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Abstract. Reliability assessment of interconnection networks is critical to the design and main-
tenance of multiprocessor systems. The (n, k)-enhanced hypercube Qn,k, as a variation of the
hypercube Qn, was proposed by Tzeng and Wei in 1991. As an extension of traditional edge-
connectivity, h-extra edge-connectivity of a connected graph G, λh(G), is an essential parameter
for evaluating the reliability of interconnection networks. This article intends to study the h-extra
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edge-connectivity of the (n, 2)-enhanced hypercube Qn,2. Suppose that the link malfunction of
an interconnection network Qn,2 does not isolate any subnetwork with no more than h − 1 pro-
cessors, the minimum number of these possible faulty links concentrates on a constant 2n−1 for
each integer ⌈ 11×2n−1

48 ⌉ ≤ h ≤ 2n−1 and n ≥ 9. That is, for about 77.083% of values where
h ≤ 2n−1, the corresponding h-extra edge-connectivity of Qn,2, λh(Qn,2), presents a concentra-
tion phenomenon. Moreover, the lower and upper bounds of h mentioned above are both tight.

Keywords: Interconnection networks, Reliability and links fault tolerance, Concentration phe-
nomenon, Enhanced hypercubes, h-Extra edge-connectivity.

1. Introduction

The growing need to process and store massive amounts of data has led to increase more interest in
multiprocessor systems. The advent of multiprocessor systems with a large number of processors and
links meets this requirement [13, 25, 34]. As the scale of such these systems continues to increase, so
does the probability of links malfunctioning or failing. In addition, finding an appropriate parameter
to measure the reliability of the system is crucial to the design and maintenance of the multiprocessor
system [12, 15, 16, 26, 27, 30]. It is well known that the underlying topology of an interconnection
network can be modeled by a connected graph G = (V,E), with vertex set V representing processors
and edge (link) set E representing the communication links between processors. The degree of a
vertex in G is the number of edges incident to it. A graph G is called d-regular if and only if the
degree of each vertex in graph G is d.

The performance of the interconnection network can usually be reflected by the topological pa-
rameters of its underlying connected graph G [6]. The connectivity and edge-connectivity are two
essential parameters for the reliability and fault tolerance assessment of interconnection networks.
The connectivity κ(G) or the edge-connectivity λ(G) of a connected graph G is defined as the min-
imum number of vertices or edges whose removal from G makes the remaining graph disconnected.
For most common graphs, their connectivity or edge connectivity frequently coincides exactly with
their minimum degree. Moreover, the set of faulty edges that renders the graph disconnected is often
linked to a unique vertex whose degree matches the minimum degree of the entire network. However,
in the case of large, real-world networks, when disconnection occurs, it is rarely due to all faulty edges
being concentrated around a single vertex. Consequently, while traditional definitions of connectivity
or edge connectivity provide a foundation of a graph G, they may not offer a meticulous measure
for assessing the fault tolerance capabilities of such networks. Therefore, Harary [7] proposed more
refined parameters, conditional connectivity and conditional edge-connectivity to meet this need in
1983. Due to the closed interconnection between various local parts of G, when some malfunction of
links and processors occurs, some parts of the local structures cannot be destroyed completely. The
edges in a forbidden faulty edge set cannot fail simultaneously. By restricting the forbidden faulty
edge set to the sets of neighboring edges of any induced subgraph with no more than h − 1 vertices
in the faulty networks, Fàbrega and Fiol [5] proposed the h-extra edge-connectivity in 1996. Given a
positive integer h, an h-extra edge-cut of a connected graph G is defined as a set of edges of G whose
deletion yields a disconnected graph with all its components having at least h vertices. The h-extra
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Table 1. Previous knowns and current results on the h-extra edge-connectivity for some classes of intercon-
nection networks.

Graph h λh Authors

Qn 1 ≤ h ≤ 2⌊
n
2
⌋ nh− exh(Qn), n ≥ 4 Li and Yang [11] in 2013

Q3
n 3⌈

n
2
⌉+r − ⌊32r+e+1

2 ⌋ ≤ h ≤ 3⌈
n
2
⌉+r 2(⌊n2 ⌋ − r)3⌈

n
2
⌉+r, n ≥ 3 Ma et al. [14] in 2021

FQn 1 n+ 1, n ≥ 2 El-Amawy and Latifi [4] in 1991
2 2n, n ≥ 2 Zhu and Xu [37] in 2006
3 3n− 1, n ≥ 5 Zhu et al. [38] in 2007
4 4n− 4, n ≥ 5 Chang et al. [2] in 2014
≤ n ξh(FQn), n ≥ 6 Yang and Li [22] in 2014
≤ 2⌈

n
2
⌉+1 − 4, for odd n ξh(FQn), n ≥ 4 Zhang et al. [32] in 2016

≤ 2⌈
n
2
⌉+1 − 2, for even n ξh(FQn), n ≥ 4 Zhang et al. [32] in 2016

2⌈
n
2
⌉+1 − dr ≤ h ≤ 2⌈

n
2
⌉+1 £ ⌊n2 ⌋2

⌈n
2
⌉+1, n ≥ 4 Zhang et al. [32] in 2016

2⌊
n
2
⌋+r − lr ≤ h ≤ 2⌊

n
2
⌋+r ‡ (⌈n2 ⌉ − r + 1)2⌊

n
2
⌋+r Zhang et al. [32] in 2016

1 ≤ h ≤ 2n−1 Algorithm Zhang et al. [33] in 2018

Bn 1 n Chen et al. [3] in 2003
2 2n− 2 Chen et al. [3] in 2003
3 3n− 5 Zhu et al. [39] in 2006
4 4n− 8 Hong and Hsieh [9] in 2013
2n−1+2f

3 ≤ h ≤ 2n−1 § 2n−1 Zhang et al. [31] in 2014

Qn,k 1 2n, 5 ≤ k ≤ n− 1 Sabir et al. [17] in 2019
2 3n− 1, 5 ≤ k ≤ n− 1 Sabir et al. [17] in 2019
1 ≤ h ≤ 2⌈

n
2
⌉ − dr, n ≤ 2k + 3, k ≥ 3 £ (n+ 1)h−

∑s
i=0 ti2

ti +
∑s

i=0 2i2
ti Xu et al. [21] in 2021

2⌈
n
2
⌉ − dr ≤ h ≤ 2⌈

n
2
⌉, 2k ≤ n ≤ 2k + 3 (n+ 1)h−

∑s
i=0 ti2

ti +
∑s

i=0 2i2
ti Xu et al. [21] in 2021

2⌈
n
2
⌉ − dr ≤ h ≤ 2⌈

n
2
⌉, k + 2 ≤ n ≤ 2k − 1 ⌊n2 ⌋2

⌈n
2
⌉ Xu et al. [21] in 2021

1 ≤ h ≤ 2⌈
n
2
⌉+1 − dr, n ≥ 2k + 4 (n+ 1)h−

∑s
i=0 ti2

ti +
∑s

i=0 2i2
ti Xu et al. [21] in 2021

2⌈
n
2
⌉+1 − dr ≤ h ≤ 2⌈

n
2
⌉+1 ⌊n2 ⌋2

⌈n
2
⌉+1 Xu et al. [21] in 2021

Qn,2 ⌈11×2n−1

48
⌉ ≤ h ≤ 2n−1 2n−1, (k = 2) Current

‡ where r = 1, 2, . . . , ⌈n
2
⌉ − 1 and lr = 22r−1

3
if n is odd and lr = 22r−2

3
if n is even.

§ where f = 0 if n is even, and f = 1 if n is odd.
£ where dr = 2 if n is even, and dr = 4 if n is odd.

edge-connectivity of a connected graph G, denoted as λh(G), is defined as the minimum cardinality
of all h-extra edge-cuts of G. Given a vertex set X ⊂ V (G), the complement of a vertex set X is
X = V (G) \X . G[X] and [X,X]G can be defined as the subgraph induced by the vertex set X and
the set of edges of G in which each edge contains one end vertex in X and the other end vertex in
X , respectively. Let ξm(G) = min{|[X,X]G| : |X |= m ≤ ⌊| V (G)|/2⌋, G[X] is connected}. If
λh(G) = ξh(G), it is called λh-optimal; otherwise, it is not λh-optimal. Many authors studied exact
values of the h-extra edge-connectivity of some promising interconnection networks, such as hyper-
cubes [11], folded hypercubes [2, 4, 22, 32, 33, 37, 38], BC networks [3, 9, 23, 31, 39], and 3-ary
n-cubes [14]. The specific conclusions are shown in Table 1.

The enhanced hypercube is a variant of the hypercube. Based on n-dimensional hypercube Qn,
Tzeng and Wei [19] proposed the concept of (n, k)-enhanced hypercube Qn,k for 1 ≤ k ≤ n − 1,
by adding different types of complementary edges. Compared to Qn, the (n, k)-enhanced hypercube
Qn,k performs very well in many measurements, such as notably reduced mean internode distance,
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considerably smaller diameter, highly optimized traffic density, robust connectivity, exceptional fault
tolerance, remarkable cost-effectiveness [19], superior communication ability, and outstanding diag-
nosability [20]. Undoubtedly, the enhanced hypercubes Qn,k require more hardware to build than
hypercubes Qn. However, when n is large, the expense is minimal, and the benefits of the struc-
tural advantages are substantial. Due to attractive properties, the (n, k)-enhanced hypercube has been
widely studied.

Recently, the h-extra edge-connectivity and h-extra connectivity of Qn,k are widely investigated.
For the edge version, Sabir et al. [17] investigated λh(Qn,k) for h = 1, 2 in 2019; while Xu et al. [21]
studied λh(Qn,k) for 1 ≤ h ≤ 2⌈

n
2
⌉+1, n ≥ 2k + 4 and 1 ≤ h ≤ 2⌈

n
2
⌉, n ≤ 2k + 3, k ≥ 3 in 2021.

For the vertex version, Li et al. [10] determined that κ1(Qn,k) for n = k + 1 and k ≥ 1, κ2(Qn,k)
for n = k + 1 and k ≥ 3 and κ3(Qn,k) for n = k + 1 and k ≥ 3 in 2020. Sabir et al. [17] also
determined κ1(Qn,k) for n ≥ 7, 2 ≤ k ≤ n− 5 and κ2(Qn,k) for n ≥ 9 and 2 ≤ k ≤ n− 7 in 2019.
Yin and Xu [28] proved κg(Qn,k) for 0 ≤ g ≤ n − k − 1, 4 ≤ k ≤ n − 5 and n ≥ 9 in 2022. In
particular, for k = 1, the (n, k)-enhanced hypercubes Qn,k is n-dimensional folded hypercubes FQn.
They also allow a linear number of malfunctions. It is not enough. Aim to go further, we consider the
cases under the exponentially many faulty links.

In 2013, Li and Yang investigated λh(Qn) for 1 ≤ h ≤ 2⌊
n
2
⌋ and n ≥ 4. In 2014, Yang and Li

[22] determined λh(FQn) for h ≤ n and n ≥ 6. In 2014, Zhang et al. [31] studied λh(Bn) for
1 ≤ h ≤ 2⌊

n
2
⌋+1 and n ≥ 4. In 2014, Yang and Meng [24] investigated κg(Qn) for 0 ≤ g ≤ n− 4. In

2017, Zhou [36] determined κg(HLn) for 0 ≤ g ≤ n− 3 and n ≥ 5. Compared to classical Menger
theory, both h-extra edge-connectivity and g-extra connectivity offer a more refined measure of fault
tolerance and reliability in interconnection networks. For very small h or g, they usually satisfy the
λh-optimality λh(G) = ξh(G) or κg-optimality κg(G) = ξvg (G).

If, for every integer h1 ≤ h ≤ h2, the value of the parameter λh(G) is a constant, then one says
that the h-extra edge-connectivity of a graph G is concentrated for the interval h1 ≤ h ≤ h2, and
this represents a concentration phenomenon. As large as possible h1 ≤ h ≤ h2 and λh1−1(G) <
λh1(G) = λh(G) = λh2(G) < λh2+1(G), it means that this interval h1 ≤ h ≤ h2 is maximal. In
particular, for h = h1 = h2, λh(G) = ξh(G) is λh-optimal. Recently, Zhang et al. (2016) [32]
studied the values of λh(FQn), which concentrate on ⌊n2 ⌋2

⌈n
2
⌉+1 for 2⌈

n
2
⌉+1 − dr ≤ h ≤ 2⌈

n
2
⌉+1,

where dr = 4 if n is odd and dr = 2 if n is even. Xu et al. (2021) [21] investigated the values of
λh(Qn,k) concentrate on ⌊n2 ⌋2

⌈n
2
⌉ for 2⌈

n
2
⌉ − dr ≤ h ≤ 2⌈

n
2
⌉, where dr = 4 if n is odd and dr = 2

if n is even. With the increase of r, the concentration phenomenon also becomes obvious. Zhang
et al. (2016) [32] also determined the values of λh(FQn) concentrate on (⌈n2 ⌉ − r + 1)2⌊

n
2
⌋+r for

2⌊
n
2
⌋+r − lr ≤ h ≤ 2⌊

n
2
⌋+r, where r = 1, 2, · · · ,

⌈
n
2

⌉
− 1 and lr =

22r−1
3 if n is odd and lr =

22r+1−2
3

if n is even. The study of the concentration phenomenon of λh(Qn,k) has just started. Inspired by the
above results, this paper mainly focuses on the most obvious concentration phenomenon of λh(Qn,2)

in the subinterval ⌈11×2n−1

48 ⌉ ≤ h ≤ 2n−1. For example, the values of ξh(Qn,2) are marked in blue,
the values of λh(Qn,2) are marked in red, and the subinterval we examines is marked in green (see
Fig. 1). Our main contributions are stated as follows.
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In the subsequent proof process, we will divide the subinterval ⌈11×2n−1

48 ⌉ ≤ h ≤ 2n−1 into ⌈n2 ⌉−1
numbers of integer subintervals and we will define the mn,r as follows:

mn,r =



∑2
i=0 2

n−4−i +
∑⌈n

2
⌉−4−r2n−8−2i+22r−1−f

i=0 if 1 ≤ r ≤ ⌈n2 ⌉ − 4; (e)∑3
i=0 2

n−4−i if r = ⌈n2 ⌉ − 3; (f)

2n−3 if r = ⌈n2 ⌉ − 2; (g)

2n−1 if r = ⌈n2 ⌉ − 1, (h)

for r = 1, 2, · · · , ⌈n2 ⌉ − 1.
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results of current authors

Fig. 1. The values of ξh(Q9,2) and λh(Q9,2).

Theorem 1.1. For three integers n ≥ 9, ⌈11×2n−1

48 ⌉ ≤ h ≤ 2n−1 and 1 ≤ r ≤ ⌈n2 ⌉− 1, the results are
as follows:

(a) λh(Qn,2) = ξ2n−1(Qn,2) = 2n−1;
(b) It is λh-optimal (λh(Qn,2) = ξh(Qn,2) = 2n−1) if and only if h = mn,r.

The rest of this paper is organized as follows. Section 2 introduces some related definitions and
lemmas. Section 3 gives several lemmas about the properties of the function ξm(Qn,2). Section 4
determines that the value of the h-extra edge-connectivity of Qn,2 concentrates on a constant 2n−1.
The last section concludes our results.
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2. Preliminaries

Recall that the h-extra edge-connectivity of a connected graph G, λh(G), is the minimum number of
an edge-cut of the graph G whose removal separates the graph G with all resulting components having
at least h vertices. If F be a minimum h-extra edge-cut of a connected graph G, then there is a fact that
G − F has exactly two components. In fact, if F is the minimum h-extra edge-cut of the connected
graph G, G− F has p components C1, C2, · · · , Cp with at least h vertices, p ≥ 3. Since the graph G
is connected, there must exist integer i, j with [VCi , VCj ]G ̸= ∅, |F1| = |F \ [VCi , VCj ]G| < |F |. Thus,
F1 is also a minimum h-extra edge-cut of G, which contradicts the minimality of F . Hence, G − F
has exactly two components. Although the original definition of ξm(G) only requires that G[X] is
connected, we do need that both G[X] and G[X] are connected in this paper. The function ξm(Qn,2)
of (n, 2)-enhanced hypercubes Qn,2 does have the same result after modifying this condition. Let

ξm(G) = min{|[X,X]G| : |X| = m ≤ ⌊|V (G)|/2⌋, and both G[X] and G[X] are connected}. (1)

For some d-regular graphs,

ξm(G) = dm− exm(G), (2)

where exm(G) is twice the maximum number of edges among all m vertices induced subgraphs
for each m ≤ ⌊|V (G)|/2⌋. Actually, if we can find X∗

m ⊆ V (G), |X∗
m| = m, with exm(G) =

2|E(G[X∗
m)]|, and so that, both G[X∗

m] and G[X∗
m] are connected. Then

ξm(G) = |[X∗
m, X∗

m]G| = dm− exm(G) = dm− 2|E(G[X∗
m]|.

Specifically, for the hypercube, the folded hypercube and the (n, 2)-enhanced hypercube mentioned
in this article, the conclusion ξm(G) = dm − exm(G) is true. By the definition of the h-extra edge-
connectivity of G, once the parameter λh(G) is well-defined for 1 ≤ h ≤ ⌊|V (G)|/2⌋, the ξm(G)
offers the upper bound for the λh(G). Due to the fact that the smallest h-extra edge-cut of graph G
exactly divides graph G into two connected components [33], so the parameter λh(G) (by Zhang et
al. [33] page 299) can be calculated by

λh(G) = min {ξm(G) : h ≤ m ≤ ⌊|V (G)|/2⌋} . (3)

Let n, k be positive integers. The definitions of the n-dimensional hypercube Qn, the folded hyper-
cube FQn and the (n, k)-enhanced hypercube Qn,k are stated as follows.

Definition 2.1. [18] For an integer n ≥ 1, the n-dimensional hypercube, denoted by Qn, is a graph
with 2n vertices. The vertex set V (Qn) = {xnxn−1 · · ·x1 : xi ∈ {0, 1}, 1 ≤ i ≤ n} is the set of all
n-bit binary strings. Two vertices x = xnxn−1 · · ·x2x1 and y = ynyn−1 · · · y2y1 of Qn are adjacent
if and only if they differ in exactly one position.

For any vertices x = xnxn−1 · · ·x2x1 and y = ynyn−1 · · · y2y1, the edge e = (x, y) is called
k-complementary edge (1 ≤ k ≤ n − 1) if and only if yi = xi for n − k + 1 < i ≤ n, and yj = xj
for 1 ≤ j ≤ n− k + 1.
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Fig. 2. Q3,1 (i.e. FQ3), Q3,2 and Q4,2.

As a variant of the hypercube, the n-dimensional folded hypercube FQn, first proposed by El-
Amawy and Latifi [4], is a graph obtained from the hypercube Qn by adding an edge between every
pair of vertices xnxn−1 · · ·x1 and xn xn−1 · · ·x1, where xi = 1 − xi for all 1 ≤ i ≤ n. The FQn

is to add complementary edges between two (n − 1)-dimensional sub-cubes. Motivated by this, by
adding k-complementary edges between two paired (n − k)-dimensional sub-cubes, in 1991, Tzeng
and Wei [19] introduced the (n, k)-enhanced hypercube Qn,k.

Definition 2.2. For two integers n and k with 1 ≤ k ≤ n−1, the (n, k)-enhanced hypercube, denoted
by Qn,k, is defined to be a graph with the vertex set V (Qn,k) = {xnxn−1 · · ·x2x1 : xi ∈ {0, 1}, 1 ≤
i ≤ n}. Two vertices x = xnxn−1 · · ·x2x1 and y = ynyn−1 · · · y2y1 are adjacent if y satisfies one of
the following two conditions:

(1) y = xnxn−1 · · ·xi+1x̄ixi−1 · · ·x2x1 for 1 ≤ i ≤ n, where x̄i = 1− xi or
(2) y = xnxn−1 · · · x̄n−k+1x̄n−k · · · x̄2x̄1.

Note that Qn,1 is the n-dimensional folded hypercube FQn. The (n, 2)-enhanced hypercube Qn,2

is obtained from the hypercube Qn by adding 2-complementary edges between two pairs of vertices
x = xnxn−1 · · ·x2x1 and y = xnx̄n−1 · · · x̄2x̄1 in two (n− 1)-dimensional sub-cubes.

The (n, 2)-enhanced hypercube Qn,2 is (n+1)-regular and (n+1)-connected with 2n vertices and
(n + 1)2n−1 edges [19, 20].The enhanced hypercubes Q3,1, Q3,2 and Q4,2 are illustrated in Fig. 2,
where the complementary edges are represented by a short dotted line. As the integer n grows, the



8 Y. Sun, M. Zhang, X. Feng, X. Yang / A concentration phenomenon for h-extra edge-connectivity. . .

scale of Qn,2 expands exponentially, and the topological structure of Qn,2 becomes more and more
complicated. Thus, the bitmaps of the adjacency matrix of Qn,2 represent the adjacent relationship
between vertices of Qn,2. These figures of the adjacency matrix of Q4,2, Q5,2, Q6,2 and Q7,2 are
shown in Fig. 3 (in four figures, the dark pixel at location (x, y) corresponds to the edges between
vertices x and y). The bitmaps of the adjacency matrix of Qn,2 have high symmetry, iterative fractal,
and sparsity.
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Fig. 3. The bitmaps of adjacency matrix of Qn,2 for 4 ≤ n ≤ 7.

For positive integers 1 ≤ m ≤ 2n−1, there exists a unique binary representation m =
∑s

i=0 2
ti ,

where t0 = ⌊log2m⌋, ti =
⌊
log2

(
m−

∑i−1
r=0 2

tr
)⌋

for i ≥ 1, and t0 > t1 > · · · > ts ≥ 0.
These conditions are used throughout the article when not causing ambiguity. For every vertex x =
xnxn−1 · · ·x1 of the (n, 2)-enhanced hypercubes Qn,2, it also can be denoted by decimal number∑n

i=1 xi2
i−1, xi ∈ {0, 1}. Let Sm be the set {0, 1, 2, · · · ,m−1} (under decimal representation). And

Ln
m denotes the corresponding set represented by n-binary strings. By the construction of Qn,2, L

n
m

is a subset of V (Qn,2) and Qn,2 [L
n
m] is a subgraph induced by Ln

m in Qn,2. Li and Yang proved that
both Qn [L

n
m] and Qn

[
Ln
m

]
are connected [11] and the fact that Qn [L

n
m] and Qn

[
Ln
m

]
are subgraphs

of Qn,2 [L
n
m] and Qn,2

[
Ln
m

]
, respectively, so both Qn,2 [L

n
m] and Qn,2

[
Ln
m

]
are connected. The

subgraphs induced by L4
m in Qn,2 for m = 4, 6 and 8 are shown in Fig. 4.

Happer [8], Li and Yang [11] independently obtained the exact expression of the function exm(Qn).

Lemma 2.3. (1) [11] For a positive integer m =
∑s

i=0 2
ti ≤ 2n, ξm(Qn) = nm− exm(Qn), where

exm(Qn) = 2|E(Qn[L
n
m])| =

∑s
i=0 ti2

ti +
∑s

i=0 2i2
ti . (2) [11] exm0+m1(Qn) ≥ exm0(Qn) +

exm1(Qn) + 2m0 for positive integers m0 ≤ m1.

Arockiaraj et al. [1] obtained the exact expression of the function exm(Qn,k) in 2019, which was
rewritten by Xu et al. in 2021 [21].

In the following, we let [x]+ = x for x ≥ 0; otherwise, [x]+ = 0.
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Fig. 4. Induced subgraphs Q4,2[L
4
4], Q4,2[L

4
6] and Q4,2[L

4
8].

Lemma 2.4. [1, 21] For each integer 1 ≤ m ≤ 2n and m =
∑s

i=0 2
ti , ξm(Qn,2) = (n + 1)m −

exm(Qn,2), where

exm (Qn,2) = 2 |E(Qn,2[L
n
m])|

= 2 |E (Qn[L
n
m])|+ ⌊ m

2n−1 ⌋2n−1 + 2
[
m− ⌊ m

2n−1 ⌋2n−1 − 2n−2
]+

=



exm(Qn) if 1 ≤ m ≤ 2n−2;

exm(Qn) + 2m− 2n−1 if 2n−2 < m ≤ 2n−1;

exm(Qn) + 2n−1 if m > 2n−1 and m = 2n−1 + x,

0 ≤ x < 2n−2;

exm(Qn) + 2x if m > 2n−1 and m = 2n−1 + x,

2n−2 ≤ x < 2n−1.

(4)

Then several specific examples are used to illustrate the calculation of exm(Qn,2). For exam-
ple, for n = 4 and m = 4, exm(Qn,2) = 2|E(Qn,2[L

n
m])| =

∑s
i=0 ti2

ti +
∑s

i=0 2i2
ti . Note

that S4 = {0, 1, 2, 3} and L4
4 = {0000, 0001, 0010, 0011}. Since 4 = 22, it can be seen that

t0 = 2 and ex4(Q4,2) = 2|E(Qn,2[L
4
4])| = 2 × 22 + 2 × 0 × 22 = 8; for n = 4 and m = 8,

exm(Qn,2) =
∑s

i=0 ti2
ti +

∑s
i=0 2i2

ti + 2m − 2n−1. There are S8 = {0, 1, . . . , 7} and L4
8 =

{0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111}. Since 8 = 23, it can be obtained that t0 = 3 and
ex8(Q4,2) = 2|E(Qn,2[L

4
8])| = 3 × 23 + 2 × 0 × 23 + 2 × 8 − 23 = 32. The induced subgraphs

Q4,2[L
4
4] and Q4,2[L

4
8] are shown in Fig. 4.

Lemma 2.5. ([21]) For positive integers 1 ≤ m ≤ 2t and 0 ≤ t ≤ n, exm(Qn) ≤ tm and
exm(Qn,k) ≤ (t+ 1)m.
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Lemma 2.6. ([21]) For positive integers h ≤ m =
∑s

i=0 2
ti ≤ 2n−1,

λh(Qn,2) = min
{
ξm(Qn,2) : h ≤ m ≤ 2n−1

}
,

satisfying that
ξm(Qn,2) = (n+ 1)m− exm(Qn,2). (5)

For m ≤ 2n−1, the following two iterative properties of the expression of exm(Qn,2) depend on
whether Qn,2 matches complementary edges in the sub-network and the number of such complemen-
tary edges.

Lemma 2.7. Let m,n be two integers, n ≥ 4, 1 ≤ m =
∑s

i=0 2
ti ≤ 2n−1. For m1 =

∑a
i=0 2

ti ,
m = m1 +m2, and t0 > t1 · ·· > ta > ta+1 > ta+2 > · · · > ts ≥ 0, a < s,

(a) exm(Qn,2) = exm1(Qn,2) + exm2(Qn,2) + 2(a+ 1)m2 for 1 ≤ m ≤ 2n−2;

(b) exm(Qn,2) = exm1(Qn,2) + exm2(Qn,2) + 2(a+ 2)m2 for 2n−2 < m ≤ 2n−1.

Proof:
Note that m2 = m −m1 = 2ta+1 + 2ta+2 + · · · + 2ts =

∑s
i=a+1 2

ti =
∑s−a−1

i=0 2ti+a+1 . Since the
expression of exm(Qn,2) strongly depends on the binary decomposition of m and the domain of m, it
can be divided into the following two cases according to its two different forms.

(a) For 1 ≤ m ≤ 2n−2, by Lemma 2.4, it can be obtained

exm1(Qn,2) =
∑a

i=0 ti2
ti +

∑a
i=0 2i2

ti

and
exm2(Qn,2) =

∑s−a−1
i=0 ti+a+12

ti+a+1 +
∑s−a−1

i=0 2i2ti+a+1 .

Note that

exm(Qn,2) =
∑s

i=0 ti2
ti +

∑s
i=0 2i2

ti

= (
∑a

i=0 ti2
ti +

∑s−a−1
i=0 ti+a+12

ti+a+1)

+(
∑a

i=0 2i2
ti +

∑s−a−1
i=0 2(a+ 1 + i)2ti+a+1)

= exm1(Qn,2) + exm2(Qn,2) + 2
∑s−a−1

i=0 (a+ 1)2ti+a+1

= exm1(Qn,2) + exm2(Qn,2) + 2(a+ 1)m2.

(b) For 2n−2 < m ≤ 2n−1, by Lemma 2.4, it is sufficient to show that

exm1(Qn,2) =
∑a

i=0 ti2
ti +

∑a
i=0 2i2

ti + 2m1 − 2n−1

and
exm2(Qn,2) =

∑s−a−1
i=0 ti+a+12

ti+a+1 +
∑s−a−1

i=0 2i2ti+a+1 .
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Note that

exm(Qn,2) =
∑s

i=0 ti2
ti +

∑s
i=0 2i2

ti + 2m− 2n−1

= (
∑a

i=0 ti2
ti +

∑s−a−1
i=0 ti+a+12

ti+a+1)

+(
∑a

i=0 2i2
ti +

∑s−a−1
i=0 2(a+ 1 + i)2ti+a+1) + 2m− 2n−1

= exm1(Qn,2) + exm2(Qn,2) + 2m2 + 2
∑s−a−1

i=0 (a+ 1)2ti+a+1

= exm1(Qn,2) + exm2(Qn,2) + 2(a+ 2)m2.

To sum up, the proof is completed. ⊓⊔

3. Some properties of the function ξm(Qn,2)

The exact value of the function λh(Qn,2) highly depends on the monotonic intervals and fractal struc-
ture of the function ξm(Qn,2). Then we introduce several lemmas to describe the properties of the
function ξm(Qn,2).

Let f = 0 if n is even, and f = 1 if n is odd. To deal with the interval
⌈
11×2n−1

48

⌉
≤ m ≤ 2n−1, by

inserting ⌈n2 ⌉ − 1 numbers of mn,r satisfying⌈
11×2n−1

48

⌉
= mn,1 < mn,2 < · · · < mn,r < mn,r+1 < · · · < mn,⌈n

2
⌉−1 = 2n−1.

This interval is divided into ⌈n2 ⌉−1 numbers of integer subintervals. The expression of mn,r is defined
as follows:

mn,r =


∑2

i=0 2
n−4−i +

∑⌈n
2 ⌉−4−r

i=0 2n−8−2i + 22r−1−f if 1 ≤ r ≤ ⌈n
2 ⌉ − 4; (e)∑3

i=0 2
n−4−i if r = ⌈n

2 ⌉ − 3; (f)

2n−3 if r = ⌈n
2 ⌉ − 2; (g)

2n−1 if r = ⌈n
2 ⌉ − 1, (h)

for r = 1, 2, · · · , ⌈n2 ⌉ − 1. By calculation, it can be obtained that⌈
11×2n−1

48

⌉
= mn,1 =

∑2
i=0 2

n−4−i +
∑⌈n

2
⌉−5

i=0 2n−8−2i + 21−f .

Actually, if 1 ≤ r ≤ ⌈n2 ⌉ − 4 and n is even, mn,r =
∑2

i=0 2
n−4−i +

∑⌈n
2
⌉−4−r

i=0 2n−8−2i + 22r−1.
mn,1 = 2n−4 + 2n−5 + 2n−6 + 2n−8 + 2n−10 + · · · + 22 + 21 and 3mn,1 = 2mn,1 + mn,1 =
2n−3 + 2n−4 + 2n−5 + 2n−6 + 2n−7 + · · · + 23 + 22 + 21 + (2n−4 + 2n−5 + 22), so mn,1 =
11×2n−5+21−f

3 = ⌈11×2n−1

48 ⌉. If n is odd, mn,r =
∑2

i=0 2
n−4−i +

∑⌈n
2
⌉−4−r

i=0 2n−8−2i + 22r−2.
mn,1 = 2n−4 + 2n−5 + 2n−6 + 2n−8 + 2n−10 + · · · + 21 + 20 and 3mn,1 = mn,1 + 2mn,1 =
2n−3 + 2n−4 + 2n−5 + 2n−6 + 2n−7 + · · · + 22 + 21 + +20 + (2n−4 + 2n−5 + 21), thus mn,1 =
11×2n−5+21−f

3 = ⌈11×2n−1

48 ⌉.
Since, in the small-scale cases for 4 ≤ n ≤ 8, not all four anticipated scenarios occur (as detailed in

Table 2), this paper focuses primarily on the cases for n ≥ 9, and provides examples of the variables
r and mn,r for n = 9 and n = 10 (see Table 3).
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Table 2. The variables of r, and mn,r for 4 ≤ n ≤ 8.

n mn,1 mn,2 mn,3 · · · mn,⌈n
2
⌉−1

4 1, (h)

5 4, (g) 16, (h)

6 8, (g) 32, (h)

7 15, (g) 16, (h) 64, (f)

8 30, (g) 32, (h) 128, (f)

Table 3. The variables of r, and mn,r for n = 9 or 10.

n = 9 n = 10

r mn,r mn,r

1 59 = 25 + 24 + 23 + 21 + 20 118 = 26 + 25 + 24 + 22 + 21

2 60 = 25 + 24 + 23 + 22 120 = 26 + 25 + 24 + 23

3 64 = 26 128 = 27

4 256 = 28 512 = 29

Lemma 3.1. [21] Let c, n and m be three integers, n ≥ 4, 0 ≤ c ≤ n− 2 and 2c ≤ m ≤ 2n−1. Then
ξm(Qn,2) ≥ ξ2c(Qn,2).

Lemma 3.2. Let n, r be two integers, n ≥ 9, r = 1, 2, · · · , ⌈n2 ⌉ − 1. Then ξmn,r(Qn,2) = 2n−1.

Proof:
According to different expressions of mn,r, the proof will be divided into four cases.

Case 1. For 1 ≤ r ≤ ⌈n2 ⌉−4, mn,r =
∑2

i=0 2
n−4−i+

∑⌈n
2
⌉−4−r

i=0 2n−8−2i+22r−1−f , by Lemma 2.4
and formula (5), it can be obtained that

ξmn,r(Qn,2) = (n+ 1)mn,r − exmn,r(Qn,2)

= (n+ 1)
[∑2

i=0 2
n−4−i +

∑⌈n
2
⌉−4−r

i=0 2n−8−2i + 22r−1−f
]

−
{∑2

i=0

[
(n− 4− i)2n−4−i + 2i2n−4−i)

]
+
∑⌈n

2
⌉−4−r

i=0

[
(n− 8− 2i)2n−8−2i + 2(3 + i)2n−8−2i

]
+
[
(2r − 1− f)22r−1−f + 2(⌈n2 ⌉ − r)22r−1−f

]}
= (n+ 1− n+ 4− i)

∑2
i=0 2

n−4−i

+(n+ 1− n+ 2)
∑⌈n

2
⌉−4−r

i=0 2n−8−2i + (n+ 2 + f − 2⌈n2 ⌉)2
2r−1−f

= (5− i)
∑2

i=0 2
n−4−i + 3

∑⌈n
2
⌉−4−r

i=0 2n−8−2i + 22r−f

= 5 · 2n−4 + 4 · 2n−5 + 4 · 2n−6 − 22r−f + 22r−f = 3 · 2n−3 + 2n−3 = 2n−1.
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Case 2. For r = ⌈n2 ⌉ − 3,mn,r =
∑3

i=0 2
n−4−i, by Lemma 2.4 and the formula (5),

ξmn,r(Qn,2) = (n+ 1)mn,r − exmn,r(Qn,2)

= (n+ 1)
∑3

i=0(n− 4− i)2n−4−i −
∑3

i=0(n− 4− i)2n−4−i −
∑3

i=0 2i2
n−4−i

= (5− i)
∑3

i=0 2
n−4−i = 5× 2n−4 + 4× 2n−5 + 3× 2n−6 + 2× 2n−7 = 2n−1.

Case 3. For r = ⌈n2 ⌉ − 2,mn,r = 2n−3, by Lemma 2.4 and the formula (5), it is not difficult to see
that

ξ2n−3(Qn,2) = (n+ 1)× 2n−3 − (n− 3)× 2n−3 = 2n−1.

Case 4. For r = ⌈n2 ⌉ − 1,mn,r = 2n−1, by the formula (5) and Lemma 2.4, then

ξ2n−1(Qn,2) = (n+ 1)× 2n−1 − [(n− 1)× 2n−1 + 2× 2n−1 − 2n−1] = 2n−1.

From the above four cases, it can conclude that ξmn,r(Qn,2) = 2n−1 for r = 1, 2, · · ·, ⌈n2 ⌉ − 1. The
proof is completed. ⊓⊔

Lemma 3.3. Given two integers n ≥ 9,
⌈
11×2n−1

48

⌉
≤ m ≤ 2n−1, there exists a positive integer r,

satisfying mn,r < m < mn,r+1.

ξm (Qn,2) > ξmn,r (Qn,2) = ξmn,r+1 (Qn,2) = · · · = ξmn,⌈n
2 ⌉−1

(Qn,2)

= ξ2n−1(Qn,2) = ξ⌈ 11×2n−1

48

⌉(Qn,2) = 2n−1.

Proof:
According to different expressions of exm(Qn,2), the proof will be divided into two cases.

Case 1.
⌈
11×2n−1

48

⌉
< m ≤ 2n−2.

One can check that mn,r+1 −mn,r = 22r−1−f for 1 ≤ r ≤ ⌈n2 ⌉ − 3. By Lemma 3.2,

ξmn,r(Qn,2) = ξ2n−1(Qn,2) = 2n−1

for 1 ≤ r ≤ ⌈n2 ⌉ − 1. Let m = mn,r + p, where

mn,r =
∑2

i=0 2
n−4−i +

∑⌈n
2
⌉−4−r

i=0 2n−8−2i + 22r−1−f for 1 ≤ r < ⌈n2 ⌉ − 4,

mn,r =
∑3

i=0 2
n−4−i for r = ⌈n2 ⌉ − 3,

0 ≤ p < 22r−1−f , p =
∑s

i=0 2
t′i < mn,r+1 − mn,r, 2r − 1 − f > t′0 > t′1 > · · · > t′s. By the

equation (5) and Lemma 2.7, one can deduce that

ξm(Qn,2)− ξmn,r(Qn,2)

= (n+ 1)(mn,r + p)− exmn,r+p(Qn,2)− (n+ 1)mn,r + exmn,r(Qn,2)

= (n+ 1)p− exmn,r+p(Qn,2) + exmn,r(Qn,2) (Lemma 2.4)

= (n+ 1)p− exmn,r(Qn,2)− exp(Qn,2)− 2(⌈n2 ⌉ − r + 1)p+ exmn,r(Qn,2) (Lemma 2.3(2))

= (2r − 1− f)p− exp(Qn,2) = (2r − 1− f)p− exp(Q2r−1−f ) = ξp(Q2r−1−f ).
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For p < 22r−1−f < 2n−1, the value of exp(Qn) is uniquely determined by the binary representation
of p. Therefore, exp(Qn) = exp(Q2r−1−f ). By Lemma 2.3,

exp(Q2r−1−f ) = 2|E(Q2r−1−f [L
2r−1−f
p ])|.

[L2r−1−f
p , L2r−1−f

p ]Q2r−1−f
be an edge cut of Q2r−1−f . Since Q2r−1−f is connected graph, and

if one deletes the edge cut [L2r−1−f
p , L2r−1−f

p ]Q2r−1−f
, two induced subgraphs Q2r−1−f [L

2r−1−f
p ]

and Q2r−1−f [L
2r−1−f
p ] are connected. So the edge cut [L2r−1−f

p , L2r−1−f
p ]Q2r−1−f

of Q2r−1−f does
exist. By Lemma 2.5, it is sufficient to show that exp(Q2r−1−f ) ≤ (2r − 1 − f)p, and ξm(Qn,2) −
ξmn,r(Qn,2) = (2r − 1− f)p− exp (Q2r−1−f ) > 0.

If r = ⌈n2 ⌉ − 2, then mn,r = 2n−3. There exists a positive integer p′ =
∑s

i=0 2
t′i , satisfying

0 ≤ p′ < 2n−3, m = 2n−3+p′ and n−3 > t′0 > t′1 > ··· > t′s. The proof of ξm(Qn,2) > ξmn,r(Qn,2)
is the same as the above proof of ξm(Qn,2) > ξmn,r(Qn,2).
Case 2. 2n−2 < m ≤ 2n−1.

If r = ⌈n2 ⌉ − 2, then mn,r = 2n−3. There exists a positive integer m′′ =
∑s

i=0 2
t′i , satisfying

0 ≤ m′′ < 2n−2, m = mn,r + 2n−3 +m′′ = 2n−2 +m′′ and n − 2 > t′0 > t′1 > · · · > t′s. By the
equation (5) and Lemma 2.7,

ξm(Qn,2)− ξ2n−3(Qn,2)

= ξm(Qn,2)− ξ2n−2(Qn,2) + ξ2n−2(Qn,2)− ξ2n−3(Qn,2)

= (n+ 1)(2n−2 +m′′)− (n+ 1)2n−2 − (exm(Qn,2)− ex2n−2(Qn,2)) + 2n−2

= (n+ 1)m′′ − (ex2n−2+m′′(Qn) + 2m′′) + ex2n−2(Qn) + 2n−2 (Lemma 2.4)

= (n+ 1)m′′ − ex2n−2(Qn)− exm′′(Qn)− 4m′′ + ex2n−2(Qn) + 2n−2

= (n+ 1)m′′ − exm′′ (Qn)− 4m′′ + 2n−2 = (n− 3)m′′ − exm′′ (Qn) + 2n−2

= (n− 3)m′′ − exm′′ (Qn−3) + 2n−2 = ξm′′(Qn−3) + 2n−2 > 0.

For 0 < m′′ ≤ 2n−2, the value of exm′′(Qn) is uniquely determined by the binary representation
of m′′. Thus, exm′′(Qn) = exm′′(Qn−3). By Lemma 2.5, (n − 3)m′′ − ex′′m (Qn−3) > 0 for
0 < m′′ ≤ 2n−2. Thus, ξm(Qn,2) > ξmn,r(Qn,2).

Combining the above two cases, ξm(Qn,2) > ξmn,r(Qn,2) = ξmn,r+1(Qn,2) = ξ⌈ 11×2n−1

48

⌉(Qn,2) =

2n−1 for 1 ≤ r ≤ ⌈n2 ⌉ − 2. So the proof is completed. ⊓⊔

4. The h-extra edge-connectivity of Qn,2 concentrates on 2n−1

for
⌈
11×2n−1

48

⌉
≤ h ≤ 2n−1

The proof of Theorem 1.1 (a):
Given each integer h, for

⌈
11×2n−1

48

⌉
≤ h ≤ mn,⌈n

2
⌉−1 = 2n−1, there exists an integer r, 1 ≤ r ≤

⌈n2 ⌉ − 1, satisfying mn,r ≤ h ≤ mn,r+1. By Lemma 2.6 and Lemma 3.3,

λh(Qn,2) = min{ξm(Qn,2) : mn,r ≤ h ≤ m < mn,r+1} = ξmn,r(Qn,2)
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for r = 1, 2, · · · , ⌈n2 ⌉ − 1. So for any
⌈
11×2n−1

48

⌉
≤ h ≤ 2n−1,

λh (Qn,2) = min{ξm(Qn,2) : h ≤ m ≤ 2n−1} (Lemma 2.6)

= min{ξm(Qn,2) : h ≤ m ≤ mn,⌈n
2
⌉−1} (Lemmas 3.3 and 3.1)

= ξ2n−1(Qn,2) (Lemmas 3.2 and 3.3)

= 2n−1.

The proof of Theorem 1.1(b):
If h = mn,r or h = mn,r+1, by Lemma 2.6 and Lemma 3.2 λh(Qn,2) = ξh(Qn,2) = 2n−1. If
mn,r < h < mn,r+1, by Lemma 3.3, ξh(Qn,2) > ξmn,r+1(Qn,2), by Lemma 2.6 and Lemma 3.2,

λh(Qn,2) = min{ξm(Qn,2) : h ≤ m ≤ mn,r+1}
= ξmn,r+1(Qn,2) = ξmn,r+2(Qn,2) = · · · = ξmn,⌈n

2 ⌉−1
(Qn,2) = 2n−1.

So, one can get λh(Qn,2) = ξh(Qn,2) = 2n−1 for h = mn,r or h = mn,r+1, 1 ≤ r < ⌈n2 ⌉ − 1.
The proof is completed.

Remark 4.1. For
⌈
11×2n−1

48

⌉
≤ h ≤ 2n−1 and n ≥ 9, the lower and upper bounds of h of λh(Qn,2)

in the above Theorem 1.1 are both tight.
(1) In fact, if n is even, then

mn,1 =
∑2

i=0 2
n−4−i +

∑⌈n
2
⌉−5

i=0 2n−8−2i + 2,

mn,1 − 1 =
∑2

i=0 2
n−4−i +

∑⌈n
2
⌉−5

i=0 2n−8−2i + 1.

By Lemma 2.6, exmn,1(Qn,2) = exmn,1−1(Qn,2) + n. So,

ξmn,1(Qn,2)−ξmn,1−1(Qn,2) = (n+1)mn,1−exmn,1(Qn,2)−(n+1)(mn,1−1)+exmn,1−1(Qn,2) = 1.

Note that

λmn,1−1(Qn,2) = min{ξh(Qn,2) : mn,1 − 1 ≤ h ≤ mn,1} = ξmn,1−1(Qn,2)

= 2n−1 − 1 < 2n−1 = λmn,1(Qn,2) = ξmn,1(Qn,2).

If n is odd, then

mn,1 =
∑2

i=0 2
n−4−i +

∑⌈n
2
⌉−5

i=0 2n−8−2i + 1,

mn,1 − 1 =
∑2

i=0 2
n−4−i +

∑⌈n
2
⌉−5

i=0 2n−8−2i.

By Lemma 2.6, exmn,1(Qn,2) = exmn,1−1(Qn,2) + n− 1. So,

ξmn,1(Qn,2)−ξmn,1−1(Qn,2) = (n+1)mn,1−exmn,1(Qn,2)−(n+1)(mn,1−1)+exmn,1−1(Qn,2) = 2.
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Similarly, it can be seen that

λmn,1−1(Qn,2) = min{ξm(Qn,2) : mn,1 − 1 ≤ m ≤ mn,1} = ξmn,1−1(Qn,2)

= 2n−1 − 2 < 2n−1 = λmn,1(Qn,2) = ξmn,1(Qn,2).

Therefore, the lower bound is sharp.
(2) As |V (Qn,2)| = 2n, by the definition of h-extra edge-connectivity, there are at least two compo-

nents with at least h vertices. So, the upper bound of the above interval is 2n−1. Therefore, the upper
bound is sharp.

In cases where 4 ≤ n ≤ 9 and h ≤ 2n−1, the values of λh(Qn,2) and ξh(Qn,2) are listed in
Table 4. And the values of λh(Qn,2) do not satisfy the equality λh(Qn,2) = ξh(Qn,2) are marked in
red, otherwise are marked in black. Based on these data, the scatter plots of ξh(Qn,2) and λh(Qn,2)
are plotted. We plot the ξh(Qn,2) marked in “ ∆ ” scatters and the λh(Qn,2) marked in “ ∗ ” scatters
for 4 ≤ n ≤ 12 in Fig 5. On the X-axis in Fig. 5, the results of this article are represented by the
green lines.

Table 4. Examples of ξh(Qn,2) and λh(Qn,2) for 4 ≤ n ≤ 9.
h 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

ξh(Q4,2) 5 8 11 12 13 12 11 8
λh(Q4,2) 5 8 8 8 8 8 8 8
ξh(Q5,2) 6 10 14 16 20 22 24 24 26 26 26 24 24 22 20 16
λh(Q5,2) 6 10 14 16 16 16 16 16 16 16 16 16 16 16 16 16
ξh(Q6,2) 7 12 17 20 25 28 31 32 37 40 43 44 47 48 49 48 51 52 53 52 53 52 51 48 49 48 47 44 43 40 37 32
λh(Q6,2) 7 12 17 20 25 28 31 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
ξh(Q7,2) 8 14 20 24 30 34 38 40 46 50 54 56 60 62 64 64 70 74 78 80 84 86 88 88 92 94 96 96 98 98 98 96
λh(Q7,2) 8 14 20 24 30 34 38 40 46 50 54 56 60 62 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
ξh(Q8,2) 9 16 23 28 35 40 45 48 55 60 65 68 73 76 79 80 87 92 97 100 105 108 111 112 117 120 123 124 127 128 129 128
λh(Q8,2) 9 16 23 28 35 40 45 48 55 60 65 68 73 76 79 80 87 92 97 100 105 108 111 112 117 120 123 124 127 128 128 128
ξh(Q9,2) 10 18 26 32 40 46 52 56 64 70 76 80 86 90 94 96 104 110 116 120 126 130 134 136 142 146 150 152 156 158 160 160
λh(Q9,2) 10 18 26 32 40 46 52 56 64 70 76 80 86 90 94 96 104 110 116 120 126 130 134 136 142 146 150 152 156 158 160 160

h 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

ξh(Q7,2) 100 102 104 104 106 106 106 104 106 106 106 104 104 102 100 96 98 98 98 96 96 94 92 88 88 86 84 80 78 74 70 64
λh(Q7,2) 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
ξh(Q8,2) 135 140 145 148 153 156 159 160 165 168 171 172 175 176 177 176 181 184 187 188 191 192 193 192 195 196 197 196 197 196 195 192
λh(Q8,2) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
ξh(Q9,2) 168 174 180 184 190 194 198 200 206 210 214 216 220 222 224 224 230 234 238 240 244 246 248 248 252 254 256 256 258 258 258 256
λh(Q9,2) 168 174 180 184 190 194 198 200 206 210 214 216 220 222 224 224 230 234 238 240 244 246 248 248 252 254 256 256 256 256 256 256

h 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

ξh(Q8,2) 197 200 203 204 207 208 209 208 211 212 213 212 213 212 211 208 211 212 213 212 213 212 211 208 209 208 207 204 203 200 197 192
λh(Q8,2) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
ξh(Q9,2) 264 270 276 280 286 290 294 296 302 306 310 312 316 318 320 320 326 330 334 336 340 342 344 344 348 350 352 352 354 354 354 352
λh(Q9,2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

h 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

ξh(Q8,2) 195 196 197 196 197 196 195 192 193 192 191 188 187 184 181 176 177 176 175 172 171 168 165 160 159 156 153 148 145 140 135 128
λh(Q8,2) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
ξh(Q9,2) 358 362 366 368 372 374 376 376 380 382 384 384 386 386 386 384 388 390 392 392 394 394 394 392 394 394 394 392 392 390 388 384
λh(Q9,2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

h 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

ξh(Q9,2) 390 394 398 400 404 406 408 408 412 414 416 416 418 418 418 416 420 422 424 424 426 426 426 424 426 426 426 424 424 422 420 416
λh(Q9,2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

h 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

ξh(Q9,2) 420 422 424 424 426 426 426 424 426 426 426 424 424 422 420 416 418 418 418 416 416 414 412 408 408 406 404 400 398 394 390 384
λh(Q9,2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

h 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

ξh(Q9,2) 388 390 392 392 394 394 394 392 394 394 394 392 392 390 388 384 386 386 386 384 384 382 380 376 376 374 372 368 366 362 358 352
λh(Q9,2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
h 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
ξh(Q9,2) 354 354 354 352 352 350 348 344 344 342 340 336 334 330 326 320 320 318 316 312 310 306 302 296 294 290 286 280 276 270 264 256
λh(Q9,2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

We make a simulation of computing the possible sizes of the edge-cuts of Qn,2 for n = 5. In the
first figure of Fig. 6, the simulink results for the edge-cuts [X,X]Q5,2 of Q5,2 with one component
having h vertices and the function ξh (Q5,2) for 1 ≤ h ≤ 25 are displayed. The possible sizes
of the edge-cuts [X,X]Q5,2 of Q5,2 for h = 6 are 22, 24, 26, 28, 30, 32, and 34 according to the



Y. Sun, M. Zhang, X. Feng, X. Yang / A concentration phenomenon for h-extra edge-connectivity. . . 17

0 5 10 15 20 25 30 35

h

 70

60

50

40

30

20

10

0Th
e 

si
m

ul
in

k 
re

su
lts

 o
n 

th
e 

si
ze

s 
of

 e
dg

e-
cu

ts
 o

f Q
5,

2

h(Q
5,

2)

 h(Q5,2)

The simulink results on the sizes of edge-cuts of 
 Q5,2  with one component h vertices

0 5 10 15 20 25 30 35

h

0

10

20

30

40

50

60

70

Th
e 

si
ze

s 
of

 a
ll 

h-
ex

tra
 e

dg
e-

cu
ts

 o
f Q

 5,
2 w

ith
 o

ne

 h
(Q

5,
2 

 h
(Q

5,
2) 

h(Q5,2)

h(Q5,2)

The sizes of the
 edge cuts of Q5,2

The sizes of all
 h-extra edge-cuts of
Q5,2  with one

 component h vertices

Fig. 5. The comparison of the sizes of h-extra edge-cuts in Q5,2 between the simulation and our results.

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

h(Q4,2)

h(Q4,2)

results of recuent authors

0 2 4 6 8 10 12 14 16
h

0

5

10

15

20

25

30

h(Q
5,

2) a
nd

 
h(Q

5,
2)

h(Q5,2)

h(Q5,2)

results of current authors

0 5 10 15 20 25 30 35
h

0

10

20

30

40

50

60

h(Q
6,

2) a
nd

 
h(Q

6,
2)

h(Q6,2)

h(Q6,2)

results of current authors

0 10 20 30 40 50 60 70
h

0

20

40

60

80

100

120

h(Q
7,

2) a
nd

 
h(Q

7,
2)

h(Q7,2)

h(Q7,2)

results of current authors

0 20 40 60 80 100 120 140
h

0

50

100

150

200

250

h(Q
8,

2) a
nd

 
h(Q

8,
2)

h(Q8,2)

h(Q8,2)

results of current authors

0 50 100 150 200 250 300
h

0

50

100

150

200

250

300

350

400

450

h(Q
9,

2) a
nd

 
h(Q

9,
2)

h(Q9,2)

h(Q9,2)

results of current authors

0 100 200 300 400 500 600
h

0

100

200

300

400

500

600

700

800

900

h(Q
10

,2
) a

nd
 

h(Q
10

,2
)

h(Q10,2)

h(Q10,2)

results of current authors

0 200 400 600 800 1000 1200
h

0

200

400

600

800

1000

1200

1400

1600

1800

h(Q
11

,2
) a

nd
 

h(Q
11

,2
)

h(Q11,2)

h(Q11,2)

results of current authors

0 500 1000 1500 2000 2500
h

0

500

1000

1500

2000

2500

3000

3500

h(Q
12

,2
) a

nd
 

h(Q
12

,2
)

h(Q12,2)

h(Q12,2)

results of current authors

Fig. 6. The scatter plot of λh(Qn,2) and ξh(Qn,2) for case 4 ≤ n ≤ 12.
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distribution of the first figure of Fig. 6. The lower bound for these values is ξ6 (Q5,2) = 22. The
scatter plot of the function ξh (Q5,2 ) (depicted in blue “ △ ” scatters) is symmetric with regard to
h = 24 because |[X,X]Q5,2 | = |[X,X]Q5,2 |. In general, the theoretical function ξh (Q5,2) lower
bounds our simulation on the sizes of all the edge-cuts [X,X]Q5,2 with one component containing h
vertices for each 0 ≤ h ≤ 24.

The sizes of the h-extra edge-cuts of Q5,2, ξh (Q5,2) and λh (Q5,2) for h ≤ 24 are shown in the
second figure of Fig. 6. According to Lemma 2.6,

λh (Q5,2) = min{ξm(Q5,2) : 1 ≤ h ≤ m ≤ 24}.

We also find that the h-extra edge-connectivity of the (5, 2)-enhanced hypercube Q5,2 presents a con-
centration phenomenon on the value 16 for 4 ≤ h ≤ 16. The results of the simulation are in consistent
with those of theoretical analysis.

Unexpectedly, we find that the h-extra edge-connectivity of Qn,2 exhibits a concentration phe-

nomenon for some exponentially large h on the interval of
⌈
11×2n−1

48

⌉
≤ h ≤ 2n−1. Let

g(n) =
∣∣{h : λh(Qn,2) = 2n−1, h ≤ 2n−1}

∣∣ .
So g(n) = 2n−1 − ⌈11×2n−1

48 ⌉ + 1. Due to |V (Qn,2)| = 2n, λh(Qn,2) is well-defined for any integer
1 ≤ h ≤ 2n−1. Let R(n) = g(n)

2n−1 be the percentage of the number of integer h with the corresponding
λh(Qn,2) = ξh(Qn,2) = 2n−1 for 1 ≤ h ≤ 2n−1. For the sake of simplicity, Table 5 lists some exact

values of the function R(n) for 4 ≤ n ≤ 31. Then R(n) =
2n−1−⌈ 11×2n−1

48
⌉+1

2n−1 , lim
n→∞

R(n) = 37
48 . The

function R(n) is shown in Fig. 7. The ratio of the length of the λh(Qn,2) = 2n−1 subinterval to the
0 ≤ h ≤ 2n−1 interval gets infinitely closer to 37

48 as n grows. For n → ∞, 77.083% of λh(Qn,2) is
2n−1, which shows the concentration phenomenon of λh(Qn,2). Furthermore, similar results can be

obtained, even if the lower bound of h is not
⌈
11×2n−1

48

⌉
for 4 ≤ n ≤ 8.

Table 5. The values g(n) and R(n) for 4 ≤ n ≤ 31.

n g(n) R n g(n) R

4 7 87.5% 18 101035 77.083587%

5 13 81.25% 19 202070 77.083587%

6 25 78.125% 20 404139 77.083396%

7 50 78.125% 21 808278 77.083396%

8 99 77.34375% 22 1616555 77.083349%

9 198 77.34375% 23 3233110 77.083349%

10 395 77.148437% 24 6466219 77.083337%

11 790 77.148437% 25 12932438 77.083337%

12 1579 77.099609% 26 25864875 77.083334%

13 3158 77.099609% 27 51729750 77.083334%

14 6315 77.087402% 28 103459499 77.083333%

15 12630 77.087402% 29 206918998 77.083333%

16 25259 77.084350% 30 413837995 77.083333%

17 50518 77.084350% 31 827675990 77.083333%

Fig. 7. The plot of the function R(n).
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5. Conclusion

It is well known that the h-extra edge-connectivity is an important indicator for measuring the fault tol-
erance and reliability of interconnection networks. This paper shows that the h-extra edge-connectivity
of (n, 2)-enhanced hypercubes Qn,2 presents a concentration phenomenon in the subinterval⌈

11×2n−1

48

⌉
≤ h ≤ 2n−1

for n ≥ 9. For approximately 77.083% values of h ≤ 2n−1, the minimum number of link malfunc-
tions is 2n−1, and these link malfunctions disconnect (n, 2)-enhanced hypercube Qn,2 and keep each
resulting connected subnetworks with at least h processors. Our results provide a more accurate mea-
sure for evaluating the reliability and availability of large-scale Qn,2 networks. In order to completely
solve the h-extra edge-connectivity of the remaining intervals, we will further investigate an algorithm
to determine the exact value and the optimality of the h-extra edge-connectivity of Qn,2 for each in-
teger h ≤ 2n−1 in the future. Additionally, for the general network Qn,k, we propose to design an
algorithm to determine the exact value and the optimality of λh(Qn,k).
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