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Abstract. Let G be a graph and S ⊆ V (G) with |S| ≥ 2. Then the trees T1, T2, · · · , Tℓ in

G connecting S are internally disjoint Steiner trees (or S-Steiner trees) if E(Ti) ∩ E(Tj) = ∅
and V (Ti) ∩ V (Tj) = S for every pair of distinct integers 1 ≤ i, j ≤ ℓ. Similarly, if we only

have the condition E(Ti) ∩ E(Tj) = ∅ but without the condition V (Ti) ∩ V (Tj) = S, then

they are edge-disjoint Steiner trees S-Steiner trees. The generalized k-connectivity, denoted by

κk(G), of a graph G, is defined as κk(G) = min{κG(S)|S ⊆ V (G) and |S| = k}, where

κG(S) is the maximum number of internally disjoint S-Steiner trees. The generalized k-edge-

connectivity λk(G) of G is defined as λk(G) = min{λG(S) |S ⊆ V (G) and |S| = k}, where
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λG(S) is the maximum number of edge-disjoint Steiner trees connecting S in G. These concepts

are generalizations of the concepts of connectivity and edge-connectivity, and they can be used

as measures of vulnerability of networks. It is, in general, difficult to compute these generalized

connectivities. However, there are precise results for some special classes of graphs. In this paper,

we obtain the exact value of λk(S(n, ℓ)) for 3 ≤ k ≤ ℓn, and the exact value of κk(S(n, ℓ)) for

3 ≤ k ≤ ℓ, where S(n, ℓ) is the Sierpiński graphs with order ℓn. As a direct consequence, these

graphs provide additional interesting examples when λk(S(n, ℓ)) = κk(S(n, ℓ)). We also study

the some network properties of Sierpiński graphs.

Keywords: Steiner Tree; Generalized Connectivity; Sierpiński Graph.

AMS subject classification 2010: 05C40, 05C85.

1. Introduction

All graphs considered in this paper are undirected, finite and simple. We refer the readers to [1]

for graph theoretical notation and terminology not described here. For a graph G, let V (G) and E(G)
denote the set of vertices and the set of edges of G, respectively. The neighborhood set of a vertex

v ∈ V (G) is NG(v) = {u ∈ V (G) |uv ∈ E(G)}. The degree of a vertex v in G is denoted by

d(v) = |NG(v)|. Denote by δ(G) (∆(G)) the minimum degree (maximum degree) of the graph G.

For a vertex subset S ⊆ V (G), the subgraph induced by S in G is denoted by G[S] and similarly

G[V \ S] for G \ S or G − S. Especially, G − v is G[V \ {v}]. Let G be the complement of G.

For a partition P = {V1, V2, . . . , Vt} of V (G), let G/P be the graph obtained from G by deleting
⋃

i∈[t]E(G[Vi]) and then identifying each Vi, respectively. For any positive integers n, we always use

the convenient notation [n] to denote the set {1, 2, · · · , n}.

1.1. Generalized (edge-)connectivity

Connectivity and edge-connectivity are two of the most basic concepts of graph-theoretic mea-

sures. Such concepts can be generalized, see, for example, [16]. For a graph G = (V,E) and a set

S ⊆ V (G) of at least two vertices, an S-Steiner tree or a Steiner tree connecting S (or simply, an

S-tree) is a subgraph T = (V ′, E′) of G that is a tree with S ⊆ V ′. Note that when |S| = 2 a minimal

S-Steiner tree is just a path connecting the two vertices of S.

Let G be a graph and S ⊆ V (G) with |S| ≥ 2. Then the trees T1, T2, · · · , Tℓ in G are internally

disjoint S-trees if E(Ti) ∩ E(Tj) = ∅ and V (Ti) ∩ V (Tj) = S for every pair of distinct integers

i, j, 1 ≤ i, j ≤ ℓ. Similarly, if we only have the condition E(Ti) ∩ E(Tj) = ∅ but without the

condition V (Ti) ∩ V (Tj) = S, then they are edge-disjoint S-trees (Note that while we do not have

the condition V (Ti) ∩ V (Tj) = S, it is still true that S ⊆ V (Ti) ∩ V (Tj) as Ti and Tj are S-

trees.) The generalized k-connectivity, denoted by κk(G), of a graph G, is defined as κk(G) =
min{κG(S)|S ⊆ V (G) and |S| = k}, where κG(S) is the maximum number of internally disjoint

S-trees. The generalized local edge-connectivity λG(S) is the maximum number of edge-disjoint S-

trees in G. The generalized k-edge-connectivity λk(G) of G is defined as λk(G) = min{λG(S) |S ⊆
V (G) and |S| = k}. Since internally disjoint S-trees are edge-disjoint but not vice versa, it follows

from the definitions that κk(G) ≤ λk(G). There are many results on generalized (edge-)connectivity;

see the book [15] by Li and Mao.
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For a graph G and two distinct vertices x, y of G, the local connectivity pG(x, y) of x and y
is defined as the maximum number of pairwise internally disjoint paths between x and y, and the

local edge-connectivity λG(x, y) is defined as the maximum number of pairwise edge-disjoint paths

between x and y. The connectivity of G is defined as κ(G) = min{pG(x, y) |x, y ∈ V (G), x 6= y},

and the edge-connectivity of G is defined as λ(G) = min{λG(x, y) |x, y ∈ V (G), x 6= y}. It is clear

that when |S| = 2, λ2(G) is just the standard edge-connectivity λ(G) of G, κ2(G) = κ(G), that is,

the standard connectivity of G. Thus κk(G) and λk(G) are the generalized connectivity of G and the

generalized edge-connectivity of G, respectively.

As it is well-known, for any graph G, we have polynomial-time algorithms to find the classical

connectivity κ(G) and edge-connectivity λ(G). Given two fixed positive integers k and ℓ, for any

graph G the problem of deciding whether λk(G) ≥ ℓ can be solved by a polynomial-time algorithm.

If k (k ≥ 3) is a fixed integer and ℓ (ℓ ≥ 2) is an arbitrary positive integer, the problem of deciding

whether κ(S) ≥ ℓ is NP -complete. For any fixed integer ℓ ≥ 3, given a graph G and a subset S
of V (G), deciding whether there are ℓ internally disjoint Steiner trees connecting S, namely deciding

whether κ(S) ≥ ℓ, is NP -complete. For more details on the computational complexity of generalized

connectivity and generalized edge-connectivity, we refer to the book [15].

In addition to being a natural combinatorial measure, generalized k-connectivity can be motivated

by its interesting interpretation in practice. For example, suppose that G represents a network. If one

wants to “connect” a pair of vertices of G “minimally”, then a path is used to “connect” them. More

generally, if one wants to “connect” a set S of vertices of G, with |S| ≥ 3, “minimally”, then it is

desirable to use a tree to “connect” them. Such trees are precisely S-trees, which are also used in

computer communication networks (see [8]) and optical wireless communication networks (see [6]).

From a theoretical perspective, generalized edge-connectivity is related to Nash-Williams-Tutte

theorem and Menger theorem; see [15]. The generalized edge-connectivity has applications in V LSI
circuit design. In this application, a Steiner tree is needed to share an electronic signal by a set

of terminal nodes. Another application, which is our primary focus, arises in the Internet Domain.

Imagine that a given graph G represents a network. We arbitrarily choose k vertices as nodes. Suppose

one of the nodes in G is a broadcaster, and all other nodes are either users or routers (also called

switches). The broadcaster wants to broadcast as many streams of movies as possible, so that the users

have the maximum number of choices. Each stream of movie is broadcasted via a tree connecting

all the users and the broadcaster. So, in essence we need to find the maximum number Steiner trees

connecting all the users and the broadcaster, namely, we want to get λ(S), where S is the set of the k
nodes. Clearly, it is a Steiner tree packing problem. Furthermore, if we want to know whether for any

k nodes the network G has above properties, then we need to compute λk(G) = min{λ(S)} in order

to prescribe the reliability and the security of the network. For more details, we refer to the book [15].

1.2. Sierpiński graphs

In 1997, Klavžar and Milutinović introduced the concept of Sierpiński graph S(n, ℓ) in [11]. We

denote n-tuples V n by the set

V n = {〈u0u1 · · · un−1〉| ui ∈ {0, 1, . . . , ℓ− 1} and i ∈ {0, 1, . . . , n− 1}}.
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A word u of size n are denoted by 〈u0u1, · · · , un−1〉 in which ui ∈ {0, . . . , ℓ−1}. The concatenation

of two words u = 〈u0u1 · · · un−1〉 and v = 〈v0v1 · · · vn−1〉 is denoted by uv.

Definition 1. The Sierpiński graph S(n, ℓ) is defined as below, for n ≥ 1 and ℓ ≥ 3, the vertex set

of S(n, ℓ) consists of all n-tuples of integers 0, 1, · · · , ℓ − 1. That is, V (S(n, ℓ)) = V n, where uv =
(u0u1 · · · un−1, v0v1 · · · vn−1) is an edge of E(S(n, ℓ)) if and only if there exists d ∈ {0, 1, . . . , ℓ−1}
such that: (1) uj = vj , if j < d; (2) ud 6= vd; (3) uj = vd and vj = ud, if j > d.

Figure 1: S(2, 4)

Sierpiński graph S(2, 4) is shown in Figure 1. Note that S(n, ℓ) can be constructed recursively

as follows: S(1, ℓ) is isomorphic to Kℓ, which vertex set is 1-tuples set {0, . . . , ℓ − 1}. To construct

S(n, ℓ) for n > 1, we take copies of ℓ times S(n − 1, ℓ) and add the letter i on the top of the vertices

in i-th copy of S(n − 1, ℓ), denoted by Si(n, ℓ). Note that there is exactly one edge (bridge edge)

between Si(n, ℓ) and Sj(n, ℓ), i 6= j, namely the edge between vertices 〈ij · · · j〉 and 〈ji · · · i〉.
The vertices (i, i, · · · , i

︸ ︷︷ ︸

n

), i ∈ {0, 1, . . . , ℓ − 1} are the extreme vertices of S(n, ℓ). Note that

an extreme vertex u of S(n, ℓ) has degree d(u) = ℓ − 1. For i ∈ {0, . . . , ℓ − 1} and n ≥ 2, let

Si(n − 1, ℓ) denote the subgraph of S(n, ℓ) induced by the vertices of the form {〈iu1 · · · un−1〉 | 0 ≤
ui ≤ ℓ − 1}. The vertex set V (S(n, ℓ)) can be partitioned into ℓ parts V (S0(n − 1, ℓ)), V (S1(n −
1, ℓ)), . . . , V (Sℓ−1(n − 1, ℓ)). For each 0 ≤ i ≤ ℓ − 1, Si(n − 1, ℓ) is isomorphic to S(n − 1, ℓ).
Note that V (S(n, ℓ)) = V (S0(n− 1, ℓ)) ∪ · · · ∪ V (Sℓ−1(n− 1, ℓ)) and S(n, ℓ) is the graph obtained

from S0(n− 1, ℓ), . . . , Sℓ−1(n− 1, ℓ) by adding exactly one edge (bridge edge) between Si(n− 1, ℓ)
and Sj(n − 1, ℓ), i 6= j, and the bridge edge joins 〈ij · · · j〉 and 〈ji · · · i〉 (notices that 〈ij · · · j〉 and

〈ji · · · i〉 are extreme vertices of Si(n− 1, ℓ) and Sj(n− 1, ℓ), respectively, if we regard Si(n− 1, ℓ)
and Sj(n− 1, ℓ) as two copies of S(n− 1, ℓ)).

Sierpiński graphs generalize Hanoi graphs which can be viewed as “discrete” finite versions of

a Sierpiński gasket [23, 10]. Xue considered the Hamiltionicity and path t-coloring of Sierpiński-

like graphs in [25]; furthermore, they proved that V al(S(n, k)) = V al(S[n, k]) = ⌊k/2⌋, where

V al(S(n, k)) is the linear arboricity of Sierpiński graphs. We remark that although Sierpiński graphs
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are not regular, they are “almost” regular as the extreme vertices have degrees one less than the degrees

of non-extreme vertices.

1.3. Preliminaries and our results

Chartrand et al. [4] and Li et al. [16] obtained the exact value of κk(Kn).

Theorem 1.1. ([16, 4])

For every two integers n and k with 2 ≤ k ≤ n,

κk(Kn) = λk(Kn) = n− ⌈k/2⌉.

The following result is on the Hamiltonian decomposition of Sierpiński graphs.

Theorem 1.2. [25] (1) For even ℓ ≥ 2, S(n, ℓ) can be decomposed into edge disjoint union of ℓ
2

Hamiltonian paths of which the end vertices are extreme vertices.

(2) For odd ℓ ≥ 3, there exist ℓ−1
2 edge-disjoint Hamiltonian paths whose two end vertices are

extreme vertices in S(n, ℓ).

In fact, Theorem 1.2 is used in the proof of Theorem 1.5, which give an lower bound for the generalized

k-edge connectivity of Sierpiński graphs S(n, ℓ). We require the following result.

Theorem 1.3. ([5, 26])

Suppose that G is a complete graph with V (G) = {v0, · · · , vN−1}. If N = 2n, then G can be

decomposed into n Hamiltonian paths

{i ∈ {1, 2, . . . , n} : Li = v0+iv1+iv2n−1+iv2+iv2n−2+i · · · vn+1+ivn+1},

where the subscripts take modulo 2n. If N = 2n+ 1, then G can be decomposed into n Hamiltonian

paths

{i ∈ {1, 2, . . . , n} : Li = v0+iv1+iv2n+iv2+iv2n−1+i · · · vn+ivn+1+i}

and a matching M = {vn−ivn+1 : i ∈ {1, 2, . . . , n}}, where the subscripts take modulo 2n + 1.

The following result is derived from Theorem 1.3, and we will use it later.

Corollary 1.4. Let s be an integer with s ≤ N
2 . Suppose that G is the complete graph with V (G) =

{v1, · · · , vN} and S = { {vi1 , vi2} : i ∈ {1, 2, . . . , s}} is a collection of pairwise disjoint 2-subsets of

V (G). Then there are s edge-disjoint Hamiltonian paths L1, · · · , Ls such that vi1 , vi2 are endpoints

of Li.

Our main result is as follows.

Theorem 1.5. (i) For 3 ≤ k ≤ ℓ, we have

κk(S(n, ℓ)) = λk(S(n, ℓ)) = ℓ− ⌈k/2⌉ .

(ii) For ℓ+ 1 ≤ k ≤ ℓn, we have

κk(S(n, ℓ)) ≤ ⌊ℓ/2⌋ and λk(S(n, ℓ)) = ⌊ℓ/2⌋ .
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2. Proof of Theorem 1.5

This section is organized as follows. We first introduce some notations, operations and auxiliary

graphs that are used in the proof. Then we give a transitional theorem (Theorem 2.1), which is the

main tool for the proof of Theorem 1.5. Theorem 2.1 will be proved by constructing an algorithm,

and the proof takes up almost entire Section 2 (the proof is divided into two parts: the construction of

algorithm and the proof of its correctness). Finally, we complete the proof of Theorem 1.5 by using

Theorem 2.1.

2.1. Notations, operations and auxiliary graphs

For 1 ≤ s < n, by the definition of the Sierpiński graph S(n, ℓ), we have that G = S(n, ℓ)
consists of ℓn−s Sierpiński graphs S(s, ℓ), and we call each such S(s, ℓ) an s-atom of G. Note that

P = {V (H) : H is an s-atom of G} is a partition of V (G). We use Gs to denote the graph G/P.

It is obvious that Gs is a simple graph and Gs = S(n − s, ℓ). Note that Gn is a single vertex and

G0 = G. For a vertex u of Gs, we use As,u to denote the s-atom of G which is contracted into u. See

Figures 2, 3 and 4 for illustrations.

Notation Corresponding interpretation

s-atom A copy of S(s, ℓ) in G = S(n, ℓ), where 0 ≤ s ≤ n.

Gs The graph obtained from G by contracting all ℓn−s s-atoms in G.

Au,s The s-atom in G which is contracted into u, where u ∈ V (Gs).

Hu Gs−1 can be obtained form Gs by expending each u ∈ V (Gs) to a

complete graph Hu = Kℓ.

ue, ve If e = uv is an edge of Gs, then e is also an edge of Gs−1. let ue, ve
denote endpoints of e in Gs−1 such that ue ∈ Hu and ve ∈ Hv.

U The set of labelled vertices in G (|U | = k).

U s The set of labelled vertices in Gs.

W u The set of labelled vertices in Hu.

Table 1: Notations for and their meanings.

Note that Gs−1 is the graph obtained from Gs by replacing each vertex u with a complete graph

Kℓ. We denote by Hu the complete graph replacing u (see Figures 3 and 4 for illustrations). For an

edge e = uv of Gs, e is also an edge of Gs−1. We use ue and ve to denote the ends of e in Gs−1,

respectively, such that ue ∈ V (Hu) and ve ∈ V (Hv). (See Figure 5 for an illustration.)

Fix a subset U of V (G) arbitrary such that |U | = k, where 3 ≤ k ≤ ℓ. For the graph Gs, a

vertex u of Gs is labelled if V (As,u) ∩ U 6= ∅, and u is unlabelled otherwise. We use U s to denote

the set of labelled vertices of Gs. For a labelled vertex u of Gs, let W u = V (Hu) ∩ U s−1, that is,

the set of labelled vertices in Hu. See Figure 2 as an example, if U = {u000, u001, u013, u122}, then
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U1 = {u00, u01, u12} and W u0 = {u00, u01} in Figure 3. For ease of reading, above notations and

their meanings are summarized in Table 1.

We construct an out-branching
−→
T with vertex set V (

−→
T ) =

⋃

i∈{0,1,...,n}{x : x ∈ V (Gi)} and arc

set A(
−→
T ) = {(x, y) : y ∈ V (Hx)}. The root of

−→
T is denoted by vroot (it is clear that V (Gn) =

{vroot}). For two different vertices x, y of V (
−→
T ), if there is a direct path from x to y, then we say that

x ≺ y, and denote the directed path by x
−→
T y. The following result is straightforward.

Fact 1. If xi ∈ V (
−→
T ) for i ∈ [p] and x1 ≺ x2 ≺ . . . ≺ xp, then

∑

i∈[p] |W
xi | ≤ k + p− 1.

2.2. A transitional theorem and its proof

In order to prove our main result (Theorem 1.5), we first prove the following transitional theorem

by constructing ℓ− ⌈k/2⌉ internally disjoint U -Steiner trees in G.

Theorem 2.1. Let G = S(n, ℓ) and U ⊆ V (G) with |U | = k (U is defined before), and let c =
ℓ − ⌈k/2⌉. For 0 ≤ s ≤ n, Gs has c internally disjoint U s-Steiner trees T1, · · · , Tc such that the

following statement holds.

(⋆) For each u ∈ U s (say u ∈ W v and hence v is a labelled vertex of Gs+1 if s 6= n) and i ∈ [c],
dTi

(u) ≤ 2.

The rest part of this subsection is the proof of Theorem 2.1.

Proof of Theorem 2.1 Suppose that s′ is the minimum integer such that Gs′ has exactly one labelled

vertex (note that s′ exists since Gn consists of a single labelled vertex). This means that Gs′−1 has

at least two labelled vertices. Let v be the labelled vertex in Gs′ . Then U ⊆ As′,v. Thus, in order to

find c internally disjoint U -Steiner trees of G satisfying (⋆), we only need to find c internally disjoint

U -Steiner trees in As′,v satisfying (⋆). Hence, without loss of generality, we can assume that G is a

graph with

|W vroot| = |Un−1| ≥ 2. (1)

Therefore, |U i| ≥ 2 for each i ≤ n− 1.

The proof is technical and is via induction. Note that since Gn is a single vertex and G = G0, the

induction is from Gn to G0. The basic idea is to use the U s-Steiner trees of Gs to construct appropriate

U s−1-Steiner trees of Gs−1. Since each vertex in Gs corresponds to a complete graph in Gs−1, it is

not a straightforward process to extend U s-Steiner trees of Gs to U s−1-Steiner trees of Gs−1.

If s = n, then each Ti in Gn is the empty graph and the result holds. Thus, suppose s ≤ n − 1.

Hence, the labelled vertex v of Gs+1 always exists. The following implies that the result holds for

s = n− 1. Note that Un−1 = W vroot.

Claim 1. If s = n − 1, then we can construct c internally disjoint U s-Steiner trees, say T1, . . . , Tc,

such that for each i ∈ [c] and u ∈ U s, dTi
(u) ≤ 2. Moreover,

(i) If |U s| ≤ ⌈k/2⌉, then for each i ∈ [c] and u ∈ U s, dTi
(u) = 1;
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u000 u001

u002 u003

u010

u012

u011

u013

u020

u021 u030 u031

u022

u023

u032

u033

u100 u101 u110 u111

u102

u103

u112 u113

u120

u121 u130

u131

u122 u123

u132

u133

u200

u201 u210 u211 u300 u301 u310

u311

u202

u203

u212

u213

u302

u303

u312 u313

u220

u221 u230 u231

u320

u321 u330

u331

u222

u223 u232 u233 u322 u323 u332

u333

A(2, u0)

A(2, u1)

Figure 2: G = G0 = S(3, 4)

u00 u01

u02

u03

u10 u11

u12
u13

u20 u21 u30 u31

u22

u23 u32

u33

Hu0

Hu1

Figure 3: The graph G1

u0 u1

u2 u3

Figure 4: The graph G2
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u11

u12

u13 u24

u21

u22

u23 u24

u31 u32 u41 u42

u33

u34 u43

u44

e

ue ve

u v

e

G1 G2

Figure 5: From graph G1 to G2 by ueve contraction edge uv.

(ii) otherwise, for each u ∈ U s, there are at most |U s| − ⌈k/2⌉ internally disjoint U s-Steiner

trees Ti such that dTi
(u) = 2.

Proof:

Note that Gn−1 = S(1, ℓ) = Kℓ.

Suppose |Un−1| ≤ ⌈k/2⌉. Then |V (Gn−1)− Un−1| ≥ ℓ− ⌈k/2⌉ = c and we can choose c stars

of {x ∨ Un−1 : x ∈ V (Gn−1) − Un−1} as internally disjoint Un−1-Steiner trees T1, . . . , Tc. It is

easy to verify that dTi
(u) = 1 for i ∈ [c] and u ∈ Un−1.

Suppose |Un−1| ≥ ⌈k/2⌉. Since |Un−1| ≤ k, it follows that 0 ≤ |Un−1| − ⌈k/2⌉ ≤ ⌊|Un−1|/2⌋.

By Corollary 1.4, there are |Un−1| − ⌈k/2⌉ edge-disjoint Hamiltonian paths in Gn−1[U
n−1]. So,

we can choose c internally disjoint Un−1-Steiner trees consisting of |Un−1| − ⌈k/2⌉ edge-disjoint

Hamiltonian paths in Gn−1[U
n−1] and ℓ − |Un−1| stars {x ∨ Un−1 : x ∈ V (Gn−1) − Un−1}. It

is easy to verify that dTi
(u) ≤ 2 for i ∈ [c] and u ∈ Un−1, and there are at most |Un−1| − ⌈k/2⌉

internally disjoint Un−1-Steiner trees Ti such that dTi
(u) = 2. ⊓⊔

Our proof is a recursive process that the c internally disjoint U s-Steiner trees of Gs are constructed

by using the c internally disjoint U s+1-Steiner trees of Gs+1. We will find some ways to construct the

c internally disjoint U s-Steiner trees such that (⋆) holds. In the finial step, the c internally disjoint U -

Steiner trees in G0 = G will be obtained. We have proved that the result holds for s ∈ {n, n−1}. Now,

suppose that we have constructed c internally disjoint U s+1-Steiner trees, say F = {F1, . . . , Fc}, and

the trees satisfy (⋆), where s ∈ {0, . . . , n − 1}. We need to construct c internally disjoint U s-Steiner

trees T = {T1, . . . , Tc} of Gs satisfying (⋆).

Recall that each edge of Gs+1 is also an edge of Gs. In addition, let Eu,i denote the set of edges

in Fi incident with the labelled vertex u in Gs and let Vu,i = {ue : e ∈ Eu,i} (recall that the edge
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e = uw in Gs+1 is denoted by e = uewe in Gs, where ue ∈ V (Hu) and we ∈ V (Hw)). Note that

Eu,i and Vu,i are the subsets of E(Gs) and V (Gs), respectively.

Our aim is to construct internally disjoint U s-Steiner trees T1, . . . , Tc that is obtained from U s+1-

Steiner trees F1, . . . , Fc. So, we need to “blow” up each vertex w of Gs+1 into Hw and find internally

disjoint Ww-Steiner trees Fw
1 , . . . , Fw

c of Hw (Fw
i may be the empty graph if w is a unlabelled vertex)

such that

T =






Ti = Fi ∪

⋃

w∈V (Gs+1)

Fw
i : i ∈ [c]






.

Each Fw
i can be constructed as follows.

• If w is a labelled vertex of Gs+1, then w is in each U s+1-Steiner tree of F . We choose c
internally disjoint Ww-Steiner trees Fw

1 , . . . , Fw
c of Hw such that Vw,i ⊆ V (Fw

i ) for each

i ∈ [c].

• If w is an unlabelled vertex, then w is in at most one U s+1-Steiner tree of F . For each i ∈ [c],
if w ∈ V (Fi), then let Fw

i be a spanning tree of Hw; if w /∈ V (Fi), then let Fw
i be the empty

graph.

For i ∈ [c], let Ei = E(Fi) ∪
⋃

w∈V (Gs+1)
E(Fw

i ) and let Ti = Gs[Ei]. It is obvious that T1, . . . , Tc

are internally disjoint U s-Steiner trees. We need to ensure that each labelled vertex of Gs satisfies (⋆).

In fact, without loss of generality, we only need to choose an arbitrary labelled vertex u ∈ Gs+1

and prove that each vertex of W u satisfies (⋆). This is because Fw
i is clear when w is an unlabelled

vertex (in the case Fw
i is either a spanning tree of Hw or the empty graph). By Eq. (1) and Fact 1,

|W u| ≤ k − 1 since u 6= vroot.

Since dFi
(u) ≤ 2 for each i ∈ [c] and u ∈ U s, it follows that |Eu,i| = |Vu,i| ≤ 2. Therefore, we

can divide F1, . . . , Fc into the following five types on u:

Type 1: |Vu,i| = 1 and Vu,i ⊆ W u.

Type 2: |Vu,i| = 1 and Vu,i * W u.

Type 3: |Vu,i| = 2 and Vu,i ⊆ W u.

Type 4: |Vu,i| = 2 and Vu,i ∩W u = ∅.

Type 5: |Vu,i| = 2 and |Vu,i ∩W u| = 1.

If Fi is a graph of Type j (1 ≤ j ≤ 5) on u, then we also call F u
i a W u-Steiner tree of Type j.

Suppose there are nj(u) trees Fi that belong to Type j on u for j ∈ [5]. Then

5∑

i=1

nj(u) = c. (2)

It is obvious that nj(vroot) = 0 for each j ∈ [5]. Let

R(u) = V (Hu)−W u −
⋃

i∈[c]

Vu,i.
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Note that R(u) is the set of unlabelled vertices in Gs, which will be used to construct the W u-Steiner

trees in Hu. It is clear that

|R(u)| = ℓ− |W u| − [n2(u) + 2n4(u) + n5(u)]. (3)

Wu Wu Wu Wu Wu

Hu Hu Hu Hu

Hu

Wu

Hu

Wu

Hu

Wu

Hu

Wu

Hu

Wu

Hu

Wu

Hu

Type 1 Type 2 Type 3 Type 4 Type 5

Method 1 Method 1a

Method 2

Type 1 Type 3 Type 1 Type 3

Type 2 Type 5

Wu

Hu

Type 4

Method 3

x x

xx
x

y

Figure 6: Five types and methods 1, 1a, 2 and 3.

We have the following five methods to choose F u
1 , . . . , F

u
c for the labelled vertex u ∈ Gs+1 (see

Figure 6).

Method 1 If Fi is a graph of Type 1 and |W u| ≥ 2, or Fi is a graph of Type 3, then let F u
i =

x ∨W u, where x ∈ R(u).

Method 1a If Fi is a graph of Type 1 and |W u| ≥ 2, then let F u
i be a Hamiltonian path of Hu[W u]

such that the vertex in Vu,i is an endpoint of this Hamiltonian path; if Fi is a graph of Type 3, then let

F u
i be a Hamiltonian path of Hu[W u] such that the endpoints of Fi are two vertices in Vu,i.

Method 2 If Fi is a graph of Type 2 or Type 5, say x is the only vertex of Vu,i with x /∈ W u, then

let F u
i = x ∨W u.

Method 3 If Fi is a graph of Type 4, say Vu,i = {x, y}, then let F u
i = xy ∪ (x ∨W u).

Method 4 If Fi is a graph of Type 1 and |W u| = 1, then let F u
i be the empty graph.

It is worth noting that the method is deterministic if F u
i is a graph of Types 2, 4 and 5, or F u

i is

a graph of Type 1 and |W u| = 1. So we firstly construct these F u
i s by using Methods 2, 3 and 4,
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respectively, and then construct F u
i s of Type 1 with |W u| ≥ 2 and construct F u

i s of Type 3 by using

Method 1 or Method 1a.

The following is an algorithm constructing c internally disjoint U -Steiner trees of G.

Algorithm 1: The construction of c internally disjoint U -Steiner trees of G

Input: U , c and G = S(n, ℓ) with |W root| ≥ 2
Output: c internally disjoint U -Steiner trees T ′

1, T
′

2, . . . , T
′

c of G

1 T ′

1, T
′

2, . . . , T
′

c are empty graphs;

2 s = n //(* in initial step, Gn is a single vertex*);

3 for s ≥ 1 do

4 for each vertex u of Gs do

5 if u is an unlabelled vertex then

6 for 1 ≤ i ≤ c do

7 if u is a vertex of Fi then

8 Fu
i is a spanning tree of Hu;

9 else

10 Fu
i is is the empty graph;

11 end

12 T ′

i = T ′

i ∪ Fu
i ;

13 i = i+ 1;

14 end

15 end

16 if u is a labelled vertex then

17 µ = |R(u)|;
18 for 1 ≤ i ≤ c do

19 if T ′

i is of Type 2 or Type 5 then

20 construct Fu
i by using Method 2;

21 end

22 if T ′

i is of Type 4 then

23 construct Fu
i by using Method 3;

24 end

25 if T ′

i is of Type 1 and |W u| = 1 then

26 construct Fu
i by using Method 4;

27 end

28 if either T ′

i is of Type 1 and |W u| ≥ 2, or T ′

i is of Type 3 then

29 if µ > 0 then

30 construct Fu
i by using Method 1;

31 µ = µ− 1;

32 end

33 if µ ≤ 0 then

34 construct Fu
i by using Method 1a;

35 end

36 end

37 T ′

i = T ′

i ∪ Fu
i ;

38 i = i+ 1;

39 end

40 end

41 end

42 s = s− 1;

43 end
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Algorithm 1 is an algorithm for finding c internally disjoint U -Steiner trees of G. For each step of

s, the algorithm will construct c internally disjoint U s−1-steiner trees T ′
1, T

′
2, . . . , T

′
c. For convenience,

we denote each T ′
i by T s

i after the s step of outer “for”, that is, T s
1 , T

s
2 , . . . , T

s
c are c internally disjoint

U s-Steiner trees in Gs generated in Algorithm 1. If Algorithm 1 is correct, then Lines 16–40 indicate

that dT ′

i
(x) ≤ 2 for any x ∈ W u, and hence (⋆) always holds.

We now check the correctness of the algorithm. Since F u
i is deterministic when u is an unlabelled

vertex (Lines 5–15 of Algorithm 1), and F u
i is deterministic if u is a labelled vertex and either F u

i is a

graph of Types 2, 4 and 5, or F u
i is a graph of Type 1 and |W u| = 1 (Lines 19–27 of Algorithm 1), we

only need to talk about the labelled vertex u with |W u| ≥ 2 and check the correctness of Lines 28–36

of Algorithm 1. That is, to ensure that there exist n1(u) F
u
i s of Type 1 and n3(u) F

u
i s of Type 3. If

F u
i is constructed by Method 1, then F u

i is a star with center in R(u) (say the center of the star is ai);
if F u

i is constructed by Method 1a, then F u
i is a Hamiltonian path of Hu with endpoints in Vu,i. Since

ais are pairwise differently and are contained in R(u), and Hu has at most ⌊|W u|/2⌋ Hamiltonian

paths to afford by Corollary 1.4, we only need to ensure that |R(u)| + ⌊|W u|/2⌋ ≥ n1(u) + n3(u).
Thus, we only need to prove the following result.

Lemma 2.1. For each labelled vertex u ∈ V (Gs) with |W u| ≥ 2, Ineq.

n1(u) + n3(u)− |R(u)| ≤ ⌊|W u|/2⌋ (4)

holds.

Proof:

By Eqs. (2) and (3),

n1(u) + n3(u)− |R(u)| = n1(u) + n3(u)− [ℓ− |W u| − n2(u)− 2n4(u)− n5(u)]

= [n1(u) + n2(u) + n3(u) + n4(u) + n5(u)] + n4(u) + |W u| − ℓ

= c+ n4(u) + |W u| − ℓ.

Since c = ℓ− ⌈k/2⌉, it follows that

n1(u) + n3(u)− |R(u)| = n4(u) + |W u| − ⌈k/2⌉. (5)

Before the proof of Lemma 2.1, we give a series of claims as preliminaries.

Claim 2. Suppose that a ∈ V (vroot
−→
T u) is a labelled vertex with a ∈ U ι, where 1 ≤ ι ≤ n. If

|W a| = 1 (say W a = {x}), then n5(a) ≤ 1. Moreover,

1. if n5(a) = 1, then n4(x) ≤ 1;

2. if n5(a) = 0, then n3(x) = n4(x) = n5(x) = 0.

Proof:

Note that x ∈ U ι−1. in Algorithm 1 (Lines 18–39), if T ι
i is not a tree of Type 5 on a, then F a

i is chosen

such that dT ι−1
i

(x) = 1 (here W a = {x}); if T ι
i is a tree of Type 5 on a, then F a

i is chosen such that
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d
T ι−1
i

(x) = 2. Since |W a| = 1, there is at most one T ι
i of Type 5 on a, and hence n5(a) ≤ 1.

Furthermore, if n5(a) = 1, then there is exact one T ι−1
i in Gℓ−1 such that d

T ι−1
i

(x) = 2. Hence,

n4(x) ≤ 1. If n5(a) = 0, then d
T ι−1
i

(x) = 1 for each T ι−1
i . Therefore, n3(x) = n4(x) = n5(x) = 0.

⊓⊔

Claim 3. Suppose that a, b are two labelled vertices of vroot
−→
T u and a ∈ W b, where a ∈ U ι for some

ι ∈ [n]. Then there are at most max{1, n1(b) + n3(b) − |R(b)| + 1} T ι
i s such that dT ι

i
(a) = 2.

Furthermore, n4(a) ≤ max{1, n1(b) + n3(b)− |R(b)|+ 1}.

Proof:

Since a ∈ W b and a ∈ U ι, it follows that b ∈ U ι+1. For an i ∈ [c] with dT ι
i
(a) = 2, we have that

either F b
i is a Hamiltonian path of the clique Hb[W b], or a ∈ Vb,i ∩W b for some i ∈ [c] (recall that

Vb,i = {z ∈ V (Hb) : z is an end vertex of some edge in Eb,i}, where Eb,i is the set of edges in T ι+1
i

incident with b). Hence, if there are h edge-disjoint F b
i s that are constructed as Hamiltonian paths of

Hb[W b], then there are at most h+ 1 internally disjoint U ι-Steiner trees T ι
i such that dT ι

i
(a) = 2. By

the definition of n4(a), we have that n4(a) ≤ h+ 1.

In Algorithm 1 (Lines 28–36), if n1(b)+n3(b)−|R(b)| > 0, then there are at most n1(b)+n3(b)−
|R(b)| F b

i s that are constructed as Hamiltonian paths in Hb[W b]; if n1(b)+n3(b)− |R(b)| ≤ 0, there

is no F b
i that is constructed as a Hamiltonian path in Hb[W b]. Hence, h ≤ max{0, n1(b) + n3(b) −

|R(b)|}. Thus, there are at most max{1, n1(b) + n3(b) − |R(b)| + 1} internally disjoint U ι-Steiner

trees T ι
i such that dT ι

i
(a) = 2, and n4(a) ≤ max{1, n1(b) + n3(b)− |R(b)| + 1}. ⊓⊔

Claim 4. Let a ∈ V (vroot
−→
T u) be a labelled vertex, where a ∈ U ι for some ι ∈ [n]. If n4(a) ≤ 1 and

2 ≤ |W a| ≤ ⌈k/2⌉ − 1, then n1(a) + n3(a)− |R(a)| ≤ 0. Moreover, for each vertex x ∈ W a, there

is at most one T ι−1
i such that dT ι−1

i
(x) = 2.

Proof:

Since n4(a) ≤ 1 and |W a| ≤ ⌈k/2⌉ − 1, it follows from Eq. (5) that n1(a) + n3(a) − |R(a)| =
|W a| − ⌈k/2⌉ + 1 ≤ 0. By Claim 3, for each vertex x ∈ W a, there is at most one T a

i such that

d
T ι−1
i

(x) ≤ 2. ⊓⊔

Claim 5. Let a ∈ V (vroot
−→
T u) be a labelled vertex, where a ∈ U ι for some ι ∈ [n]. If n4(a) ≤ 1 and

⌈k/2⌉ ≤ |W a| ≤ k − 1, then n1(a) + n3(a)− |R(a)| ≤ ⌊|W a|/2⌋. Moreover, for each x ∈ W a,

1. if n4(a) = 1, then there are at most |W a| − ⌈k/2⌉ + 2 internally disjoint U ι−1-Steiner trees

T ι−1
i such that dT ι−1

i
(x) = 2;

2. if n4(a) = 0, then there are at most |W a| − ⌈k/2⌉ + 1 internally disjoint U ι−1-Steiner trees

T ι−1
i such that dT ι−1

i
(x) = 2.

Proof:

Since n4(a) ≤ 1, it follows from Eq. (5) that

n1(a) + n3(a)− |R(a)| ≤ |W a| − ⌈k/2⌉ + n4(a)

≤ |W a| − ⌈k/2⌉ + 1
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and the equality indicates n4(a) = 1. If |W a| ≤ k − 2, then

n1(a) + n3(a)− |R(a)| ≤ |W a| − ⌈(|W a|+ 2)/2⌉ + 1 ≤ ⌊|W a|/2⌋ ;

if |W a| = k − 1 and k is even, then

n1(a) + n3(a)− |R(a)| = |W a| − ⌈(|W a|+ 1)/2⌉ + 1 = ⌊(|W a|+ 1)/2⌋ = ⌊|W a|/2⌋ ;

if |W a| = k − 1 and k is odd, then

n1(a) + n3(a)− |R(a)| = (k − 1)− ⌈k/2⌉ + 1 ≤ ⌊k/2⌋ = ⌊(k − 1)/2⌋ = ⌊|W a|/2⌋ .

Therefore, n1(a) + n3(a)− |R(a)| ≤ ⌊|W a|/2⌋. By Eq. (5) and Claim 3, if n4(a) = 1, then for each

vertex x ∈ W a, there are at most n1(a) +n3(a)− |R(a)|+1 = |W a| − ⌈k/2⌉+2 internally disjoint

U ι−1-Steiner trees T ι−1
i such that dT ι−1

i
(x) = 2; if n4(a) = 0, then for each vertex x ∈ W a, there

are at most n1(a) + n3(a) − |R(a)| + 1 = |W u| − ⌈k/2⌉ + 1 internally disjoint U ι−1-Steiner trees

T ι−1
i such that d

T ι−1
i

(x) = 2. ⊓⊔

Claim 6. Suppose a, b ∈ V (
−→
T ), a ≺ b and a

−→
T b = az1z2 . . . zpb, where a ∈ U ι for some ι ∈ [n]. If

|W zi | ≤ ⌈k/2⌉ − 1 for each i ∈ [p], and either |W a| = 1 or 2 ≤ |W a| ≤ ⌈k/2⌉ − 1 and n4(a) ≤ 1,

then n4(b) ≤ 1.

Proof:

Since a ∈ U ι, it follows that zq ∈ U ι−q for each q ∈ [p] and b ∈ U ι−p−1. Since |W a| = 1 or

2 ≤ |W a| ≤ ⌈k/2⌉ − 1 and n4(a) ≤ 1, by Claims 2 and 4, there are at most one T ι−1
i such that

dT ι−1
i

(z1) = 2. Hence, n4(z1) ≤ 1. Since |W z1 | ≤ ⌈k/2⌉ − 1 and n4(z1) ≤ 1, by Claims 2 and 4,

there are at most one T ι−2
i such that dT ι−2

i
(z2) = 2. Hence, n4(z2) ≤ 1. Repeat this progress, we can

get that n4(zp) ≤ 1. Since |W zp | ≤ ⌈k/2⌉ − 1 and n4(zp) ≤ 1, by Claims 2 and 4, there are at most

one T ι−p−1
i such that d

T
ι−p−1
i

(b) = 2. Hence, n4(b) ≤ 1. ⊓⊔

Claim 7. Suppose |W vroot| ≤ ⌈k/2⌉, b ∈ V (
−→
T ) and vroot

−→
T b = vrootz1z2 . . . zpb. If |W zi | = 1 for

each i ∈ [p], then n4(b) = 0.

Proof:

Since |W vroot| ≤ ⌈k/2⌉, by Claim 1, dTn−1
i

(z1) = 1 for each Un−1-Steiner tree T n−1
i . Hence,

n3(z1) = n4(z1) = n5(z1) = 0. Since |W z1 | = 1 and n5(z1) = 0, by the second statement of Claim

2, n3(z2) = n4(z2) = n5(z2) = 0. Since |W z2 | = 1 and n5(z2) = 0, by the second statement of

Claim 2, n3(z3) = n4(z3) = n5(z3) = 0. Repeat this process, we get that n4(b) = 0. ⊓⊔

Claim 8. Suppose that a, b are two labelled vertices and a ∈ W b, where a ∈ U ι for some ι ∈ [n]. If

k is even and |W b| = |W a| = k/2, then n1(a)+n3(a)− |R(a)| ≤ ⌊|W a|/2⌋ and the following hold.

1. If b = vroot, then for each vertex x ∈ W a, there is at most one T ι−1
i such that dT ι−1

i
(x) = 2.
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2. If b 6= vroot, then for each vertex x ∈ W a, there are at most two T ι−1
i s such that d

T ι−1
i

(x) = 2.

Proof:

Suppose b = vroot. Then by Claim 1, n4(a) = 0. Thus,

n1(a) + n3(a)− |R(a)| = n4(a) + |W a| − k/2 = |W a| − k/2 = 0.

By Claim 3, for each vertex x ∈ W a, there is at most one T ι−1
i such that d

T ι−1
i

(x) = 2.

Now assume that b 6= vroot. Without loss of generality, suppose vroot
−→
T b = vrootv1v2 . . . vpb. By

Fact 1, we have that |W root| = 2 ≤ k/2 and |W vi | = 1 for each i ∈ [p]. By Claim 7, n4(b) = 0. By

Claim 3,

n4(a) ≤ max{1, n1(b) + n3(b)− |R(b)|+ 1}

≤ max{1, n4(b) + |W b| − ⌈k/2⌉ + 1}

= 1 ≤ ⌊|W a|/2⌋.

By Claim 3 again, for each vertex x ∈ W a, there are at most two T ι−1
i such that dT ι−1

i
(x) = 2. ⊓⊔

With the above preparations, we now prove Lemma 2.1. Recall that u ∈ V (Gs) is a labelled

vertex with |W u| ≥ 2. Then each vertex of V (vroot
−→
T u) is also a labelled vertex. Suppose that v∗ is

the maximum vertex of vroot
−→
T u such that one of the following holds (if such vertex v∗ exists).

(i) |W v∗ | = 1,

(ii) 2 ≤ |W v∗ | ≤ ⌈k/2⌉ − 1 and n4(v
∗) ≤ 1.

We distinguish the following two cases to show this lemma, that is, to prove Ineq. (4) holds (recall

that the Ineq. (4) is n1(u) + n3(u)− |R(u)| ≤ ⌊|W u|/2⌋).

Case 1. v∗ exists.

Let
−→
P = v∗

−→
T u = v∗z1z2 . . . zpu. By the maximality of v∗, we have that |W zi | ≥ 2 for each

i ∈ [p]. If |
−→
P | = 1, then v∗ = u. Since |W u| ≥ 2, it follows from (ii) that 2 ≤ |W u| ≤ ⌈k/2⌉ − 1

and n4(u) ≤ 1. By Claim 4, we have that n1(u)+n3(u)− |R(u)| ≤ 0, and Ineq. (4) holds. Thus, we

assume that |
−→
P | ≥ 2 below.

By Claim 6, we have that

n4(z1) ≤ 1. (6)

Thus, by the maximality of v∗, we have that |W z1 | ≥ ⌈k/2⌉. Since |W vroot| + |W z1 | ≤ k + 1 (by

Fact 1) and |W vroot| ≥ 2, it follows that |W z1 | ≤ k − 1. Hence,

⌈k/2⌉ ≤ |W z1 | ≤ k − 1. (7)

Subcase 1.1. p = 0.
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Then
−→
P = v∗

−→
T u = v∗u and z1 = u. Since n4(u) ≤ 1 and ⌈k/2⌉ ≤ |W u| ≤ k − 1 by Ineqs. (6)

and (7), it follows from Claim 5 that n1(u) + n3(u)− |R(u)| ≤ ⌊|W u|/2⌋, Ineq. (4) holds.

Subcase 1.2. p = 1.

Then
−→
P = v∗

−→
T u = v∗z1u and u = z2. By Fact 1, we have that

|W z1 |+ |W u|+ |W vroot| − 2 ≤ k. (8)

Hence |W z1 |+ |W u| ≤ k. Recall that |W z1 | ≥ ⌈k/2⌉. If |W u| ≥ ⌈k/2⌉, then k is even and |W z1 | =
|W u| = k/2. By Claim 8, we have that n1(u) + n3(u) − |R(u)| ≤ ⌊|W u|/2⌋. Therefore, Ineq. (4)

holds. Now, we assume that 2 ≤ |W u| ≤ ⌈k/2⌉ − 1. Since n4(z1) ≤ 1 and k − 1 ≥ |W z1 | ≥ ⌈k/2⌉,

by Claim 5, there are at most |W z1 | − ⌈k/2⌉ + 2 internally disjoint U s-Steiner trees T s
i such that

dT s
i
(u) = 2 (note that u ∈ Gs). Hence, n4(u) ≤ |W z1 | − ⌈k/2⌉ + 2. Thus, by Eq. (5),

n1(u) + n3(u)− |R(u)| = n4(u) + |W u| − ⌈k/2⌉ ≤ |W u|+ |W z1 | − 2 ⌈k/2⌉ + 2.

If |W u|+ |W z1 | ≤ k− 1 or k is odd, then n1(u)+n3(u)− |R(u)| ≤ 1 ≤ ⌊|W u|/2⌋, Ineq. (4) holds.

Thus, assume that |W u| + |W z1 | = k (recall that |W u| + |W z1 | ≤ k) and k is even below (k ≥ 4).

Since |W z1 | ≥ ⌈k/2⌉, it follows that |W u| ≤ k/2. Suppose that vroot
−→
T zp = vrootw1w2 . . . wqv

∗zp.

Since |W vroot| ≥ 2, it follows from Ineq. (8) and Fact 1 that |W vroot| = 2 ≤ k/2 and |Ww1 | = . . . =
|Wwq | = |W v∗ | = 1. According to Claim 7, we have that n4(u) = 0. Hence,

n1(u) + n3(u)− |R(u)| = n4(u) + |W u| − ⌈k/2⌉ ≤ 0 ≤ ⌊|W u|/2⌋,

the Ineq. (4) holds.

Subcase 1.3. p ≥ 2.

Then u � z3. Recall that |W zi | ≥ 2 for each i ∈ [p]. Since

|W vroot|+ |W z1 |+ |W z2 |+ |W z3 | − 3 ≤ k (9)

and |W z1 | ≥ ⌈k/2⌉, it follows that |W z2 |, |W z3 | ≤ ⌊k/2⌋ − 1 and |W z1 | + |W z2 | ≤ k − 1. On the

other hand, since |W z3 | ≥ 2, it follows that k ≥ 6.

Without loss of generality, suppose z2 ∈ U ι. Recall Ineqs. (6) and (7), and combine with Claim

5, there are at most |W z1 | −
⌈
k
2

⌉
+ 2 internally disjoint U ι-Steiner trees T ι

i such that dT ι
i
(z2) = 2.

Hence, n4(z2) ≤ |W z1 | −
⌈
k
2

⌉
+ 2. By Claim 3, n4(z3) ≤ max{1, n4(z2) + |W z2 | − ⌈k/2⌉ + 1}.

However, by the maximality of v∗, we have that n4(z3) ≥ 2. Hence,

n4(z3) ≤ n4(z2) + |W z2 | − ⌈k/2⌉ + 1 ≤ |W z1 |+ |W z2 | − 2⌈k/2⌉ + 3. (10)

Since |W z1 |+ |W z2 | ≤ k− 1, it follows that if k is odd or |W z1 |+ |W z2 | ≤ k− 2, then n4(z3) ≤ 1,

a contradiction. Hence, k is even and |W z1 |+ |W z2 | = k − 1. This implies that |W z3 | = n4(z3) = 2
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by Ineqs. (9) and (10). Since k ≥ 6, it follows that n4(z3)+ |W z3 |− ⌈k/2⌉ ≤ 1 ≤ ⌊|W z3 |/2⌋. Recall

that u � z3. If v3 = u, then

n1(u) + n3(u)− |R(u)| = n4(u) + |W u| − ⌈k/2⌉ ≤ ⌊|W u|/2⌋,

Ineq. (4) holds. If u ≻ z3, then since

|W vroot|+ |W z1 |+ |W z2 |+ |W z3 |+ |W u| − 4 ≤ k,

we have that

|W u| ≤ k + 4− (|W vroot|+ |W z1 |+ |W z2 |+ |W z3 |) = 1,

a contradiction.

Case 2. v∗ does not exist.

Let
−→
P = vroot

−→
T u = vrootz1 . . . , ztu. Since v∗ does not exist, for each vertex z ∈ V (

−→
P ), either

2 ≤ |W z| ≤ ⌈k/2⌉ − 1 and n4(z) ≥ 2, or |W z| ≥ ⌈k/2⌉. Since n4(vroot) = 0, it follows that

|W vroot| ≥ ⌈k/2⌉. By Claim 1, n4(z1) ≤ |W vroot| − ⌈k/2⌉.

Subcase 2.1. |W z1 | ≥ ⌈k/2⌉.

Since |W vroot|, |W z1 | ≥ ⌈k/2⌉, we have that t ≤ 1. Otherwise,

∑

z∈V (
−→
P )

|W z| − (|
−→
P | − 1) > k,

which contradicts Fact 1. Moreover, if t = 1, then k is even, |W vroot| = |W z1 | = k/2 and |W u| = 2.

Suppose that t = 0. Then u = z1, and hence n4(u) ≤ |W vroot| − ⌈k/2⌉. Thus

n1(u) + n3(u)− |R(u)| = n4(u) + |W u| − ⌈k/2⌉

≤ |W vroot|+ |W u| − 2⌈k/2⌉

≤ (k + 1)− 2⌈k/2⌉ (by Fact 1)

≤ 1 ≤ ⌊|W u|/2⌋,

Ineq. (4) holds.

Suppose t = 1. Then
−→
P = vrootz1u. Hence, k is even (k ≥ 4), |W vroot| = |W z1 | = k/2 and

|W u| = 2. By the first statement of Claim 8 (here, we regard vroot and z1 as the vertices b and a in

Claim 8, respectively, and then u can be regarded as the vertex x in Claim 8), we have that n4(u) ≤ 1.

Hence,

n1(u) + n3(u)− |R(u)| = n4(u) + |W u| − ⌈k/2⌉ ≤ 1 ≤ ⌊|W u|/2⌋,

Ineq. (4) holds.
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Subcase 2.2. 2 ≤ |W z1 | ≤ ⌈k/2⌉ − 1.

Recall that n4(z1) = |W vroot| − ⌈k/2⌉. Since n4(z1) ≥ 2, |W vroot| ≥ ⌈k/2⌉ + 2. If |W vroot| +
|W z1 | = k + 1, then v = vroot, u = z1 and

n1(u) + n3(u)− |R(u)| = n4(u) + |W u| − ⌈k/2⌉ ≤ 1 ≤ ⌊|W u|/2⌋.

Thus, suppose |W vroot|+ |W z1 | ≤ k. Then

n1(z1) + n3(z1)− |R(z1)| = n4(z1) + |W z1 | − ⌈k/2⌉ ≤ 0.

If z1 = u, then n1(u) + n3(u) − |R(u)| ≤ 0, Ineq. (4) holds. Now, assume that z1 6= u. Then z2
exists. By Claim 3, n4(z2) ≤ 1. Since z2 is not a candidate of v∗, it follows that |W z2 | ≥ ⌈k/2⌉. Since

|W vroot| ≥ ⌈k/2⌉+2, |W z2 | ≥ ⌈k/2⌉ and |W z1 | ≥ 2, it follows that |W vroot|+ |W z1 |+ |W z2 |−2 ≥
k + 2, which contradicts Fact 1. ⊓⊔

With the conclusion of Lemma 2.1, the proof of Theorem 2.1 is completed.

2.3. Proof of Theorem 1.5

We first consider 3 ≤ k ≤ ℓ. The lower bound ℓ − ⌈k/2⌉ ≤ κk(S(n, ℓ)) ≤ λk(S(n, ℓ)) can be

obtained from Theorem 2.1 directly. For the upper bounds of κk(S(n, ℓ)) and λk(S(n, ℓ)), consider

the graph Gn−1. Let V (Gn−1) = {u1, . . . , uℓ}, U = {x1, . . . , xk} and xi ∈ An−1,ui
, where k ≤ ℓ.

Suppose there are p edge-disjoint U -Steiner trees T ′
1, . . . , T

′
p of G = S(n, ℓ) and P = {An−1,u : u ∈

V (Gn−1)}. Let T ∗
i = T ′

i/P for i ∈ [p]. Then T ∗
1 , . . . , T

∗
p are edge-disjoint connected graphs of Gn−1

containing {u1, . . . , uk}. Thus, p ≤ λk(Gn−1) = λk(Kℓ) = ℓ − ⌈k/2⌉. Therefore, κk(S(n, ℓ)) ≤
λk(S(n, ℓ)) ≤ ℓ− ⌈k/2⌉, the upper bound follows.

Now consider the case ℓ + 1 ≤ k ≤ ℓn. By Theorem 1.2, λk(S(n, ℓ)) ≥ ⌊ℓ/2⌋. Since

λk(S(n, ℓ)) ≤ λℓ(S(n, ℓ)) = ⌊ℓ/2⌋, it follows that κk(S(n, ℓ)) ≤ λk(S(n, ℓ)) ≤ ⌊ℓ/2⌋. There-

fore, λk(S(n, ℓ)) = ⌊ℓ/2⌋ and κk(S(n, ℓ)) ≤ ⌊ℓ/2⌋. The proof is completed.

3. Some network properties

Generalized connectivity is a graph parameter to measure the stability of networks. In the follow-

ing part, we will give the following other properties of Sierpiński graphs.

The Sierpiński graph(networks) is obtained after t iteration as S(t, ℓ) that has Nt nodes and Et

edges, where t = 0, 1, 2, · · · , T−1, and T is the total number of iterations, and our generation process

can be illustrated as follows.

Step 1: Initialization. Set t = 0, G1 is a complete graph of order ℓ, and thus N1 = ℓ and E1 =
(
ℓ
2

)
.

Set G1 = S(1, ℓ).

Step 2: Generation of Gt+1 from Gt. Let S1(t, ℓ), S2(t, ℓ), . . . , Sℓ(t, ℓ) be all Sierpiński graphs

added at Step t, where Si(t, ℓ) ∼= S(t, ℓ)(1 ≤ i ≤ ℓ). At Step t + 1, we add one edge (bridge edge)

between Si(t, ℓ) and Sj(t, ℓ), i 6= j, namely the edge between vertices 〈ij · · · j〉 and 〈ji · · · i〉.



20 C. Yang et al. / Constructing disjoint Steiner trees in Sierpiński graphs

Figure 7: The Function of Et = 3t and Nt =
3t+1−3

2

Table 2: The size and order of Gt for ℓ = 3

t 1 2 3 4 5 6 t

Nt 3 9 27 81 242 729 ℓt

Et 3 12 39 120 363 1092 ℓt+1−ℓ
2

For Sierpiński graphs Gt = S(t, ℓ), its order and size are Nt = ℓt and Et =
ℓt+1−ℓ

2 , respectively;

see Table 2 and Figure 7(for ℓ = 3).

The degree distribution for t times are




ℓ− 1, ℓ− 1, · · · , ℓ− 1
︸ ︷︷ ︸

ℓ

, ℓ, ℓ, ℓ, · · · , ℓ
︸ ︷︷ ︸

ℓt−ℓ




 . (11)

From Equation 11, the instantaneous degree distribution is P (ℓ− 1, t) = 1/ℓt−1 for t = 2, · · · , T and

P (ℓ, t) = (ℓt−ℓ)/ℓt for t = 2, · · · , T . Note that the density of Sierpiński graphs is ρ = Et/
(
Nt

2

)
→ 0

for t → +∞. For large enough ℓ and any 1 ≤ k ≤ ℓ, we have |{v ∈ V (G)|dS(t,ℓ)(v)| ≥ k} ≈
|V (S(t, ℓ))|.

Theorem 3.1. [11] If n ∈ N and G is a graph, then κ (S(n,G)) = κ(G) and λ (S(n,G)) = λ(G).

From Theorem 3.1, we have κ (S(n, ℓ)) = κ(Kℓ) = ℓ − 1 and λ (S(n, ℓ)) = λ(Kℓ) = ℓ − 1. Note

that λk(S(n, ℓ)) = ℓ− ⌈k/2⌉ and κk(S(n, ℓ)) = ℓ− ⌈k/2⌉; see Figure 8.

The number of spanning tree of G denoted by τ(G). Let

ρ(G) = lim
V (G)−→∞

ln |τ(G)|

|V (G)|
, (12)

where ρ(G) is called the entropy of spanning trees or the asymptotic complexity [2, 7].

As an application of generalized (edge-)connectivity, similarly to the Equation 12, it can describe

the fault tolerance of a graph or network, a common metric is called the entropy of spanning trees.
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Figure 8: The generalized (edge-)connectivity of S(n, ℓ)

we give the entropy of the k-Steiner tree of a graph G can be defined as

ρk(G) = lim
|V (G)|−→∞

ln |κk(G)|

|V (G)|

The entropy of the 3, 6, 9-Steiner tree of Sierpiński graph S(8, ℓ) can be seen in Figure 9.

Figure 9: Entropy of S(n, ℓ)for n = 8, k = 3, 6, 9 and ℓ → +∞

The definition of clustering coefficient can be found in [3]. Let Nv(t) be the number of edges in

Gt among neighbors of v, which is the number of triangles connected to the vertex v. The clustering

coefficient of a graph is based on a local clustering coefficient for each vertex

C[v] =
Nv(t)

dG(v)(dG(v)− 1)/2
,

If the degree of node v is 0 or 1, then we can set C[v] = 0. By definition, we have 0 ≤ C[v] ≤ 1 for

v ∈ V (G).
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The clustering coefficient for the whole graph G is the average of the local values C(v)

C(G) =
1

|V (G)|




∑

v∈V (G)

C[v]



 .

The clustering coefficient of a graph is closely related to the transitivity of a graph, as both measure

the relative frequency of triangles[22, 24].

Proposition 3.1. The clustering coefficient of generalized Sierpiński graph S(n, ℓ) is

C(S(n, ℓ)) =
ℓ−n

(
2ℓ− 2ℓn + ℓn+1

)

ℓ
.

Proof:

For any v ∈ V (S(n, ℓ)), if v is a extremal vertex, then dS(n,ℓ)(v) = ℓ − 1 and G[{N(v)}] ∼= Kℓ−1,

and hence

C[v] =
Nv(t)

dG(v)(dG(v)− 1)/2
=

(
ℓ− 1

2

)

/

(
ℓ− 1

2

)

= 1.

If v is not a extremal vertex, then dS(n,ℓ)(v) = ℓ and G[{N(v)}] ∼= Kℓ + e, where Kℓ + e is graph

obtained from a complete graph Kℓ by adding a pendent edge. Hence, we have C[v] =
(
ℓ−1
2

)
/
(
ℓ
2

)
=

ℓ−2
ℓ

.

Since there exists ℓ extremal vertices in Sierpiński graph S(n, ℓ), it follows that

C(S(n, ℓ)) =
1

|V (G)|




∑

v∈V (G)

C[v]



 =
1

ℓn

(

ℓ× 1 + (ℓn − ℓ)
ℓ− 2

ℓ

)

=
ℓ−n

(
2ℓ− 2ℓn + ℓn+1

)

ℓ

⊓⊔

Figure 10: The Function of CS(3,l) Figure 11: The diameter of S(n, ℓ)

Theorem 3.2. [21] The diameter of S(n, ℓ) is Diam(S(n, ℓ)) = 2ℓ − 1;

For network properties of Sierpiński graph S(n, ℓ), the the diameter function can be seen in Figure

11 and its clustering coefficient is closely related to 1 when ℓ −→ ∞; see Figure 10, which implies

that the Sierpiński graph S(n, ℓ) is a hight transitivity graph.
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508(1) (2022), 125853.
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