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Abstract

A geodesic cover, also known as an isometric path cover, of a graph is a set of geodesics which
cover the vertex set of the graph. An edge geodesic cover of a graph is a set of geodesics which
cover the edge set of the graph. The geodesic (edge) cover number of a graph is the cardinality
of a minimum (edge) geodesic cover. The (edge) geodesic cover problem of a graph is to find the
(edge) geodesic cover number of the graph. Surprisingly, only partial solutions for these problems
are available for most situations. In this paper we demonstrate that the geodesic cover number of
the r-dimensional butterfly is ⌈(2/3)2r⌉ and that its edge geodesic cover number is 2r.
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1. Introduction

Let G = (V (G), E(G)) be a graph. The distance d(x, y) between vertices x, y ∈ V (G) is the length
of a shortest x, y-path in G; any such path is called a geodesic. The diameter diam(G) of G is
the maximum distance between any pair of vertices in G, that is, diam(G) = maxu,v dG(u, v). A
subgraph H of G is isometric if dG(x, y) = dH(x, y) for all x, y ∈ V (H).

A geodesic cover of a graph G is a set S of geodesics such that each vertex of G belongs to at least
one geodesic of S. It is popularly known as isometric path cover [4, 5, 8, 9, 12]. The geodesic cover
problem is one of the fundamental problems in graph theory. The concept of geodesic cover is widely
used in social networks, computer networks, and fixed interconnection networks [8]. Throughout this
paper, Z(G) denotes the set of all geodesics of G and M(G) denotes the set of all maximal (with
respect to inclusion) geodesics of G.

Given Y ⊆ Z(G) and S ⊆ V (G), a geodesic cover of the triple (Y, S,G) is a set of geodesics
of Y that cover S. Given Y ⊆ Z(G) and S ⊆ V (G), the geodesic cover number of (Y, S,G),
gcover(Y, S,G), is the minimum number of geodesics of Y that cover S. Note that there exist situa-
tions where gcover(Y, S,G) may not exist.

When Y ⊆ Z(G) and S = V , gcover(Y, V,G) is denoted by gcover(Y,G).
When Y = Z(G) and S ⊆ V , gcover(Z(G), S,G) is denoted by gcover(S,G).
When Y = Z(G) and S = V , gcover(Z(G), V,G) is denoted by gcover(G).

Given Y ⊆ Z(G) and S ⊆ V (G), the geodesic cover problem of (Y, S) is to find gcover(Y, S,G) of
G. The geodesic cover problem of G is to find gcover(G) of G. An edge geodesic cover of a graph
is a set of geodesics which cover the edge set of the graph. The edge geodesic cover number of a
graph G, gcovere(G), is the cardinality of a minimum edge geodesic cover. The edge geodesic cover
problem of a graph G is to find gcovere(G).

The geodesic cover problem is known to be NP-complete [2,14]. Apollonio et al. [1] have studied
induced path covering problems in grids. Fisher and Fitzpatrick [3] have shown that the geodesic
cover number of the (r × r)-dimensional grid is ⌈2r/3⌉. The geodesic cover number of the (r × s)-
dimensional grid is s when r ≥ s(s − 1), cf. [9]. On the other hand, the complete solution of the
geodesic cover problem for the two-dimensional grid is still unknown, cf. [9]. There is no literature
for the geodesic cover problem on multi-dimensional grids.

The geodesic cover problems for cylinder and r-dimensional grids are discussed in [9]. In par-
ticular, the isometric path cover number of the (r × r)-dimensional torus is r when r is even, and is
either r or r + 1 when r is odd. In [11], the geodesic cover problem was studied on block graphs,
while in [12] it was investigated on complete r-partite graphs and Cartesian products of two or three
complete graphs.

Fitzpatrick et al. [4, 5] have shown that the geodesic cover number of the hypercube Qr is at least
2r/(r+1) and they have provided a partial solution when r+1 is a power of 2. The complete solution
for the geodesic cover number of hypercubes is also not yet known, cf. [4,5,8]. Manuel [9] has proved
that the geodesic cover number of the r-dimensional Benes network is 2r. In [8,9] the (edge) geodesic
cover problem of butterfly networks was stated as an open problem. In this paper we solve these two
problems.
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2. Preliminaries

The results discussed in this section will be used as tools to prove the key results of this paper.

Lemma 2.1. If G is a connected graph, then the following hold.

(i) If S′ ⊆ S′′ ⊆ V (G) and Y ⊆ Z(G), then gcover(Y, S′′, G) ≥ gcover(Y, S′, G).

(ii) If Y ′ ⊆ Y ′′ ⊆ Z(G) and S ⊆ V (G), then gcover(Y ′′, S,G) ≤ gcover(Y ′, S,G).

(iii) gcover(G) = gcover(M(G), G).

Proof:
Assertions (i) and (ii) are straightforward, hence we consider only (iii). Since M(G) ⊆ Z(G), (ii)
implies

gcover(G) = gcover(Z(G), V,G) ≤ gcover(M(G), V,G) = gcover(M(G), G).

Since each geodesic is a subpath of some maximal geodesic, for each geodesic cover S of Z(G), there
exists a geodesic cover S′ of M(G) such that |S| = |S′|. Therefore,

gcover(Z(G), V,G) ≥ gcover(M(G), V,G)

and consecutively

gcover(G) = gcover(Z(G), V,G) ≥ gcover(M(G), V,G) = gcover(M(G), G).

⊓⊔

Proposition 2.2. If Kr,r, r ≥ 2, is a complete bipartite graph, then gcover(Kr,r) = ⌈(2/3)r⌉.

Proof:
Clearly, each maximal geodesic of Kr,r is a (diametral) path of length 2. Therefore, gcover(Kr,r) ≥
⌈(2/3)r⌉. On the other hand, it is a simple exercise to construct a geodesic cover of cardinality
⌈(2/3)r⌉. ⊓⊔

Butterfly is considered as one of the best parallel architectures [6, 7, 15]. For r ≥ 3, the r-
dimensional butterfly network BF (r) has vertices [j, s], where s ∈ {0, 1}r and j ∈ {0, 1, . . . , r}. The
vertices [j, s] and [j′, s′] are adjacent if j′ = j + 1, and either s = s′ or s and s′ differ precisely in the
jth bit. BF (r) has (r+1)2r vertices and r2r+1 edges. A vertex [j, s] is at level j and row s. There are
two standard graphical representations for BF(r), normal representation and diamond representation,
see Fig. 1.

Estimating the lower bound of gcover(BF(r)) in Section 3.1, we will use the diamond repre-
sentation of BF(r), while estimating the upper bound of gcover(BF(r)) in Section 3.2, the normal
representation of BF(r) will be used.
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Figure 1: (a) Normal representation of BF(3) (b) Diamond representation of BF(3).

Lemma 2.3. A geodesic of BF(r) contains at most two vertices of level 0 and at most two vertices of
level r. Moreover, if a geodesic contains two vertices of level 0, then they are the ends of the geodesic
(and similarly for level r).

Proof:
Let us assume that there exists a geodesic P which contains more than two vertices of level 0, say
vi, vj , and vk. See Fig. 2(b). Then one of these three vertices must be an internal vertex of P , say
vj . The deletion of the vertices at level 0 from BF(r) disconnects BF(r) into two vertex disjoint
components G1 and G2, where both G1 and G2 are isomorphic to BF(r − 1), cf. [7, 13, 16]. Since vj
is an internal vertex of P and of degree 2, its neighbors vj−1 and vj+1 also lie in P . Moreover, one of
the adjacent vertices vj−1, vj+1 lie in G1 and the other lie in G2. Also, vi has two adjacent vertices,
say vi−1 ∈ V (G1) and vi+1 ∈ V (G2). Since G1 and G2 are isomorphic, the vi−1, vj−1-geodesic and
the vi+1, vj+1-geodesic are isomorphic, which in turn implies that d(vi, vj−1) = d(vi, vj+1). This is
not possible as P is a geodesic. ⊓⊔

As the butterfly network is symmetrical with respect to level 0, it is symmetrical with respect to
level r, cf. [7, 13, 16]. Using the logic of the proof of Lemma 2.3, one can prove the following.

Corollary 2.4. If both end vertices of a geodesic P of BF(r) are either at level 0 or at level r, then P
is maximal.
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Lemma 2.5. A geodesic of BF(r) covers at most three vertices of degree 2.

Proof:
Suppose a geodesic P contains four vertices a, b, c, d of degree 2. Then all the vertices a, b, c, d are
at level 0 or at level r. By Lemma 2.3, three of these vertices can not be at the same level. Assume
without loss of generality that a and b are at level 0 and c and d are at level r. Let P (a, b) be a subpath
of P between a and b, and P (c, d) the subpath of P between c and d. By Corollary 2.4, P (a, b) and
P (c, d) are maximal geodesics, a contradiction. ⊓⊔

Corollary 2.6. If a geodesic P of BF(r) covers three vertices of degree 2, then the end vertices of P
are of degree 2, and P is maximal.

3. The geodesic cover problem for BF(r)

3.1. A lower bound for gcover(BF(r))

3.1.1. Revisiting properties of BF(r)

In this section, we use the following notations. Let U and W denote the sets of vertices at level
0 and level r in BF(r), respectively. Further, let U = U b

⋃
U r, where U b = {ub1, ub2, . . . , ub2r−1}

and U r = {ur1, ur2, . . . , ur2r−1}. Similarly, W = W b
⋃
W r where W b = {wb

1, w
b
2, . . . , w

b
2r−1} and

W r = {wr
1, w

r
2, . . . , w

r
2r−1}, see Fig. 2(a).

In order to gain an in-depth understanding of the behavior of the geodesics of BF(r), it is necessary
to enumerate all the maximal geodesics of BF(r), cf. [6, 10].

Lemma 3.1. The following facts hold in BF(r).

1. For ubi , u
b
j ∈ U b, a maximal geodesic P (ubi , u

b
j) between ubi and ubj does not intersect W . For

uri , u
r
j ∈ U r, a maximal geodesic P (uri , u

r
j) between uri and urj does not intersect W .

2. For wb
i , w

b
j ∈ W b, a maximal geodesic P (wb

i , w
b
j) between wb

i and wb
j does not intersect U . For

wr
i , w

r
j ∈ W r, a maximal geodesic P (wr

i , w
r
j ) between wr

i and wr
j does not intersect U .

3. If ub ∈ U b, ur ∈ U r, and w ∈ W , then there is a unique geodesic Pw(u
b, ur) between ub and

ur passing through w. This geodesic is the concatenation of geodesics P (ub, w) and P (w, ur),
where ub ∈ U b, ur ∈ U r, and w ∈ W . Consequently, if ub ∈ U b and ur ∈ U r, then there are
2r maximal ub, ur-geodesics.

If wb ∈ W b, wr ∈ W r, and u ∈ U , then there is a unique geodesic Pu(w
b, wr) between wb and

wr passing through u. This geodesic is the concatenation of geodesics P (wb, u) and P (u,wr),
where wb ∈ W b, wr ∈ W r, and u ∈ U . Hence, if wb ∈ W b and wr ∈ W r, then there are 2r

maximal wb, wr-geodesics.

Proof:
BF(r)−W consists of two components both isomorphic to BF(r−1), cf. [6,7]. As these components
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Figure 2: (a) Vertices from U b and W b are blue, vertices from U r and W r are red. (b) vj is an internal
vertex of P and of degree 2. Its neighbors vj−1 and vj+1 lie in P . One of the adjacent vertices {vj−1,
vj+1} lie in G1 and the other lie in G2.

are furthermore convex in BF(r), we get that if either ubi , u
b
j ∈ U b, a maximal ubi , u

b
j-geodesic does

not intersect W . Analogously the other assertions hold. The assertion (3) follows from the fact that
when u ∈ U and w ∈ W , a u, v-geodesic is unique. ⊓⊔

Set now

MU,W (BF(r)) = {P : P is a maximal x, y-geodesic, either x, y ∈ U or x, y ∈ W} .

By Lemma 3.1, the set of geodesics MU,W (BF(r)) is partitioned into six disjoint subsets as follows.

Observation 3.2. MU,W (BF(r)) partitions into the following sets:

(i) {P (ubi , u
b
j) : u

b
i , u

b
j ∈ U b},

(ii) {P (uri , u
r
j) : u

r
i , u

r
j ∈ U r},

(iii) {P (wb
i , w

b
j) : w

b
i , w

b
j ∈ W b},

(iv) {P (wr
i , w

r
j ) : w

r
i , w

r
j ∈ W r},

(v) {Pw(u
b, ur) : ub ∈ U b, ur ∈ U r, w ∈ W},

(vi) {Pu(w
b, wr) : wb ∈ W b, wr ∈ W r, u ∈ U}.
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MU,W (BF(r)) is thus the set of all maximal x, y-geodesic, where either x, y ∈ U or x, y ∈ W . In
(i)-(iv) of Observation 3.2, given a pair of vertices x, y ∈ U or x, y ∈ W , there are more than one max-
imal geodesics between x and y in MU,W (BF(r)). Now we define M ′

U,W (BF(r)) ⊂ MU,W (BF(r))
as follows. First, M ′

U,W (BF(r)) contains all the geodesics from (v) and (vi) of Observation 3.2.
Second, for each pair of vertices ubi , u

b
j ∈ U b from (i), uri , u

r
j ∈ U r from (ii), wb

i , w
b
j ∈ W b from

(iii), and wr
i , w

r
j ∈ W r from (iv), select an arbitrary but fixed geodesic between them and add it to

M ′
U,W (BF(r)). In this way the set M ′

U,W (BF(r)) is defined.
For the sake of clarity, we write the members of M ′

U,W (BF(r)) explicitly below:

M ′
U,W (BF(r)) ={P ′(ubi , u

b
j) : P

′(ubi , u
b
j) is a fixed geodesic between ubi , u

b
j ∈ U b}

∪ {P ′(uri , u
r
j) : P

′(uri , u
r
j) is a fixed geodesic between uri , u

r
j ∈ U r}

∪ {P ′(wb
i , w

b
j) : P

′(wb
i , w

b
j) is a fixed geodesic between wb

i , w
b
j ∈ W b}

∪ {P ′(wr
i , w

r
j ) : P

′(wr
i , w

r
j ) is a fixed geodesic between wr

i , w
r
j ∈ W r}

∪ {Pw(u
b, ur) : ub ∈ U b, ur ∈ U r, w ∈ W}

∪ {Pu(w
b, wr) : wb ∈ W b, wr ∈ W r, u ∈ U}.

Note that for each pair ui, uj , for each pair wi, wj , for each triple ub, ur, w, and for each triple
wb, wr, u, the set M ′

U,W (BF(r)) contains a unique corresponding geodesic. Note also that

M ′
U,W (BF(r)) ⊂ MU,W (BF(r)) ⊂ M(BF(r)).

3.1.2. Estimating a lower bound for gcover(BF(r))

Lemma 3.3. If U and V are as above, then

gcover(BF (r)) ≥ gcover[M ′
U,W (BF (r)), U ∪W,BF (r)] .

Proof:
Set G = BF(r). To prove the lemma, we are going to show that

gcover(G) ≥ gcover[M(G), U ∪W,G]

= gcover[MU,W (G), U ∪W,G]

= gcover[M ′
U,W (G), U ∪W,G] .

By Lemma 2.1, we get gcover(G) ≥ gcover[M(G), U ∪W,G]. By Observation 3.2 and the definition
of M ′

U,W (G), gcover[MU,W (G), U ∪ W,G] = gcover[M ′
U,W (G), U ∪ W,G]. Next we prove that

gcover[M(G), U ∪W,G] = gcover[MU,W (G), U ∪W,G].
Since MU,W (G) ⊆ M(G), by Lemma 2.1, we get

gcover[M(G), U ∪W,G] ≤ gcover[MU,W (G), U ∪W,G].

Now it is enough to prove that

gcover[M(G), U ∪W,G] ≥ gcover[MU,W (G), U ∪W,G].
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By Lemma 2.5, a geodesic covers at most three vertices of U ∪ W . If P is a member of M(G)
such that P covers three vertices of U ∪ W in BF(r), then by Corollary 2.6, P ∈ MU,W (G). On
the other hand, if P is a member of M(G) covering two vertices v1 and v2 of U ∪ W , then by
Observation 3.2 there exists a geodesic Q of MU,W (G) such that Q covers both vertices v1 and v2.
Hence, gcover[M(G), U ∪W,G] ≥ gcover[MU,W (G), U ∪W,G]. ⊓⊔

Let us consider two sets X and Y where X = Xb∪Xr, Y = Y b∪Y r, Xb = {xb1, xb2, . . . , xb2r−1},
Xr = {xr1, xr2, . . . , xr2r−1}, Y b = {yb1, yb2, . . . , yb2r−1}, and Y r = {yr1, yr2, . . . , yr2r−1}. Now we de-
fine a complete bipartite graph G′ with the bipartition X,Y . Let us further define another complete
bipartite graph G′′ with the bipartition X0 = X ∪ {x0}, Y0 = Y ∪ {y0}. The graphs G′ and G′′ are
presented in Fig. 3.

Figure 3: (a) The complete bipartite graph G′. (b) The complete bipartite graph G′′.

Lemma 3.4. If U and V are as above, then

gcover(M ′
U,W (BF(r)), U ∪W,BF(r)) ≥ ⌈(2/3)2r⌉ .

Proof:
Set G = BF(r) and let G′ and G′′ be the complete bipartite graphs as defined above. To prove the
lemma we claim that the following holds:

gcover(M ′
U,W (G), U ∪W,G) ≥ gcover(M(G′′), X ∪ Y,G′′)

= gcover(M(G′), X ∪ Y,G′)

= gcover(G′)

≥ ⌈(2/3)2r⌉ .

In order to prove the inequality gcover(M ′
U,W (G), U ∪W,G) ≥ gcover(M(G′′), X ∪Y,G′′), we

define an 1-1 mapping f : M ′
U,W (G) → M(G′′). This mapping f : P 7→ f(P ) is defined as follows.
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1. Each P ′(ubi , u
b
j) of M ′

U,W (G), where ubi , u
b
j ∈ U b, is mapped to geodesic xbiy0x

b
j ∈ M(G′′),

where xbi , x
b
j ∈ Xb.

2. Each P ′(uri , u
r
j) of M ′

U,W (G), where uri , u
r
j ∈ U r, is mapped to geodesic xri y0x

r
j ∈ M(G′′),

where xri , x
r
j ∈ Xr.

3. Each P ′(wb
i , w

b
j) of M ′

U,W (G), where wb
i , w

b
j ∈ W b, is mapped to geodesic ybix0y

b
j ∈ M(G′′),

where ybi , y
b
j ∈ Y b.

4. Each P ′(wr
i , w

r
j ) of M ′

U,W (G), where wr
i , w

r
j ∈ W r, is mapped to geodesic yri x0y

r
j ∈ M(G′′),

where yri , y
r
j ∈ Y r.

5. Each Pwk
(ubi , u

r
j) of M ′

U,W (G), where ubi ∈ U b, urj ∈ U r, wk ∈ W , is mapped to geodesic
xbiykx

r
j ∈ M(G′′) where xbi ∈ Xb, xrj ∈ Xr, yk ∈ Y .

6. Each Puk
(wb

i , w
r
j ) of M ′

U,W (G), where wb
i ∈ W b, wr

j ∈ W r, uk ∈ U , is mapped to geodesic
ybixky

r
j ∈ M(G′′) where ybi ∈ Y b, yrj ∈ Y r, xk ∈ X .

If S is a subset set of M ′
U,W (G) in BF(r), then let f(S) be a subset of M(G′′) defined by f(S) =

{f(P ) : P ∈ S}. By the mapping defined above, if the geodesics of S cover U ∪W of BF (r), then
the geodesics of f(S) cover X ∪ Y of G′′. See Fig. 4. Since |S| = |f(S)|, by applying Lemma 2.1,
we get the inequality

gcover(M ′
U,W (G), U ∪W,G) ≥ gcover(M(G′′), X ∪ Y,G′′).

Next we shall prove that gcover(M(G′′), X∪Y,G′′) = gcover(M(G′), X∪Y,G′). By Lemma 2.1,
we get the inequality

gcover(M(G′′), X ∪ Y,G′′) ≤ gcover(M(G′), X ∪ Y,G′)

because M(G′′) is superset of M(G′). Now we prove the reverse inequality. If P ∈ M(G′′) and
V (P ) ⊆ X ∪Y , then P ∈ M(G′). In other words, if a subset S of M(G′′) covers X ∪Y , there exists
a subset S′ of M(G′) such that S′ covers X ∪ Y (in case x0 ∈ S′, then x0 is replaced with any other
vertex of X0 − S′) and |S| = |S′|. Thus, gcover(M(G′), X ∪ Y,G′) ≤ gcover(M(G′′), X ∪ Y,G′′).

Since G′(U, V,E′) is a complete bipartite graph K2r,2r , by Lemma 2.1 and Proposition 2.2, we
infer that gcover(M(G′), X ∪ Y,G′) = gcover(G′) ≥ ⌈(2/3)2r⌉. ⊓⊔

Combining Lemma 3.3 with Lemma 3.4, we have:

Lemma 3.5. If r ≥ 2, then gcover(BF(r)) ≥ ⌈(2/3)2r⌉.
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Figure 4: (a) G = BF(3). (b) Complete bipartite graph G′′. If a set S of geodesics of BF (r) cover
U ∪W of BF (r), then the geodesics of f(S) cover X ∪ Y of G′′.

3.2. An upper bound for the geodesic cover number of butterfly networks

In this section, our aim is to construct a geodesic cover of cardinality ⌈(2/3)2r⌉ for BF(r). In BF(r),
there are 2r rows and r + 1 levels. The set of vertices at level 0 is U = {u1, . . . , u2r}, the set of
vertices at level r in W = {w1, . . . , w2r}. In this section, the order of vertices in U and W are with
respect to normal representation of BF(r). (In the previous section, the order was with respect to
diamond representation.) Refer to Fig. 5. The set U is further partitioned into A and B, and W is
partitioned into C and D, see Fig. 5. These sets are formally defined as follows:

A = {[0, 1], [0, 2], . . . , [0, 2r−1]},
B = {[0, 2r−1 + 1], [0, 2r−1 + 2], . . . , [0, 2r]},
C = {[r, 1], [r, 2], . . . , [r, 2r−1]},
D = {[r, 2r−1 + 1], [r, 2r−1 + 2], . . . , [r, 2r]}.

The next important step is to color the vertices of BF(r) in two colors—red and blue. In U , the vertex
[0, i] is colored in red if i is even, and is colored in blue otherwise. In W , the vertices of C are colored
in red and the vertices of D are colored in blue. See Fig. 5 again.

We concentrate only on diametrals of BF(r) because we shall a construct geodesic cover of BF(r)
in terms of diametrals. Thus, it is necessary to study the properties of diametrals of BF(r). Throughout
this section, Pv(u,w) denotes a diametral in BF(r) such that u and w are the end vertices of Pv(u,w)
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and v is the middle vertex of Pv(u,w). Now onward, we only consider BF(r) with colored vertices
as described before, see Fig. 1.

Property 3.6. If a vertex v is at level 0 (level r) and vertices u,w at level r (level 0) are in opposite
colors, then there exists a unique diametral Pv(u,w) in BF(r).

Proof:
The structural details of two different representations of BF(r) which are illustrated in Fig. 1 are
explained in [10]. By Lemma 3.1, a geodesic P (x, y) between a vertex x at level 0 and a vertex y at
level r is unique in BF(r) and the length of P (x, y) is r. From the diamond representation of BF(r)
in Fig. 1 (b), whenever the vertex v at level 0 (level r) is in any color and vertices u,w at level r (level
0) are in opposite colors, there exists a diametral Pv(u,w) of BF(r) between u and w passing through
v. Since P (u, v) and P (v, w) are unique, Pv(u,w) is also unique. ⊓⊔

Thus, by Property 3.6, in order to construct a diametral path Pv(u,w) in BF(r), it is enough to
identify the middle vertex v at level 0 (level r) in any color and end vertices {u,w} at level r (level 0)
in opposite colors.

The construction of a geodesic cover of BF(r) is carried out in three stages, cf. Fig. 5.

Stage 1

In the first stage, the following diametrals are constructed:

1. Pui(wi, wi+2r−1), where i ∈ [2r−3] and ui ∈ A.

2. Pui(wi, wi−2r−1), where i ∈ {2r, 2r − 1, . . . , 7 · 2r−3 + 1} and ui ∈ B.

Stage 2

In the second stage, the following diametrals are constructed:

1. Pwi(ui, ui+1), where i ∈ {2r−3 + 1, 2r−3 + 3, . . . , 3 · 2r−3} and wi ∈ C.

2. Pwi(ui, ui−1), where i ∈ {7 · 2r−3, 7 · 2r−3 − 2, . . . , 5 · 2r−3 + 1} and wi ∈ D.

The vertices not covered by the diametrals during the first two stages are:

1. A′ = {ui ∈ A : i ∈ {3 · 2r−3 + 1, 3 · 2r−3 + 2, . . . , 2r−1}}.

2. B′ = {ui ∈ B : i ∈ {2r−1 + 1, 2r−1 + 2, . . . , 5 · 2r−3}}.

3. C ′ = {wi ∈ C : i ∈ {2r−3 + 2, 2r−3 + 4, . . . , 3 · 2r−3}}.

4. D′ = {wi ∈ D : i ∈ 5 · 2r−3 + 1, 5 · 2r−3 + 3, . . . , 7 · 2r−3}}.

Note that A′ has equal number of red and blue vertices and that the same holds B′. Also, C ′ has only
red vertices, while D′ has only blue vertices. Refer to Fig. 5. There are 2r−3 red vertices in A′ ∪ B′,
2r−3 blue vertices in A′ ∪B′, 2r−3 red vertices in C ′, and 2r−3 blue vertices in D′.

After Stage 1 and Stage 2, all the internal vertices (that is, the vertices from V (G)− (U ∪W )) are
covered. Few vertices of U ∪W remains uncovered, leading to Stage 3.
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Figure 5: In Stage 1, geodesics Pu1(w1, w9), Pu2(w2, w10) and Pu16(w16, w8), Pu15(w15, w7) are con-
structed (pink). In Stage 2, geodesics Pw3(u3, u4), Pw5(u5, u6) and Pw14(u14, u13), Pw12(u12, u11)
are constructed (green). The vertices which are not covered in previous stages are circled. They are
then covered in Stage 3.

Stage 3

We first regroup and rename the vertices of A′ and B′ into the following sets:

1. U r = {uri : i ∈ [2r−3]} - the red vertices of A′ and B′.

2. U b = {ubi : i ∈ [2r−3]} - the blue vertices of A′ and B′.

3. W r = {wr
i : i ∈ [2r−3]} - the vertices of C ′.

4. W b = {wb
i : i ∈ [2r−3]} - the vertices of D′.
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(The sets W r and W b are thus obtained by renaming the vertices of C ′ and D′.) The next step in
Stage 3 is to partition the vertices of U r, U b, W r, and W b into four subsets. For a fixed r ≥ 5, let
ℓ = ⌊2r−3

3 ⌋. Then 2r−3 = 3 · ℓ+ 1 or 2r−3 = 3 · ℓ+ 2.

Case 1: 2r−3 = 3 · ℓ+ 1.
Recall that U r contains 2r−3 red vertices. The set U r is further partitioned into three subsets each
subset containing ℓ vertices and one subset containing the remaining vertex urx of U r. The other three
sets U b, W r, and W b are also partitioned similarly. The partition of U r, U b, W r, and W b and their
subpartitions are:

U r

U r
1 ur1, ur2, . . . , urℓ

U r
2 urℓ+1, urℓ+2, . . . , ur2ℓ

U r
3 ur2ℓ+1, ur2ℓ+2, . . . , ur3ℓ

U r
4 urx

W r

W r
1 wr

1, wr
2, . . ., wr

ℓ

W r
2 wr

ℓ+1, wr
ℓ+2, . . ., wr

2ℓ

W r
3 wr

2ℓ+1, wr
2ℓ+2, . . ., wr

3ℓ

W r
4 wr

x

U b

U b
1 ub1, ub2, . . ., ubℓ

U b
2 ubℓ+1, ubℓ+2, . . ., ub2ℓ

U b
3 ub2ℓ+1, ub2ℓ+2, . . ., ub3ℓ

U b
4 ubx

W b

W b
1 wb

1, wb
2, . . ., wb

ℓ

W b
2 wb

ℓ+1, wb
ℓ+2, . . ., wb

2ℓ

W b
3 wb

2ℓ+1, wb
2ℓ+2, . . ., wb

3ℓ

W b
4 wb

x

The motivation to partition U r, U b, W r, and W b into three subsets of equal cardinality ℓ is illus-
trated in Fig. 6.

Using the technique of Fig. 6, the geodesics are formally constructed as follows:

1. {Pur
i
(wr

i , w
b
i ) : uri ∈ U r

1 , w
r
i ∈ W r

1 , w
b
i ∈ W b

1 , i ∈ [ℓ]}.

2. {Pwr
ℓ+i

(urℓ+i, u
b
i) : w

r
ℓ+i ∈ W r

2 , u
r
ℓ+i ∈ U r

2 , u
b
i ∈ U b

1 , i[∈ ℓ]}.

3. {Pwb
2ℓ+i

(ub2ℓ+i, u
r
2ℓ+i) : w

b
2ℓ+i ∈ W b

3 , u
b
2ℓ+i ∈ U b

3 , u
r
2ℓ+i ∈ U r

3 , i ∈ [ℓ]}.

4. {Pub
ℓ+i

(wb
ℓ+i, w

r
2ℓ+i) : u

b
ℓ+i ∈ U b

2 , w
b
ℓ+i ∈ W b

2 , w
r
2ℓ+i ∈ W r

3 , i ∈ [ℓ]}.

5. Pur
x
(wr

x, w
b
x).

6. Any geodesic covering of ubx.

In Case 1 of Stage 3 we have thus constructed 4ℓ+ 2 = ⌈2r−1

3 ⌉ geodesics covering all the vertices of
U r ∪ U b ∪W r ∪W b = A′ ∪B′ ∪ C ′ ∪D′.

Case 2: 2r−3 = 3 · ℓ+ 2.
The sets U r

1 , U r
2 , U r

3 of U r, U b
1 , U b

2 , U b
3 of U b, W r

1 , W r
2 , W r

3 of W r, and W b
1 , W b

2 , W b
3 of W b are
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Figure 6: Here U = {ur1, ur2, ur3, ub1, ub2, ub3} and W = {wr
1, w

r
2, w

r
3, w

b
1, w

b
2, w

b
3}, where

ur1, u
r
2, u

r
3, w

r
1, w

r
2, w

r
3 are red vertices, and ub1, u

b
2, u

b
3, w

b
1, w

b
2, w

b
3 are blue vertices. How to cover

the vertices by geodesics of length 3 with end vertices in opposite colors?

the same as in Case 1. The only changes are that U r
4 = {urx, ury}, U b

4 = {ubx, uby}, W r
4 = {wr

x, w
b
y},

W r
4 = {wb

x, w
b
y}. The partition of U r, U b, W r, and W b and their subpartitions are now:

U r

U r
1 ur1, ur2, . . ., urℓ

U r
2 urℓ+1, urℓ+2, . . ., ur2ℓ

U r
3 ur2ℓ+1, ur2ℓ+2, . . ., ur3ℓ

U r
4 urx, ury

W r

W r
1 wr

1, wr
2, . . ., wr

ℓ

W r
2 wr

ℓ+1, wr
ℓ+2, . . ., wr

2ℓ

W r
3 wr

2ℓ+1, wr
2ℓ+2, . . ., wr

3ℓ

W r
4 wr

x, wr
y

U b

U b
1 ub1, ub2, . . ., ubℓ

U b
2 ubℓ+1, ubℓ+2, . . ., ub2ℓ

U b
3 ub2ℓ+1, ub2ℓ+2, . . ., ub3ℓ

U b
4 ubx, uby

W b

W b
1 wb

1, wb
2, . . ., wb

ℓ

W b
2 wb

ℓ+1, wb
ℓ+2, . . ., wb

2ℓ

W b
3 wb

2ℓ+1, wb
2ℓ+2, . . ., wb

3ℓ

W b
4 wb

x, wb
y

As in Case 1, we we can construct 4ℓ+ 3 geodesics to cover all the vertices of U r, U b, W r, and W b.
We have thus constructed 4ℓ+3= ⌈2r−1

3 ⌉ geodesics covering all the vertices of U r∪U b∪W r∪W b =
A′ ∪B′ ∪ C ′ ∪D′.

Stage 1 constructs 2r−3 + 2r−3 = 2r−2 geodesics, Stage 2 constructs 2r−3 + 2r−3 = 2r−2

geodesics, and Stage 3 constructs ⌈2r−1

3 ⌉ geodesics, in total 2r−2 + 2r−2 + ⌈2r−1

3 ⌉ = ⌈(2/3)2r⌉
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geodesics. Together with Lemma 3.5 this gives our main result:

Theorem 3.7. If r ≥ 5, then gcover(BF(r)) = ⌈(2/3)2r⌉.

In Theorem 3.7 we require r ≥ 5 because ℓ = ⌊2r−3

3 ⌋ is well-defined only when r ≥ 5. It
can be checked by hand that gcover(BF(1)) = 2, gcover(BF(2)) = 4, gcover(BF(3)) = 6 and
gcover(BF(4)) = 12.

4. The edge geodesic cover problem

In this section we turn our attention to the edge geodesic cover problem for BF(r). An edge uv of
BF(r) is called a (2, 4)-edge if {deg(u),deg(v)} = {2, 4}. The number of (2, 4)-edges of BF(r) is
2r+2 [7, 10, 13].

Lemma 4.1. If r ≥ 3, then E(BF(r)) can be partitioned by a set S(r) of edge-disjoint isometric
cycles of length 4r, where |S(r)| = 2r−1 and each isometric cycle of S(r) has two vertices at level 0.

Proof:
The proof is by induction on the dimension r of BF(r). The base case is r = 3 and is ellaborated in
Fig. 7, where E(BF(3)) is partitioned by a set S(3) of edge-disjoint isometric cycles of length 4 · 3
and each isometric cycle of S(3) has two vertices at level 0.

Figure 7: The base case is BF(3) in which E(BF(3)) is partitioned by a set S of edge-disjoint iso-
metric cycles of length 4 · 3 where |S| = 23−1 = 4.

Assume now that the edge set of BF(k − 1) can be partitioned by a set S(k − 1) of edge-disjoint
isometric cycles of length 4(k − 1), where |S| = 2k−2 and each isometric cycle C of S(k − 1) has
two vertices u and w at level 0. A cycle C in S(k− 1) is represented by u−P −w−Q− u where u
and w are the two vertices of C at level 0, P is the path segment of length 2k − 2 in C between u and
w and Q is the path segment of length 2k − 2 in C between u and w. Refer to Fig. 8.

Recall that BF(r) has two copies of BF(k − 1), BF′(k − 1) and BF′′(k − 1), where V (BF′(k −
1)) = {v′ : v ∈ BF(k − 1)} and V (BF′′(k − 1)) = {v′′ : v ∈ BF(k − 1)}. Also, there are two
copies of S(k − 1) in BF(k), S′(k − 1) and S′′(k − 1), where

S′(k − 1) = {C ′ = u′ − P ′ − w′ −Q′ − u′ : C = u− P − w −Q− u ∈ S(k − 1)}
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Figure 8: (a) An isometric cycle C = u− P −w −Q− u in BF(k − 1). (b) Two copies of C are C ′

and C ′′. The two isometric cycles C ′ and C ′′ are connected by vertices a, b, x and y which are at level
0. (c) The two isometric cycles C ′ and C ′′ generate two different isometric cycles C1 and C2 (marked
in different color) in BF(k).

and

S′′(k − 1) = {C ′′ = u′′ − P ′′ − w′′ −Q′′ − u′′ : C = u− P − w −Q− u ∈ S(k − 1)}.

The length of cycles C ∈ S(k− 1), C ′ ∈ S′(k− 1), and C ′′ ∈ S′′(k− 1) is 4(k− 1). In BF(r), there
are two vertices a and b at level 0 which are adjacent to u′ of C ′ and u′′ of C ′′. In the same way, there
are two vertices x and y at level 0 which are adjacent to w′ of C ′ and w′′ of C ′′. Refer to Fig. 8. Now
define the cycles

C1 = a− u′ − P ′ − w′ − x− w′′ − P ′′ − u′′ − a

and
C2 = b− u′ −Q′ − w′ − y − w′′ −Q′′ − u′′ − b.

Since, P ′, P ′′, Q′, and Q′′ each are of length 2k − 2, it is easy to observe that the length of C1 and
C2 is 4k. Let us define S(k) = {C1, C2 : C ∈ S(k − 1)}. Each cycle C1 and C2 have two vertices at
level 0. It is easy to observe that the cycles in S(k) are isometric and they are mutually edge-disjoint.
Moreover, the cardinality of S(k) is 2k−1. Thus, the edge set of BF(k) is partitioned by the edge-
disjoint isometric cycles of S(k) such that |S(k)| = 2k−1. ⊓⊔

Theorem 4.2. If r ≥ 3, then gcovere(BF(r)) = gparte(BF(r)) = 2r.

Proof:
In order to derive the claimed lower bound for gparte(BF(r)), let us consider all (2, 4)-edges of
BF(r). As already mentioned, there are 2r+2 (2, 4)-edges in BF(r). Since a geodesic can cover a
maximum of four (2, 4)-edges of BF(r), gcovere(BF(r)) ≥ 2r+2/4 = 2r. Thus,

gparte(BF(r)) ≥ gcovere(BF(r)) ≥ 2r.
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To prove gparte(BF(r)) ≤ 2r, it is enough to construct an edge geodesic partition of cardinality
2r for BF(r). By Lemma 4.1, the edge set of BF(r) can be partitioned by a set S of edge-disjoint iso-
metric cycles of length 4r, where |S| = 2r−1. In other words, the edge set of BF(r) can be partitioned
by a set R of edge-disjoint diametrals of length 2r such that |R| = 2r. Thus, gparte(BF(r)) ≤ 2r. ⊓⊔

5. Conclusion

The geodesic cover problem is one of the fundamental problems in graph theory, but only partial
solutions are available for most situations. The geodesic cover number in both vertex and edge version
was unknown for butterfly networks, in this paper we provide a complete solutions for both versions.

Even though the geodesic cover and geodesic partition are frequently used in fixed interconnection
networks, the exact values of geodesic cover number and geodesic partition number are unknown for
popular architectures such as shuffle-exchange, de Bruijn, Kautz, star, pancake, circulant, wrapped
butterfly, CCC networks. The geodesic cover problem and the geodesic partition problem (their edge
versions) are wide open for researcher.
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