arXiv:2409.16107v3 [cs.CR] 18 Dec 2025

Fundamenta Informaticae, Volume 194, Issue 4, Article 1, 2025 1
DOI: 10.46298/fi.14339
https://fi.episciences.org/

Ciphertext malleability in Lattice-Based KEMs as a
countermeasure to Side Channel Analysis

Pierre-Augustin Berthet* ©
Hensoldt France SAS, Plaisir, France
LTCI, Télécom Paris, Palaiseau, France

berthet@telecom-paris.fr

Abstract. Due to developments in quantum computing, classical asymmetric cryptography is
at risk of being breached. Consequently, new Post-Quantum Cryptography (PQC) primitives
using lattices are studied. Another point of scrutiny is the resistance of these new primitives to
Side Channel Analysis (SCA), where an attacker can study physical leakages. In this work, we
discuss an SCA vulnerability due to the ciphertext malleability of some PQC primitives exposed
in a work by Ravi et al. We propose a novel countermeasure to this vulnerability exploiting the
same ciphertext malleability and discuss its practical application to several PQC primitives. We
also extend the seminal work of Ravi et al. by detailing their attack on the different security
levels of a post-quantum Key Encapsulation Mechanism (KEM), namely FrodoKEM. We also
provide a generalisation of their attack to different parameters which could be used in future
similar primitives.

Keywords: Post-Quantum Cryptography, Lattice-Based KEM, FrodoKEM, ML-KEM, SABER,
Side Channel Analysis, Countermeasure

1. Introduction

With the emergence of quantum computing, new primitives for asymmetric cryptography are studied.
The National Institute of Standards and Technology (NIST) launched a competition [1, 12] to select a
future Post-Quantum Cryptography (PQC) standard. The first Key Encapsulation Mechanism (KEM)
to be standardised is the Module Lattice-based Key Encapsulation Mechanism (ML-KEM) or FIPS
203 [23]. This KEM is based on the CRYSTALS-Kyber candidate [3]. However, other finalists from

*Supported by Agence de I’Innovation de Défense, grant 2022156 Theése CIFRE Défense
CCorresponding author

https://fi.episciences.org/
https://arxiv.org/abs/2409.16107v3

2 P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA

the third round of competition are using similar mathematical problems, such as SABER [4] and
FrodoKEM [22].

Another concern for new PQC primitives is their resistance to physical attacks. First introduced
by Kocher [19], Side-Channel Analysis (SCA) is a kind of cryptanalysis which targets the physical
environment of a cryptosystem and analyses potential leakages (e.g. execution timing, heat, power
consumption, electromagnetic emissions) to try and discover correlations between sensitive data and
the physical data the attacker observes.

The resistance of PQC primitives to SCA has already been studied. Several works summarise
existing papers in terms of attacks and possible countermeasures, such as Ravi et al.[29] and Canto et
al.[10] for ML-KEM. Most noticeably, ciphertext malleability, a vulnerability of several NIST PQC
lattice-based candidates, is presented by Ravi et al.[28].

1.1. Our contributions

In this work, we present a countermeasure to side-channel opponents targeting the decoding of the
message in PQC Lattice-based KEM. The attacker uses ciphertext malleability to do so and, according
to Ravi et al. [28], generic countermeasures such as masking [11, 17, 25] or shuffling [15, 35] are not
sufficient. The countermeasure uses the same ciphertext property to perform the attack as a defence
mechanism. As a consequence, the attacker cannot exploit ciphertext malleability to retrieve the secret.

However, from a high-level perspective, the countermeasure reuses existing primitive functions.
Although side-channel attacks against these functions can circumvent the countermeasure, it is fully
compatible with other generic countermeasures. We recommend its deployment alongside a shuffling
countermeasure to have a message side-channel resistance similar to a masking and shuffling coun-
termeasure but at lower costs. In essence, the countermeasure presented in this work “displaces” the
leakage point from a function where generic countermeasures are not effective to one where they are.

The countermeasure initially intervenes in the PKE.Decrypt procedure of the KEM. We also dis-
cuss extending its application to the remainder of the KEM.Decaps procedure. We discuss the speci-
ficities of this extension for three NIST PQC competition candidates, namely SABER, FrodoKEM
and ML-KEM.

We also extend the seminal attack work from Ravi et al. [28], originally against ML-KEM [23], by
providing a more detailed insight on how the attack can be performed against the different parameter
settings of the post-quantum algorithm FrodoKEM. Ravi et al. [28] attack works by adding biases to
the ciphertext to flip specific bits of the output of the decoding of the message during decapsulation.
Assuming 8-bit (resp. 16-bit) storage of the message in memory, we can recover the message of
Frodo-640 in 9 (resp. 17) traces. For Frodo-976, the adaptation of Ravi et al. [28] attack requires 10
(resp. 19) traces. We propose more optimal choices of biases than the adaptation of Ravi et al. [28]
attack by studying the impact of all possible biases instead of only focussing on the ones that flip bits.
Our ciphertext choices only require 8 (resp. 14) traces for Frodo-976. For Frodo-1344, the adaptation
requires 9 (resp. 17) traces, and our improved choice of biases only 7 (resp. 13).

The optimal choices of biases in our improvement of Ravi et al.[28] attack were done heuristically
by brute-forcing all possibilities. A Jupyter Notebook with our methods is available at the following
link:

P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA 3

https://github.com/Pierre-Augustin-Berthet/decode-1lpr

The paper is structured as follows. In Section 2 we introduce notations and detail the LPR framework
and the different primitives that use this framework in the third round of the NIST PQC competition.
Ciphertext malleability is presented in Section 3 with the seminal work of Ravi et al. [28] and our
further extension of their attack to the FrodoKEM algorithm. A generalisation of the attack is also
discussed. The countermeasure is discussed throughout Section 4, with descriptions of its overall
strategy, extension to the entirety of KEM.Decaps, scalability, compatibility with other generic coun-
termeasures, as well as a discussion on its impact against other SCAs. Section 5 concludes the paper.

2. Preliminaries

2.1. Notations

We denote by ¢ € N a modulus and Z, the set Z/qZ. n € N a message length, and R, the devolution
ring Z,[X]/ < X™ + 1 >. We denote by B the set of eight bits (or byte) {0, 1}® or F§. We denote by
U(KC) the uniform distribution over a set /C.

Remark 2.1. In this paper, we discuss three different primitives, each with their specific and conflict-
ing notation. Their notation will be used for their description; however, we unify the notation for the
other sections of the paper.

The Hamming Weight of a binary message m is the number of non-zero bits it contains. We denote
it HW (m). We denote the difference between the Hamming Weight of a message m and of a biased
message m’ by A = HW(m/) — HW (m).

We introduce the concept of an X-classes distinguisher. Let Z be an input set for a function F' and
S the output set. We have a X-classes distinguisher if we can build X distinct classes of subsets of
7 from subsets of S such as F'(Z) = S. Consequently, a class is denoted by S € S — [€ Z, that
is, the observation of S implies that the input of £ has the shape I. In this paper, Z contains binary
words composed of the letters O and 1. The letter . is used if the information on a letter of the binary
word is not certain. On the other hand, elements of S are composed of a sign “+” or “—"" followed by
a positive integer. For example, if we consider

F:7— S ,F(00)=+1,F(01) =+0,F(10) = +1, F(11) = —1, (1)
we have a two-classes as well as a three-classes distinguishers. The two-classes distinguisher is
{+1 —.0, (+0, —1) — .1}. The three-classes one is {+1 — .0, +0 — 01, —1 — 11}.

2.2. Generic SCA countermeasures

To avoid correlations between side channel leakage and sensitive variables, several generic counter-
measures have been proposed. They tend to add randomness in one way or another to the computa-
tions.

https://github.com/Pierre-Augustin-Berthet/decode-lpr

4 P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA

For example, shuffling [15, 35] randomises the execution order of the algorithm whenever possible.
Although this does not eliminate leakage, leakage detection often requires several attempts and data
alignment between those attempts to be successful. Shuffling foils the alignment and thus increases
the number of attempts required to successfully exploit the leakage.

The core idea behind blinding [21, 31] is to add to the computations a random value that will
be eliminated in the later stages of the function. As a consequence, it randomises the side-channel
leakage of the function for each of its iterations. Blinding methods tend to be specific to the functions
they protect and are less generic.

Finally, masking [11, 17, 25] aims to divide the sensitive data into several random shares. Those
shares are processed by the same algorithm separately and reassembled in the later stages of the
protected function to ensure the correctness. This forces a side-channel attacker to use more probing
hardware as it must recover each share to breach the implementation. It can be considered the most
studied and popular generic countermeasure as it benefits from formal proofs and models. A simple
example of masking is the boolean masking, which masks bits:

Forz € {0,1} and r <~ U({0,1}), Mask(z) = (z & r,r),Unmask((z & r,r)) = (xdr)Sr (2)

Remark 2.2. The generic countermeasures presented here all intervene at an algorithmic level. Other
generic countermeasures can be set up at lower levels, including directly at a hardware level with
shielding [24], for example. Shielding is performed by putting a physical barrier between the opponent
and the targeted hardware, avoiding any leakage.

2.3. LWE/LWR PKE using lattices

Several NIST PQC candidates rely on the Learning With Error (LWE) problem on lattices and its vari-
ant the Learning With Rounding (LWR). They are based on the Luybashevsky-Peikert-Regev (LPR)
framework [20], described in Algorithm 1. The error distribution on a set ' for LPR is indicated by
X(K). It can be deterministically computed from a seed r, in this case it will be denoted by x(r, K).

The Encode function is a compression function. It corresponds for a parameter d to a mapping of
elements of Zya to Z4. The function Decode performs a mapping of elements of Z, to Zya. They use
the rounding to the nearest integer denoted by [-]|. When applied to a matrix or a vector or a polyno-
mial, these functions are applied separately on each coefficient of the matrix, vector, or polynomial.
This rule applies to matrix and vector of polynomials, these functions are applied separately on the
coefficients of the polynomials. They are defined as follows:

VB € Zoa, Encode(8, d) = [2% - 5J mod g, 3)
2d
Va € Zg, Decode(a, d) = {q . oaJ mod 2°. @)

We can also use a sector representation to illustrate the effect of the Decode function as seen in Figure
1. The possible inputs are represented as positions on the circle boundary, with values ranging from 0
to ¢ = 0 counterclockwise. As the output depends on which interval the input is part of, the interval is
drawn as a sector of the circle, and the sector is labelled with its corresponding output. For example,

in Figure 1b, if the input of Decode is between ¢ and %, it will be mapped to 01.

P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA 5

Algorithm 1: LPR Encryption Scheme [28, 20]
1 Procedure PXE.KeyGen():

2 a <« U(Zyg)

3 s,e < X(Zg)

4 t=axs+e

5 return pk = (a,t), sk = (s)

6

7 Procedure PKE.Encrypt (pk,m € B2, € B32):

8 s, e, e« x(r,Zg)

9 u=axs +¢€

10 vV=txs +e

1 X = Encode(m, d)

2 | v=V +x

13 return ct = (u,v)

14

15 Procedure PKE.Decrypt (ct,sk):

6 | X =(v—uxs)

17 | m' = Decode(X,d)

18 | return m/’
9 9
2 2

=

o0l

@d=1 (byd =2 ©)d=3

Figure 1: Sector representation of the decoding function for different parameters d, with the intervals
on the circle boundary counter-clockwise and the sectors labeled with the corresponding outputs to
the intervals

2.4. Fujisaki-Okamoto Transform

The LPR framework is not IND-CCA secure (INDistinguishable-Chosen Ciphertext Attack) as an
attacker can modify u and v to recover information on s from m’. To counteract this attack, LPR-

6 P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA

based primitives use an adaptation of the Fujisaki-Okamoto Transform (FOT) [13] as described in
Algorithm 2.

Algorithm 2: Fujisaki-Okamoto Transform for LPR [28, 20]
1 Procedure KEM.KeyGen():

(pk,s) = PKE.KeyGen ()

2+ U(B3?)

return pk, sk = (s, z)

Procedure KEM. Encaps (pk):

m « U(B>?)

r = PRF (m,pk) // Pseudorandom Function
ct = PKE.Encrypt (pk,m,r)

K = KDF (5ct) // Key Derivation Function
return ct, K

-IEN-L RN B N NI 8

_ e e
[

[
w

Procedure KEM.Decaps (ct,pk,sk) :
m' = PKE.Decrypt (sk,ct)
r’ = PRF (m’,pk)
ct’ = PKE.Encrypt (pk,m’,r’)
if ct==ct’ then
| return K=KDF (+", ct')
end
else
| return K=KDF (2, ct’)
end

NN e e e
o — T - TR B Y | B Y

154
N

2.5. FrodoKEM

FrodoKEM [22] is a NIST PQC third-round alternate finalist. Although it was not selected for the
fourth round, it is selected by the German Bundesamt fiir Sicherheit in der Informationtechnick (BSI)
and the French Agence Nationale de la Sécurité des Systemes d’Information (ANSSI) as a more con-
servative option than ML-KEM. It was noticeably used in the first French diplomatic telegram using
post-quantum cryptography on 30 November 2022, and is currently submitted to the International Or-
ganisation for Standardisation (ISO). An Internet-Draft (I-D) has also been submitted to the Internet
Engineering Task Force (IETF). Thus, it is still relevant to study its resistance to SCAs.

2.5.1. Parameters

Remark 2.3. The notations used in the description of each primitive in this paper are the ones used in
their respective specification papers. However, outside of their description, we use the unified notation
defined in Section 2.1.

FrodoKEM relies on the LWE problem and the LPR framework. It uses matrices over Zj**", Z;**™
and ZZX”. FrodoKEM offers three levels of security and different sets of parameters for each level:

P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA 7

Table 1: Parameters sets for FrodoKEM

NIST security level n q mxn | B
Frodo-640 I 640 | 2% | 8x38 2
Frodo-976 111 976 | 26 | 8x38 3
Frodo-1344 \Y 1344 | 216 | 8x8 4

The most interesting parameter for this work is the compression factor B applied to the message
in FrodoKEM. It is equivalent to the parameter d from Equations 3 and 4. The compression functions
are defined as F'rodo.Encode for Encode and F'rodo.Decode for Decode.

Remark 2.4. In FrodoKEM, the parameter n does not denote the message length but rather a matrix
size parameter. The message length is given by [= B X m X n.

2.6. ML-KEM

ML-KEM [23] is a slight modification of CRYSTALS-Kyber [3], a KEM selected by NIST [1]. ML-
KEM is the first post-quantum KEM standard published by the NIST.

2.6.1. Parameters

Its design adapted from LPR relies on several instances of the Module-LWE (M-LWE) and Module-
LWR (M-LWR) problems. It uses vectors in R’; and square matrices in R’;Xk. ML-KEM offers three
levels of security and different sets of parameters for each level:

Table 2: Parameters sets for ML-KEM

NIST security level n q k M 2 dy, dy dm
ML-KEM-512 I 256 | 3329 | 2 3 2 10 4 1
ML-KEM-768 III 256 | 3329 | 3 2 10 4 1
ML-KEM-1024 A" 256 | 3329 | 4 2 2 11 5 1

The compression factor applied to the message in ML-KEM is denoted d,,, in Table 2 as ML-
KEM does not use a specific notation for the parameter d from Equations 4 and 3 when applied to the
message, as it is always 1. Another interesting point is the use of compression to reduce the size of
the ciphertext in ML-KEM, the relevant parameters being d,, and d,,. The compression functions are
defined as Decompress, for Encode and Compress, for Decode.

2.7. SABER

SABER [4] is a NIST PQC third round finalist. It was not selected for the fourth round nor as a stan-
dard by the NIST or the BSI. Its future deployement for real world application is uncertain. Nonethe-

8 P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA

less, its similarities with ML-KEM makes its study relevant. Especially, it relies on a power of 2
modulus rather than a Solinas/Crandall prime modulus like ML-KEM and uses the M-LWR problem
rather than M-LWE.

2.7.1. Parameters

SABER offers three levels of security and different sets of parameters for each level:

Table 3: Parameters sets for SABER

NIST security level n q P T l 7
LightSaber I 256 | 213 | 210 1 23 | 2] 10
Saber I 256 | 213 | 210 | 24 | 3 | 8
FireSaber \Y% 256 | 213 | 210 | 26 | 4

As SABER relies only on M-LWR, it uses several hidden compressions which are defined as
functions (Decode and Encode) in the specification paper. The compression for the encoding of the
message is tied to the parameter p. The parameter 7' is used for ciphertext compression, a method also
used in ML-KEM.

3. [Exploiting ciphertext malleability: existing work and generalisation

3.1. Seminal work: Targeted message bit flip for d=1

Ravi et al.[28] introduced an attack exploiting what they called “ciphertext malleability” in the LPR
framework. They perform a chosen-ciphertext attack with the aim of flipping a bit of the secret mes-
sage. Given a side-channel Oracle that we will denote by Og¢ 4, they can recover the exact value of
any message bit.

The oracle is defined as follows: When queried, Ogc 4 provides the Hamming Weight of a register
where an output of PKE.Decrypt is stored. This can be performed in side-channel against any imple-
mentation on a microcontroller which stores the message computed by PKE.Decrypt within a group
of registers in memory before further computations. Therefore, the attack can be easily performed in a
real-world setting. In their work, Ravi et al. [28] consider a perfect Hamming Weight distinguisher as
Osc 4. If such a distinguisher is not available, they recommend using an imperfect one several times
and to perform a majority vote.

The main metric used in side-channel attacks is the number of traces, i.e. measurements, required
to recover the targeted secret. This number depends on many parameters, e.g. the Signal-to-Noise
Ratio (SNR) of the measures or the size of the registers in which the secret is stored. For example,
the seminal attack by Ravi et al. [28] requires 256 calls to the oracle against MLKEM [23], without
the calls to recover the original message Hamming Weight. Taking into account the storage of the
message in 8-bit words and an optimal SNR, they parallelise the calls to the oracle and reduce the
attack cost to only 9 traces. In this work, we consider the performance of the attack using both traces

P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA 9

and number of queries to the oracle, as some countermeasures like shuffling require to recover the
Hamming Weight of the entire message for the attack to still work, and thus remove the possibility of
using parallel attacks. The Hamming Weight of the entire message can be recovered by adding the
Hamming Weights of its registers.

The ciphertext malleability is due to the function Decode. When its input is shifted by adding a
specific bias modulus g, this can alter the output in a predictable way. Using Ogc 4 before and after the
chosen ciphertext attack, it is possible to deduce the exact value of any bit of the message. The biases
have the form +g—]§, where k& < 27 an integer and d the compression factor of the function Decode.
In the case of MLKEM [23], as d = 1 and ¢ is not a multiple of 24 the bias injected is rounded, i.e.
+[%] = +45 = 1665.

The attack by Ravi et al. [28] against MLKEM is carried out as follows:

1. The Hamming Weight of the original message m is recovered with Ogc 4.

2. The bias + [%J is injected into the ciphertext to target a specific bit of the message. To target the
it" bit of the message, we add the bias to the ciphertext v during the PKE.Decrypt procedure
at the start of KEM.Decaps in order to force the computation of Decode(v + [%J X' —uxs).

3. The target device performs its computations and a call to Ogc 4 retrieves the Hamming Weight
of the biased message m/'.

+1 if the message bit is 0;

4. The results are compared: A = HW (m') — HW (m) =) o
—1 if the message bit is 1.

Remark 3.1. For a parallelised attack, the oracle Ogc 4 only needs to recover the Hamming Weight
of the register which contains the biased part of the message. Hence, the attack can be performed on
each register separately in parallel to lower the number of traces.

The representation in sectors allows for a better understanding of how ciphertext malleability can
be exploited. Adding a specific bias to the input of Decode “rotates” the sectors and alters the output
accordingly. An example is given in Figure 2, where one can bit-flip the output of the Decode function
with parameter d = 1 by adding £ to the input.

N

(a) Decode(M, 1) =1 (b) Decode(M + 4,1) =1=0

Figure 2: Bitflipping the output of the decoding for parameter d = 1

10 P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA

3.2. Generalising targeted message bit flip

Ravi et al. [28] focused on the ML-KEM primitive, where d = 1. In this section, we extend their
targeted bit flip strategy to any value of the parameter d. A higher value of d also implies that a single
call to Decode («a, d) outputs several bits of message at a time.
First, we observe that, for any integer k < 24,
gk . _ [2¢ gk d
Decode(a + ﬁ’d) = ;(a + Qd)J mod 2
Fod
Ea + k:J mod 2%

od
aJ + k mod 2%
q

= Decode(a, d) 4 k mod 2¢

When d = 1, this results in XORing the single bit of the output of Decode («, 1) with 1. For
higher values of d, k is added to the output. When £ is a power of 2, we have the following theorem:

Theorem 3.2. For any value of d, there exists a two-classes distinguisher that gives the value of at
least one bit of the output of Decode (v, d) with absolute certainty, and this for each bit of the output.

Proof:

Let k = 27 be the power of 2 for an integer j. Let m = Decode(a,d) and m’ = Decode(a, d) +
kmod 2¢. Let A = HW (m') — HW (m). We use the following binary description: m = Z?;ol m; *
2!, Adding k to m has the following results:

J 5
if m; = 1, then m/; = 0 but we have a carry to propagate. ®)

{ifmj =0, thenm/, =1and A = +1;
j

If there is a carry to propagate, we have A = —1 + ¢, with e the impact of carry propagation on the
Hamming Weight. The propagation of the carry can be seen as adding k' = 2k to a variant of m,
denoted m”, such as Vi # j,m; = mj and m/ = 0 # m;. Thus, reapplying the results from Equation
5, we have € = +1 and A = +0, or e = —1 + ¢/, with € the impact of the propagation of the next
carry. Recursively, we have ¢ < +1 and A < +0. We can thus always build the following two-classes
distinguisher:

k .
For the bias + [;J, withk =27 eN{A=+1—-m; =0,A<4+0—=>m; =1}. (6)

O

A consequence of Equation 6 is that the efficiency of the Ravi et al.[28] targeted bit flip attack
is 1 bit per query for any value of d. Equation 6 guarantees that there is no uncertainty about the

P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA 11

value of the bit m;. Hence, the targeted bit flip attack requires d queries per instance of the func-
tion Decode(«, d) in the attacked primitive in addition to the queries required to recover the original
Hamming Weight of the message.

In a real-world scenario, the message is stored in memory and the queries can be parallelised. As
a consequence, Ravi et al. [28] attack can recover the entire message in 9 traces if it is stored in 8-bit
registers, 17 traces if it is stored in 16-bit registers, only if d is a power of 2 lesser or equal to the size of
the register. Otherwise, the outputs of the function Decode might overlap between two registers, and
thus the attack cannot be completely parallelised. For example, this is the case in the second security
level of FrodoKEM [22], where d = 3.

3.3. The FrodoKEM example

In their work, Ravi et al.[28] detailed their attack for ML-KEM [23] and gave indications on how to
extend it to SABER [4] and Frodo-640 [22] in their appendix. In this section, we focus on FrodoKEM
[22]. We extend the work of Ravi et al.[28] to cover the higher security parameters of FrodoKEM [22]
as some peculiarities remain regarding how to attack them.

Remark 3.3. As the modulus in FrodoKEM [22] is a power of two, we omit the rounding |- | in the
biases.

3.3.1. Existing targets

As the attack is based on the Hamming Weight, the preferred target is microcontroller implementation,
especially on the Cortex M4 family of microcontrollers. In the case of FrodoKEM [22], we can cite as
a reference the pgm4 [18] Github repository, under the Tag “Round 3”. However, this implementation
only contains the first security level of FrodoKEM [22], i.e., Frodo-640. The second level of security
of FrodoKEM [22] was first implemented by Howe et al. [16] with improved memory allocation.
Further improvements were proposed by Bos et al. [7], using Single Instruction Multiple Data (SIMD)
to parallelise some calculations. The first implementation with the third security level, that is, Frodo-
1344, is found in a work by Bos et al. [8] with a design centred on memory stack optimisation.
Although this allows for the implementation of this third security level of FrodoKEM [22], it comes
with a cost in time performance.

Regarding the size of the registers used to store the output of the message decoding, the only
publicly available implementation, pgm4 [18], uses 16-bit registers.

3.3.2. How to perform the attack

We follow the same procedure as the Ravi et al. [28] targeted bit flip attack. In FrodoKEM [22], the
input of the function Decode in PKE.Decrypt at the beginning of KEM.Decaps is a matrix in ngﬁ.
The decoding is performed on each coefficient of the matrix separately. To target a specific area of the
message, we modify the ciphertext! v, which is itself a matrix in Z;ﬁm, by adding bias at the correct

'With FrodoKEM [22] notation: C

12 P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA

coefficient. We then compute KEM.Decaps with the biased ciphertext. The attack of Ravi et al. [28]
against FrodoKEM [22] is carried out as follows for each coefficient of v:

1. The Hamming Weight of the unbiased message is recovered with Ogc 4,
2. The bias is injected within the ciphertext v at the correct coefficient,
3. The Hamming Weight of the biased message is recovered with a call to Ogc 4,

4. Steps 2 and 3 are repeated until enough information is recovered to determine the value of the
message bits linked to the targeted coefficient of v.

Remark 3.4. From an implementation point of view, the elements of Z, are encoded in 16 bits. This
implies that the most significant bits of these coefficients are always 0 since the modulus of Frodo-640
is lower than 216, However, the ciphertexts are packed in bytes, where these extra zeros are removed.
This implies that injecting bias into the ciphertext v can impact up to 3 bytes of the packed ciphertext.
Unpacking the ciphertext does not alienate the value of the ciphertext coefficient, and thus the value
of a biased ciphertext coefficient as well.

For Frodo-976 and Frodo-1344, the packing and unpacking is simply a concatenation of coeffi-
cients of the matrix. The bias injection affects 2 bytes of the packed ciphertext.

3.3.3. Frodo-640

The first FrodoKEM security level uses the function Decode with the parameter d = 2, denoted B
in the FrodoKEM specification [22]. This implies mapping to two bits, and hence 2¢ = 4 possible
values. Table 4 summarises the impact on the Hamming Weight of the output of Decode when adding

3.4 or % to the input compared to the Hamming Weight of the output without any input bias.

Table 4: Impact of biasing the decoding function input with parameter d = 2 on the Hamming Weight
of the output

Initial input | Initial mapping +1 | +2 | + %
-4, ¢ 00 1|+ | 42
4 % 01 +0 | +1 | -1
39 54] 10 +1 | =1 | +0
[32,] 11 -2 | -1 | —1

We have the following distinguishers for each bias used in Table 4:
o _1_%

- two-classes: {+1 — .0, (+0,—2) — .1}
— three-classes: {+1 —.0,+0 — 01,—2 — 11}

P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA 13

* +2: two-classes: {+1 — 0.,—1 — 1.}

3
. _i_zq

- two-classes: {—1 — .1, (+0,+2) — .0}
— three-classes: {—1 — .1,+0 — 10,42 — 00}

Ravi et al. [28] targeted bit flip attack can be performed in two queries with biases +2 and +94.
Given the lists of two-classes distinguishers and Table 4, the two-classes distinguishers of +% and
+4 are complementary, as one gives away the Most Significant Bit (MSB) and the other the Least
Significant Bit (LSB). However, we also notice that the bias +34—q can also be used alongside +2 or
+1:

* The two-classes distinguisher of the bias —1—% gives the LSB, and thus can be paired with the
bias +4 which gives the MSB.

* The three-classes distinguisher of the bias —1—% and the three-classes distinguisher of the bias
+4 complement each other. The uncertainty in class {+1 — .0} for bias +% is solved by the
two classes {+0 — 10} and {4+2 — 00} for bias +%. Similarly, the uncertainty in the class
{—=1 — .1} linked to +% is solved by the two classes {+0 — 01} and {—2 — 11} linked to
+4,

Frodo-640 can be breached by using ciphertext malleability with two Chosen Ciphertext queries
and their associated oracle Ogc 4 queries per couple of message bits. The length of the message in
Frodo-640 is 128 bits. Full message recovery is possible in 128 4+ @) queries to Ogca, @ being the
number of calls to Ogc 4 to recover the Hamming Weight of the entire unbiased message. In terms of
traces, for an implementation using 16-bit registers and parallelising the attacks, the complete attack
costs 17 traces (only one trace is required to recover the Hamming Weight of the entire unbiased
message). For an implementation using 8-bit registers, only 9 traces are required.

Remark 3.5. An attacker can decide to recover only half the message bits using any two-classes
distinguisher in Frodo-640 and brute-force the remaining 64 bits of the message as all the two-classes
distinguishers guarantee the recovery of at least one bit. This method allows for full message recovery
with 64 4+ () queries to the oracle (or 5 traces if 8-bit storage, 9 if 16-bit storage) and a brute-force
complexity of 264 in the worst case, which is feasible with current computer technology.

3.3.4. Frodo-976

The second security parameters set of FrodoKEM uses a different compression factor for message
encoding with d = 3. Figure 1c gives a sector representation of the Decode function for this parameter.
There are 27 = 8 possible outputs encoded in 3 bits. Table 5 highlights the impact of adding ¢, 4, 4,
or % to the input of Decode on the Hamming Weight of its outputs.

14 P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA

Table 5: Impact of biasing the decoding function input with parameter d = 3 on the Hamming Weight
of the output

Initial input | Initial mapping + % +1 +4 + %
[, £] 000 +1 | 41 | +1 | +2
[, 3] 001 +0 | +1 | 41 | +1
3 5] 010 +1 | +0 | +1 | +2
5 1] 011 ~1 | 40 | +1 | -2
[%4, 3] 100 +1 | #1 | =1 | 40
% L] 101 40 | 41 | -1 | -1
g 13q] 110 +1 | =2 | =1 | +0
139 15q] 111 -3 | -2 | -1 | -2

We have the following distinguishers for each bias used in Table 5:

. _l_%

- two-classes: {+1 —..0,(—3,-1,+0) —» .. 1}

— three-classes: {+1 —..0,40 —.01,(-3,—-1) — .11}

- four-classes: {+1 —..0,+0 —.01,—-3 — 111, -1 — 011}
. _|_%

- two-classes: {+1 — .0., (40, —2) — .1.}
- three-classes: {+1 — .0.,+0 — 01.,—2 — 11.}

e +2: two-classes: {—1 —1..,41 —=0..}

5
. _i_@q

two-classes: {(—2,—1,4+1) = ..1,(4+0,+2) —..0}

three-classes: {(—2,—-1,+1) - ..1,42 - 0.0,40 - 1.0},{(—-1,+1) — .01,—-2 —
11, (+0,42) — .. 0}

four-classes: {(—-1,+1) —.01,-2 —.11,4+2 =+ 0.0,+0 — 1.0},{—1 — 101,+1 —
001, —2 — .11, (=2, 4+0) — .. 0}

five-classes: {—1 — 101,41 — 001,+2 - 0.0,—2 — .11,+0 — 1.0}

As in Frodo-640, we cannot perform a successful attack in only one Ogc4 query per Decode
as no column in Table 5 contains an eight-classes distinguisher. However, contrary to the attack on
Frodo-640 where any couple of distinct biases is enough to recover the message bit values, it is not
the case for Frodo-976.

P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA 15

For example, when considering biases +{ and +7, they do not complement each other to solve
the uncertainty of the class {41 — ..0} for the bias +{ or the uncertainty of the class {+1 — .0.} for
the bias +-4. However, a query with bias +2 gives the missing information. In fact, using the biases
+¢, 47 and +{ is equivalent to the Ravi et al. [28] attack as generalised in Section 3.2.

The targeted bit flip attack has a recovery efficiency of 1 bit per query. However, a better choice
of biases allows for a more efficient bit recovery. We heuristically determined that querying Ogca
for +-4 and +% allows us to build an eight-classes distinguisher and consequently recover every bit
of the message with only two oracle queries per 3 bits of message, as shown in Table 6, where the
uncertainties left by the first query with bias 4-§ are solved by the query with bias +%.

Table 6: Building a eight-classes distinguisher from +% and +5§q

+4 +X possibilities
-1 — 101 101
+1 — 001 001
+1 —.0.
+2 0.0 000
+0—1.0 100
-2 — .11 011
+0 — 01.
+2 0.0 010
-2 — .11 111
-2 — 11,
+0—1.0 110

A complete message recovery attack can be successfully performed against Frodo-976 with only
128 + @ queries to the Ogc 4 oracle.

A peculiarity of Frodo-976 is that, since d = 3 does not divide 8 nor 16, the output of some calls to
the Decode function will be split between two registers. For example, if 8-bit (resp. 16-bit) registers
are used to store the message, in a 24-bit (resp. 48-bit) long word, that is, 3 registers, the first register is
filled with the outputs of 3 (resp. 5) Decode functions. The same applies to the last register. However,
the middle register is filled with the outputs of 4 (resp. 6) Decode functions that overlap with the first
or last register. Although attacks on non-overlapping coefficients can be parallelised, the overlapping
ones require specific investigation.

In the 8-bit register case, the overlap issue is represented in Figure 3, where the output of each
Decode is stored in big endian. Decode 3 and Decode 6 affect two registers, with one in common
(Register 2). Decode 1,4 and 7 can be attacked in parallel with two traces. The same applies to Decode
2,5 and 8. The number of traces required for Decode 3 and 6 can be reduced when specific biases are
chosen. The biases +% and +%q do not affect the least significant bit of the output of Decode. As a
consequence, choosing one of those two biases leads to a non-overlapping impact even if the Decode
output is split between two registers. The number of traces required to attack the output of Decode 3
and 6 in a parallel manner is therefore 3. The total number of traces required to recover the message
in an 8-bit implementation of Frodo-976 is 8 with our optimised bias choices.

16 P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA

Remark 3.6. The adaptation of the Ravi et al. [28] attack is also affected by the overlap issue. How-
ever, the bias 44 only affects the MSB and +¢ the middle bit and the MSB. This implies that attacks
against Decode 3 and Decode 6 can be parallelised for the two higher bits of Decode 3. Recovering
the LSB of the output of Decode 3 cannot be parallelised with the recovery of the last bit of Decode
6. Thus, it requires an extra trace, for a total of 10.

Decode 1 Decode 2 Decode 3 Decode 4 Decode 5 Decode 6 Decode 7 Decode 8
3 3 2 1 3 3 1 2 3 3
Register 1 Register 2 Register 3

Figure 3: Overlap issue with 8 decodings and their 24-bit long output split on 3 registers

In the 16-bit register case, the overlap issue is represented in Figure 4. Decode 6 and Decode
11 affect two registers and thus would require 4 traces. However, the middle register has only four
complete Decode compared to the five of the first and last registers. Using the observation that the
biases +% and +% do not affect the least significant bit of the output of Decode, we reduce the
number of required traces. We parallelise as follows: Decode 1,7 and 12 (two traces), Decode 2,
8 and 13 (two traces), Decode 3, 9 and 14 (two traces), Decode 4, 10 and 15 (two traces). We
perform the two attacks on Decode 5 and 16 in parallel with only one attack against Decode 11
using the aforementioned biases (two traces). With the three remaining traces to sort the overlapping
Decode instances, and the original trace, the complexity of the parallelised attack against Frodo-976
implemented with 16-bit registers is 14 traces.

Remark 3.7. Remark 3.6 also applies to the 16-bit register case for the adaptation of Ravi et al. [28]
attack. The parallelisation in this case requires not one but two extra traces, for a total of 19.

Decode 1 Decode 2 Decode 3 Decode 4 Decode 5 Decode 6 Decode 7 Decode 8 Decode 9 Decode 10 Decode 11 Decode 12 Decode 13 Decode 14 Decode 15 Decode 16

e - r- r-fr- - @&f-7Fr- 7> 1>} > §J:-}[->-7§ > T >7°> 71:>]

Register 1 Register 2 Register 3

Figure 4: Overlap issue with 16 decodings and their 48-bit long output split on 3 registers

3.3.5. Frodo-1344

The highest security level of FrodoKEM uses d = 4. With this parameter, the Decode function maps
to 2¢ = 16 possible outputs encoded on 4 bits. Table 7 shows the impact of adding —I—% with j € [0, 3]
or +% to the input of Decode.

P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA 17

Table 7: Impact of biasing the decoding function input with parameter d = 4 on the Hamming Weight
of the output

Initial input | Initial mapping +4 | 4% | +4 | 44|+
—L L 0000 +1| 41| 4|+ | 42
B 0001 40 | 41 | 41 | 41| 42
3> 58 0010 +1 | 40 | +1 | 41 | 11
2, 24] 0011 —1 | 40 | +1 | 41 | +1
2, %] 0100 +1 | 41 | 40 | 41 | 42
32,34 0101 0 | 41 | 40 | 41 [42
[, 4] 0110 +1 -1 | 40 | +1 —2
| 0111 -2 | =1 | 40 | +1 | -2
ba 1] 1000 +1 | 41 | 41 | -1 | +0
19, 2] 1001 +0 | 41 | 41 | -1 | 40
oL, 2] 1010 +1 | 40 | 41 | -1 | -1
29, 2] 1011 —1 | 40 | +1 | -1 | -1
29 24] 1100 +1 | 41 | -2 | =1 | +0
29, 24] 1101 40 | 41 | -2 | -1 | +0
24 2] 1110 +1 | -3 | -2 | -1 | -2
29, 34] 1111 -4 | =3 | -2 | -1 | -2

The biases —l—l%, +¢, +% and +£ are used to perform the Ravi et al. [28] targeted bit flip attack.
The efficiency of this attack remains at 1 bit per chosen ciphertext query. We heuristically determined
that the minimum number of biases for a complete recovery of the output of Decode(«, d) is 3. Com-
bining the biases 4 7%, 4+ and +% allows us to build a sixteen-classes distinguisher and perform the
attack successfully with only three Chosen Ciphertext queries to Ogc 4 per Decode. Table 8 describes
the resolution of the uncertainties when the first bias is +<, the second is +% and the last? +%.

There are 95 possible choices of 3 biases to perform a complete Decode output recovery. Frodo-
1344 can be attacked for complete message recovery in only 192 +) Chosen Ciphertext queries with
the help of the Og¢c 4 oracle. For an implementation using 16-bit registers, thanks to the parallelisation
of the attacks, only 13 traces are required for a complete message recovery. For an implementation
using 8-bit registers, only 7 traces are required.

3.4. Observations for higher values of d

In this work, we determined heuristically the values of the optimal biases. However, we observed
patterns in the choice of these biases. In this section, we discuss some of them and how they could
affect message recovery for higher values of the parameter d. Other observations are conjectures; we
leave a more thorough study for future work.

The order of the biases is for readability and has no impact on the attack

18 P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA

Table 8: Building a sixteen-classes distinguisher from +4, +% and 4%

+14 +% +15 possibilities
1—...0 0000
+2—0.0 +
+0—..01 0001
+1—...0 0010
+1 — 001.
-1 —.011 0011
+1—.0.. 1 0 1000
e
+0—1.0. +
+0—..01 1001
+1—...0 1010
-1 — 101.
-1 —.011 1011
1—...0 0100
+2 —0.0. +
+0—..01 0101
+0—01.. 1 0 0110
o 1L +1—>...
-2 — 0111 0111
+1—...0 1100
0= 1.0 0 01 1101
—2 5 11.. +1_>"0 110
—2 — .11, R
—4 — 1111 1111

Theorem 3.8. Any choice of biases for complete message recovery includes at least one bias —i—g—]j
with £ an odd number.

Proof:
We define the binary decomposition of a bias k as k = Z?;()l 2'k;. Similarly, the binary decomposition
of the output of Decode(av, d) is m = 37~ 2im;.

qk

54" d) = Decode(av, d) + k = Decode(a, d) + ko + 2k + - - - + 2 kg mod 2¢. (7)

Decode(a+
With the decomposition described in Equation 7, the calculation of the impact of the bias on the
output of Decode can be performed by taking the impact of adding each 2'k; one after the other.
Consequently, we can take each k; separately, compute a temporary A according to Equation 5, do the
same with k;, 1 but taking into account the previous modification performed if k; = 1 to compute the
next temporary A. Given the representation in sectors, this is equivalent to performing a first rotation
of 2°k; sectors, computing the temporary A, and then performing the next rotation by 2°+1k; 1 to add
the results.

Let us assume that kg = 0 in Equation 7, i.e. k is an even number. Then, the impact of the bias on
the output bit mg is null as Decode(a, d) = Decode(a, d) + 0. Regardless of the value of the next k;

P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA 19

such as i > 0, they do not affect the output bit mg. According to Equation 5, the next 2°k; can affect
only mj to mg_1. As a consequence, there is always an uncertainty in the value of mg as it is never
altered by the bias added to the input of Decode, and therefore has never an impact on the variation
of the Hamming Weight of m. To build a 2%-classes distinguisher, it is mandatory to have at least one
bias +%Z& with ko = 1. O

A comparison between the efficiency of the Ravi et al. [28] targeted bit flip attack and a more
optimal choice of biases is given in Figure 5. We heuristically determined the minimal number of
biases required for a complete recovery by performing an exhaustive search for increasing values of
the number of biases.

74 —m This work
—i— Ravi et al.

Min. number of biases
=y
1

1 2 3 4 5 6 7
Parameter d

Figure 5: Comparison of the number of biases required for a complete output recovery between Ravi
et al. [28] and this work

4. Countermeasure

4.1. Opverall strategy

Ravi et al. [28] claim that generic countermeasures such as shuffling or masking cannot protect against
their attack. In this section, we propose reusing the attack as a defence mechanism. The rationale for
the design is to apply the attack in a random but controlled manner. This will randomly flip the message
bits to a point where an attacker cannot differentiate between his own attack and the countermeasure,
thus counteracting the attack locally.

This countermeasure has an effect on the Hamming Weight of the message similar to the generic
masking countermeasure. However, contrary to masking where each share is processed separately, in
our case only one “share” is processed. This can reduce the cost of the implementation, as masking is
known to have significant overhead due to its multiple shares to process.

20 P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA

In this section, we present the countermeasure for the LPR framework and also detail its applica-
tion to specific algorithms.

4.2. Application to the decryption

To perform the countermeasure, we randomly choose a bias among a predefined set of biases and add
it to the input of the Decode function. This can be performed by sampling random bits and using a
map between those bits and the set of biases.

We can reuse existing parts of the LPR framework to perform the two operations (sampling
and mapping). Random sampling is already performed in LPR during the message sampling in the
KEM. Encaps procedure as described in Algorithm 2. For the mapping, it is performed by the Encode
function used in the PKE.Encrypt procedure. The message is then added to the received ciphertext
v in the same way as the message is added to the temporary ciphertext of v during the PKE . Encrypt
procedure.

In Algorithm 3 a colour code is used to highlight the provenances of each part of the counter-
measure. In blue are the functions reused from KEM.Encaps, in green are the ones reused from
PKE.Encrypt.

Algorithm 3: Decryption with countermeasure

1 Procedure PKE.DecryptWithCountermeasure (ct,sk):
2 mask < U(B3?)

3 vin = vV + Encode(mask, d)

4 | xm’' = (vm—uxs)

5 mm = Decode(xm’, d)

6 return mm, mask

Due to ciphertext malleability, we have the following theorem:

Theorem 4.1. Let m be the message output of PKE.Decrypt (ct,sk). Let mm be the message output
and mask the mask output of PKE.DecryptWithCountermeasure(ct,sk). Then, for each sub-
message m;, mm; and mask; of length d bits,

mm; = mask; + m; mod 2d. (8)

Proof:

This is a direct consequence of ciphertext malleability. Let us consider the Encode and Decode
functions for the parameter d. We use the sector representation for Decode. The function Encode
maps the bit words of value k between 0 and 2¢ — 1 to the corresponding values g—]j. When used as
biases on the input of Decode, these values rotate the sectors, as discussed in Section 3.2. As each
sector covers g—]j values, applying any of the aforementioned biases will rotate the sectors in a way that
retains the set of the bounds of every sector. However, each sector now corresponds to its previous
value +%k mod 2¢. We then take k = mask; and reapplied this proof to the other sub-messages of
mask. ad

P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA 21

Remark 4.2. If the parameter d used for Encode and Decode is 1, then mm = m@&mask as V(a, b) €
{0,1},a+ b mod 2 < a @ b. This is the case for ML-KEM and SABER.

4.3. Extension to the remaining decapsulation

Due to the Fujisaki-Okamoto Transform, the message is later re-encrypted during the KEM.Decaps
procedure. In this section, we discuss how to extend our countermeasure to the remainder of the
decapsulation.

4.3.1. Seed generation

The message is used to generate the random seed used in PKE.Encrypt. This is done by using a PRF
on the message and a token derived from the public key. In both FrodoKEM [22], ML-KEM [23], and
SABER [4], this is performed with a call to a Keccak instance taking the message concatenated with
a hash of the public key as input. This is central within the correctness of the FOT. If the message is
altered, the seed generated during the decapsulation will be significantly different from the one used
during the encapsulation, resulting in a different ciphertext altogether. Therefore, we need to ensure
the correctness of the seed.

The application of our countermeasure results in a masked message. This masking is an arithmetic
masking modulo 2¢, or a boolean masking if d = 1. Seed generation uses a hash function, implying
computations with boolean logic. To perform it in a secure manner, if d # 1, we must first convert
the masking from arithmetic to boolean (A2B conversion). Once done, this can be fed into a secure
masked hash function. However, such an implementation of the hash function is costly but necessary.

4.3.2. Re-encryption

To further extend the countermeasure, we propose to perform re-encryption on the masked message
but with the correct seed. The calculations of u and v’ during PKE . Encrypt are therefore not altered
by our countermeasure. However, we have v// = v/ 4 Encode(mm), resulting in a different ciphertext.

After the re-encryption is performed, the generated ciphertext is compared with the received one.
To ensure correctness, we have to “correct” v’ so it corresponds to v. This correction depends on the
linearity of the Encode function that is tied to ¢. It is therefore primitive-dependent. If 2¢ divides g,
then the rounding in Equation 3 is not necessary, since both 3 and % are integers. Multiplying an
integer by a constant scalar is linear.

Both SABER [4] and FrodoKEM [22] have this property. In both cases, the modulo used within
Encode is a multiple of the compression factor, and consequently the rounding is not needed. This is
not the case for ML-KEM [23].

Linear encoding As the function Encode is linear, to compute the correct ciphertext one can use
the encoding of the mask on the generated ciphertext. For FrodoKEM [22], when performing the
re-encryption during the decapsulation, instead of lines 11 and 12 in Algorithm 1, we compute?

v =V’ 4 Encode(mm, d) — Encode(mask, d).)

*With FrodoKEM [22] notation: C' = V + Frodo.Encode(mm) — Frodo.Encode(mask).

22 P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA

For SABER [4], the Encode function is not defined but its effect is still used. An interesting detail
is that the encoding is not added but subtracted. Thus, when performing the re-encryption during the
decapsulation, instead of lines 11 and 12 in Algorithm 1, we compute®

v =V’ — Encode(mm, d) + Encode(mask, d). (10)

Non-linear encoding ML-KEM [23] uses a Solinas/Crandall prime. Therefore, it cannot be divided
by 2 and as a result, the encoding is not linear. There are several options. We take inspiration from
existing work on masked implementations of ML-KEM [9, 14].

The first idea is to ensure correctness by considering the encoding to be linear and then to further
correct in specific cases. When performing the re-encryption during the decapsulation, instead of lines
11 and 12 in Algorithm 1 we compute’

v =V + Encode(mm, 1) + Encode(mask, 1). (11)

However, as shown in Table 9, there is a small bias when both mask and mm are equal to 1. Table 9
uses the following legend:

. : The result is equal with Encode(m = mask & mm, 1)

o BN - The result differs from Encode(m, 1)

Table 9: Comparing Encode(mm, 1) + Encode(mask, 1) with Encode(m, 1)

1665+0

0+1665 1665+1665=1£0

There are two ways to further correct this bias. The first relies on the masked implementation of Heinz
et al. [14]. They propose to subtract the logic AND of the mask and the masked message from the
computations of v/ before performing the ciphertext comparison. However, if not performed securely,
this AND will reveal information on the message.

The second way is inspired by the masked implementation of Bos et al. [9]. Instead of comparing
the ciphertexts by compressing the generated ciphertext and checking for a strict equality between
ct and ct’, they propose to compare the generated ciphertext directly with the decompression of the
received one. However, since compression and decompression are lossy, they do not check for a strict
equality but rather that the maximum distance between both ciphertexts does not exceed a specific
threshold. To compensate for the bias, we suggest increasing the threshold for ciphertext v by one.

*With SABER [4] notation: ¢,,, = (v 4 h1 — 2°° " 'mm 4 2" 'mask mod p) > (¢, — e7).
SWith ML-KEM [23] notation: v’ = i - 7+ e; + Decompressq(mm, 1) + Decompress,(mask,1).

P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA 23

We propose a new alternative to these methods. Instead of adding the decompression of the mask
and then correct the resulting bias, we propose the following formula®:

v =V’ + Encode(mm, 1) + (—1)"""Encode(mask, 1). (12)

This results in Table 10, with the same legend as Table 9.

Table 10: Comparison between Encode(mm, 1) + (—1)"""Encode(mask, 1) and Encode(m, 1)

0+0 1665-0

0+1665 ‘ 1665-1665=0

4.4. Scalability

Scalability depends on the linearity of the encoding used. For FrodoKEM [22] and SABER [4], our
countermeasure can be easily scaled to simulate higher orders of masking by simply generating new
masks, encoding them, and adding them to the ciphertext. As a result, we end up with a higher order
of masking for the message while still computing “one share”.

For ML-KEM [23], the scalability is less trivial as the encoding is non-linear. Adding [] several
times in a row creates a growing bias as 2 {%J # q due to the parity of q. The probability of having
a failed bitflip resulting in an incorrect masking is low, but grows with this bias. One way of slowing
the growth of this bias is to alternate between adding and subtracting [%J . This does not alleviate the
growing complexity of the adaptations of Equations 11 and 12.

4.5. Implementation recommendations
4.5.1. Mask generation

To generate mask, we use the same constraints as for the generic masking countermeasure. The share
must be generated with a cryptographically secure RNG or a TRNG. In the pgm4 implementation [18],
a hardware RNG is used to generate the message, we recommend using the same to generate mask.

4.5.2. On-the-fly encoding

A major drawback of post-quantum primitives is the size of the computations. Hence, we recommend
implementing the function Encode (used at Line 3 of Algorithm 3) following an “On-the-fly” philoso-
phy, i.e. encoding a coefficient of mask and adding it to v at the proper place before encoding the next
coefficient. A similar approach should be preferred for other calls to the function Encode, e.g. during
the re-encapsulation for the encoding of mm. This design is inspired by the work of Bos et al. [8],
where they use such an approach to optimise the memory usage of a FrodoKEM implementation on

SWith ML-KEM [23] notation: v’ = i - 7+ e; + Decompress,(mm, 1) + (—1)™™ Decompress,(mask, 1).

24 P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA

Cortex M4. As a consequence, we avoid storing encodings in memory, thus reducing memory stack
consumption. This also benefits side-channel resistance, as attacking internal registers is much harder
than attacking memory storage. The drawback is an increase in the complexity of implementation in
time. In FrodoKEM [22], ML-KEM [23] and SABER [4], the function Encode, when applied to the
message and thus to mm or mask, is a simple scalar multiplication.

4.6. Vulnerability and compatibility with other countermeasures

Although our countermeasure acts as a natural countermeasure to the use of ciphertext malleability
[28], it is not a generic standalone countermeasure, as it does not affect the secret. Another issue
resulting from the reuse of the primitive functions is that existing side-channel attacks against these
functions, especially against the function Encode [2, 33], can circumvent the countermeasure. Thus,
for a fully secured implementation, our method must be combined with other countermeasures.

As our countermeasure can be performed with minimal new code and, from a high-level perspec-
tive, reuses existing functions within LPR-based primitives, it is fully compatible with other secured
implementations such as masking and/or shuffling. For a masked implementation, our countermeasure
can be used to artificially increase the masking order of the message in the implementation.

We recommend combining our countermeasure with the generic shuffling countermeasure [15,
35], especially for calls to function Decode and function Encode. Shuffling is considered an effective
countermeasure to protect the function Encode [29, 2].

In a way, our countermeasure forces the attacker that was targeting the decoding function, for
which generic countermeasures were proved ineffective, to target the encoding function where a
generic countermeasure, shuffling, is known to be effective.

Remark 4.3. Most of the state-of-the-art masked implementations of ML-KEM perform Decode by
first converting from arithmetic to boolean logic and then using boolean logic to compute the decoding.
However, there are alternatives which compute decoding using arithmetic and then convert the result
into boolean logic, such as [6]. Our countermeasure can be used in this case to perform a cheaper
arithmetic to boolean conversion by simply unmasking rather than converting. As we provide a first-
order boolean masking with our countermeasure, unmasking in arithmetic does not expose the secret,
but only one boolean share of it.

4.7. Discussion on the impact on other attacks

Some attacks aim to recover the entire message using altered ciphertexts such as the one studied in
Section 3. From a generic point of view, any attack that requires complete control over the ciphertext
v and using the same oracle Ogc 4 described in our paper is impacted.

This applies to several attacks against ML-KEM categorised in [29]:

* Binary Plaintext-Cheking attacks [30, 32, 26, 5] use sparse ciphertexts to target single coeffi-
cients of the secret,

* Parallel Plaintext-Checking attacks [27, 34] use sparse ciphertexts as well but target multiple
coefficients of the secret at the same time.

P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA 25

5. Conclusion

In this paper we recall an attack from Ravi et al. [28] aimed at recovering the message in LPR-based
cryptography primitives. We extended their work by detailing the attack on a post-quantum KEM,
namely FrodoKEM, in Section 3. We also generalised their initial attack to any value of a param-
eter d and discussed more optimal choices to reduce the number of traces required for a complete
message recovery. We presented a novel countermeasure to this specific attack in Section 4. The
countermeasure is based on the same ciphertext malleability principle as the attack. We discussed
the extension of the countermeasure to the entirety of the KEM.Decaps procedure, as well as its com-
patibility with other generic countermeasures and its scalability for several post-quantum primitives.
As the countermeasure efficiency is local, we recommended its deployment in conjunction with a
shuffling countermeasure.

The Ravi et al. [28] attack principle is also used in several Deep Learning-SCA (DL-SCA). It will
be interesting to see how our countermeasure performs against a DL-SCA opponent. However, this
will be implementation specific, as DL-SCA attacks tend to target specific determiner-leakages due to
the specific methods of computation used in some implementations.

Acknowledgments The author thanks Yoan Rougeolle for his help with the experimental part of
this work.
This work was realised thanks to the grant 2022156 from the Appel a projets 2022 theses AID Cifre-
Défense by the Agence de I’Innovation de Défense (AID), Ministere des Armées (French Ministry of
Defence).

References

[1] Alagic G, Apon D, Cooper D, Dang Q, Dang T, Kelsey J, Lichtinger J, Miller C, Moody D, Peralta R,
et al. Status report on the third round of the NIST post-quantum cryptography standardization process. US
Department of Commerce, NIST, 2022. doi:10.6028/NIST.IR.8413-upd1.

[2] Amiet D, Curiger A, Leuenberger L, Zbinden P. Defeating NewHope with a Single Trace. In: Ding J,
Tillich JP (eds.), Post-Quantum Cryptography. Springer International Publishing, Cham. ISBN 978-3-
030-44223-1, 2020 pp. 189-205.

[3] Avanzi R, Bos J, Ducas L, Kiltz E, Lepoint T, Lyubashevsky V, Schanck JM, Schwabe P, Seiler G, Stehlé
D. CRYSTALS-Kyber Algorithm Specifications And Supporting Documentation. pg-crystals, 2021.

[4] Basso A, Mera JMB, D’Anvers JP, Karmakar A, Roy SS, Beirendonck MV, Vercauteren F. SABER:
Mod-LWR based KEM (round 3 submission). Submission to the NIST’s postquantum cryptography stan-
dardization process, 2020.

[5] Béetu C, Durak FB, Huguenin-Dumittan L, Talayhan A, Vaudenay S. Misuse attacks on post-quantum
cryptosystems. In: Advances in Cryptology—EUROCRYPT 2019: 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part II 38. Springer, 2019 pp. 747-776.

26

(6]

(7]

(8]

[9]

(10]

(11]

(12]

[13]

(14]

[15]

[16]

(17]

(18]

P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA

Berthet PA, Rougeolle Y, Tavernier C, Danger JL, Sauvage L. Securing Lattice-Based KEMs with Code-
Based Masking: A Theoretical Approach. Cryptology ePrint Archive, Paper 2023/1220, 2023. https:
//eprint.iacr.org/2023/1220, URL https://eprint.iacr.org/2023/1220.

Bos JW, Friedberger S, Martinoli M, Oswald E, Stam M. Fly, you fool! Faster Frodo for the ARM Cortex-
M4. Cryptology ePrint Archive, Report 2018/1116, 2018. URL https://eprint.iacr.org/2018/
1116.

Bos JW, Bronchain O, Custers F, Renes J, Verbakel D, van Vredendaal C. Enabling FrodoKEM on
Embedded Devices. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2023.
2023(3):74-96. doi:10.46586/tches.v2023.i3.74-96. URL https://tches.iacr.org/index.php/
TCHES/article/view/10957.

Bos JW, Gourjon M, Renes J, Schneider T, Van Vredendaal C. Masking kyber: First-and higher-order
implementations. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021. pp.
173-214. doi:10.46586/tches.v2021.i4.173-214.

Canto AC, Kaur J, Kermani MM, Azarderakhsh R. Algorithmic security is insufficient: A comprehen-
sive survey on implementation attacks haunting post-quantum security. arXiv preprint arXiv:2305.13544,
2023.

Chari S, Jutla CS, Rao JR, Rohatgi P. Towards sound approaches to counteract power-analysis at-
tacks. In: Advances in Cryptology—CRYPTO’99: 19th Annual International Cryptology Conference
Santa Barbara, California, USA, August 15-19, 1999 Proceedings 19. Springer, 1999 pp. 398-412. doi:
10.1007/3-540-48405-1_26.

Chen L, Chen L, Jordan S, Liu YK, Moody D, Peralta R, Perlner RA, Smith-Tone D. Report on post-
quantum cryptography, volume 12. US Department of Commerce, National Institute of Standards and
Technology ..., 2016.

Fujisaki E, Okamoto T. Secure integration of asymmetric and symmetric encryption schemes. In: Annual
international cryptology conference. Springer, 1999 pp. 537-554. doi:10.1007/3-540-48405-1_34.

Heinz D, Kannwischer MJ, Land G, Poppelmann T, Schwabe P, Sprenkels A. First-Order Masked Kyber
on ARM Cortex-M4. Cryptology ePrint Archive, Paper 2022/058, 2022. https://eprint.iacr.org/
2022/058, URL https://eprint.iacr.org/2022/058.

Herbst C, Oswald E, Mangard S. An AES smart card implementation resistant to power analysis attacks.
In: International conference on applied cryptography and network security. Springer, 2006 pp. 239-252.
doi:10.1007/11767480_16.

Howe J, Oder T, Krausz M, Giineysu T. Standard Lattice-Based Key Encapsulation on Embedded Devices.
IACR Transactions on Cryptographic Hardware and Embedded Systems, 2018. 2018(3):372-393. doi:
10.13154/tches.v2018.i3.372-393. URL https://tches.iacr.org/index.php/TCHES/article/
view/7279.

Ishai Y, Sahai A, Wagner D. Private circuits: Securing hardware against probing attacks. In: Ad-
vances in Cryptology-CRYPTO 2003: 23rd Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 17-21, 2003. Proceedings 23. Springer, 2003 pp. 463—481. doi:10.1007/
978-3-540-45146-4_27.

Kannwischer MJ, Petri R, Rijneveld J, Schwabe P, Stoffelen K. PQM4: Post-quantum crypto library for
the ARM Cortex-M4. https://github.com/mupq/pgmé/tree/Round3.

https://eprint.iacr.org/2023/1220
https://eprint.iacr.org/2023/1220
https://eprint.iacr.org/2023/1220
https://eprint.iacr.org/2018/1116
https://eprint.iacr.org/2018/1116
https://tches.iacr.org/index.php/TCHES/article/view/10957
https://tches.iacr.org/index.php/TCHES/article/view/10957
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/058
https://tches.iacr.org/index.php/TCHES/article/view/7279
https://tches.iacr.org/index.php/TCHES/article/view/7279
https://github.com/mupq/pqm4/tree/Round3

[19]

(20]

(21]

(22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA 27

Kocher PC. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems.
In: Advances in Cryptology—CRYPTO’96: 16th Annual International Cryptology Conference Santa
Barbara, California, USA August 18-22, 1996 Proceedings 16. Springer, 1996 pp. 104-113. doi:
10.1007/3-540-68697-5.9.

Lyubashevsky V, Peikert C, Regev O. On Ideal Lattices and Learning with Errors over Rings. In: Gilbert
H (ed.), Advances in Cryptology — EUROCRYPT 2010. Springer Berlin Heidelberg, Berlin, Heidelberg.
ISBN 978-3-642-13190-5, 2010 pp. 1-23.

Mamiya H, Miyaji A, Morimoto H. Efficient countermeasures against RPA, DPA, and SPA. In: In-
ternational workshop on cryptographic hardware and embedded systems. Springer, 2004 pp. 343-356.
doi:10.1007/978-3-540-28632-5_25.

Naehrig M, Alkim E, Bos J, Ducas L, Easterbrook K, LaMacchia B, Longa P, Mironov I, Nikolaenko V,
Peikert C, et al. FrodoKEM. National Institute of Standards and Technology (2017), 2017.

NIST. Module-Lattice-Based Key-Encapsulation Mechanism Standard. NIST FIPS, 2023. doi:10.6028/
NIST.FIPS.203.ipd.

Plos T, Hutter M, Herbst C. Enhancing side-channel analysis with low-cost shielding tech-
niques. In: Proceedings of Austrochip. 2008 pp. 90-95. URL http://www.mhutter.org/papers/
Plos2008EnhancingSideChannelAnalysis.pdf.

Prouff E, Rivain M. Masking against side-channel attacks: A formal security proof. In: Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques. Springer, 2013 pp.
142-159. doi:10.1007/978-3-642-38348-9_9.

Qin Y, Cheng C, Zhang X, Pan Y, Hu L, Ding J. A systematic approach and analysis of key mismatch
attacks on lattice-based NIST candidate KEMs. In: Advances in Cryptology—ASIACRYPT 2021: 27th In-
ternational Conference on the Theory and Application of Cryptology and Information Security, Singapore,
December 6-10, 2021, Proceedings, Part IV 27. Springer, 2021 pp. 92—-121.

Rajendran G, Ravi P, D’anvers JP, Bhasin S, Chattopadhyay A. Pushing the limits of generic side-channel
attacks on LWE-based KEMs-parallel PC oracle attacks on Kyber KEM and beyond. JACR Transactions
on Cryptographic Hardware and Embedded Systems, 2023.

Ravi P, Bhasin S, Roy SS, Chattopadhyay A. On exploiting message leakage in (few) NIST PQC candi-
dates for practical message recovery attacks. IEEE Transactions on Information Forensics and Security,
2021. 17:684-699. doi:10.1109/TIFS.2021.3139268.

Ravi P, Chattopadhyay A, D’ Anvers JP, Baksi A. Side-channel and fault-injection attacks over lattice-
based post-quantum schemes (Kyber, Dilithium): Survey and new results. ACM Transactions on Embed-
ded Computing Systems, 2024. 23(2):1-54.

Ravi P, Roy SS, Chattopadhyay A, Bhasin S. Generic side-channel attacks on CCA-secure lattice-based
PKE and KEMs. IACR transactions on cryptographic hardware and embedded systems, 2020. pp. 307-
335.

Saarinen MJO. Arithmetic coding and blinding countermeasures for lattice signatures: Engineering a
side-channel resistant post-quantum signature scheme with compact signatures. Journal of Cryptographic
Engineering, 2018. 8(1):71-84. doi:10.1007/s13389-017-0149-6.

Shen M, Cheng C, Zhang X, Guo Q, Jiang T. Find the bad apples: An efficient method for perfect
key recovery under imperfect sca oracles—a case study of kyber. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2023. pp. 89-112.

http://www.mhutter.org/papers/Plos2008EnhancingSideChannelAnalysis.pdf
http://www.mhutter.org/papers/Plos2008EnhancingSideChannelAnalysis.pdf

28 P-A. Berthet | Ciphertext malleability in Lattice-Based KEMs as a countermeasure to SCA

[33] Sim BY, KwonJ, Lee J, Kim 1J, Lee TH, Han J, Yoon H, Cho J, Han DG. Single-Trace Attacks on Message
Encoding in Lattice-Based KEMs. IEEE Access, 2020. 8:183175-183191. doi:10.1109/ACCESS.2020.
3029521.

[34] Tanaka Y, Ueno R, Xagawa K, Ito A, Takahashi J, Homma N. Multiple-valued plaintext-checking side-
channel attacks on post-quantum kems. TACR Transactions on Cryptographic Hardware and Embedded
Systems, 2023. 2023(3):473-503.

[35] Veyrat-Charvillon N, Medwed M, Kerckhof S, Standaert FX. Shuffling against side-channel attacks: A
comprehensive study with cautionary note. In: Advances in Cryptology—ASIACRYPT 2012: 18th Interna-
tional Conference on the Theory and Application of Cryptology and Information Security, Beijing, China,
December 2-6, 2012. Proceedings 18. Springer, 2012 pp. 740-757. doi:10.1007/978-3-642-34961-4_44.

	Introduction
	Our contributions

	Preliminaries
	Notations
	Generic SCA countermeasures
	LWE/LWR PKE using lattices
	Fujisaki-Okamoto Transform
	FrodoKEM
	Parameters

	ML-KEM
	Parameters

	SABER
	Parameters

	Exploiting ciphertext malleability: existing work and generalisation
	Seminal work: Targeted message bit flip for d=1
	Generalising targeted message bit flip
	The FrodoKEM example
	Existing targets
	How to perform the attack
	Frodo-640
	Frodo-976
	Frodo-1344

	Observations for higher values of d

	Countermeasure
	Overall strategy
	Application to the decryption
	Extension to the remaining decapsulation
	Seed generation
	Re-encryption

	Scalability
	Implementation recommendations
	Mask generation
	On-the-fly encoding

	Vulnerability and compatibility with other countermeasures
	Discussion on the impact on other attacks

	Conclusion

