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Abstract. We show how the relatively initial and relatively terminal fixed points studied by

Adámek et al. for a well-behaved functor F form a pair of adjoint functors between F -coalgebras

and F -algebras. We use the language of locally presentable categories to find sufficient condi-

tions for existence of this adjunction. We show that relative fixed points may be characterized as

(co)equalizers of the free (co)monad on F . In particular, when F is a polynomial functor on Set

the relative fixed points are a quotient or subset of the free term algebra or the cofree term coal-

gebra. We give examples of the relative fixed points for polynomial functors and a presentation

of the Sierpinski carpet as a relative fixed point. Lastly, we prove a general preservation result for

relative fixed points.
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1. Introduction

Fixed points of functors are particularly relevant to the study of coalgebras. As in [16, 3] these fixed

points capture the ideas of induction and coinduction on coalgebras. The main focus of research into

fixed points of functors has thus far been on either the least fixed point of a functor or the greatest

fixed point of a functor. However, in general a functor has more fixed points than just these two. We
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call these additional fixed points “relative fixed points”, after the “relatively terminal coalgebras” of

[7] and the “relatively initial algebras” of [1]. Other constructions yielding relative fixed points are the

rational fixed points of Adámek, Milius, and Velebil [5] and the locally finite fixed points of Milius,

Pattinson, and Wißmann [23]. The main contribution of this paper is a presentation of relative fixed

points via a pair of adjoint functors

CoalgF AlgF

µ

⊥

ν

(1)

This adjunction reveals the deep connection between relative fixed points and coalgebra-to-algebra

homomorphisms (abreviated as ca-morphism). Algebras and coalgebras which have unique ca-mor-

phisms going into or out of them have been studied extensively in [2, 9, 10, 21, 4] due to their con-

nection to (co)induction principles. However, the fixed points studied in this paper are universal with

respect to ca-morphisms which may not be unique. In the context of functional programming [22],

not-necessarily unique ca-morphisms are used as data structures for recursion schemes. In [28], the

authors argue for the use of non-unique ca-morphisms as a framework for scientific modelling. In this

paper, we study the classifying objects for ca-morphisms in the context of the adjunction they induce.

The paper is organised as follows: In Section 2, we will introduce relative fixed points for F -

(co)algebras, and the adjunction (1) in the full categorical case. After that we will provide sufficient

conditions for the existence of the adjunction. In Section 3, we will provide examples of these relative

fixed points as well as an explicit characterization for polynomial functors. In Section 4, we will

discuss when the adjunction is preserved by a functor and give some important examples of this

phenomenon. Finally, in Section 5 we will draw conclusions and point to ideas for future work.

We now finish the introduction with a brief discussion of relative fixed points for monotone func-

tions to equip the reader with some intuitions before moving to the more general categorical setting

that follows.

Warm-up: Relative fixed points of monotone functions

Consider a monotone function f : L → L on a complete lattice L. It has a least and a greatest fixed

point, which may be constructed by an ‘approximation process’ which generalizes Kleene’s fixed

point theorem for continuous functions [11]. For example, let f be the following monotone function

on ([0, 1],≤) the interval of real numbers with the usual ordering:

y = x

f (x)

The function f is overlayed with the function y = x. The intersection of the two curves indicate fixed

points of f . The least fixed point of f is 0 and the greatest fixed point is 1 but there are 3 other fixed

points in-between. These relative fixed points have a similar construction to the least and greatest
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ones. Given a “post-fixed point” i.e. a point x ∈ [0, 1] such that x ≤ f(x) we may find the first fixed

point above x as

µ(x) = sup{x, f(x), f2(x), f3(x), . . .}

where the . . . indicate iteration to a sufficiently large ordinal. Similarly, given a “pre-fixed point”

f(y) ≤ y, we may find the closest fixed point below y as

ν(y) = inf{y, f(y), f2(y), f3(y), . . .}

For a complete lattice L, let Pre(f) be the suborder of L consisting of only the post-fixed points

x ≤ f(x). Similarly, let Post(f) be the suborder of pre-fixed points f(y) ≤ y. Then there is a Galois

connection

Post(f) Pre(f)

µf

⊥

νf

Being a Galois connection means that

µ(x) ≤ y ⇐⇒ x ≤ ν(y)

In this paper we will generalize this Galois connection to fixed points of functors rather than monotone

functions. When generalizing from posets to categories we make the replacements shown in Figure 1.

Poset Category

Monotone Function f Functor F

Post-fixed point of f F -coalgebra

Pre-fixed point of f F -algebra

sup{f(x), f2(x), f3(x), . . .} colim(X → F (X)→ F 2(X)→ F 3(X) . . .)

inf{f(x), f2(x), f3(x), . . .} lim(X ← F (X)← F 2(X)← F 3(X) . . .)

Galois connection Adjunction

Figure 1. Generalization from Posets to Categories

Acknowledgements. For insightful comments and questions, thank you to every member of the

Mathematically Structured Programming group, Corina Cirstea, Toby Wilkinson, and Alexandre Goy.

2. Relative Fixed Points are Adjoint

In this section, we recall the definition of ‘relatively terminal coalgebra’ from [7] and the dual notion

of ‘relatively initial algebra’ from [1]. As is usual for definitions via universal properties, there may

or may not be an object enjoying the property; however, if there is one, it is unique up to unique

isomorphism.
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Definition 2.1. For an algebra a and a coalgebra b, a coalgebra-to-algebra morphism from a to b
(abbreviated as ca-morphism) is a morphism f : B → A making the following diagram commute:

FB FA

B A

Ff

ab

f

Let CAF (b, a) denote the set of coalgebra-to-algebra morphisms from b to a.

Note that CAF constitutes the object part of a functor Coalg
op
F × AlgF → Set (i.e. a profunctor

CoalgF 9 AlgF ). Its action on morphisms is given via composition, as seen in the following diagram:

FB′ FB FA FA′

B′ B A A′

Ff Fg Fh

a a′b′

f

b

g h

That is, ca-morphisms can be precomposed with coalgebra morphisms, and postcomposed with alge-

bra morphisms. We now define relative fixpoints as (co)representing objects for CAF :

Definition 2.2. Suppose we have an algebra a : FA → A. A coalgebra b : B → FB is called

terminal relative to a if there is a natural isomorphism

φ : CoalgF (−, b)
∼= CAF (−, a)

Similarly, for a coalgebra b′ : B′ → FB′, an algebra a′ : FA′ → A′ is called initial relative to b′ if

there is a natural isomorphism

ψ : AlgF (a
′,−) ∼= CAF (b

′,−)

By the Yoneda lemma, if an algebra a admits a relatively terminal coalgebra, it must be unique up

to unique isomorphism; hence, we may use the functional notation ν(a) or νa to denote the coalgebra

which is terminal relative to a. Similarly, we will write µ(b) or µb for the algebra which is initial

relative to b.
However, note that so far we have no guarantee as to the existence of ν(a) and µ(b); we will

adopt the convention that the use of an expression ν(a) or µ(b) carries with it the implicit assumption

that such an object exists. So for example, Proposition 2.4 should be read as “For any algebra a, if a

relatively terminal coalgebra exists, it is a fixed point of F ”. In Theorem 2.8, we will show that under

appropriate conditions, µ and ν define total functors.

As in the Yoneda lemma, of central importance are the maps η = ψ(idµ(b)) and ǫ = φ(idν(a)). We

have the following lemma:

Lemma 2.3. Let b : B → FB be an F -coalgebra, a : FA → A an F -algebra. Let f : b → νa be a

coalgebra morphism, and g : µb→ a an algebra morphism. Then we have the equalities

φ(f) = ǫ ◦ f (2)

ψ(g) = g ◦ η (3)
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Proof:

We prove (2), since (3) follows by duality. We simply note that

ǫ ◦ f = φ(idνa) ◦ f = φ(idνa ◦ f) = φ(f)

by naturality of φ. ⊓⊔

Perhaps surprisingly, the universal properties of µ(b) and ν(a) imply that they are always fixed

points for F .

Proposition 2.4. For any algebra a, the coalgebra ν(a) : νA→ FνA is a fixed point of F . Similarly,

for any coalgebra b, the algebra µ(b) : Fµ(B)→ µ(B) is a fixed point of F .

Proof:

This proposition resembles Lambek’s lemma; indeed, it is possible to exhibit µ(b) as an initial algebra

for a well-chosen functor Fb : C/B → C/B. This is (up to duality) the approach taken in [7]. For

concreteness, We have chosen to give an explicit proof. We prove that µ(b) is a fixed point; the case

for ν(a) follows by duality.

We wish to find an inverse β to µ(b) : F (µB) → µB. Since F (µB) carries the algebra structure

F (µ(b)) : FF (µB) → F (µB), it suffices to find a ca-morphism b → F (µ(b)). This is given by the

following diagram:

FB FFB FFµB

B FB FµB

Fb FFη

Fµ(b)b

b Fη

Fb

This yields an algebra morphism β : µB → FµB such that

βη = ψ(β) = (Fη)b (4)

It remains to show that β is a two-sided inverse to µ(b). Consider the composite µ(b)◦β : µB → µB.

We claim that under the correspondence ψ, this composite corresponds to η; since ψ is bijective, and

idµB corresponds to η by definition, this yields µ(b) ◦ β = idµB . To verify, we use equality (3):

µB

FB FµB

B µB

β

Fη

µ(b)

η

b

η

The top square is equation (4), and the bottom square commutes since η is a ca-morphism.
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We may now conclude that µ(b) ◦ β = idµB . To show that β ◦ µ(b) = idFµB , we simply note that

β is an algebra morphism, and hence

FµB FFµB

µB FµB

Fβ

µ(b) Fµ(b)

β

commutes. The composite Fµ(b) ◦ Fβ = F (µ(b) ◦ β) is equal to F idµB = idFµB as already shown,

so we also have β ◦ µ(b) = idFµB . ⊓⊔

We now give an adjunction characterizing relative fixed points.

Theorem 2.5. Let C be a category, and F : C → C an endofunctor. Assume that every F -algebra

has a relatively terminal coalgebra, and every F -coalgebra has a relatively initial algebra. Then ν :
AlgF → CoalgF and µ : CoalgF → AlgF are the object parts of two adjoint functors

CoalgF AlgF

µ

⊥

ν

Proof:

For the action of µ on morphisms, consider a coalgebra morphism

FB FB′

B B′

Ff

f

b b′

Then we obtain a ca-morphism

FB FB′ FµB′

B B′ µB′

Ff Fη

µb′b

f

b′

η

So, we can set µ(f) to be ψ−1(η◦f). This preserves composition: note that µ(f) is the unique algebra

morphism g : µB → µB′ such that g ◦ η = η ◦ f . Now consider the following diagram:

B B′ B′′

µB µB′ µB′′

η

f

η

f ′

η

µ(f) µ(f)′
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We see that µ(f ′) ◦ µ(f) is an algebra morphism satisfying µ(f ′) ◦ µ(f) ◦ η = η ◦ (f ′ ◦ f), and so by

uniqueness we must have

µ(f ′ ◦ f) = µ(f ′) ◦ µ(f)

The action of ν on morphisms is defined dually.

To see that µ ⊣ ν, simply consider the composite isomorphism

AlgF (µ(b), a)
ψ
∼= CAF (b, a)

φ−1

∼= CoalgF (b, ν(a))

We’ll show that this is natural in b (naturality in a follows similarly). That is, we need to show that if

g : µ(b)→ a is an algebra morphism, and f : b′ → b is a coalgebra morphism, then

φ−1ψ(g ◦ µ(f)) = φ−1ψ(g) ◦ f

We have the following chain of equalities:

φ−1ψ(g ◦ µ(f)) = φ−1(g ◦ µ(f) ◦ η) (equation 3)

= φ−1(g ◦ η ◦ f) (definition of µ(f))

= φ−1(g ◦ η) ◦ f (naturality of φ)

= φ−1ψ(g) (equation 3)

⊓⊔

In order to apply Theorem 2.5, we need to know when its assumptions are satisfied. As exposited

in the warmup section, an approximation strategy may be employed; however, since categories are

usually proper classes, we need to impose some smallness conditions on the category and the functor.

Definition 2.6. Let C be a category, and F : C→ D a functor.

(i) We call C λ-chain-complete if it has limits of diagrams of shape (α,≥) for all ordinals α ≤ λ.

(ii) We call C λ-chain-cocomplete if it has colimits of diagrams of shape (α,≤) for all ordinals

α ≤ λ.

(iii) We call F λ-continuous if it preserves limits of diagrams of shape (λ,≥).

(iv) We call F λ-cocontinuous if it preserves colimits of diagrams of shape (λ,≤).

With this terminology, we have the following proposition, which is a minor variation on existing

results:

Proposition 2.7. Let C be a category, F : C→ C an endofunctor, and λ a regular (infinite) cardinal.

(i) If C is λ-chain-cocomplete, and F is λ-cocontinuous, then each F -coalgebra admits a relatively

initial algebra.
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(ii) If C is λ-chain-complete, and F is λ-continuous, then each F -algebra admits a relatively termi-

nal coalgebra.

Proof [Sketch]:

We only prove (i), since (ii) follows by duality. Recall that cocontinuous endofunctors on λ-chain-

cocomplete categories have initial algebras (Theorem 3.5 in [3]; note that there it is assumed that C

has colimits of all chains, but clearly only chains of length at most λ are needed).

Now, dual to lemma 3.2 in [7], a relatively initial algebra for b : B → FB is the same as an initial

algebra for Fb : (B \ C)→ (B \ C) defined as

Fb : (B
x
→ X) 7→ (B

b
→ FB

Fx
→ FX)

Since the ‘codomain functor’ (B \ C) → C given by (B
x
→ X) 7→ X creates colimits, we know that

(B \ C) has all colimits that C has, and hence is also λ-chain-cocomplete. Moreover, Fb preserves all

colimits that are preserved by F , and hence is also λ-cocontinuous. We conclude that Fb has an initial

algebra, which is a relatively initial F -algebra for b.
Unpacking the abstract theorems used yields the construction of µb as the colimit of the λ-chain

B FB FFB · · · (< λ)b F b FFb

⊓⊔

Finally, if C is locally presentable and F is locally accessible, then both µ and ν constitute total

functors:

Theorem 2.8. Let C be a locally (λ-)presentable category, and F : C → C a locally (λ-)accessible

functor. Then each F -coalgebra has a relatively initial algebra, and each F -algebra has a relatively

terminal coalgebra.

The existence of relatively terminal coalgebras is proved as Corollary 5.1 in [7]; we present a novel

proof using the Special Adjoint Functor Theorem.

Proof [Sketch]:

If C is locally presentable, it is cocomplete, so in particular λ-chain-cocomplete. Additionally, if F
is λ-accessible, it is λ-cocontinuous. So, by Proposition 2.7, all F -coalgebras have relatively initial

algebras. Hence, we obtain a total functor µ : CoalgF → AlgF .

To show the existence of ν we use the (dual of) the special adjoint functor theorem (e.g. [25, Thm.

4.58]). By [6, Exercise 2j], CoalgF is locally presentable and by [6, Corr. 2.75] so is the category

AlgF . By [6, Thm. 1.58], both these categories are co-wellpowered. The functor µ preserves colimits,

because it is constructed as a colimit and colimits distribute over themselves. Therefore, by the special

adjoint functor theorem, µ has right adjoint ν; to see that that ν(a) is terminal relative to a, consider

the natural equivalences

CoalgF (b, ν(a))
∼= AlgF (µ(b), a)

∼= CAF (b, a).

⊓⊔
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Note that in the above theorem, while µ is constructed as a colimit of an initial chain, ν is not

constructed as a limit of a terminal cochain (not even implicitly, as the Adjoint Functor Theorem

yields a colimit construction rather than a limit); hence, we unfortunately do not settle open problem

[7, Open Problem 2.7].

We end this section with a few miscellaneous results. First, we can get a clearer idea of the monad

and comonad induced by the adjunction.

Remark 2.9. It is easy to see that if b : B → FB is an isomorphism, then b−1 : FB → B is initial

relative to b; hence, µ(b) = b−1. Similarly, να = α−1 whenever α : FA → A is an isomorphism.

From this, it follows that the monad νµ : CoalgF → CoalgF maps b : B → FB to

(µ(b))−1 : µB → FµB

Similarly, the comonad µν maps a : FA→ A to (ν(a))−1 : FνA→ νA.

Next, the presentations of µ and ν in terms of (co)limits of (co)chains is analogous to similar con-

structions of initial algebras and terminal coalgebras. This connection still holds even in the absence

of (co)limits:

Remark 2.10. Let 1 be the terminal object of C and let 0 be the initial object. Then there is a unique

algebra 1 : F1 → 1 and ν(1) is the terminal coalgebra. Similarly, the initial algebra is given by µ(0)
for the unique coalgebra 0 : 0→ F0.

In fact, this is a special case of a more general result on recursive coalgebras and corecursive

algebras.

Definition 2.11. An F -algebra a is corecursive if for every F -coalgebra b there is a unique ca-

morphism from b → a. Dually, an F -coalgebra b is recursive if for any F -algebra a, there is a

unique ca-morphism b→ a.

Recursivity of a coalgebra relates to the termination of that coalgebra when thought of as a program

(c.f. [2]). Note that the coalgebra 0 → F0 is always recursive, and the algebra F1 → 1 is always

corecursive. The following corollary connects (co)recursivity to the µ− ν adjunction:

Corollary 2.12. A coalgebra b : B → FB for which µ(b) exists is recursive if and only if µ(b) is

initial; similarly, an algebra a : FA → A for which ν(a) exists is corecursive if and only if ν(a) is

terminal.

Proof:

This can be easily read off: b is recursive if and only if CAF (b, a) always has a unique element, and

µ(b) is initial if and only if AlgF (µ(b), a) always has a unique element. Since

CAF (b, a) ∼= AlgF (µ(b), a)

by definition, the equivalence follows. The second statement follows analogously. ⊓⊔
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3. Concrete Constructions of Relative Fixed Points

In this section we provide several concrete constructions of relative fixed points, using a presentation

of µ and ν based on (co)free (co)algebras. In Examples 3.6, 3.7 we explore relative fixed points

of polynomial functors and discuss their interpretations. Next, in Proposition 3.9, we construct a

downward fixed point which classifies Cartesian subcoalgebras in the sense of [4]. In Example 3.10

we illustrate how the Sierpinski carpet may be constructed as a relatively terminal coalgebra. Lastly,

we show in Example 3.15, how the depleted version of the adjunction, that is the Galois connection

between post-fixed points and pre-fixed points mentioned in the introduction, may be useful for the

Safety Problem as stated in [20].

Proposition 3.1. For a polynomial functor F : Set → Set, each coalgebra admits a relatively initial

algebra, and every algebra admits a relatively terminal coalgebra.

Proof:

Theorem 2.8 guarantees their existence if F is accessible. Let F =
∑

i∈I y
Xi , and let λ be a regular

cardinal, such that λ ≥ sup{|Xi| | i ∈ I}. Then each yXi is λ-accessible, and hence so is their

coproduct F . ⊓⊔

In order to give explicit descriptions for µ and ν on Set, we exploit the fact that free algebras and

cofree coalgebras for polynomial functors on Set have elegant characterizations. For completeness’

sake, we recall the definition of (co)free (co)algebras.

Definition 3.2. Let F : C→ C be a functor, and X an object of C.

• A free algebra on X is an F -algebra α : FTX → TX together with a map in : X → TX such

that for each algebra a : FA → A equipped with a map j : X → A, there is a unique algebra

morphism pjq : TX → A such that j = pjq ◦ in; we’ll call the morphism pjq the extension of

j.

• A cofree coalgebra on X is an F -coalgebra γ : CX → FCX together with a map out : CX →
X such that for each coalgebra b : B → FB equipped with a map c : B → X, there is a unique

coalgebra morphism xcy : B → CX such that c = out ◦ xcy; we’ll call the morphism xcy the

coextension of c.

In the descriptions of (co)free (co)algebras of polynomial functors, we use the notion of a Σ-branching

tree. A Σ-branching tree is a tree t such that each node u in t comes equipped with a choice of σu ∈ Σ
and has children v1, . . . , var(σu), as depicted in Figure 2.

Proposition 3.3. Let Σ be a set of symbols, and for each σ ∈ Σ, fix an arity ar(σ) ∈ N. Let F :
Set→ Set be the polynomial functor given by FX =

∑

σ∈ΣX
ar(σ). Then,

(i) the free F -algebra on X, denoted TΣ(X), is given by the set of finite Σ-branching trees with

leaves labeled by elements ofX. Equivalently, TΣ(X) is the algebra of Σ-terms over X, known

from universal algebra (see [8] for further description of free algebras, as well as congruences

and quotients of F -algebras).
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u

v1 vk. . .

σ

Figure 2.

(ii) The cofree F -coalgebra on X, denoted CΣ(X), is given by the set of finite and infinite Σ-

branching trees with internal nodes labeled by elements of X.

The following constructions allows us to describe µ and ν in terms of (co)free (co)algebras:

Theorem 3.4. Let C be a category, and F : C→ C an endofunctor. Let b : B → FB be a coalgebra,

and a : FA→ A an algebra.

• Assume that B admits a free algebra TFB, with unit in : B → TFB and free algebra structure

α : FTFB → TFB. Then a relatively initial algebra for b is the same as a coequalizer of the

diagram

TF (B) TF (B)
id

unfold

in the category of F -algebras and where unfold is the free extension of the following map to

TF (B)

B
b
−→ FB

F in
−−→ FTF (B)

α
−→ TF (B)

• Assume that A admits a cofree coalgebra CFA, with counit out : CFA → A and cofree

coalgebra structure γ : CFA→ FCFA. Then a relatively terminal coalgebra for a is the same

as an equalizer of the diagram

CF (A) CF (A)
id

pred

in the category of F -coalgebras where pred is the coextension of the following map to CF (A)

CF (A)
γ
−→ FCF (A)

Fout
−−−→ FA

a
−→ A

Proof:

We only prove the statement for µ, since the statement for ν follows by duality. Our strategy will be

to exhibit two isomorphic categories Coeq(id, unfold) and
∫

CAF (b,−) such that an initial object of

Coeq(id, unfold) is a coequalizer of id and unfold, and an initial object of
∫

CAF (b,−) is a relatively

initial algebra for b.
First, consider the category E with objects algebras a : FA → A together with a map j : B →

A. TF (B) being a free F -algebra on B means that for each (j, a) in E, there is a unique algebra

morphism pjq : TF (B)→ A such that j = pjq ◦ in. It is easy to check that this extends to a functor
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p−q : E → TF (B) \ AlgF , where TF (B) \ AlgF denotes the coslice category over TF (B). On the

other hand, there is a functor − ◦ in : TF (B) \ AlgF → E given by

(f : TF (B)→ A) 7→ (f ◦ in : B → A)

In fact, −◦ in and p−q are two-sided inverses, since pjq ◦ in = j by definition, and pf ◦ inq and f are

both algebra morphisms g satisfying g ◦ in = f ◦ in, so must be the same by uniqueness of p−q.

So E and TF (B) \ AlgF are isomorphic. Now let
∫

CAF (b,−) be the full subcategory of E

consisting of those (j : B → A) which are ca-morphisms b → a, and let Coeq(id, unfold) be the

full subcategory of TF (B) \ AlgF consisting of those f : TF (B) → A such that f = f ◦ unfold.

We claim that the isomorphism E ∼= (TF (B) \ AlgF ) restricts to an isomorphism
∫

CAF (b,−) ∼=
Coeq(id, unfold).

So, we need to show that (i) if j : b → a is a ca-morphism, then pjq coequalizes id and unfold,

and (ii) if f : TF (B)→ A coequalizes id and unfold, then f ◦ in is a ca-morphism.

(i) Let j : b → a be a ca-morphism. Note that both pjq and pjq ◦ unfold are algebra morphisms

TF (B) → A; by freeness of TF (B), to show that they are equal it suffices to show that pjq ◦
in = pjq ◦ unfold ◦ in. Consider the diagram

B FB

TF (B) TF (B) FTF (B)

A FA

pjq
pjq

in
unfold◦in

j

a

F pjq

F in

b

α
Fj(∗)

Here, the facet labeled (*) is the equality to be established. The outer facet commutes since

j is assumed to be a ca-morphism. The top right square commutes by definition of unfold.

The bottom right square commutes since pjq is an algebra morphism. Since all but one facet

commutes, the remaining facet commutes as well, and hence pjq ◦ in = pjq ◦ unfold ◦ in, from

which it follows that pjq coequalizes id and unfold.

(ii) Assume f : TF (B)→ A is an algebra morphism that coequalizes id and unfold. Then consider

the diagram

FB FTF (B) FA

TF (B)

B TF (B) A

F in Ff

α

a

f

b

in

unfold

f
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Here the left square commutes by definition of unfold. The top right commutes since f is an

algebra morphism, and the bottom right commutes since f = f ◦ unfold by assumption.

So, we have seen that indeed, Coeq(id, unfold) ∼=
∫

CAF (b,−). Note moreover that an initial object

of Coeq(id, unfold) is exactly a coequalizer of id and unfold, and an initial object of
∫

CAF (b,−) is

exactly a relatively initial algebra for b. We conclude that (1) an algebra a : FA → A equipped with

a ca-morphism j : b→ a is relatively initial for b if and only if pjq is a coequalizer for id and unfold,

and (2) an algebra morphism f : TF (B) → A is a coequalizer for id and unfold if and only if A is

relatively initial for b with respect to the ca-morphism f ◦ in. ⊓⊔

Unpacking the above equalizers and coequalizers in the case of polynomial functors on Set gives

the following corollary. The proof of this corollary is left to the reader.

Proposition 3.5. Let F : Set→ Set be a polynomial functor, say FX =
∑

σ∈ΣX
ar(σ).

(i) Let b : B → FB be a coalgebra. We can consider both B and FB as subsets of TΣ(B), via

in : B → TΣ(B) and α ◦ F in : FB → TΣ(B). Now let ≈b be the congruence on TΣ(B)
generated by {x ≈ b(x) | x ∈ B}; then µ(b) is given by

TΣ(B)/≈b.

(ii) Let a : FA → A be an F -algebra. Let t ∈ CΣ(A) be an A-labeled Σ-tree, and let u be a node

in t, in configuration

u : x

v1 : y1 vk : yk. . .

σ . We call u a-guided if a(σ(y1, . . . , yk)) = x. Then

ν(a) is given by

{t ∈ CΣ(A) | ∀u ∈ t : u is a-guided}

This proposition also shows a connection between the ν-construction, and coequations. To illus-

trate this, consider what happens in the µ-construction: A coalgebra b : B → FB is treated as a

‘(flatly) recursive set of equations’ x ≈ b(x). Then this set of equations can be used construct a quo-

tient µ(b) of the free F -algebra. Comparing this to the coalgebra-to-algebra picture, it has been noted

before that giving a coalgebra-to-algebra morphism b → a is akin to solving the system of equations

presented by b in the algebra a [5]. We propose that there is a dual perspective: rather than solving

the system of equations b in a, one could also see a coalgebra-to-algebra morphism as solving the co-

equation a in b. To our knowledge, the ‘coequations-as-algebras’ perspective is new. We can leverage

ν to fit it into the wider spectrum of coequational logic. As demonstrated in [12], the most general

definition of a coequation is ‘a subcoalgebra of a cofree coalgebra’. Point (ii) of Proposition 3.5 then

shows how each algebra gives rise to a canonical coequation.

As a final note, we should highlight an important difference between our current approach to

(co)equations, and the one common in universal (co)algebras: in the latter, the main notion is that of

satisfaction of (co)equations, whereas we focus on solving (co)equations. A coequation E ⊆ CΣ(X)
is satisfied by b : B → FB if every coalgebra-to-algebra morphism B → CΣ(X) factors through E.
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It can quickly be seen that for coequations of the form ν(a), a coalgebra b : B → FB satisfies ν(a)
if and only if every map B → A is a coalgebra-to-algebra morphism. Such a situation is exceedingly

rare. This also shows that only particular coequations can be described as ν(a).
We will now use the above theorems to study some explicit examples.

Example 3.6. Let F : Set → Set be the functor given by FX = {×,X} ×X. Let a be the algebra

a : F (X)→ X with carrier X = {0, 1} given by

(X, s) 7→ 1− s and (×, s) 7→ s

where s is either 0 or 1. The algebra may be depicted as

0 1×
X

×

Then ν(a) has a carrier given by
{(

u1
s1

)(

u2
s2

)(

u3
s3

)

· · · ∈ ({×,X} ×X)ω
∣

∣

∣

∣

ui = × =⇒ si = si+1 and ui = X =⇒ si = 1− si+1

}

i.e. the subset of streams in ({×,X})ω which follow the action of a when read from right to left.

Given a coalgebra b : B → {×,X} × B, a coalgebra-to-algebra morphism may represent a solution

to the constraint represented by a. That is, we divide the states of B into two classes, such that the

division ‘respects the algebra structure on A’. If m is such a marking, we obtain

{×,X} ×B {×,X} × ν(a)

B ν(a)

Fm̂

m̂

b

via the universal property of ν. Intuitively, m̂ maps a state x to the stream of ‘tags and classes’ that are

observed when running b forwards. The constraint on m then states that whenever a X is observed,

the class must change, whereas whenever a × is observed, the class must stay the same. A marking

satisfying this constraint exists, if and only if on each cycle in B, the number of X’s is even.

Example 3.7. Consider the coalgebra A for the functor FX = {×,X} × X{a,b} as depicted in

Figure 3 with carrier given by X = {q0, q1, q2}. Let ≈ be the smallest congruence satisfying

q0

×

q1 q2

≈
a b

q1

×

q0 q1

≈
a b

q2

X

q2 q2

≈
a b

, ,

Then the carrier of µ(A) is given by

finite {a, b} branching trees with {×,X} labeling internal nodes and X labeling leaves/≈

where the quotient denotes a quotient in Set, i.e. the set in the numerator modulo the equivalence

relation ≈. One may see it as terms over the 2 binary operations × and X in the three unknowns

{q0, q1, q2}, where q0, q1, q2 satisfy a mutual recursive relationship.
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q0

q1 q2

a b

b a,b

Figure 3.

Example 3.8. Let Σ be a set of symbols, and for each σ ∈ Σ, fix an arity ar(σ) ∈ N. Let F : Set→
Set be the polynomial functor given by FX =

∑

σ∈ΣX
ar(σ). Since polynomial functors preserve

pullbacks, it follows from Corollary 3.2 in [17] that CoalgF is an (elementary) topos. Its subobject

classifier Ω is the coalgebra of ‘non-decreasing Σ-trees’; that is, the points of Ω are 2-labeled Σ-trees,

where the label of a child may not be smaller than the label of its parent.

Ω is not a fixed point; however, there is a subcoalgebra Ωcart which is a fixed point, and arises as

ν of a well-chosen algebra. Consider the algebra
∧

: F2→ 2, explicitly

∧

: σ(x1, . . . , xn) 7→

{

1 xi = 1 for all i = 1, . . . , n

0 otherwise

Then ν(
∧

) is a subcoalgebra of Ω; it consists of those non-decreasing Σ-trees where zeroes ‘cannot

disappear’, i.e. if a node is labeled with 0, at least one of its children is labeled with 0.

Ωcart satisfies a universal property similar to the subobject classifier in CoalgF ; but instead of

classifying all subcoalgebras, it classifies only the Cartesian subcoalgebras i.e., those subcoalgebras

s : S ≤ X such that the square

S X

FS FX

s

Fs

is a pullback square. Explicitly, that means that there is a map ⊤ : Z → Ωcart (with Z the terminal

coalgebra), such that for each coalgebra X and each Cartesian subobject S ≤ X, there is a unique

map φcartS : X → Ωcart such that

S Z

X Ωcart

⊤

s

is a pullback square. Ordinary subobjects are understood as ‘forward stable subsets’: they are subsets

S such that if s ∈ S, then so are all the successors of s. Cartesian subcoalgebras are those subsets

which also satisfy the converse implication: if all successors of s are in S, then so is s.
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More formally, let ξ : X → FX be a coalgebra, and consider the ‘next-time modality’ # :
P (X)→ P (X) from [16], defined on a subobject U ≤ X via the pullback

#(U) X

FU FX

ξ

Then subcoalgebras are subsets P ⊆ X such that P ⊆ #P ; these are classified by Ω. In [4], they

show that Cartesian subcoalgebras are fixed points for #, i.e. they satisfy P = #P .

Proposition 3.9. Ωcart classifies Cartesian subcoalgebras.

Proof:

We wish to show that Ωcart = ν(
∧

) classifies Cartesian subobjects. We first prove that Cartesian

subobjects are closed under pullbacks.

Assume P ≤ X is a Cartesian subcoalgebra. Let y : Y → X be a coalgebra morphism. Then

consider the following cube, where we write y∗P for the pullback of P along y:

Fy∗P FY

FP FX

y∗P Y

P X

Note that since F preserves pullbacks, we obtain a unique arrow y∗P → Fy∗P . In the above cube,

the front square is a pullback since P is Cartesian, and the bottom square is a pullback by definition

of y∗P . Hence, we see that taking the top and back square together, as in

y∗P Y

Fy∗P FY

FP FX

the outer square is a pullback. The bottom square is also a pullback, since F preserves pullbacks;

hence the top square is a pullback, which shows that y∗P is Cartesian.

Now consider the terminal object Z in CoalgF ; this is the coalgebra of finite and infinite Σ-

branching trees. We note that ⊤ : Z → Ω, which maps a tree t to t constantly labeled with 1,
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factors through Ωcart; and moreover ⊤ is a Cartesian subcoalgebra of Ωcart. So whenever P ≤ X is

a pullback of ⊤ : Z → Ωcart, P is a Cartesian subcoalgebra. Uniqueness of classifiers X → Ωcart

follows from uniqueness of classifiers X → Ω, so it suffices to show that if P ≤ X is Cartesian, there

exists a classifier φcartP : X → Ωcart, such that P = (φcartP )∗⊤.

We know that CoalgF (X,Ωcart) ∼= CAF (X,
∧

), so we may equivalently provide a coalgebra-to-

algebra map X → 2. We claim that the characteristic function

χP : x 7→

{

1 x ∈ P

0 otherwise

is a coalgebra-to-algebra morphism. For, consider an arbitrary x ∈ X. Let ξ(x) = σ(x1, . . . , xn). We

consider two cases.

(i) If x ∈ P , then since P is a subcoalgebra, we know xi ∈ P for all i; hence,

∧

(σ(χP (x1), . . . , χP (xn))) =
∧

(σ(1, . . . , 1)) = 1 = χP (x).

(ii) If x /∈ P , then it suffices to show that at least one of the xi is also not in P . Assume towards a

contradiction that xi ∈ P for all i. Then the following square commutes:

{∗} X

FP FX

∗7→x

∗7→σ(x1,...,xn) ξ

hence since P was Cartesian, we conclude that the map ∗ 7→ x factors through the inclusion

P ֌ X. But this amounts to saying x ∈ P , which is not the case.

We conclude that there is an xi with χP (xi) = 0, and hence

∧

(σ(χP (x1), . . . , χP (xn))) = 0 = χP (x).

So in both cases, we have
∧

(FχP (ξ(x))) = χP (x), which shows that χP is a coalgebra-to-algebra

morphism.

We conclude that there is a unique coalgebra morphism φcartP : X → Ωcart such that χP = h◦φcartP ,

where h : Ωcart → 2 is the universal coalgebra-to-algebra morphism, mapping a labeled Σ-tree to the

label of its root. We still need to show that P is the pullback of ⊤ along φcartP . Note, however, that

Z 1

Ωcart 2

⊤ ∗7→1

h
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is a pullback square (in Set), since if the root node of a non-decreasing Σ-tree t is labeled by 1, then

so are all the other nodes in t, and hence t is in the image of ⊤. Hence, we can fill in the following

diagram:

P Z 1

X Ωcart 2

⊤ ∗7→1

φcartP

χP

h

Here, the outer square is a pullback, since χP classifies P in Set, and we have just shown that the

right-hand side is a pullback as well. Therefore, the left-hand square is a pullback, which finishes the

proof. ⊓⊔

Example 3.10. In [24], the Sierpinski carpet is presented as a final coalgebra in a category of ‘square

metric spaces’. In this section we recall this work and then show how the downward fixed point

construction ν gives a more direct way of constructing the Sierpinski carpet as a final coalgebra.

Definition 3.11. Let � denote the set [0, 1]2 where [0, 1] is the real unit interval. Let � denote the

boundary of � or explicitly

� = {(i, r) : i ∈ {0, 1}, r ∈ [0, 1]} ∪ {(r, i) : r ∈ [0, 1], i ∈ {0, 1}}

Let MS be the category whose objects are metric spaces with diameter less than 2 and whose mor-

phisms are short maps f : (X, d) → (X ′, d′) i.e. a function f : X → X ′ such that d(x, y) ≤
d′(f(x), f(y)).

We are interested in two different metrics on �:

• The path metric dp : � × � → R with dp(x, y) given by the length of the shortest path in �

between x and y.

• The taxicab metric dt : �×�→ R given by dt((s, r), (s
′, r′)) = |s′ − s|+ |r′ − r|.

Definition 3.12. A square metric space is a metric space (X, d) equipped with an injective function

S : � →֒ X such that for all x, y ∈ �,

dt(x, y) ≤ d(S(x), S(y)) ≤ dp(x, y)

A morphism of square metric spaces f : (X,S) → (X ′, S′) is a short map f : X → X ′ such that

S′ = f ◦ S. This defines a category SqMS of square metric spaces and their morphisms.

A key example of a square metric space is � itself, equipped with the path metric, and with S� : �→
� being the identity; this forms the initial object of SqMS. Another important square metric space is

� with the Euclidean metric, and S� : �→ � the inclusion.

We now define an endofunctor on square metric spaces for which the Sierpinski carpet is a fixed

point. We present the following definitions informally. The full definitions may be found in [24].
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Definition 3.13. Let M be the set {0, 1, 2}2 \ (1, 1). For a square metric space S : �→ X, M ⊗X
is eight copies of X in a three-by-three grid with the center removed. Mathematically, M ⊗X is the

Cartesian product M × X modulo the smallest equivalence relation which identifies the upper edge

of square (i, j) with the lower edge of square (i, j + 1) whenever both are valid indices in M , and

similarly for the left and right edge of adjacent copies. We write m⊗x to denote the equivalence class

of (m,x) in M ⊗ X. We can equip M ⊗X with the structure of a square metric space. To do this,

we first define a metric on M ×X by

dM×X(m⊗ x, n⊗ y) =

{

1
3d(x, y) m = n

2 otherwise

Then we equip M ⊗ X with the coursest metric such that the quotient map M × X → M ⊗ X is

short (see [24] for a detailed description). There is a map � → M ⊗X which maps � injectively to

the ‘outer boundary’. For a short map f : X → Y , there is a short map M ⊗ f : M ⊗X → M ⊗ Y
given by m⊗ x 7→ m⊗ f(x). This defines a functor

M ⊗− : SqMS→ SqMS

As shown in [24], M ⊗ − has an initial algebra. � is an initial object in SqMS so the initial algebra

may be found by taking the colimit of the usual chain

�→M ⊗�→M ⊗M ⊗�→ . . .

As SqMS does not have a final object, we cannot construct a final coalgebra by taking the limit of the

dual of this chain. However, our construction ν does not require a final object in the base category.

ν( ← )
=

Figure 4. The Sierpinski carpet is the downward fixed point of the indicated algebra

The square metric space M ⊗� is the same as � except with the middle removed. There is an algebra

a : M ⊗ � → � given by the natural inclusion. As illustrated in Figure 4, the Sierpinski carpet is

given by the downward fixed point ν applied to this algebra.

Proposition 3.14. The downward fixed point ν(�←M ⊗�) is the Sierpinski carpet.

Proof:

Because every morphism in the chain

�←M ⊗�←M ⊗M ⊗� . . .
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is an injection, its limit is the intersection

∞
⋂

n=0

Mn ⊗�

This infinite intersection is the usual definition of the Sierpinski carpet.

⊓⊔

We have seen that the Sierpinski carpet may be obtained in a more straightforward way than in

[24] using a relatively terminal fixed point construction. Additionally, it can be shown directly that

a :M ⊗�→ � is in fact a corecursive algebra. Hence, by Corollary 2.12, we find that the Sierpinski

carpet ν(a) is the terminal M ⊗−-coalgebra; this proof strategy avoids the need to construct specific

paths through metric spaces, as is done in [24].

Other fractals may be generated as downward fixed points in a similar way; for example one

can imagine that the Sierpinski triangle may constructed as a downward fixed point in a category of

‘triangular metric spaces’.

Example 3.15. In [20], the authors state the Safety Problem. This problem may be rephrased in terms

of the Galois connection

Post(F ) Pre(F )

µF

⊥

νF

for a particular choice of F and assuming that the set of initial states forms a post-fixed point.

Definition 3.16. A transition system is a triple (S, I, δ) where S is a set of states, I ⊆ S, is a set

of initial states, and δ : S → P(S) is a transitition relation. Here P(S) is the powerset of S which

is a complete lattice ordered by ⊆. Let F : P(S) → P(S) be the monotone function defined by

F (X) =
⋃

x∈X δ(x) and suppose that I is a post fixed point, i.e., I ⊆ F (I). For a set P ∈ P(S), the

Safety Problem for (I, P, S, F ) asks if µF (I) ⊆ P .

The idea here is that µF (I) is the set of reachable states from I and if µF (I) ⊆ P , then we say that I
is P -safe. Now suppose that P is a pre-fixed point F (P ) ⊆ P . Then the adjunction of this paper says

that

µF (I) ⊆ P ⇐⇒ I ⊆ νF (P )

While µF (I) represents the states reachable from I , νF (P ) are the states which never go above P .

In this case the adjunction suggests a strategy for verifying the Safety Problem. One may answer the

Safety Problem by simultaneously unfolding I and P using F . In other words on the first step we

check if I ⊆ P ; if it is then we check F (I) ⊆ P and I ⊆ F (P ). If either of those are false, then we

know I is not P -safe. If both are true then we continue to check F 2(I) ⊆ P and I ⊆ F 2(P ). We

continue this process indefinitely, checking to see if any of Fn(I) ⊆ P and I ⊆ Fn(P ) are false. If

we can’t falsify any of these inclusions and we arrive at a fixed point (either µF (I) or νF (P )), then

we know that I is P -safe.
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A major limitation of this approach is that we require I to be increasing and P to be decreasing. In

other cases, a different analysis will be necessary to verify safety. Regardless, we believe these ideas

may be used to develop an effective algorithm for the Safety Problem.

4. Preservation results

In this section, we explore when functors preserve µ and ν. To this end, we take inspiration from [10],

and focus on an adjoint situation equipped with a ‘step’ θ. Steps are a generalisation of distributive

laws from functors on one category to functors on two possibly different categories that are connected

via an adjunction. This requires the ingredients depicted in equation (5).

C DF

L

G

R

⊢ θ : LF ⇒ GL (5)

We note that such a θ comes equipped with its mate θ♭ : FR→ RG defined as the composite of

FR RLFR RGLR RG
η RθR RGǫ

(and indeed this mate correspondence is a bijection, as shown in [19]). This situation covers a wide

range of examples. Of particular interest are those cases where D is an Eilenberg-Moore category CT

or Kleisli category Kl(T ) for a monad T on C. In these cases, the existence of a lifting or an extension

F̄ of an endofunctor F : C→ C is equivalent to the existence of a step. [26, Thm. 3]

Definition 4.1. Consider the data of Scenario (5). L extends to a functor L̄ : CoalgF → CoalgG given

by

FB

B

b 7→

GLB

LFB

LB

θ

Lb

Similarly, R extends to a functor R̄ : AlgG → AlgF given by

GA

A

a 7→

FRA

RGA

RA

θ♭

Ra

These functors L̄ and R̄ satisfy something akin to an adjoint relationship. Before stating this relation-

ship, we recall the following (‘useful’) lemma:
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Lemma 4.2. If θ : LF → GL is a step, with mate θ♭, the following two squares commute:

F FRL LFR LRG

RLF RGL GLR G

ηF

Fη

θ♭L θR

Lθ♭

ǫG

Rθ Gǫ

See e.g. [26] for a proof.

Lemma 4.3. Let b : B → FB be an F -coalgebra, and a : GA → A a G-algebra. The natural

isomorphism HomD(LB,A) ∼= HomC(B,RA) restricts to a natural isomorphism

CAG(L̄b, a) ∼= CAF (b, R̄a)

Proof:

Fix a coalgebra-to-algebra morphism f : L̄b → a. Consider f ’s transpose f̃ = Rf ◦ η along the

adjunction. We claim that f̃ is a coalgebra-to-algebra morphism b → R̄a. This can be seen in the

following diagram:

FRLB FRA

FB RGLB RGA

RLFB

B RLB RA

FRf

θ♭L
θ♭Fη

ηF

RGf

Ra

Rθ

b

η

RLb

Rf

Here, the bottom right square is the ca-morphism square for f ; the top right is a naturality square for

θ♭; the top left is given by Lemma 4.2; and the bottom left is naturality for η. The outside of the square

is a ca-morphism square for f̃ .

On the other hand, let g : b → R̄a be a ca-morphism. We claim that its transpose is again a

ca-morphism L̄b → a. This is completely dual to the previous case; but for completeness, it can be

seen in the following diagram:

GL(B) GLRA

LF (B) LFRA GA

LRGA

L(B) LRA A

GLg

Gǫθ

LFg

θ

Lθ♭

a

LRa

ǫ

b

Lg ǫ

⊓⊔
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In [10], it was shown that L̄ preserves recursive coalgebras, and (dually) R̄ preserves corecursive

algebras. This now follows directly from the above lemma; however, we can obtain the stronger result

that L̄ commutes with the induced monad νµ, and R̄ commutes with the induced comonad µν.

Theorem 4.4. Consider an adjoint situation as in (5). Let b : B → FB be an F -coalgebra, and

a : GA→ A a G-algebra.

(i) νµ(L̄b) = L̄(νµ(b))

(ii) µν(R̄a) = R̄(µν(a))

Proof:

We only prove (i), since (ii) follows by duality. Let b be a (fixed) F -coalgebra, and a a G-algebra. By

Remark 2.9, we know that νµ(b) = µ(b)−1, and νµ(L̄b) = µ(L̄b)−1; hence, it suffices to show

µ(L̄b) = (L̄(µ(b)−1))−1

Using Lemma 4.3, we have the following chain of equivalences, natural in a:

CAG(L̄b, a) ∼= CAF (b, R̄a)
∼= HomAlgF

(µ(b), R̄a)

∼= CAF (µ(b)
−1, R̄a)

∼= CAG(L̄(µ(b)
−1), a)

∼= HomAlgG
(L̄(µ(b)−1)−1, a)

⊓⊔

This general theorem can be used to prove preservation in various specific circumstances.

Corollary 4.5. Let T : C → C be a monad, let F : C → C be an endofunctor. Write j ⊣ U for the

Kleisli adjunction of the monad, and T ⊣ | − | for the Eilenberg-Moore adjunction.

(i) Assume that F extends to a functor F̄ : Kl(T ) → Kl(T ) with F̄ j = jF . Then j commutes

with µ and U commutes with ν.

(ii) Assume that F extends to a functor F̄ : EM(T ) → EM(T ) with F̄ T = TF . Then T
commutes with µ and | − | commutes with ν.

Proof:

Both of these are instances of adjoint situation (5) with the step given by identities, and hence the

statement follows immediately from Theorem 4.4. ⊓⊔
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µ and ν Coincide in a Dagger Category

When coalgebras for a polynomial functor F : Set → Set are interpreted as F -shaped automata,

the initial F -algebra serves as finite trace semantics and the (weakly) terminal F -coalgebra gives an

infinite trace semantics [15, 13]. When F is no longer a Set-functor this interpretation breaks down.

For example if F : Rel → Rel, where Rel is the category of sets and relations, then the initial algebra

and terminal coalgebra coincide [27]. In [18], it is shown that this holds more generally in any dagger

category. With this coincidence, the initial algebra/final coalgebra gives a finite trace semantics instead

of an infinite trace semantics. To obtain a semantics for infinite traces, Urabe and Hasuo construct

an object which is weakly terminal among coalgebras and define the infinite trace semantics as the

maximal map into this object [14]. Note that the limit colimit coincidence causes no issues when µ(c)
is interpreted as a semantic object for c. However, a generalized limit colimit coincidence also holds

for the fixed points generated by µ and ν.

Definition 4.6. A dagger category (C, †) is a category equipped with an identity on objects functor

† : C→ Cop such that †2 = id.

Theorem 4.7. Suppose that (C, †) is a dagger category with limits and colimits of countable chains

and F : C→ C is a dagger functor preserving such limits and colimits. Then there is an isomorphism

µ(c)† ∼= ν(c†)

for each coalgebra c. Dually, for each algebra a, there is an isomorphism ν(a)† ∼= µ(a†).

This theorem may be viewed as a special case of Theorem 4.4 but it is simpler to use the construc-

tion as a (co)limit.

Proof:

For a coalgebra X
c
−→ FX we have

ν(c†) ∼= lim(X
c†
←− FX

Fc†
←−− F 2X ← . . .)

∼= colimCop(X
c†
←− FX

Fc†
←−− F 2X ← . . .)

∼= colim(X
c
−→ FX

Fc
−→ F 2X → . . .)†

∼= µ(c)†

The second isomorphism is because limits in C are colimits in Cop and the third isomorphism is

because † preserves colimits because it is an equivalence. A similar proof holds for the dual statement.

⊓⊔

5. Conclusion

In this paper, we have demonstrated that the relative fixed points of a functor induce an adjunction

between F -coalgebras and F -algebras. Based on this observation, we have studied various instances
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of relative fixed points of functors. In some of these instances, such as in the case of the Sierpinski

carpet, the fixed points from these functors have previously been presented as initial algebras or final

coalgebras. In other instances, the fixed points are novel, as is the case with the general descrip-

tion of relative fixed points of polynomial functors in Proposition 3.5 and concrete instances of this

description in subsequent examples.

Relative fixpoints provide a fresh perspective on ca-morphisms. Previous work has mostly focused

on cases where there is a unique ca-morphism, via the notions of recursive algebras and corecursive

coalgebras [9]. However, in [28], the authors argue that ca-morphisms also hold interest when they

are not unique. Using examples in probability, dynamical systems, and game theory, the authors

show how non-unique ca-morphisms often represent solutions to problems in these disciplines. This

gives us hope that relative fixed points and the results we have proven about them may be useful in

these applications as well. In particular, in future work we will develop the algorithm suggested in

Example 3.15 and expand its capabilities to solve a wider range of problems.

Another direction of future work is to understand the connection between relatively terminal coal-

gebras and coequations. As discussed in Section 3, ν(a) may be thought of as a ‘cofree solution of

the coequation a’. As such, studying ν may yield new insights into this class of ‘(flatly) corecursive

coequations’, and the kind of properties that may be defined by such.
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