∪ {(viB, viC)} ∪ {(viC , viD)}.

Step 3. Construct Tn
2
−1(i = n

2 − 1).
7: V (Ti) = V (LTQn),

8: E(Ti) = E(T
ϵ∈{B,C,D}
i) ∪ {(viB, viC)} ∪ {(viC , viD)}

∪{(v, Nn−2(v))|v ∈ V (TA
i)}.

Step 4. Construct Tn
2
(i = n

2).

9: V (Ti) = V (LTQn),
10: E(Ti) = E(TA

i−1) ∪ {(v, Nn−1(v))| v ∈ V (TA
i−1) and |v| is even}

\ {(vjA, v
j
B) | j = 1 to i− 2, and j = i}

∪ {(v, Nn−2(v))| v ∈ V (TB
i−1)and |v| is even}

\ {(vjB, v
j
C) | j = 1 to i− 1}

18 X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes

∪ {(v, Nn−1(v))| v ∈ V (TC
i−1) and |v| is even}

\ {(vjC , v
j
D) | j = 1 to i− 1}

∪ {(v, Nn−1(v)) | v ∈ V (TA
i−1) and |v| is odd}

∪ {(v, Nn−2(v)) | v ∈ V (TC
i−1) and |v| is odd}

∪ {(v, Nn−1(v)) | v ∈ V (TB
i−1) and |v| is odd}

∪ {(vjr , vj+1
r) | r ∈ {B, C, D}, j = 1 to i− 1}.

Step 5. Construct the path P : v1-v2-· · · -v
n
2
+1 as follows.

11: vi = viA, for 1 ≤ i ≤ n
2.

12: v
n
2
+1

A = v
n
2
A + 2n−1.

13: return γ (n) = {T1, T2,..., Tn
2
}, and P.

end

(a) T1

(b) T2

Figure 5. Two CEISTs T1 and T2 in LTQ4.

Example 2. By algorithm Even CEISTs, Fig. 5 demonstrates the construction of two CEISTs T1 and
T2 in LTQ4, and Fig. 6 demonstrates the construction of three CEISTs T1, T2 and T3 in LTQ6. We

X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes 19

take LTQ6 as an example, firstly, the two CEISTs γA(4) = {TA
1 , TA

2 } and the path PA : 0-2-10
in LTQ4 as the input of the algorithm are presented in Fig. 5. Next, according to the step 1 of the
algorithm Even CEISTs, TB

1 , TB
2 , TC

1 , TC
2 , TD

1 , TD
2 and PB : 32-34-42, PC : 48-50-58, PD : 16-18-

26 are obtained. Then, according to the step 2 of the algorithm Even CEISTs, T1 is constructed by
connecting TA

1 , TB
1 , TC

1 and TD
1 , through edges (0, 32), (32, 48) and (48, 16). T2 is constructed by

connecting TB
2 , TC

2 and TD
2 through edges (34, 50) and (50, 18), and all the edges between A and

D. T3 is constructed by the following steps: (1) TA
2 is contained in T3. (2) First, connect all the even

edges between A and B except (0, 32) and (10, 42), all the even edges between B and C except (32,
48) and (34, 50), and all the even edges between C and D except (16, 48) and (18, 50). (3) Then,
connect all the odd edges between A and C, all the odd edges between C and B, and all the odd edges
between B and D. (4) Connect (32, 34), (34, 42), (48,50), (50, 58), (16, 18), (18, 26). Finally, the
path P is 0-2-10-42.

Then we synthesize the two algorithms and propose an integrated algorithm, named algorithm
CEISTs LTQ, to generate ⌊n2 ⌋ CEISTs in LTQn, where n ≥ 2.

Algorithm CEISTs LTQ
Input: Integer n , with n ≥ 2.
Output: γ (n), for n ≥ 2, and a path P: v1-v2-· · · -v

n
2
+1 when n is even.

Begin

1: if n = 2 then

2: V (T1) = {0, 1, 2, 3}, E(T1) = {(0, 1), (1, 3), (3, 2)},
3: v1 = 0, v2 = 2.
4: if n ≥ 3 and n is odd then

5: γ (n− 1), PA ← CEISTs LTQ(n− 1),
6: γ (n) ← Odd CEISTs (γ (n− 1), PA).
7: if n ≥ 4 and n is even then

8: γ (n− 2), PA ← CEISTs LTQ(n− 2),
9: γ (n− 1), P ← Even CEISTs(γ (n− 2), PA).
10: return γ (n), and path P for n is even.

end

3.2. Correctness of CEISTs LTQ

To verify the correctness of the CEISTs obtained by algorithm CEISTs LTQ, we present the following
theorems.

Theorem 3.1. For n ≥ 3 and n is odd, T1, T2, ..., T⌊n
2
⌋ constructed by algorithm CEISTs LTQ are

⌊n2 ⌋ CEISTs in LTQn.

Proof:
By the step 1 of algorithm Odd CEISTs, TB

i is constructed by adding 2n−1 to each vertex in TA
i , we

have E(TB
i) ∩ E(TB

j) = ∅, for any 1 ≤ i<j ≤ ⌊n2 ⌋, and PB is constructed by adding 2n−1 to each

20 X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes

vertex in PA, we have V (PA) ∩ V (PB) = ∅. Since |viA| is even, for 1 ≤ i ≤ ⌊n2 ⌋, according to
Lemma 1, viA and viB are two adjacent vertices. Thus (viA, v

i
B) ̸= (vjA, v

j
B), for any 1 ≤ i<j ≤ ⌊n2 ⌋,

{E(TA
i) ∪ E(TB

i) ∪ {(viA, viB)}} ∩ {E(TA
j) ∪ E(TB

j) ∪ {(vjA, v
j
B)}} = ∅, for any 1 ≤ i<j ≤ ⌊n2 ⌋.

Therefore, E(Ti) = {E(TA
i) ∪ E(TB

i) ∪ {(viA, viB)}}, E(Ti) ∩ E(Tj) = ∅, for any 1 ≤ i<j ≤ ⌊n2 ⌋,
there exist ⌊n2 ⌋ CEISTs T1, T2, ..., T⌊n

2
⌋ in LTQn, where n ≥ 3 and n is odd. ⊓⊔

Theorem 3.2. For n ≥ 4 and n is even, T1, T2, ..., Tn
2

constructed by algorithm CEISTs LTQ are n
2

CEISTs in LTQn.

Proof:
By the step 1 of algorithm Even CEISTs, trees TB

i , TC
i and TD

i are constructed by adding 2n−1, 3 ∗
2n−1 and 2n−2 to each vertex in TA

i , respectively, we have {E(T r
i)∩E(T r

j) = ∅|r ∈ {B,C,D}, 1 ≤
i<j ≤ n

2 − 2}, and PB , PC , PD are constructed by adding 2n−1, 3 ∗ 2n−1, 2n−2 to each vertex in PA,
respectively, we have V (PA)∩V (PB)∩V (PC)∩V (PD) = ∅. Since |viA| is even, for i ∈ {1, 2, ..., n2 },
according to Lemma 1, viA and viB are two adjacent vertices, viB and viC are two adjacent vertices, viC
and viD are two adjacent vertices, and viA and viD are two adjacent vertices. We have the following
cases:

Case 1. Construct Ti, for 1 ≤ i ≤ n
2 − 2. By the step 2 of algorithm Even CEISTs, we can

know E(Ti) = E(TA
i) ∪ E(TB

i) ∪ E(TC
i) ∪ E(TD

i) ∪ {(viA, viB), (viB, viC), (viC , viD)}. Therefore,
E(Ti) ∩ E(Tj) = ∅, for any 1 ≤ i<j ≤ n

2 − 2.

Case 2. Construct Tn
2
−1. From the topology of LTQn, We know both even vertices and odd

vertices are adjacent only between A and D, or between B and C, the simple topology of LTQn is
presented in Fig. 7. Thus, we choose TB

n
2
−1, T

C
n
2
−1 and TD

n
2
−1 as the infrastructure, and connect them

by (v
n
2
−1

B , v
n
2
−1

C), (v
n
2
−1

C , v
n
2
−1

D). Then, we connect all the vertices between A and D to obtain tree
Tn

2
−1. Obviously, E(Ti) ∩ E(Tj) = ∅, for any 1 ≤ i<j ≤ n

2 − 1.
Case 3. Construct Tn

2
. By Case 1 and Case 2, we know the unused edges are E(TA

n
2
−1), even

edges between A and B except for (viA, v
i
B)(1 ≤ i ≤ n

2 − 2) and (v
n
2
A , v

n
2
B), even edges between B

and C except for (viB, v
i
C)(1 ≤ i ≤ n

2 − 1), even edges between C and D except for (viC , v
i
D)(1 ≤

i ≤ n
2 − 1), all the odd edges in LTQn, and (vjr , v

j+1
r), for r ∈ {B,C,D}, and j = 1 to n

2 − 1.
Thus, we choose TA

n
2
−1 as the infrastructure, (1) Connect all the even edges between A and B except

for (viA, v
i
B) and (v

n
2
A , v

n
2
B) , for 1 ≤ i ≤ n

2 − 2. Then, we connect viB(1 ≤ i ≤ n
2 − 2) and v

n
2
B to the

tree by v
n
2
−1

B , that is we connect (viB, v
i+1
B)(1 ≤ i ≤ n

2 − 1). (2) Connect all the even edges between
B and C except for (viB, v

i
C)(1 ≤ i ≤ n

2 − 1). Then we connect viC(1 ≤ i ≤ n
2 − 1) to the tree by

v
n
2
C , that is we connect (viC , v

i+1
C)(1 ≤ i ≤ n

2 − 1). (3) Connect all the even edges between C and D

except for (viC , v
i
D)(1 ≤ i ≤ n

2 − 1). Then we connect viD(1 ≤ i ≤ n
2 − 1) to the tree by v

n
2
D , that is

we connect (viD, v
i+1
D)(1 ≤ i ≤ n

2 − 1). (4) Connect all the odd edges in LTQn. Thus, For n ≥ 4
and n is even, T1, T2, ..., Tn

2
constructed by algorithm CEISTs LTQ are n

2 CEISTs in LTQn. ⊓⊔

Theorem 3.3. For n ≥ 2 and n is even, after n
2 CEISTs are constructed, there still remain n

2 unused
edges.

X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes 21

Proof:
Since LTQn has n · 2n−1 edges, and each spanning tree in LTQn has 2n − 1 edges, n

2 spanning
trees have (2n − 1) · n2 = n · 2n−1 − n

2 edges. Thus, after n
2 CEISTs are constructed, there still

remain n
2 unused edges. In order to reduce the time complexity, we specify the n

2 unused edges are

v1A-v2A-· · · − v
n
2
A -v

n
2
+1

A , where |v1A| = 0, |v
n
2
+1

A | = |v
n
2
A |+ 2n−1.

In summary, for n ≥ 2, T1, T2, ..., Tn
2

constructed by algorithm CEISTs LTQ are n
2 CEISTs in

LTQn. ⊓⊔

Theorem 3.4. For integer n ≥ 2, algorithm CEISTs LTQ obtains ⌊n2 ⌋ CEISTs in O(n · 2n) time,
where n is the dimension of LTQn.

Proof:
Let T (n) denote the running time of the algorithm CEISTs LTQ. The time complexity of algorithm
1 and algorithm 2 is O(2n), we have a recurrence equation that bounds:

T (n) =

1, n = 2;

T (n− 1) +O(2n), n is odd;
T (n− 2) +O(2n), n is even.

Solving the recurrence equation yields that the time complexity is O(n · 2n). ⊓⊔

3.3. CEISTs in LTQ vs. in hypercubes/crossed cubes

We make some remarks pertaining to CEISTs algorithms for hypercubes and crossed cubes. As has
been noted, algorithms for embedding CEISTs in hypercubes and crossed cubes have been provided
in [8] and [18], respectively. Although CEISTs LTQ also uses a recursive scheme, it is not a straight-
forward, direct application of the existing methods in [8] or [18]. Due to these cubes’ differences in
topology, different techniques are used for the task.

Note that when n is odd, LTQn and LTQn−1 have the same number (i.e. n−1
2) of CEISTs. That

means we can just splice the CEISTs in the two LTQn−1s to build the n−1
2 CEISTs in LTQn. That

is, we just need to choose splicing edges between the two LTQn−1s, and no additional CEISTs need
to be found in the process. For this case, LTQ/hypercube/crossed cube’s treatments are similar.

The complication arises when n is even. Now the LTQn’s n
2 CEISTs are recursively constructed

from four LTQn−2s, each of which contains n−2
2 CEISTs:

Step 1: Since n− 2 is even, four LTQn−2s can be spliced into one LTQn, which still contains
n−2
2 CEISTs;

Step 2: Choose unused edges inside and between the four LTQn−2s to build one more CEIST,
so that we have n−2

2 + 1 = n
2 CEISTs.

It is in Step 2 above that the method for LTQ is more complex than in hypercubes/crossed cubes.
Due to the less-regular, “locally twisted” connection between LTQ subcubes, the edge selection tech-
niques for hypercubes/crossed cubes fail to work. A more restricted selection procedure is carried out
by CEISTs LTQ.

22 X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes

As a matter of fact, the edge selection procedure for CEISTs LTQ will also work for both hyper-
cubes and crossed cubes. However, it would introduce restrictions that are unnecessary when selecting
CEISTs edges in hypercubes and crossed cubes.

4. Implementation and simulation

To attest algorithm CEISTs LTQ’s validity, it was actually implemented using the programming lan-
guage Python. The program’s main methods exactly follow the steps outlined in CEISTs LTQ. Fig. 8
illustrates the algorithm output, CEISTs in an odd LTQ7, while Fig. 9 illustrates the CEISTs in an
even LTQ8.

CEISTs can be used for efficient broadcasting, reliable broadcasting and secure distribution of
information. Then, we can divide a message into several data packets, encrypt every packet, and
transmit them through multiple CEISTs, finally we decrypt and merge them when we receive all the
packets to achieve efficient broadcasting and secure distribution of information.

We simulate the scenario where a message of size less than 1M is broadcast from a source node to
all nodes in LTQn, using multiple CEISTs. The most common Ethernet frame length can carry about
1500 bytes of the message (excluding the initial preamble, frame delimiter, and the frame check se-
quence at the end) [23]. Thus, the message can be divided into 1M/1500 bytes = 700 (data packets).
We compare ⌊n2 ⌋ CEISTs as transmission channels with a single spanning tree as transmission channel
for data broadcasting. We employ a round-robin strategy to call ⌊n2 ⌋ channels for packet transmission
to balance the load of all transmission channels. That is the first ⌊n2 ⌋ packets are transmitted by the
⌊n2 ⌋ channels in sequence, the ⌊n2 ⌋ + 1 packet is transmitted by the first channel, the ⌊n2 ⌋ + 2 packet
is transmitted by the second channel, and so on.

We use the following two metrics to evaluate broadcasting efficiency, one is the maximum broad-
casting latency (MBL for short), and the other is the average broadcasting latency (ABL for short).
For 1 ≤ k ≤ ⌊n2 ⌋, let mt(k) be the delivery the whole message time between the farthest two vertices
in the kth tree. There are s = 22n−1 − 2n−1 pairs of vertices in LTQn. For 1 ≤ i ≤ s, let arbt(i) be
the maximum distance between the ith pairs of vertices in ⌊n2 ⌋ CEISTs, and let t(i) be the distance
between the ith pairs of vertices in one spanning tree.

Suppose a message is divided into x data packets. Firstly, the MBL of broadcasting latency using
⌊n2 ⌋ CEISTs is: MBL = ⌈ x

⌊n
2
⌋⌉ · max

1≤k≤⌊n
2
⌋
{mt(k)}, and the MBL of broadcasting latency using a

single spanning tree is: MBL = x · min
1≤k≤⌊n

2
⌋
{mt(k)}. Secondly, the ABL of broadcasting latency

using ⌊n2 ⌋ CEISTs is: ABL =

s∑
i=1

arbt(i)

s , and the ABL of broadcasting latency using a single spanning

tree is: ABL =

s∑
i=1

t(i)

s . All the experimental results showing ABL and MBL are depicted in Fig. 10.
To demonstrate the efficiency of broadcasting in multiple CEISTs, we choose the spanning tree with
the minimal mt(k) in ⌊n2 ⌋ CEISTs to calculate the MBL of the single spanning tree, and choose the
spanning tree with the minimal ABL in ⌊n2 ⌋ CEISTs to calculate the ABL of the single spanning tree.

X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes 23

For both ABL and MBL, the performance of broadcasting latency using ⌊n2 ⌋ CEISTs is better
than that using a single spanning tree. As the network size grows, in the odd dimension and even
dimension, the ABL and MBL of ⌊n2 ⌋ CEISTs will rise, respectively, but the growth rate is very slow
compared with the single spanning tree.

5. Conclusion

We proposed, and proved correctness for, an O(n · 2n) algorithm, named CEISTs LTQ, to construct
⌊n2 ⌋ CEISTs in the locally twisted cube network LTQn, where n ≥ 2 is the dimension. The number
of CEISTs constructed by our algorithm is optimal. Experiments were conducted to verify the validity
of our algorithm, and to simulate broadcasting LTQn using the CEISTs. It is worth pointing out that
our proposed algorithm for LTQn can also be used to construct CEISTs in hypercube Qn and crossed
cube CQn, which makes it a more general algorithm.

Many directions can be pursued for continuing our work. Among them, for example, CEIST-
embedding in the presence of faulty (therefore missing) nodes can be explored [25, 26]. Since ⌊n2 ⌋
CEISTs have already been constructed for Qn, CQn, and now for locally twisted cube LTQn, a rather
reasonable conjecture would be that all hypercube variants, or even all bijective connection networks,
have ⌊n2 ⌋ CEISTs.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Nos. 62272333,
62172291, U1905211) and Jiangsu Province Department of Education Future Network Research Fund
Project (FNSRFP-2021-YB-39).

References

[1] Johnsson SL, Ho CT. Optimal broadcasting and personalized communication in hypercubes. IEEE Trans-
actions on Computing, 1989, 38(9):1249-1268. doi:10.1109/12.29465.

[2] Fragopoulou P, Akl SG. Edge-disjoint spanning trees on the star network with applications to fault toler-
ance. IEEE Transactions on Computing, 1996, 45(2):174-185. doi:10.1109/12.485370.

[3] Bao F, Funyu Y, Hamada Y, Igarashi Y. Reliable broadcasting and secure distributing in channel networks.
Proceedings of the 1997 International Symposium on Parallel Architectures, Algorithms and Networks
(I-SPAN’97), 1997, pp. 472-478.

[4] Cheng B, Wang D, Fan J. Independent spanning trees in networks: A survey. ACM Computing Surveys,
2023, 55(14s):1-29. doi:10.1145/3591110.

[5] Harary F, Hayes JP, Wu HJ. A survey of the theory of hypercube graphs. Computers & Mathematics with
Applications, 1988, 15(4):277-289.

[6] Yang J-S, Tang S-M, Chang J-M, Wang Y-L. Parallel construction of optimal independent spanning trees
on hypercubes. Parallel Computing, 2007, 33(1):73-79. doi:10.1016/j.parco.2006.12.001.

24 X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes

[7] Tang S-M, Wang Y-L, Leu Y. Optimal independent spanning trees on hypercubes. Journal of Information
Science and Engineering, 2004, 20(1):143-155.

[8] Barden B, Libeskind-Hadas R, Davis J, Williams W. On edge-disjoint spanning trees in hypercubes. In-
formation Processing Letters, 1999, 70(1):13-16. doi:10.1016/S0020-0190(99)00033-2.

[9] Ku S-C, Wang B-E, Hung T-K. Constructing edge-disjoint spanning trees in product networks.
IEEE Transactions on Parallel and Distributed Systems, 2003, 14(3):213-221. doi:10.1109/TPDS.
2003.1189580.

[10] Zhou J, Bu C, Lai H-J. Edge-disjoint spanning trees and forests of graphs. Discrete Applied Mathematics,
2021, 299:74-81. doi:10.1016/j.dam.2021.04.024.

[11] Touzene A, Day K, Monien B. Edge-disjoint spanning trees for the generalized butterfly networks
and their applications. Journal of Parallel and Distributed Computing, 2005, 65(11):1384-1396.
doi:10.1016/j.jpdc.2005.05.009.

[12] Oliva G, Cioaba S, Hadjicosyis CN. Distributed calculation of edge-disjoint spanning trees for robustify-
ing distributed algorithms against Man-in-the-Middle attacks. IEEE Transactions on Control of Network
Systems, 2018, 5(4):1646-1656. doi:10.1109/TCNS.2017.2746344.

[13] Ma X, Wu B, Jin X. Edge-disjoint spanning trees and the number of maximum state circles of a graph.
Journal of Combinatorial Optimization, 2018, 35(4):997-1008. doi:10.1007/s10878-018-0249-y.

[14] Gu X, Lai H-J, Li P, Yao S. Edge-disjoint spanning trees, edge connectivity, and eigenvalues in graphs.
Journal of Graph Theory, 2016, 81(1):16-29. doi:10.1002/jgt.21857.

[15] Wang Y, Cheng B, Fan J, Qian Y, Jiang R. An algorithm to construct completely independent spanning
trees in line graphs. The Computer Journal, 2022, 65(12):2979-2990. doi:10.1093/comjnl/bxab120.

[16] Fan J, Jia X, Cheng B, Yu J. An efficient fault-tolerant routing algorithm in bijective connection net-
works with restricted faulty edges. Theoretical Computer Science, 2011, 412(29):3440-3450. doi:10.1016/
j.tcs.2011.02.014.

[17] Cheng B, Fan J, Jia K. Dimensional-permutation-based independent spanning trees in bijective
connection networks. IEEE Transactions on Parallel and Distributed Systems, 2015, 26(1):45-53.
doi:10.1109/TPDS.2014.2307871.

[18] Zhang H, Wang Y, Fan J, Han Y, Cheng B. Constructing edge-disjoint spanning trees in several cube-
based networks with applications to edge fault-tolerant communication. The Journal of Supercomputing,
doi:10.1007/s11227-023-05546-z.

[19] Yang X, Evans DJ, Megson GM. The locally twisted cubes. International Journal of Computer Mathemat-
ics, 2005, 82(4):401-413. doi:10.1080/0020716042000301752.

[20] Hsieh S-Y, Wu C-Y, Lee C-W. Fault-free Hamiltonian cycles in locally twisted cubes under conditional
edge faults. Proceedings of the 13th International Conference on Parallel and Distributed Systems, 2007,
pp. 1-8.

[21] Hsieh S-Y, Tu C-J. Constructing edge-disjoint spanning trees in locally twisted cubes. Theoretical Com-
puter Science, 2009, 410(8):926-932. doi:10.1016/j.tcs.2008.12.025.

[22] Lin J-C, Yang J-S, Hsu C-C, Chang J-M. Independent spanning trees vs. edge-disjoint spanning
trees in locally twisted cubes. Information Processing Letters, 2010, 110(10):414-419. doi:10.1016/
j.ipl.2010.03.012.

X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes 25

[23] Pai K-J, Wu R-J, Peng S-L, Chang J-M. Three edge-disjoint Hamiltonian cycle in crossed cubes with
applications to fault-tolerant data broadcasting. The Journal of Supercomputing, 2023, 79:4126-4145.
doi:10.1007/s11227-022-04825-5.

[24] Cheng B, Fan J, Jia X, Zhang S, Chen B. Constructive algorithm of independent spanning trees on Möbius
cubes. The Compute Journal, 2013, 56(11):1347-1362. doi:10.1093/comjnl/bxs123

[25] Zhao S-L, Chang J-M. Reliability assessment of the divide-and-swap cube in terms of generalized con-
nectivity. Theoretical Computer Science, 2023, 943:1-15. doi:10.1016/j.tcs.2022.12.005

[26] Li X, Lin C-K, Fan J, Jia X, Cheng B, Zhou J. Relationship between extra connectivity and component
connectivity in networks. The Compute Journal, 2021, 833:41-55.

[27] Lin J-C, Yang J-S, Hsu C-C, Chang J-M. Independent spanning trees vs. edge-disjoint spanning
trees in locally twisted cubes. Information Processing Letters, 2010, 110(10):414-419. doi:10.1016/
j.ipl.2010.03.012.

[28] Fan J, He L. BC interconnection networks and their properties. Chinese Journal of Computers, 2003,
26(1):84-90.

26 X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes

(a) T1

(b) T2

(c) T3

Figure 6. Three CEISTs T1, T2 and T3 in LTQ6.

X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes 27

Figure 7. The topology of LTQn.

(a) T1 (b) T2

(c) T3

Figure 8. Three CEISTs in LTQ7.

28 X. Li et al. / On Completely Edge-Independent Spanning Trees in Locally Twisted Cubes

(a) T1 (b) T2

(c) T3 (d) T4

Figure 9. Four CEISTs in LTQ8.

Figure 10. The comparisons of ABL and MBL between ⌊n2 ⌋ CEISTs and a single spanning tree.

	Introduction
	Preliminaries
	Terminology and notation
	Locally twisted cubes

	Completely edge-independent spanning trees in locally twisted cubes
	Construction Algorithm of CEISTs for locally twisted cubes
	Correctness of CEISTs_LTQ
	CEISTs in LTQ vs. in hypercubes/crossed cubes

	Implementation and simulation
	Conclusion

