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Abstract. Reliability assessment of interconnection networks is critical to the design and main-
tenance of multiprocessor systems. The (n, k)-enhanced hypercube Q,, x, as a variation of the
hypercube @),,, was proposed by Tzeng and Wei in 1991. As an extension of traditional edge-
connectivity, h-extra edge-connectivity of a connected graph G, A\, (G), is an essential parameter
for evaluating the reliability of interconnection networks. This article intends to study the h-extra
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edge-connectivity of the (n, 2)-enhanced hypercube @, 2. Suppose that the link malfunction of
an interconnection network (),, 2 does not isolate any subnetwork with no more than h — 1 pro-
cessors, the minimum number of these possible faulty links concentrates on a constant 2"~ for
each integer [%] < h < 21 and n > 9. That is, for about 77.083% of values where
h < 27n~1 the corresponding h-extra edge-connectivity of Qn.2, A\ (Qn,2), presents a concentra-
tion phenomenon. Moreover, the lower and upper bounds of » mentioned above are both tight.

Keywords: Interconnection networks, Reliability and links fault tolerance, Concentration phe-
nomenon, Enhanced hypercubes, h-Extra edge-connectivity.

1. Introduction

The growing need to process and store massive amounts of data has led to increase more interest in
multiprocessor systems. The advent of multiprocessor systems with a large number of processors and
links meets this requirement [13, 25, 34]. As the scale of such these systems continues to increase, so
does the probability of links malfunctioning or failing. In addition, finding an appropriate parameter
to measure the reliability of the system is crucial to the design and maintenance of the multiprocessor
system [12, 15, 16, 26, 27, 30]. It is well known that the underlying topology of an interconnection
network can be modeled by a connected graph G = (V, E), with vertex set V' representing processors
and edge (link) set E representing the communication links between processors. The degree of a
vertex in G is the number of edges incident to it. A graph G is called d-regular if and only if the
degree of each vertex in graph G is d.

The performance of the interconnection network can usually be reflected by the topological pa-
rameters of its underlying connected graph GG [6]. The connectivity and edge-connectivity are two
essential parameters for the reliability and fault tolerance assessment of interconnection networks.
The connectivity x(G) or the edge-connectivity A\(G) of a connected graph G is defined as the min-
imum number of vertices or edges whose removal from G makes the remaining graph disconnected.
For most common graphs, their connectivity or edge connectivity frequently coincides exactly with
their minimum degree. Moreover, the set of faulty edges that renders the graph disconnected is often
linked to a unique vertex whose degree matches the minimum degree of the entire network. However,
in the case of large, real-world networks, when disconnection occurs, it is rarely due to all faulty edges
being concentrated around a single vertex. Consequently, while traditional definitions of connectivity
or edge connectivity provide a foundation of a graph G, they may not offer a meticulous measure
for assessing the fault tolerance capabilities of such networks. Therefore, Harary [7] proposed more
refined parameters, conditional connectivity and conditional edge-connectivity to meet this need in
1983. Due to the closed interconnection between various local parts of G, when some malfunction of
links and processors occurs, some parts of the local structures cannot be destroyed completely. The
edges in a forbidden faulty edge set cannot fail simultaneously. By restricting the forbidden faulty
edge set to the sets of neighboring edges of any induced subgraph with no more than /A — 1 vertices
in the faulty networks, Fabrega and Fiol [5] proposed the h-extra edge-connectivity in 1996. Given a
positive integer h, an h-extra edge-cut of a connected graph G is defined as a set of edges of G whose
deletion yields a disconnected graph with all its components having at least h vertices. The h-extra
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Table 1. Previous knowns and current results on the h-extra edge-connectivity for some classes of intercon-
nection networks.

Graph h An Authors
Qn 1< h<2lsl nh —exp(Qn),n > 4 Li and Yang [11] in 2013
Q3 3lalr |20 < p < 3l5THr 2([2] — )33+ 0 >3 Ma et al. [14] in 2021
FQ, 1 n+1,n>2 El-Amawy and Latifi [4] in 1991
2 2n,m > 2 Zhu and Xu [37] in 2006
3 3n—1,n>5 Zhu et al. [38] in 2007
4 n—-—4,n>5 Chang et al. [2] in 2014
<n En(FQn),n>6 Yang and Li [22] in 2014
<2031+ _ 4 forodd n Eh(FQn),n >4 Zhang et al. [32] in 2016
< 2( 1+1 _ 2 for even n & (FQp),n >4 Zhang et al. [32] in 2016
a5+l _ g, < p < alzltl £ |2)2l31+t n > 4 Zhang et al. [32] in 2016
2l2J+T —l. <h<2lsltrd (2] —r+ 1)2l514r Zhang et al. [32] in 2016
1< h<onl Algorithm Zhang et al. [33] in 2018
B, 1 n Chen et al. [3] in 2003
2 2n —2 Chen et al. [3] in 2003
3 3n—5 Zhu et al. [39] in 2006
4 4n —8 Hong and Hsieh [9] in 2013
o2l <l 21 Zhang et al. [31]in 2014
Qui 1 n,5<k<n-—1 Sabir et al. [17] in 2019
2 3n—1,5<k<n-1 Sabir et al. [17] in 2019
1<h<2lEl g, n<2+3k>3% (n41)h — 5 o125 + 325, 2i2%  Xuetal. [21] in 2021
231 —d, <h <2031 2k <n <2k +3 (n+ l)h S8 o ti2h + 305 1 2i2%  Xuetal. [21] in 2021
231 —d, <h <2l k+2<n<2b—1 (2203 Xu et al. [21] in 2021
1<h<2BEH — g n>2k+4 (n+ )h S8 o2t 4+ 305 0 2i2%  Xuetal. [21]in 2021
o[+ g, < h < 271+ |2]2lzT+1 Xu et al. [21] in 2021
Qn,2 [%] <h<L2n! 2n1 (k= 2) Current

T — 1, gzt ( — gzr—z
where 7 = 1,2,...,[5] — land I, = *5— if nis odd and I, = *5— if n is even.
§ where f = 0if n is even, and f = 1 if n is odd.

£ where d, = 2 if nis even, and d, = 4 if n is odd.

edge-connectivity of a connected graph G, denoted as A\, (G), is defined as the minimum cardinality
of all h-extra edge-cuts of G. Given a vertex set X C V(G), the complement of a vertex set X is
X =V(G)\ X. G[X] and [X, X|¢ can be defined as the subgraph induced by the vertex set X and
the set of edges of G in which each edge contains one end vertex in X and the other end vertex in
X, respectively. Let &,,(G) = min{|[X, X]g| : |X |= m < || V(G)|/2], G[X] is connected}. If
A (G) = &r(GQ), it is called \j,-optimal; otherwise, it is not A,-optimal. Many authors studied exact
values of the h-extra edge-connectivity of some promising interconnection networks, such as hyper-
cubes [11], folded hypercubes [2, 4, 22, 32, 33, 37, 38], BC networks [3, 9, 23, 31, 39], and 3-ary
n-cubes [14]. The specific conclusions are shown in Table 1.

The enhanced hypercube is a variant of the hypercube. Based on n-dimensional hypercube Q,,,
Tzeng and Wei [19] proposed the concept of (n, k)-enhanced hypercube @, 1, for 1 < k < n — 1,
by adding different types of complementary edges. Compared to ), the (n, k)-enhanced hypercube
Qn. 1 performs very well in many measurements, such as notably reduced mean internode distance,
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considerably smaller diameter, highly optimized traffic density, robust connectivity, exceptional fault
tolerance, remarkable cost-effectiveness [19], superior communication ability, and outstanding diag-
nosability [20]. Undoubtedly, the enhanced hypercubes (,, ;. require more hardware to build than
hypercubes (,,. However, when n is large, the expense is minimal, and the benefits of the struc-
tural advantages are substantial. Due to attractive properties, the (n, k)-enhanced hypercube has been
widely studied.

Recently, the h-extra edge-connectivity and h-extra connectivity of (), ;, are widely investigated.
For the edge version, Sabir et al. [17] investigated Ay (@, %) for h = 1,2 in 2019; while Xu et al. [21]
studied A\, (Qup) for 1 < b < 20311 n > 2k 4 4and 1 < h < 2051 n < 2k + 3,k > 3 in 2021.
For the vertex version, Li et al. [10] determined that k1(Qp %) forn = k+ 1and k > 1, ko(Qn k)
forn = k+1and k > 3 and k3(Qp k) forn = k + 1 and k£ > 3 in 2020. Sabir et al. [17] also
determined k1 (Qp 1) forn > 7,2 <k <n —>5and ka(Qn k) forn >9and 2 < k < n — 7in 2019.
Yin and Xu [28] proved ky(Qpn k) for 0 < g <n—k—-1,4 <k <n—>5andn > 9in2022. In
particular, for £ = 1, the (n, k)-enhanced hypercubes @, ;. is n-dimensional folded hypercubes F'Q,.
They also allow a linear number of malfunctions. It is not enough. Aim to go further, we consider the
cases under the exponentially many faulty links.

In 2013, Li and Yang investigated A,(Q,) for 1 < h < 2Lz and n > 4. In 2014, Yang and Li
[22] determined A\, (FQ,,) for h < n and n > 6. In 2014, Zhang et al. [31] studied \,(B,,) for
1< h<2l3l+landn > 4. In 2014, Yang and Meng [24] investigated r4(Qy,) for 0 < g <n—4.In
2017, Zhou [36] determined x4 (HL,) for0 < g <n—3andn > 5. Compared to classical Menger
theory, both h-extra edge-connectivity and g-extra connectivity offer a more refined measure of fault
tolerance and reliability in interconnection networks. For very small h or g, they usually satisfy the
An-optimality A\, (G) = &, (G) or kg-optimality ky(G) = £/(G).

If, for every integer hy < h < hg, the value of the parameter \;,(G) is a constant, then one says
that the h-extra edge-connectivity of a graph G is concentrated for the interval hy < h < ho, and
this represents a concentration phenomenon. As large as possible h; < h < hg and Ay, —1(G) <
A (G) = M(G) = My (G) < Apy+1(G), it means that this interval by < h < hg is maximal. In
particular, for h = h; = hg, M (G) = &r(G) is A\p-optimal. Recently, Zhang et al. (2016) [32]
studied the values of \,(F'Q,,), which concentrate on L%ﬂf%Hl for 2[5+ — g, < h < 25141,
where d,, = 4 if n is odd and d,, = 2 if n is even. Xu et al. (2021) [21] investigated the values of
An(Qn k) concentrate on L%Jﬂg] for 2121 — d, < h < 211 where d, = 4 if n is odd and d, = 2
if n is even. With the increase of r, the concentration phenomenon also becomes obvious. Zhang
et al. (2016) [32] also determined the values of A, (F'Q,) concentrate on ([5] — r + 1)2L2047 for
b5l — 1, < h <231+ wherer = 1,2,---, [2] —1and [, = £5L if nis odd and I, = £ =2
if n is even. The study of the concentration phenomenon of A (@), 1) has just started. Inspired by the

above results, this paper mainly focuses on the most obvious concentration phenomenon of A\, (Qr, 2)
11x2n—1 "
48

in the subinterval | < h < 2"1. For example, the values of &,(Q, 2) are marked in blue,
the values of A, (@) 2) are marked in red, and the subinterval we examines is marked in green (see
Fig. 1). Our main contributions are stated as follows.
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In the subsequent proof process, we will divide the subinterval [%] <h<2linto [2]-1

numbers of integer subintervals and we will define the m,, ;- as follows:

. nY_g_pon—8—2i 92r—1—f

Y22t BT i< <131 - 45(0)
oy = 02 it = 3] = 3 (/)
2 ifr = [3] -2 (9)
2n—1 ifr=71%]-1,(h)

350

[N
a1
o

£,(Qq ) and A, Qg )

10014 YW . -
A A A(Qg ) A

= results of current authors

0 100 200 300 400 500 600

Fig. 1. The values of £,(Qg,2) and A, (Qg,2).

Theorem 1.1. For three integers n > 9, (%1 <h<2»landl1<r< [5] — 1, the results are
as follows:

(@) M (Qn2) = Eon-1(Qn2) = 2771
(b) It is Ap-optimal (A, (Qn.2) = E4(Qn2) = 277 1) if and only if h = My, .

The rest of this paper is organized as follows. Section 2 introduces some related definitions and
lemmas. Section 3 gives several lemmas about the properties of the function &,,(Qy,2). Section 4
determines that the value of the h-extra edge-connectivity of ), 2 concentrates on a constant 2”1,
The last section concludes our results.
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2. Preliminaries

Recall that the h-extra edge-connectivity of a connected graph G, A, (G), is the minimum number of
an edge-cut of the graph G whose removal separates the graph G with all resulting components having
at least h vertices. If F' be a minimum h-extra edge-cut of a connected graph GG, then there is a fact that
G — F has exactly two components. In fact, if F' is the minimum h-extra edge-cut of the connected
graph G, G — F has p components C1, Cy, - - - , C,, with at least h vertices, p > 3. Since the graph G
is connected, there must exist integer 4, j with [V, Vol # 0, |Fi| = |F\ [Ve,, Ve,]la| < |F. Thus,
F is also a minimum h-extra edge-cut of GG, which contradicts the minimality of F'. Hence, G — F
has exactly two components. Although the original definition of &,,(G) only requires that G[X] is
connected, we do need that both G[X] and G[X] are connected in this paper. The function &,,(Q.2)
of (n, 2)-enhanced hypercubes (),, 2 does have the same result after modifying this condition. Let

m(G) = min{|[X, X]q| : |X]| =m < [|[V(G)|/2], and both G[X] and G[X] are connected}. (1)
For some d-regular graphs,
Em(G) = dm — exm(G), 2

where ex,,(G) is twice the maximum number of edges among all m vertices induced subgraphs
for each m < [|V(G)|/2]. Actually, if we can find X}, C V(G),|X}| = m, with ex,,(G) =

2|E(G[X})]|, and so that, both G[ X, ] and G[X,] are connected. Then
&m(G) = [X7, Xyl = dm — exn (G) = dm — 2| E(G[X]|.

Specifically, for the hypercube, the folded hypercube and the (n,2)-enhanced hypercube mentioned
in this article, the conclusion &,,,(G) = dm — ex,,(G) is true. By the definition of the h-extra edge-
connectivity of G, once the parameter A\, (G) is well-defined for 1 < h < |[|[V(G)|/2], the &, (G)
offers the upper bound for the A\, (G). Due to the fact that the smallest h-extra edge-cut of graph G
exactly divides graph G into two connected components [33], so the parameter \,(G) (by Zhang et
al. [33] page 299) can be calculated by

An(G) = min {,(G) : h <m < [[V(G)]/2]}- 3)

Let n, k be positive integers. The definitions of the n-dimensional hypercube (), the folded hyper-
cube F'Q,, and the (n, k)-enhanced hypercube @), j, are stated as follows.

Definition 2.1. [18] For an integer n > 1, the n-dimensional hypercube, denoted by @Q,,, is a graph
with 2" vertices. The vertex set V(Qy,) = {@pzn_1---21 : 2; € {0,1},1 < i < n} is the set of all
n-bit binary strings. Two vertices © = xpTp—1 - Tox1 and ¥y = YpYn—1 - - - Yoy1 of Q, are adjacent
if and only if they differ in exactly one position.

For any vertices * = xpxp—1---xox1 and ¥ = YpYn—1- - Yoy, the edge e = (x,y) is called
k-complementary edge (1 < k < n — 1)ifand only if y; = z; forn —k+1 <i <mn,and y; = T;
forl<j<n—-k+1.
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Flg 2. Qg’l (1e FQg), Qg’g and Q472.

As a variant of the hypercube, the n-dimensional folded hypercube F'@Q,, first proposed by El-
Amawy and Latifi [4], is a graph obtained from the hypercube (),, by adding an edge between every
pair of vertices xnxp—1---x1 and T, Tp—1 - - 21, Where x; = 1 — z; forall 1 < ¢ < n. The F'Q,
is to add complementary edges between two (n — 1)-dimensional sub-cubes. Motivated by this, by
adding k-complementary edges between two paired (n — k)-dimensional sub-cubes, in 1991, Tzeng
and Wei [19] introduced the (n, k)-enhanced hypercube @, ..

Definition 2.2. For two integers n and k with 1 < k < n—1, the (n, k)-enhanced hypercube, denoted
by Qn i, is defined to be a graph with the vertex set V' (Qp, 1) = {Tn2n—1- - z2z1 : 2; € {0,1},1 <
i < n}. Two vertices & = p&p_1 -+ 221 and y = ypYn—1 - - - y2y1 are adjacent if y satisfies one of
the following two conditions:

Dy =xpxpn_1- Tig1Z;xi—1--- w2z for 1 <i < n,wherez; =1—z; or

Qy=wprn-1- Ty g1Tp_k " T2T1.

Note that (), 1 is the n-dimensional folded hypercube F'Q),,. The (n,2)-enhanced hypercube @, 2
is obtained from the hypercube (J,, by adding 2-complementary edges between two pairs of vertices
X = TpTp_1---Toxyand y = x,Tp_1 - - - ToTq in two (n — 1)-dimensional sub-cubes.

The (n, 2)-enhanced hypercube @), 2 is (n + 1)-regular and (n + 1)-connected with 2" vertices and
(n + 1)2"*1 edges [19, 20].The enhanced hypercubes Q3 1, @32 and Q4 are illustrated in Fig. 2,
where the complementary edges are represented by a short dotted line. As the integer n grows, the
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scale of (), 2 expands exponentially, and the topological structure of (), » becomes more and more
complicated. Thus, the bitmaps of the adjacency matrix of (), 2 represent the adjacent relationship
between vertices of (,, 2. These figures of the adjacency matrix of (42, 52, Q6,2 and Q72 are
shown in Fig. 3 (in four figures, the dark pixel at location (x,y) corresponds to the edges between
vertices « and y). The bitmaps of the adjacency matrix of @), 2 have high symmetry, iterative fractal,
and sparsity.

Fig. 3. The bitmaps of adjacency matrix of @, 2 for4 <n < 7.

For positive integers 1 < m < 2771, there exists a unique binary representation m = > ;_, 2%,
where tg = |logym]|, t; = {logQ (m - Zf;% 2“)J fori > 1,and tg > t; > --- > tg > 0.
These conditions are used throughout the article when not causing ambiguity. For every vertex z =
ZnTp—1---x1 of the (n,2)-enhanced hypercubes (), 2, it also can be denoted by decimal number
S 2207 @ € {0,1}. Let Sy, be the set {0, 1,2, - - - ,m—1} (under decimal representation). And
L}, denotes the corresponding set represented by n-binary strings. By the construction of @, 2, L},
is a subset of V' (Qp2) and Q2 [L}},] is a subgraph induced by L7} in @, 2. Li and Yang proved that
both @y, [L7,] and Q, [L7,] are connected [11] and the fact that Q,, [L?,] and Q,, [L?,] are subgraphs
of Qna[L] and Qn 2 [L7,], respectively, so both Qno[L?,] and Qn 2 [L7,] are connected. The
subgraphs induced by L? in Qn,2 for m = 4,6 and 8 are shown in Fig. 4.

Happer [8], Li and Yang [11] independently obtained the exact expression of the function ez, (Q+,).

Lemma 2.3. (1) [11] For a positive integer m = > 7 2% < 2", £,,(Q,) = nm — ez, (Qy,), where

exm(Qn) = 2|E(Qn[Ly])| = 207 ti2" + 327 2i2%. (2) [11] eZmgtmy (@n) > €Zmg(Qn) +
eTm, (Qn) + 2my for positive integers mo < m;.

Arockiaraj et al. [1] obtained the exact expression of the function ez, (Q ) in 2019, which was
rewritten by Xu et al. in 2021 [21].

In the following, we let [z]* = z for z > 0; otherwise, [z]T = 0.
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000 0001

0010 0011

Fig. 4. Induced subgraphs Q4 2[L}], Q4,2[L¢] and Q4 2[LE].

Lemma 2.4. [1, 21] For each integer 1 < m < 2" and m = Y ; (2", &,(Qn2) = (n+ 1)m —
exm(Qn,2), where

exm (@Qnz2) = 2[E(QnelLy])|
=2 |E (Qu[LE))| + |g2r )27 + 2 [m — gy ]2nt — 27 2] "

€T (Qn) if1 <m <272
exm(Qp) +2m — 2071 if2n2 < < 27 L @
) e (Qn) + 2771 ifm>2""1landm =2""! +z,
B 0<z< 272
erm (Qn) + 2x ifm>2""tandm=2""1+2,
<z <2nh,

\

Then several specific examples are used to illustrate the calculation of ex,,(Q 2). For exam-
ple, for n = 4 and m = 4, ex(Qua) = 2\E(QualLl])] = S5 oti2 + 33 2i2%. Note
that S, = {0,1,2,3} and L] = {0000,0001,0010,0011}. Since 4 = 22, it can be seen that
to = 2 and ex4(Qu2) = 2|E(Qna[Li])] = 2x22+2x0x22 =8, forn = 4and m = 8,
exm(Qn2) = i oti2t + Y7 2i2% 4+ 2m — 2"~1. There are Ss = {0,1,...,7} and L =
{0000, 0001, 0010,0011,0100,0101,0110,0111}. Since 8 = 23, it can be obtained that ty = 3 and
ers(Qa2) = 2|E(Qna[La])] = 3 x 23 +2 x 0 x 2% +2 x 8 — 23 = 32. The induced subgraphs
Qu2[L3] and Q4 2[L3] are shown in Fig. 4.

Lemma 2.5. ([21]) For positive integers 1 < m < 2t and 0 < ¢t < n, erm(Qn) < tm and
exm(Qn,k) < (t + 1)m
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— )

Lemma 2.6. ([21]) For positive integers h < m = Y ¢ 2t < 27!

A (Qn,2) = min {gm(QM) ch<m< 2n—1} ’
satisfying that
Em(@n2) = (n+1)m — exp(Qn2). )

For m < 277! the following two iterative properties of the expression of ex;,(Qn2) depend on
whether (),, » matches complementary edges in the sub-network and the number of such complemen-
tary edges.

Lemma 2.7. Let m, n be two integers, n > 4,1 < m = > ;_ 2% < 21 Formy = > ¢ 2%,
m=mj1+mg,andtg >ty - >ty > ter1 >tara > - >ts >0,a<s,

(a) exm(QnQ) = €Tm, (Qn,2) + e, (Qn,2) + 2(& + 1)m2 for 1<m< 2n72;

(b) exp(Qn2) = exm, (Qn2) + eTm,(Qn2) + 2(a + 2)mg for =2 <y < 2Nl

Proof:

Note that mg = m — my = 2+t 4 2lat2 .o 42l = 377 9l = S5 st gtivatt, Since the

expression of ez, (Q)y 2) strongly depends on the binary decomposition of m and the domain of m, it
can be divided into the following two cases according to its two different forms.

(@) Forl1 <m < on—2 by Lemma 2.4, it can be obtained

eTm, (Qn2) = Y 0o ti2l + 3¢ 202t
and
€Tmy (Qn,2) = D1 tigagr2litats 4 32707 230tas
Note that
exm(Qn2) = Yoigti2" + >0 202k
= (30 o ti2 + 32520 tigqqr2bitett)
+(0 2025 + 37257 2(a + 1 402t
= X, (Qn2) + €Ty (Qn2) + 2 Zf;g_l(a + 1)2ti+a+1
= €Tmy (Qm?) + €T, (Qn,Q) + Q(CL + 1)m2.

(b) For 2"~ 2 < m < 2" !, by Lemma 2.4, it is sufficient to show that

€Tm, (Qn’g) = E?:O tiQti + Z?:O 2i2ti +2mq — 2"71

and
€Ty (Qn,Z) = Zf;gil ti+a+12ti+a+1 + Z;’;S*l 2ititat+1
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Note that
exm(Qn2) = Y 0o ti2ti + 377 2024 + 2m — 2"~
= (i ti2 + 37 e 2titen)
(05 2025 4+ 3587 9(a + 1 4 i) 2bret) 4 2m — 271
= eTm, (Qn2) + €Tmy (Qn2) +2mo +2> 707 La + 1)2ti+a+t
eTm,y (Qn2) + €Tmy (Qn2) + 2(a + 2)ma.

To sum up, the proof is completed. a

3. Some properties of the function &,,(Q,, 2)

The exact value of the function A; (@), 2) highly depends on the monotonic intervals and fractal struc-
ture of the function &,,(Q, 2). Then we introduce several lemmas to describe the properties of the

function &,,(Qn,2).
Let f = 0ifniseven, and f = 1if n is odd. To deal with the interval [%1 <m < 2" ! by
inserting [ 5] — 1 numbers of m,, , satisfying

11x2n~ 1t _
[ ><48 —| = Mp1 < My 2 < e < M, < My 41 < e <& mn,[%]fl —9on 1.

This interval is divided into [ § | — 1 numbers of integer subintervals. The expression of m,, , is defined
as follows:

S]—4-r

ZZ 02n 4— 1_|_Z 2n7872i+227"717f 1f1§r§ |’g‘| —4,(6)
My = S 2 iftr=151-3(f)
’ 2n=? if r=[31-2(9)
on—1 ifr=1[%]—1,(h)
forr =1,2,---,[%]| — 1. By calculation, it can be obtained that
11X428n_ﬂ = g = N2 20 2523—5 gn—8-2i 4 9l—f

Actually, if 1 < 7 < [2] — 4 and n is even, my, = > 22" 47 + Z[ 2 17477 gn—8-2i 4 g2r-1,
My = 2074 4 2075 4 206 4 gn=8 4 on=10 4 o4 22 4 21 and 3mn,1 = 2mp,1 + M1 =

L1>2" 35+21 T [1“428” 1] If n is odd, m,,, = ZZ 02" d=i 4 Z( 214 Ton—8-2i 4 92r—2

Mg = 2" 4+2n 5+2n 6+2” 8 1 gn-10 T gl 4 90 and3mn,1 = Mp1 + 2mp1 =
11x2n—5491—F [11><2"*11
3 = 48 .

Since, in the small-scale cases for 4 < n < 8, not all four anticipated scenarios occur (as detailed in

Table 2), this paper focuses primarily on the cases for n > 9, and provides examples of the variables
r and my,, forn = 9 and n = 10 (see Table 3).
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Table 2. The variables of r, and m,, , for4 < n < 8.

n Mnp,1 Mp,2 Mp,3 cee mn’[%w_l

4 1,(h)

5 4.(g)  16,(h)

6 8()  32,(h)

7 15(9) 16,(h)  64,(f)

8 30,(9) 32,(h) 128,(f)

Table 3. The variables of r, and m,, , for n = 9 or 10.
n=9 n =10

T Map,r Map,r
1 59=2%42%423 421 420 118 =26 425 424 4 92 4 9!
2 60 = 25 + 2% 23 4 22 120 =26 425 424 4 23
3 64 = 26 128 = 27
4 256 = 28 512 = 29

Lemma 3.1. [21] Let ¢, n and m be three integers,n > 4,0 < ¢ <n —2and 2¢ <m < 27=1 Then

gm(QnJ) Z 526 (Qn,2)-

Lemma 3.2. Let n, 7 be two integers, n > 9,7 = 1,2+, [2] — 1. Then &, , (Qn2) = 2" 1.

Proof:

According to different expressions of m,, ,, the proof will be divided into four cases.

[2]-4-r

Casel. For 1 <1 < [2]—d,my,, = Yo 2" 471+ 3,2, gn—8-2i 4 22r=1=f by Lemma 2.4
and formula (5), it can be obtained that

fmn,r (Qm?) =(n+ 1)mn7r — Clmy, (Qn,2)

5]—4-r

—(n+1) [Z?:o gn—4—i | ZLO gn—8-2i | 227"—1—f:|

—{ Yiso [(n =4 —d)2n 4 2i2n 4]
+ ZEJ)%_T [(n — 8 — 20)2 8720 4 2(3 + 4)2n—8-2]
+ [(27" -1- f)22r—1_f +2([2] - T)22r—1_f]}
= (n—l—l —n+4_i)2?:02n74—z’
2)-4— .
+(n+1—n+2) 21[22(] 7"2n78721+(n+2+f_2(%‘|)22r717f
= (5 — Z) Z?:O on—4—i +3 ZIE&ﬂI*T gn—8—2i + 92r—f
=5.2" 44 4.9 5 L4976 _ 92r—f + 92r—f _ 3. 9n=3 4 ogn3 _ gn1
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Case2. Forr = [§] —3,mp, = Z?:o 2n=4=i by Lemma 2.4 and the formula (5),
fmn,'r (QT‘L,2)

)mn r €$mn,r (Qn,2)
n+ 1) Zz 0(n —4 — i)zn—4—i _ Z?:o(” —4— i)2n—4—i _ Z?:o 9 9n—4—i
B—i) Y5 02" =5 x 277 4 4 x 2775 43 x 2070 4 2 x 27T = on L,

(n+
= (
(

Case 3. Forr = [§] —2,mp, = 273 by Lemma 2.4 and the formula (5), it is not difficult to see
that
€on3(Qna) =(n+1)x 2" 3 — (n—3) x 2" 3 =271,

Case 4. Forr = [2] — 1,m,, = 2""!, by the formula (5) and Lemma 2.4, then

En1(Qna) = (n+1) x 2" —[(n—1) x 2" 2 x 2n~t —9n~l) = 9L,

From the above four cases, it can conclude that &, , (Qn2) = 2" ! forr = 1,2,---,[2] — 1. The
proof is completed. u

< m < 2"71 there exists a positive integer r,

. . n—1
Lemma 3.3. Given two integers n > 9, [%W

satisfying my, , < m < mp py1.

fm (Qn,Q) > §mm (Qn,Q) - fmmﬂrl (Qn,Q) == gmn’(%w_l (Qn,Q)
= 5271—1(@1172) = f(%w (ng) —on—1,

Proof:
According to different expressions of ex,, (Q,2), the proof will be divided into two cases.

Case 1. {%W <m <272,

One can check that my, ;1 — My, = 22717/ for 1 <r < [2] — 3. By Lemma 3.2,

gmn,r (Qn,2) = £2n71(Qn72) — 2n—1

for1 <r < [5]— 1. Letm = my, + p, where

My = Y20 204 4 ST gns=2i g1 for1 <r<[%]-4,
My = Z?:o gn—4—i forr = [§] — 3,
0<p< 221 p=3% 2% < mpyp1 —mpp,2r —1—f>t) >, >--- >t Bythe

equation (5) and Lemma 2.7, one can deduce that

Em(@n,2) — & (Qn2)
= (n+1)(mny +p) — ety 1p(Qn2) — (0 + )My, + ex,,  (Qn2)
=(n+1)p—exm,, +p(Qn2) + exTm, ,(Qn2) (Lemma?2.4)
=(n 1)p — €T, (Qnz2) — exp(Qn2) —2([5] —r+ 1)p+exm, , (Qnz2) (Lemma 2.3(2))
=@2r—1-f)p— €$p(Qn,2) =@2r—1-f)p— exp(QQr—l—f) = gp(Q2r—1—f)-
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For p < 22717/ < 271 the value of ex,(Qr) is uniquely determined by the binary representation
of p. Therefore, ex),(Qn) = exp(Q2r—1—5). By Lemma 2.3,

€$p(Q2r—1—f) = 2|E(Q2r—1—f[L§T_1_f])|'

[L2”_1_f L2r—1_f]Q2T ., be an edge cut of Q2,—1-y. Since Q2,1 is connected graph, and

2r1fL2r1f]

if one deletes the edge cut [Lj two induced subgraphs Qo1 f[LQT =1

and Qo _1— f[L 1= f] are connected. So the edge cut [LQT 1=/ L2T 1= f]Q% 1 Of Qop 1y does
exist. By Lemma 2.5, it is sufficient to show that ex,(Qa2y—1—f) < (2r —1— f)p, and &, (Qn2) —
fmn,r (Qn,2) ( r—1-— f)p — ETp (Q2r—1—f) > 0.

If r = [2] — 2, then m,, = 2" 3. There exists a positive integer p’ = Y7 9 | satisfying
0<p <23, m=2"34p andn—3 >t >t > --- > t. The proof of & (Qn,2) > Em,. (Qn2)
is the same as the above proof of &, (Qn,2) > &m,,., (Qn,2)-

Case2. 2" 2 <m < 271,

If r = [2] — 2, then m,,, = 2"73. There exists a positive integer m” = 37 2l | satisfying
0<m <22 m=my,, +2"3+m" =2""24+m"andn —2 > tj) >t > .- > t,. By the
equation (5) and Lemma 2.7,

fm(Qn,Q) - 52"*3 (Qn,2)
= gm(Qn 2) - 52" 2 (Qn,2) + 52"—2 (Qn,2) - 52”—3 (Qn,Q)

Qar—1-p>»

(0 D2 ) — (14 D22 — (@) — 2 (@a)) + 22
= (n+1)m" — (exgn—24mn (Qn) + 2m") + exgn—2(Qp) + 2" 2 (Lemma 2.4)
= (n+1)m" — exgn—2(Qn) — exmr(Qn) — 4m” + exon—2(Qp) + 272

= (n+ 1)m" — expr (Qn) —4m” + 2772 = (n — 3)m” — ez (Qn) + 22
=(n—3)m" — ez (Qu_z) + 2" 2 = & (Qn-3) +2"" 2 > 0.

For 0 < m” < 2772 the value of ex,,,»(Qy) is uniquely determined by the binary representation
of m”. Thus, ex,,(Qn) = expmr(Qn—s). By Lemma 2.5, (n — 3)m” — ex!} (Qn—3) > 0 for
0 <m” <272 Thus, &,(Qn2) > Ermnr (Qn,2).

Combining the above two cases, £y (Qn,2) > &m,, ., (@n,2) = Emppir (Qn2) = 5[1“271 1} (Qn2) =

48
2" for 1 < r < [%] — 2. So the proof is completed. O

4. The h-extra edge-connectivity of (), » concentrates on 2" !

for [%1 < h <2l

The proof of Theorem 1.1 (a):

11x2n—1
48

Given each integer h, for { w < h< My [2]-1 = 271 there exists an integer r,1 < r <

[5] — 1, satisfying m,, , < h < my, r11. By Lemma 2.6 and Lemma 3.3,
An(Qn2) = min{&m (Qn2) : mpyr <h <m <My} = S, (Qn,2)
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forr =1,2,---,[%] — 1. So for any [%1 <h<2n !

)‘h (Qn,?) = min{gm(an) th<m< 2n—1} (Lemma 2.6)
= min{&m(Qn2) : h < m < my, 121} (Lemmas 3.3 and 3.1)

= &on-1(Qn,2) (Lemmas 3.2 and 3.3)
— 21’),—1 .

The proof of Theorem 1.1(b):
If h = my, or h = my 41, by Lemma 2.6 and Lemma 3.2 A\, (Qn2) = &(Qn2) = 2771 If
My < h < Mpry1, by Lemma 3.3, §,(Qn2) > $myppyy (@Qn,2), by Lemma 2.6 and Lemma 3.2,

)‘h(Qn,Q) - min{gm(Qn,Q) th S m S mn,r—l—l}
= fmn,r+1(Qn72) = gmn,’r'+2 (Qn,2) == gmn’r%],l(Qn,Q) =2"

So, one can get A\, (Qn.2) = &n(Qna) = 2" for h = my or h = my i1, 1 <7 < (51— 1.
The proof is completed.

Remark 4.1. For {HXTQBTHW < h < 2" !landn > 9, the lower and upper bounds of h of \,(Qy,2)

in the above Theorem 1.1 are both tight.
(1) In fact, if n is even, then

Mg = S22 2041 ¢ ZEJ)?S gn—8-2i L o
OIS D S L D S LA L Y
By Lemma 2.6, exyy,,, , (Qn2) = €T, ,—1(Qn,2) + n. So,
Emn1 (@n2)=€m, 1 —1(@n2) = (nt1)mn1—€xm,, , (Qn2)—(n+1)(mp1—1)+exm, ,-1(Qn2) = 1.
Note that

A1 —1(Qn2) = min{&n(Qn2) : mp1 — 1< h <mpa} = &n,  —1(Qn2)
= 27’L—1 - ]. < 2n_1 - )\mn,1(Qn,2) = é—mn,l(anz)'

If n is odd, then

M = S 2 A T s
Mg = 1= N2 20 A e
By Lemma 2.6, €Zy,, , (Qn,2) = €Zm, ;—1(@n;2) +n — 1. So,

gmn,l(Qn,Q)*fanfl(Qn,Z) = (”Jrl)mn,l*exmng(Qn,2)*(n+1)(mn,1*1)+€xmn,rl(Qn,2) = 2.
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Similarly, it can be seen that

Amn,lfl(QnQ) = mln{gm(Qn,Z) tMnp1 — 1<m< mn,l} = §mn,171(Qn,2)
= 27171 -2< 27171 = )\an (Qn72) = é‘mml (Qn,Q)‘

Therefore, the lower bound is sharp.
(2) As |V (Qn2)| = 2™, by the definition of h-extra edge-connectivity, there are at least two compo-

nents with at least h vertices. So, the upper bound of the above interval is 2" ~!. Therefore, the upper
bound is sharp.

In cases where 4 < n < 9 and h < 271, the values of A (@n2) and &,(Q2) are listed in
Table 4. And the values of A\, (@ 2) do not satisfy the equality Ay (Qn,2) = £,(Qn,2) are marked in
red, otherwise are marked in black. Based on these data, the scatter plots of £5,(Qy 2) and A\, (Qn2)
are plotted. We plot the &, (Q, 2) marked in “ A ” scatters and the A\, (Q, 2) marked in *“ x ” scatters
for4 < n < 12 in Fig 5. On the X-axis in Fig. 5, the results of this article are represented by the
green lines.

Table 4. Examples of {5, (Q2) and A, (Qp,2) for4 <n <9.

h 1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 23 24 25 26 27 28 29 30 3 3
Q2 5 8 112 13 2 1 s

M(Qa2) 5 8 8 8 8 8 8 8

En(Qs2) 6 10 14 16 20 22 24 24 26 26 26 24 24 22 20 16

M(Qs2) 6 10 14 16 16 16 16 16 16 16 16 16 16 16 16 16

&lQe2) 7 1217 20 25 28 31 32 37 40 43 44 47 48 49 48 51 52 53 52 53 52 51 48 49 48 47 44 43 40 37 3R
An(Qe,2) 7 12 17 20 25 28 31 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
&(Qr2) 8 1420 24 30 34 38 40 46 S0 54 56 60 6 64 64 70 74 78 8 8 8 88 88 92 94 9 96 98 98 98 96
M(Qr2) 8 1420 24 30 34 38 40 46 S0 54 56 60 62 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
n(Qs2) 9 16 23 28 35 40 45 48 55 60 65 68 73 76 79 80 87 92 97 100 105 108 11 112 117 120 123 124 127 128 129 128
M(@s2) 9 16 23 28 35 40 45 48 55 60 65 68 73 76 79 80 8 92 97 100 105 108 111 112 117 120 123 124 127 128 128 128

&(Qo2) 10 18 26 32 40 46 52 56 64 70 76 80 86 90 94 96 104 110 116 120 126 130 134 136 142 146 150 152 156 158 160 160
An(Qo2) 10 18 26 32 40 46 52 56 64 70 76 80 8 90 94 9% 104 110 116 120 126 130 134 136 142 146 150 152 156 158 160 160
h 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

&(Qr2) 100 102 104 104 106 106 106 104 106 106 106 104 104 102 100 96 98 98 98 96 96 94 92 88 88 86 84 80 78 74 70 64

M(Qr2) 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64

&(Qs2) 135 140 145 148 153 156 159 160 165 168 171 172 175 176 177 176 181 184 187 188 191 192 193 192 195 196 197 196 197 196 195 192
An(@s2) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
&n(Qo2) 168 174 180 184 190 194 198 200 206 210 214 216 220 222 224 224 230 234 238 240 244 246 248 248 252 254 256 258 258 258 256
Mi(Qo2) 168 174 180 184 190 194 198 200 206 210 214 216 220 222 224 224 230 234 238 240 244 246 248 248 252 254 256 256 256 256 256 256
h 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

n(Qs2) 197 200 203 204 207 208 209 208 211 212 213 212 213 212 211 208 211 212 213 212 213 212 211 208 209 208 207 204 203 200 197 192
An(Qs2) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
£n(Qo2) 264 270 276 280 286 290 294 296 302 306 310 312 316 318 320 320 326 330 334 336 340 342 344 344 348 350 352 352 354 354 354 352
Mi(Qo2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
h 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
&(Qs2) 195 196 197 196 197 196 195 192 193 192 191 188 187 U84 181 176 177 176 175 172 171 168 165 160 159 156 153 148 145 140 135 128
An(Qs2) 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128
En(Qv2) 358 362 366 368 372 374 376 376 380 382 384 384 386 386 386 384 388 390 392 392 394 394 394 392 394 394 394 392 392 390 388 384
M(Qo2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
h 129 130 131 132133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
&(Qo2) 390 394 398 400 404 406 408 408 412 414 416 416 418 418 418 416 420 422 424 424 426 426 426 424 426 426 426 424 424 422 420 416
M(Qo2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
h 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
E(Qo2) 420 422 424 424 426 426 426 424 426 426 426 424 424 422 420 416 418 418 418 416 416 414 412 408 408 406 404 400 398 394 390 384
Mn(Qo2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
h 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 206 217 218 219 220 221 222 223 224
&n(Qoz2) 388 390 392 392 394 394 394 392 394 394 394 392 392 390 388 384 386 386 386 384 384 382 380 376 376 374 372 368 366 362 358 352
M(Qo2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256
h 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
&n(Qo2) 354 354 354 352 352 350 348 344 344 342 340 336 334 330 326 320 320 318 316 312 310 306 302 296 294 290 286 280 276 270 264 256
M(Qo2) 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256 256

We make a simulation of computing the possible sizes of the edge-cuts of (), 2 for n = 5. In the
first figure of Fig. 6, the simulink results for the edge-cuts [ X, Y]QS,2 of (Y52 with one component
having h vertices and the function &, (Q572) forl < h < 2° are displayed. The possible sizes

of the edge-cuts [X, X|qg,, of @52 for h = 6 are 22, 24,26, 28, 30,32, and 34 according to the
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distribution of the first figure of Fig. 6. The lower bound for these values is &g ((52) = 22. The
scatter plot of the function &, (Q52) (depicted in blue “ A ” scatters) is symmetric with regard to
h = 2% because |[X, X]q,,| = [[X, X]qs.|- In general, the theoretical function &, (Q52) lower
bounds our simulation on the sizes of all the edge-cuts [X, Y]Qs’2 with one component containing h
vertices for each 0 < h < 24,

The sizes of the h-extra edge-cuts of Q5 2,&, (Q5,2) and Ay, (Q5,2) for h < 24 are shown in the
second figure of Fig. 6. According to Lemma 2.6,

A (@52) = min{&n(Qs2) 1 1 < h <m < 2%}

We also find that the h-extra edge-connectivity of the (5, 2)-enhanced hypercube ()5 > presents a con-
centration phenomenon on the value 16 for 4 < h < 16. The results of the simulation are in consistent
with those of theoretical analysis.

Unexpectedly, we find that the h-extra edge-connectivity of (), » exhibits a concentration phe-

nomenon for some exponentially large h on the interval of PIXTZ;_IW < h <271 Let

g(n) = [{h : M(Qn2) =2""", h <21},

So g(n) =271 — %1 + 1. Due to |V (Qn,2)| = 2", An(Qn,2) is well-defined for any integer

1<h<2" !l LetR(n) = 2957_1)1 be the percentage of the number of integer i with the corresponding

M(Qn2) = &(Qn2) = 271 for 1 < h < 271, For the sake of simplicity, Table 5 lists some exact

n—1_rlix2n—1
values of the function R(n) for 4 < n < 31. Then R(n) = 2 [2n,‘ﬁ8 Hl, li_>m R(n) = i—;. The
n oo

function R(n) is shown in Fig. 7. The ratio of the length of the A\, (Q,2) = 2"~! subinterval to the
0 < h < 2" ! interval gets infinitely closer to % as n grows. For n — 00, 77.083% of Ap(Qn,2) is
2"=1 which shows the concentration phenomenon of Aj,(Qy 2). Furthermore, similar results can be

obtained, even if the lower bound of h is not {%-‘ ford <n <8.

Table 5. The values g(n) and R(n) for4 < n < 31.

100
n g(n) R n g(n) R
4 7 87.5% 18 101035 77.083587% o
5 13 81.25% 19 202070 77.083587%
6 25 78.125% 20 404139 77.083396% %
7 50 78.125% 21 808278 77.083396% §
8 99 77.34375% 22 1616555 77.083349% & o
9 198 77.34375% 23 3233110 77.083349%
10 395 77.148437% 24 6466219 77.083337% %
11 790 77.148437% 25 12932438 77.083337%
12 1579 77.099609% 26 25864875 77.083334% s
13 3158 77.099609% 27 51729750 77.083334% 0 5 M0 M523 3% 4 45K
14 6315 77.087402% 28 103459499  77.083333% "
15 12630  77.087402% 29 206918998  77.083333% . .
16 25259  77.084350% 30 413837995  77.083333% Flg 7. The plOt of the function R(’I’L)

50518  77.084350% 31 827675990  77.083333%

—_
-3
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5. Conclusion

It is well known that the h-extra edge-connectivity is an important indicator for measuring the fault tol-
erance and reliability of interconnection networks. This paper shows that the h-extra edge-connectivity
of (n,2)-enhanced hypercubes (), » presents a concentration phenomenon in the subinterval

11x27—1 n—1
[T-| <h<2

for n > 9. For approximately 77.083% values of h < 2”1, the minimum number of link malfunc-
tions is 2" !, and these link malfunctions disconnect (n, 2)-enhanced hypercube Qn,2 and keep each
resulting connected subnetworks with at least i processors. Our results provide a more accurate mea-
sure for evaluating the reliability and availability of large-scale (), » networks. In order to completely
solve the h-extra edge-connectivity of the remaining intervals, we will further investigate an algorithm
to determine the exact value and the optimality of the h-extra edge-connectivity of (), 2 for each in-
teger b < 2"~1 in the future. Additionally, for the general network Q,, ., we propose to design an
algorithm to determine the exact value and the optimality of Ay, (Qy, k).
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