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Equational Theory of Ordinals with Addition
and Left Multiplication by ω
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IRIF, Université Paris Cité

Abstract. We show that the equational theory of the structure ⟨ωω : (x, y) 7→ x+ y, x 7→ ωx⟩ is
finitely axiomatizable and give a simple axiom schema when the domain is the set of transfinite
ordinals.

1. Introduction

Consider An = {ai | 1 ≤ i ≤ n}, n ≤ ∞ and let Wn denote the set of labeled ordinal words obtained
from the empty word and each letter a by closing under concatenation · ((u, v) → u·v) and ω-iteration
(uω = u · u · · · · ), example ((ab)c)ωbc ∈ W3. Let Wn = ⟨Wn : 1, ·,ω ⟩ denote the resulting algebra.
It satisfies the following infinite (but reasonably simple) set Σ of axioms

x · (y · z) = (x · y) · z (1)

(x · y)ω = x · (y · x)ω (2)

(xp)ω = xω p ≥ 1 (3)

x · 1 = x (4)

1 · x = x (5)

It is known that Wn is isomorphic to the free algebra with n generators in the variety generated by the
equalities and that for n > 1, its equational theory is axiomatized by the system Σ, cf. [1]. The algebra
W1 satisfies identities that do not hold in Wn with n ≥ 2, for example xyyx = yxyx. Actually W1 is
isomorphic to the set of ordinals less than ωω with the sum and right multiplication by ω (x → xω).
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In [2] it is shown that for the structure ⟨ωω : 0, 1, (x, y) 7→ x+ y, x 7→ xω⟩ (in particular all constants
less than ωω are allowed) equality between two terms is polynomial. Furthermore the more general
algebra of all transfinite ordinals satisfies the same equalities.

Other different collections of operations on linearly ordered labeled words have been studied in
the literature. By adding the ωopp-iteration (uω

opp
= · · ·u ·u) we get the set W ′

n and the corresponding
algebra W ′

n = ⟨W ′
n : 1, ·,ω ,ω

∗ ⟩. It is shown that for all n ≥ 1 W ′
n is isomorphic to the free n-

generated algebra in the variety defined by a system of equations which is an axiomatization of the
equational theory [3, Theorem 3.18]. In [4] a further operation is added, the shuffle operator, resulting
in the set W ′′

n and the corresponding algebra W ′′
n = ⟨W ′

n : 1, ·,ω ,ω
∗
, η⟩. Here again for all n ≥ 1W ′′

n

is isomorphic to the free n-generated algebra in the variety defined by a system of equations which is
an axiomatization of the equational theory

Summarising the situation if Eq(A) denotes the system of equations satisfied by an algebra A,
we have Eq(W ′

n) =Eq(W ′
1) and Eq(W ′′

n) =Eq(W ′′
1 ) because W ′

n and W ′′
n are embeddable in W ′

1

and W ′′
1 respectively. Yet Eq(Wn) is strictly included in Eq(W1) if n > 1 and an axiom schema is

missing for W1. A semantic approach was considered in [2] Indeed, the right and left handsides of
an identity containing n variables may be viewed as mappings of (ωω)n into ωω. It is proved that an
identity holds in W1 if and only if the two functions associated with the two handsides coincide over
some so-called “test sets” such as all the powers ωn with n < ω along with 0, for example. Refining
this result allows one to exhibit a polynomial time algorithm which determines whether or not two
expressions with the same set of variables define the same mapping, thus hold in W1. It is also proved
that over ωω and the transfinite ordinals the equational theories are the same.

The algebra investigated here differs from W1 in that it considers the left (and not the right)
multiplication by ω, i.e., we consider the signature ⟨(x, y) 7→ x + y, x 7→ ωx⟩. We show that it
is finitely axiomatizable in ωω and that the more general algebra over the same signature but with
universe the transfinite ordinals satisfies a different set of equations of which we give a simple axiom
schema.

2. Ordinals

We recall the elementary properties needed to understand this paper and refer to the numerous standard
handbooks such as [5, 6] for a more thorough exposition of the theory. In particular each nonzero
ordinal α is uniquely represented by its so-called Cantor normal form.

ωαnan + · · ·+ ωα0a0

0 < a0, . . . an < ω and αn > · · · > α0 (a strictly decreasing sequence of ordinals). The degree of α
denoted ∂(α) is αn, its valuation denoted ν(α) is α0 and its length |α| is the sum a0 + · · ·+ an. The
length of 0 is 0.
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The sum α + β of two nonnull ordinals α and β of Cantor normal forms α =
∑i=0

i=p ω
αiai and

β =
∑j=0

j=q ω
βjbj is the ordinal with the following Cantor normal formi=ℓ+1∑

i=p

ωαiai

+ ωβ1(aℓ + bq) +

 j=0∑
j=q−1

ωβjbj

 if βq = αℓ for some ℓ

 i=ℓ∑
i=p

ωαiai

+

j=0∑
j=q

ωβjbj

 if βq < αℓ for some ℓ

and either ℓ = 0

or αℓ−1 < βqj=0∑
j=q

ωβjbj

 if βq > αp

In particular,

∂(α+ β) = max(∂(α), ∂(β)) (6)

ν(α+ β) = if β > 0 then ν(β) else ν(α)

Addition is associative but not commutative: ω = 1 + ω ̸= ω + 1.
If α+ β + γ = α+ γ we say that β does not count which occurs exactly when ∂(β) < ∂(γ).

Remark 1. ∂(β1), ∂(β2) < ν(α1) = ν(α2) and α1 + β1 = α2 + β2 implies β1 = β2

We recall that the left multiplication by ω is distributive over the sum

ω(ωα1a1 + · · ·+ ωαnan) = ω1+α1a1 + · · ·+ ω1+αnan (7)

and that ω0 = 0.
Every α ≥ ωω has a unique decomposition α = α1 + α2 with ν(α1) ≥ ωω and ∂(α2) < ωω. In

this case because of expression (7) we have ωα1 = α1 and thus

ω(α1 + α2) = α1 + ωα2 (8)

3. Equational axiomatization for ⟨ωω : (x, y) 7→ x+ y, x 7→ ωx⟩

We consider the signature with one binary operation + and one unary operation ω which we interpret
in the structures S = ⟨ωω : (x, y) 7→ x+y, x 7→ ωx⟩ and O = ⟨Ord : (x, y) 7→ x+y, x 7→ ωx⟩ whose
universes are respectively the set of all ordinals less than ωω and the set of all transfinite ordinals.

Let X be a fixed infinite countable set of elements called variables. The family of terms is induc-
tively defined: variables and 0 are terms, if E and F are terms then E + F is a term and if E is a
term then ωE is a term. We will avoid unnecessary parentheses by adopting the usual conventions. We
write Σi=k

i=1Ei in place of ((. . . (E1+E2)+· · · )+Ek−1)+Ek and ωkE in place of (ω(. . . ((ωE . . .)))).
In case k = 0 we let ω0E be E.
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We write E(x1, . . . , xn) when we need to make explicit the variables on which the term is in-
ductively constructed. When working in ωω we will also consider E(x1, . . . , xn) as a function from
(ωω)n into ωω in the natural way. Two terms E and F over the same set of variables are equivalent
and we write E ≡ F if they are equal as functions from (ωω)n into ωω. If ϕ is an assignment of the
variables in ωω we write ϕ(E) to mean E(ϕ(x1), . . . , ϕ(xn)). The notion of being equivalent in O is
defined similarly.

An identity is a pair (E(x1, . . . , xn), F (x1, . . . , xn)) which we write

E(x1, . . . , xn) = F (x1, . . . , xn)

in order to comply with the tradition, not to be confused with the equality as well-formed sequences
of symbols over the vocabulary consisting of the variables and 0,+, ω. An identity is satisfied in the
structure if E and F define the same functions.

A set Σ of identities called axioms is an axiomatization of the equational theory of S if all pairs
of equivalent terms E,F are derivable from the axioms by the rules of equational logic and we write
E≡

Ax
F .

Definition 2. We consider the following set Σ of identities.

x+ (y + z) = (x+ y) + z (9)

ω(x+ y) = ωx+ ωy (10)

x+ y + ωx = y + ωx (11)

x+ y + z + x+ t+ y = y + x+ z + x+ t+ y (12)

x+ 0 = x (13)

0 + x = x (14)

ω0 = 0 (15)

Let us verify that identity (12) holds in S . Set µ = max(∂x, ∂y, ∂z, ∂t). If ∂x, ∂y < µ then both
handsides reduce to z+x+ t+y because the leftmost occurrences of x and y do not count. If ∂x = µ
and ∂y < µ both handsides reduce to x + z + x + t + y and if ∂x < µ and ∂y = µ both handsides
reduce to y+ z+x+ t+ y. It remains the case where ∂x = ∂y = ∂(z+x+ t+ y) say x = ωµa+α,
y = ωµb + β and z + x + t + y = ωµc + γ with ∂α, ∂β, ∂γ < µ. Then both handsides are equal to
ωµ(a+ b+ c) + γ.

The other identities are consequences of the definition of the sum.
Observe the consequence of (11)

ωpx+ y + ωqx = y + ωqx p < q (16)

Indeed,

ωxp + y + ωqx = ωxp + y + ωp+1x · · ·+ ωqx = y + ωp+1x · · ·+ ωqx = y + ωqx
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3.1. Elementary properties

Definition 3. Given a variable x, an x-monomial is a term of the form ωex where e is a nonnegative
integer and ωe its coefficient. We simply speak of monomial when there is no need to specify which
variable.

Lemma 4. Via the axioms (10) and (11), every term in S is equivalent to a term of the form

1∑
i=n

ωeixi, ei ≥ 0 (17)

with i > j and xi = xj implies ei ≥ ej .

Proof:
Trivial by induction and identity (16). ⊓⊔

A term as in (17) is said to be flat. Since a flat term can be considered as a sequence of monomials,
the slightly abusive expression “suffix of a term” has to be understood in the natural way.

Example 1. The flat term corresponding to E = ω(x+ ω(ωx+ y + ωx) + y) + x+ x is

ω3x+ ω2y + ωy + ω3x+ ωy + x+ x

which can be identified to the sequence ω3x, ω2y, ωy, ω3x, ωy, x, x.

Lemma 5. If two flat terms are equivalent, for every x ∈ X their subsums consisting of the subse-
quence of their x monomials are equal.

Proof:
Put y = 0 for all y ̸= x. It suffices to observe that two flat terms with a unique variable x are equivalent
if and only if they are equal since for x = 1 they evaluate in the same ordinal 1. ⊓⊔

A decomposition E = Ek + · · ·+Ej + · · ·+E1 of a nonzero flat term E as in (17) is defined by
a subsequence n = ik > ik−1 . . . > i1 > i0 = 0 and by grouping successive monomials

Ej =

ij−1+1∑
i=ij

ωeixi (18)

We will use two types of decomposition in Lemma 6 and in Theorem 9.

Lemma 6. Consider the decomposition of a flat term

E = F + ωex+G

with e > 0 where G contains no occurrence of ωex. Let F ′ + ωex + G′ be the decomposition of
an equivalent flat term where G′ contains no occurrence of ωex. Then G and G′ contain the same
multiset of occurrences of y-monomials for all variables y.



6 C. Choffrut / Equational theory of ordinals with addition and left multiplication by ω

Proof:
Observe that the statement makes sense because by Lemma 5 if E and F are equivalent they have
the same different monomials. It suffices to prove that the set of y-monomials in G with maximal
coefficient is an invariant of the equivalence class of E. The statement is clearly true for y = x
because we are dealing with flat terms, so we assume y ̸= x. Without loss of generality we may
assume that the term contains no z-monomials for z different from x and y. If there is no occurrence
of an y-monomial we are done. Let ωf , f < e be the greatest coefficient of an x-monomial in G if such
an occurrence exist and ωg the greatest coefficient of a y-monomial in G. Set H = F + ωex and let
a, b be two integers such that a+f = b+g. Then ν(H(ωa, ωb)) = e+a and G(ωa, ωb) = ωa+f ·n+α
where ∂(α) < a + f and n is the number of occurrences of ωfx plus the number of occurrences of
ωgy. If G contains no x-monomial, then ν(H(ωg, 1)) = e + g and G(ωg, 1) = ωg · n + α where
∂(α) < g and n is the number of occurrences of ωgy. ⊓⊔

Definition 7. With the notations of (17) the new monomial decomposition (NMD) of E is the sum
E = En + En−1 + · · · + E1 where Ei = E′

i + ωeixi for some E′
i such that ωeixi does not occur in

Ei−1 + · · ·+ E1 (by convention E0 = 0).

Observe that n is the number of different monomials in E. The idea is to record the moment when
a new monomial appears in a scan from right to left.

Lemma 8. Let E and F be two flat terms and their NMD

E = E′
n + ωenxn + · · ·+ E′

1 + ωe1x1

F = F ′
m + ωfmym + · · ·+ F ′

1 + ωf1y1
(19)

If E ≡ F then n = m, ωeixi = ωfiyi for i = 1, . . . , n and for i = 1, . . . n E′
i and F ′

i differ by a
permutation of their monomials.

Proof:
Clearly n = m because E and F have the same different monomials by Lemma 5. The last claim is a
consequence of Lemma 6. ⊓⊔

Theorem 9. Σ is an axiomatization of S.

Proof:
Consider the new monomial decompositions (19). By Definition 7 for all successive monomials in E′

i

(resp. in F ′
i ) there exists an occurrence of these monomials in ωeixi + · · · + E′

1 + ωe1x1 resp. in
ωeixi + · · · + F ′

1 + ωe1x1. Since each permutation is a product of transpositions, we get E≡
Ax
F by

repetitive applications of axiom (12). ⊓⊔

4. Equational axiomatization for ⟨O : (x, y) 7→ x+ y, x 7→ ωx⟩

Property (12) is valid in O, by interpreting in the proof of Section 3, the exponent µ as an element of
O. Beyond ωω axiom (11) no longer holds. Indeed since ωωω = ω1+ω = ωω.

ωω · 2 = ωω + ωωω ̸= ωωω = ωω (20)
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We consider the system Σ′ consisting of the axioms of Σ except axiom (11) along with the following
new axioms.

ωpx+ y + ωqx = x+ y + ωqx 0 < p < q (21)

x+ ωry + t+ ωpx+ u+ ωqy = ωry + x+ t+ ωpx+ u+ ωqy p > 0 or q = r, (22)

x+ ωry + t+ ωqy + u+ ωpx = ωry + x+ t+ ωqy + u+ ωpx p > 0 or q = r (23)

Lemma 10. Identities (21), (22) hold in the structure ⟨O : (x, y) 7→ x+ y, x 7→ ωx⟩.

Proof:
Indeed, (21) holds in ωω since by identity (11) both hand sides reduce to y + ωqx. If x ≥ ωω we
decompose x = x1 + x2 with νx1 ≥ ω and ∂x2 < ω as in expression (8). Because ωp · x1 = x1 we
get ωp · x = x1 + ωp · x2 and thus

ωpx+ y + ωqx

= x1 + ωp · x2 + y + ωq · x (decomposition of x)
= x1 + y + ωq · x (∂ωpx2 < ∂ωqx)

= x1 + x2 + y + ωq · x (∂x2 < ∂ωqx)

= x+ y + ωq · x (recomposition of x)

Concerning (22) and (23), if ∂(x), ∂(y) ≥ ω in both cases the two hand sides reduce

x+ y + t+ x+ u+ y = y + x+ t+ x+ u+ y

which holds because of identity (12). Consider (22). If p = 0, thus q = r, then this is axiom (12). If
p > 0 and x < ωω the leftmost x does not count and if x ≥ ωω then ωry does not count. Identity (23)
is proved similarly. ⊓⊔

Because of identity (21) every term is equivalent to a term of the form

E =
1∑

k=m

ωekxk, ek ≥ 0 (24)

where i > j, xi = xj and ei, ej > 0 implies ei ≥ ej which we call pseudo flat. An occurrence of a
variable x (i.e., a monomial with coefficient 1) to the left of some monomial ωex with e > 0 is called
hidden.

Example 2. In
z + ωx+ x+ y + ωy + ωx+ y + ωx+ y + x

the unique hidden occurrences are the leftmost underlined occurrences of x and y.

The definition 7 of new monomial decomposition extends naturally to the present structure.
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Example 3. (Example 2 continued) With the notations of definition 7 we have

(z) + (ωx+ x+ y + ωy) + (ωx+ y + ωx) + (y) + (x)

Indeed, when reading the expression from right to left we define five groups of terms and start a group
whenever we find a monomial that never occurred before (the rightmost monomial of each group).
For example the third group (from the right) starts with the new monomial ωx and contains no new
monomial; it ends just before a new monomial (ωy) appears. Observe that the hidden occurrences are
not deleted.

The following is obtained by simple adaptation of Lemma 8.

Lemma 11. Consider the new monomial decomposition of two equivalent pseudo-flat terms E and
F . Then

E = E′
n + ωenxn + · · ·+ E′

1 + ωe1x1

F = F ′
n + ωenxn + · · ·+ F ′

1 + ωe1x1

where for all i = 1, . . . , n E′
i and F ′

i contain the same occurrences of nonhidden monomials.

Now instead of splitting accordingly to a “new monomial” we split according to a “new variable”
(have in mind a scan from right to left).

Definition 12. With the notations of (24) the new variable decomposition (NVD) of a pseudo-flat E
is the sum E = En + En−1 + · · · + E1 where for each i = 1, . . . , n Ei = E′

i + ωeixi such that no
xi-monomial appears in Ei−1 + · · ·+ E1 with the convention E0 = 0.

No hidden occurrence can be the right-most monomial of some Ei and that the number of subterms in
the decomposition equals the number of variables in the term.

Example 4. (Example 2 continued). The new variable decomposition is a sum of three subterms.

(z) + (ωx+ x+ y + ωy + ωx+ y + ωx+ y) + (x)

Observe the difference with the new monomial decomposition. Here the expression is decomposed
in three groups. From right to left: the x-monomials, then the y-monomials with possibly some x-
monomials and finally the z-monomials and possibly some y- or x-monomials. here

Lemma 13. Let E(x1, . . . , xn) and F (x1, . . . , xn) be two equivalent pseudo-flat terms and consider
their new variable decompositions E = En+En−1+ · · ·+E1 and F = Fm+Fn−1+ · · ·+F1. Then
n = m and for all i ≤ j the number of hidden occurrences of each xi in Ej is equal to the number of
hidden occurrences xi in Fj .

Proof:
Equality n = m is obvious because it is the number of variables of the two equivalent terms E and
F . By possibly renaming the variables we may assume that for i = 1, . . . , n the rightmost monomial
in Ei is ωeixi for some ei ≥ 0. By definition a hidden occurrence of xi can only belong to the set of
monomials in En + · · ·+ Ei. We set for all i ≤ j ≤ n+ 1
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• Hi,j the number of hidden occurrences of xi in Ej−1 + · · ·+ Ei

• Ni,j the number occurrences of nonhidden xi-monomials in Ej−1 + · · ·+ Ei

Consider the assignment ϕ(xi) = 1, ϕ(xj) = ωa and ϕ(xℓ) = 0 for ℓ ̸= i, j. For a < ω greater than
the exponents of the coefficients of all xi-monomials we have ϕ(E) = α+β where ν(α) ≥ a > ∂(β).
Then Ni,j = |β|. Now consider the assignment ϕ(xi) = ωω, ϕ(xj) = ωω+1 and ϕ(xℓ) = 0 for
ℓ ̸= i, j. Then we have ϕ(E) = ωω+1c + ωωd, c, d < ω and Hi,j = d − Ni,j . Then the number of
hidden occurrences of xi in Ej is equal to Hi,j+1 −Hi,j ⊓⊔

Theorem 14. The system of identities Σ′ is an axiomatization of the equational theory of the structure
⟨Ord : (x, y) 7→ x+ y, x 7→ ωx⟩

Proof:
Let E and F be two equivalent pseudo-flat terms and let E = En + En−1 + · · · + E1 and F =
Fn+Fn−1+ · · ·+F1 be their NVD. We show that we have E≡

Ax
Ê where Ê = Fn+En−1+ · · ·+E1.

By Lemma 13 En and Fn have the same number of hidden occurrences for all variables. We now
consider their NMD. By Lemma 11 we have

En = E′
n,s + ωen,sxn,s + · · ·+ E′

n,1 + ωen,1xn,1

Fn = F ′
n,s + ωen,sxn,s + · · ·+ F ′

n,1 + ωen,1xn,1

where for j = s, . . . , 1, E′
n,j and F ′

n,j have the same set of occurrences of nonhidden monomials. By
equations (22), (23) (with r = q) and (12), all occurrences of nonhidden monomials in E′

n,j commute
pairwise and with the hidden monomials. So we have with R = En−1 + · · ·+ E1

E′
n,s + ωen,sxn,s + · · ·+ E′

n,1 + ωen,1xn,1 +R

≡
Ax

E′′
n,s + ωen,sxn,s + · · ·+ E′′

n,1 + ωen,1xn,1 +R

where for j = s, . . . , 1, E′′
i,j and F ′

i,j have the same sequence of nonhidden monomials. They may only
differ in the number and positions of the hidden monomials. Since all hidden monomials commute by
(12) with all monomials in E′′

n,s + ωen,sxn,s + · · · + E′′
n,1 + ωen,1xn,1 + R and since the number of

hidden monomials in Fn and E′′
n,s +ωen,sxn,s + · · ·+E′′

n,1 +ωen,1xn,1 are the same for all variables,
we have

Fn≡
Ax
E′′

n,s + ωen,sxn,s + · · ·+ E′′
n,1 + ωen,1xn,1 +R

Now E≡
Ax
Ê implies E ≡ Ê thus Ê ≡ F and finally by cancelation En−1+· · ·+E1 ≡ Fn−1+· · ·+F1

which allows us to conclude by induction. ⊓⊔

5. Complexity

We show that the complexity of determining the equivalence of two terms E and F is linear in the size
of the expressions as element of the algebras S and Ord respectively.
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The flattening of a term can be achieved as follows. Construct in linear time the syntactic tree
whose nodes are of arity 1 for the left multiplication by ω and of arity 2 for the addition. The leaves of
the tree are labeled by the different variables occurring in the term. Then a depth-first search assigns
to each variable its coefficients ωi.

A flat expression is a sum of monomials. Thus we may consider the finite set A whose elements
aij are in one-to-one correspondence with the different monomials ωejxi, 1 ≤ i ≤ n, 1 ≤ j ≤ mi

occurring in the term. Two terms can only be equivalent if they have the same multiset of monomials.
We define Ai = {ai,j : 1 ≤ j ≤ mi} for all 1 ≤ i ≤ n and thus A =

⋃n
i=1Ai. A flat expression can

be identified with a sequence u ∈ A∗ satisfying the conditions

• for all i there exists 1 ≤ j ≤ mi and v, w such that u = vaijw (by the definition of A)

• for all factorizations u = vaijwaikz it holds j ≥ k. (see condition (17))

For all v ∈ A∗ we set C(v) = {aij ∈ A : ∃w, z (v = waijz)}. Henceforth by flat expression
we mean a sequence on A subject to the above conditions. A flat expression has a unique fac-
torization u = unun−1 · · ·u1, which we call subalphabet factorization (see the NMD) such that
u1 is the longest word such that |C(u1| = 1 and for all i > 1, ui is the longest word such that
|C(ui · · ·u1) \ C(ui−1 · · ·u1)| = 1

The equivalence of two flat terms in S can be done by comparing in a single pass their subalphabet
factorizations u = unun−1 · · ·u1 and vmvm−1 · · · v1 and by checking whether or not C(ui) = C(vi)
for all i ≤ 1. The equivalence of two pseudo-flat terms in Ord can be done by. additionally counting
the hidden variables in the same pass.

The following shows that E and F are equivalent if and only if their restrictions to any pair of
variables are equivalent (the restriction to {x, y} consists in deleting all z-monomials for z different
from x and y).

Proposition 15. Two expressions E and F are equivalent if and only if their restrictions on any two
pair of variables are equivalent.

Proof:
We identify two expressions with two sequences u, u′ ∈ A∗ as above. Consider their subalphabet
factorizations u = unun−1 · · ·u1 and u′ = u′nu

′
n−1 · · ·u′1 (they have the same length). For every

1 ≤ i, j ≤ n let πi,j be the projection of A∗ onto (Ai ∪ Aj)
∗. The rightmost letter of ui and u′i are

the same. This is due to the fact that for all pairs (i, j) we have πi,j(u) = πi,j(u
′) showing that all

rightmost occurrences of a ∈ A in u and u′ we have u = vaw and u′ = v′aw′ with C(w) = C(w′).
Now we prove that for all a ∈ Ak the number of occurrences of a in ui depends only on the

projections πi,ℓ for 1 ≤ ℓ ≤ n. Indeed, assume the rightmost letters of ui and ui+1 are in Ar and As

respectively. The number of occurrences of a in un · · ·ui is equal to the number of occurrences of a
in πk,s(unun−1 · · ·ui) and the number of occurrences of a in un · · ·ui+1 is equal to the number of
occurrences of a in πk,s(unun−1 · · ·ui+1). ⊓⊔

Corollary 16. Equality E = F is provable if and only if for all 1 ≤ i < j ≤ n equalities Eij = Fij

are provable.
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