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Abstract. In this note, we give a linear-size translation from formulas of first-order logic into
equations of the calculus of relations preserving validity and finite validity. Our translation also
gives a linear-size conservative reduction from formulas of first-order logic into formulas of the
three-variable fragment of first-order logic.
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1. Introduction

The calculus of relations (CoR, for short) [15] is an algebraic system with operations on binary rela-
tions. As binary relations appear everywhere in computer science, CoR and relation algebras can be
applied to various areas, such as databases and program development and verification [4]. W.r.t. binary
relations, CoR has the same expressive power as the three-variable fragment of first-order predicate
logic with equality (FO3=) (where all predicate symbols are binary) [16], so CoR has strictly less
expressive power than first-order predicate logic with equality (FO=). For example, CoR equations
cannot characterize the class of structures s.t. “its cardinality is greater than or equal to 4”, whereas
it can be characterized by the FO= formula ∀x1, ∀x2, ∀x3, ∃y, (¬y = x1) ∧ (¬y = x2) ∧ (¬y = x3)
where x1, x2, x3, y are pairwise distinct variables.
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Nevertheless, there is a recursive translation (total recursive function) from FO= formulas into
CoR equations (resp. FO3= formulas) preserving validity [16] (see also [7, 1]).

In this paper, we give another recursive translation from FO= formulas into CoR equations pre-
serving validity, slightly refined in that it satisfies both of the following:

1. Our translation preserves both validity and finite validity (so, it also gives a conservative reduc-
tion [3, Def. 2.1.35]).

2. Our translation is linear-size (i.e., the output size is bounded by a linear function in the input
size).

The first refinement is useful, e.g., in finding counter-models (because if there exists a finite counter-
model in the pre-translated formula, then there also exists a finite counter-model in the post-translated
formula). Such a translation is already known (e.g., [3, Cor. 3.1.8 and Thm. 3.1.9]), but via encodings
of Turing-machines and domino problems. Our translation presents a conservative reduction from
FO= formulas to FO3= formulas, directly. Thanks to this, we also have the second refinement, which
shows that the validity (resp. finite validity) problem of FO= formulas and that of CoR equations
are equivalent under linear-size translations, as the converse direction immediately follows from the
standard translation from CoR equations into FO3= [15] (Prop. 2.2).

Our translation is not so far from known encodings (e.g., [7, 1]) in that they and our translation
use pairing (2-tupling) functions, but in our translation, we use non-nested k-tupling functions where
k is an arbitrary natural number, instead of arbitrarily nested pairing functions. For constructions
using arbitrarily nested pairing functions, we need infinitely many vertices even if the base universe
is finite (as there is no surjective function from X to X2 when #X is finite and #X ≥ 2). Thanks
to the modification above, our construction preserves both validity and finite validity. Additionally, to
preserve the output size linear in the input size, we apply a cumulative sum technique.

This paper is structured as follows. In Section 2, we give basic definitions of FO= and CoR. In
Section 3, we give a translation from FO= formulas into CoR equations preserving validity and finite
validity. In Section 4, we additionally give a Tseitin translation for CoR, which is useful for reducing
the number of alternations of operations. Additionally, in Section A, we give a direct translation from
FO= formulas into FO3= formulas, not via CoR, for explicitly writing a transformed FO3= formulas;
the translation is the same as that given in Section 3.

2. Preliminaries

We write N for the set of all non-negative integers. For a set A, we write #A for the cardinality of A.
A structure A over a set A is a tuple ⟨|A|, {aA}a∈A⟩, where

• the universe |A| is a non-empty set of vertices,

• each aA ⊆ |A|2 is a binary relation on |A|.

We say that a structure A is finite if |A| is finite. For structures A,B over a set A, we say that A and
B are isomorphic if there is a bijective map f : |A| → |B| such that for all x, y ∈ |A| and a ∈ A, we
have ⟨x, y⟩ ∈ aA ⇐⇒ ⟨f(x), f(y)⟩ ∈ aB.
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2.1. First-order logic

Let Σ be a countably infinite set of binary predicate symbols and V be a countably infinite set of
variables. The set of formulas in first-order predicate logic with equality (FO=) is defined by:

φ,ψ, ρ ::= a(x, y) | x = y | ¬ψ | ψ ∧ ρ | ∃x, ψ (a ∈ Σ and x, y ∈ V)

We write V(φ) for the set of free and bound variables occurring in a formula φ. For k ≥ 0, we write
FOk= for the set of all formulas φ s.t. #V(φ) ≤ k. (In this paper, FO3= mostly occurs.) A sentence
is a formula not having any free variable. We use parentheses in ambiguous situations and use the
following notations:

φ ∨ ψ =∆ ¬((¬φ) ∧ (¬ψ)) φ→ ψ =∆ (¬φ) ∨ ψ t =∆ ∃x, x = x

∀x, ψ =∆ ¬∃x,¬ψ φ↔ ψ =∆ (φ→ ψ) ∧ (ψ → φ) f =∆ ¬t

We write
∧
Γ for the formula φ1 ∧ · · · ∧ φn where Γ = {φ1, . . . , φn} is a finite set (and φ1, . . . , φn

are ordered by a total order). The size ∥φ∥ ∈ N of a formula φ is defined by:

∥a(x, y)∥ =∆ 1 + 2 ∥x = y∥ =∆ 1 + 2 ∥¬ψ∥ =∆ 1 + ∥ψ∥
∥ψ ∧ ρ∥ =∆ 1 + ∥ψ∥+ ∥ρ∥ ∥∃x, ψ∥ =∆ 1 + 1 + ∥ψ∥

For a structure A over Σ, the semantics JφKA ⊆ |A|V of a formula φ over A is defined as follows
(where |A|V denotes the set of functions from V to |A|):

Ja(x, y)KA =∆ {f : V → |A| | ⟨f(x), f(y)⟩ ∈ aA}
Jx = yKA =∆ {f : V → |A| | f(x) = f(y)}

J¬ψKA =∆ |A|V \ JψKA

Jψ ∧ ρKA =∆ JψKA ∩ JρKA

J∃x, ψKA =∆ {f : V → |A| | for some v ∈ |A|, f [v/x] ∈ JψKA}

Here, f [v/x] denotes the function f in which the value of x has been replaced with v.
For a formula φ and a structure A, we say that φ is true on A, written A |= φ, if JφKA = |A|V.

We say that a formula φ is valid (resp. finitely valid) if JφKA = |A|V holds for all structures (resp. all
finite structures) A. We say that two formulas φ,ψ are semantically equivalent if the formula φ ↔ ψ
is valid. Additionally, we say that a formula φ is satisfiable (resp. finitely satisfiable) if JφKA ̸= ∅
holds for some structure (resp. finite structure) A.

Remark 2.1. Function and constant symbols can be encoded by predicate symbols with functional-
ity axiom (see, e.g., [2, Sect. 19.4]) and each predicate symbol (of arbitrary arity) can be encoded
by binary predicate symbols (see, e.g., [2, Lem. 21.2 (p. 275)], which translations each atomic for-
mula a(x1, . . . , xk) into the formula ∃z, (

∧
1≤j≤k pj(z, xj)) ∧ a′(z, z) where z is a fresh variable,

p1, . . . , pk are fresh binary symbols for expressing projections, and a′ is a fresh binary symbol for
expressing the relation a, respectively. For instance, the formula a(x, y, x) ∧ a(y, y, x) is translated
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into (∃z, p1(z, x) ∧ p2(z, y) ∧ p3(z, x) ∧ a′(z, z)) ∧ (∃z, p1(z, y) ∧ p2(z, y) ∧ p3(z, x) ∧ a′(z, z))).
Thus, by well-known facts, we can give a linear-size translation from formulas of first-order logic with
predicate and function symbols of arbitrary arity into FO= formulas (above) preserving validity and
finite validity. Here, the size of a k-ary atomic formula is defined as ∥a(x1, . . . , xk)∥ = 1 + k. (Note
that the translation is not linear-size when the size is defined as ∥a(x1, . . . , xk)∥ = 1 and k is not
bounded. Hence, this linearity depends on the size definition.) Hence, we consider the FO= above
(equality = can also be eliminated, see, e.g., [2, Sect. 19.4], but we introduce it only for convenience).

2.2. The calculus of relations

Let Σ be a countably infinite set of (term) variables. The set of terms in the calculus of relations
(CoR) is defined by:

t, s, u ::= a | I | s− | s ∩ u | s · u | s⌣ (a ∈ Σ)

We write
⋂
Γ for the term t1 ∩ · · · ∩ tn where Γ = {t1, . . . , tn} is a finite set (and t1, . . . , tn are

ordered by a total order). We use parentheses in ambiguous situations and use the following notations:

t ∪ s =∆ (t− ∩ s−)− t † s =∆ (t− · s−)−

⊤ =∆ I ∪ I− ⊥ =∆ ⊤−

The size ∥t∥ ∈ N of a term t is defined by:

∥a∥ =∆ 1 ∥I∥ =∆ 1 ∥s−∥ =∆ 1 + ∥s∥
∥s ∩ u∥ =∆ 1 + ∥s∥+ ∥u∥ ∥s · u∥ =∆ 1 + ∥s∥+ ∥u∥ ∥s⌣∥ =∆ 1 + ∥s∥

The semantics JtKA ⊆ |A|2 of a term t over a structure A over Σ is defined by:

JaKA =∆ {⟨v, v′⟩ ∈ |A|2 | ⟨v, v′⟩ ∈ aA}
JIKA =∆ {⟨v, v′⟩ ∈ |A|2 | v = v′}

Js−KA =∆ |A|2 \ JsKA

Js ∩ uKA =∆ JsKA ∩ JuKA

Js · uKA =∆ {⟨v, v′⟩ ∈ |A|2 | for some v′′ ∈ |A|, ⟨v, v′′⟩ ∈ JsKA and ⟨v′′, v′⟩ ∈ JuKA}
Js⌣KA =∆ {⟨v, v′⟩ ∈ |A|2 | ⟨v′, v⟩ ∈ JsKA}

We say that a CoR term t and an FO= formula φ with two distinct free variables x1 and x2 are
semantically equivalent w.r.t. binary relations if JtKA = {⟨f(x1), f(x2)⟩ | f ∈ JφKA} holds for all
structures A. It is well-known that we can translate CoR terms into FO3= formulas.

Proposition 2.2. (the standard translation theorem [15])
Let x1 and x2 be distinct variables. There is a linear-size translation from CoR terms into FO3=
formulas with two free variables x1 and x2 preserving the semantic equivalence w.r.t. binary relations.
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Proof (sketch):
Because we can express each operations in CoR by using FO3= formulas (see also [9, Fig. 1]). ⊓⊔

Moreover, the set of quantifier-free formulas in CoR is inductively defined as follows:

φ,ψ, ρ ::= t = s | ¬ψ | ψ ∧ ρ (t, s are terms in CoR)

We say that t = s is an equation. An inequation t ≤ s is an abbreviation of the equation t ∪ s = s.
As with Section 2.1, we use the following notations:

φ ∨ ψ =∆ ¬((¬φ) ∧ (¬ψ)) φ→ ψ =∆ (¬φ) ∨ ψ t =∆ I = I

φ↔ ψ =∆ (φ→ ψ) ∧ (ψ → φ) f =∆ ¬t

The size ∥φ∥ ∈ N of a quantifier-free formula φ is defined by:

∥t = s∥ =∆ 1 + ∥t∥+ ∥s∥ ∥¬ψ∥ =∆ 1 + ∥ψ∥ ∥ψ ∧ ρ∥ =∆ 1 + ∥ψ∥+ ∥ρ∥

The semantic relation A |= φ, where φ is a quantifier-free formula and A is a structure over Σ, is
defined by:

A |= t = s ⇐⇒∆ JtKA = JsKA

A |= ¬ψ ⇐⇒∆ not (A |= ψ)

A |= ψ ∧ ρ ⇐⇒∆ (A |= ψ) and (A |= ρ)

For a quantifier-free formula φ and a structure A, we say that φ is true on A if A |= φ. Similarly
for FO= formulas, we say that a quantifier-free formula φ is valid (resp. finitely valid) if A |= φ
holds for all structures (resp. all finite structures) A. We say that two quantifier-free formulas φ,ψ are
semantically equivalent if the quantifier-free formula φ↔ ψ is valid.

It is also well-known that we can translate CoR quantifier-free formulas into CoR equations, pre-
serving the semantic equivalence.

Proposition 2.3. (Schröder-Tarski translation theorem [15])
There is a linear-size translation from a given quantifier-free formula φ in CoR into a term t such that
φ and (t = ⊤) are semantically equivalent.

Proof:
[The proof is from [15].] First, by using (s = u) ↔ ((s ∩ u) ∪ (s− ∩ u−) = ⊤), we translate a given
quantifier-free formula into a quantifier-free formula s.t. each equation is of the form t = ⊤. Second,
by using the following two semantic equivalences, we eliminate logical connectives:

¬(s = ⊤) ↔ ⊤ · s− · ⊤ = ⊤ (s = ⊤) ∧ (u = ⊤) ↔ s ∩ u = ⊤

We then have obtained the desired equation of the form t = ⊤. ⊓⊔

Remark 2.4. There is also a translation from FO3= formulas (with two free variables) into CoR terms
preserving the semantic equivalence w.r.t. binary relations (i.e., the converse direction of Prop. 2.2)
[16, 4, 9, 10], but the best known translation is an exponential-size translation and it is open whether
there is a subexponential-size translation [9, 10]. This paper’s translation given in Sect. 3 only pre-
serves validity and finite validity and does not preserve the semantic equivalence w.r.t. binary relations,
but it is a linear-size translation.
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3. A translation from first-order logic into CoR

We consider the following structure transformation. Based on this transformation, we will give a
translation from FO= formulas into CoR equations.

Definition 3.1. (k-tuple structure)
Let A be a structure over Σ. For k ≥ 1, the k-tuple structure of A, written A(k), is the structure over
Σ(k) =∆ Σ ∪ {U} ∪ {πi, Qi, E[1,i], E[i,k] | 1 ≤ i ≤ k} defined as follows:

|A(k)| = |A|k

aA
(k)

= {⟨⟨v, . . . , v⟩, ⟨w, . . . , w⟩⟩ | ⟨v, w⟩ ∈ aA} for a ∈ Σ

UA(k)
= {⟨⟨v, . . . , v⟩, ⟨v, . . . , v⟩⟩ | v ∈ |A|}

πA
(k)

i = {⟨⟨v1, . . . , vi, . . . , vk⟩, ⟨vi, . . . , vi⟩⟩ | v1, . . . , vk ∈ |A|}

QA(k)

i = {⟨⟨v1, . . . , vk⟩, ⟨v′1, . . . , v′k⟩⟩ ∈ |A|k × |A|k | vj = v′j for 1 ≤ j ≤ k s.t. j ̸= i}

EA(k)

[i,i′] = {⟨⟨v1, . . . , vk⟩, ⟨v′1, . . . , v′k⟩⟩ ∈ |A|k × |A|k | vj = v′j for i ≤ j ≤ i′}

Intuitively, in k-tuple structures A(k), we reflect each vertex v on A to the vertex ⟨v, . . . , v⟩ on A(k).
The predicate U denotes the set of such vertices on A(k) (coded into a binary identity relation). Each
k-tuple ⟨v1, . . . , vi, . . . , vk⟩ denotes the values of k variables. By using the predicates πi, we can map
the tuple to the tuple ⟨vi, . . . , vi⟩ (so, each πi behaves as a projection), which is the vertex indicated
by the i-th variable. The predicate Qi relates two k-tuples if their j-th elements are equal except when
j = i; we will use Qi to denote the existential quantifier “∃xi” where xi denotes the i-th variable. The
predicate E[i,i′] relates two k-tuples if their j-th elements are equal for i ≤ j ≤ i′; we will use E[i,i′]

for succinctly defining Qi.
We write k-TUPLE for the class of all k-tuple structures. Fig. 1 gives a graphical example of

k-tuple structures when k = 2. Here, each 2-tuple ⟨v, v′⟩ is abbreviated to vv′ and the relations of U ,
Qi, E[i,i′] on A(2) are omitted where

0

1

a
b

00

01

10

11

a
b

π1

π1

π1

π1

π2

π2

π2

π2

A A(2)

Figure 1. Example of k-tuple structures (when k = 2)
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• UA(2)
= {⟨00, 00⟩, ⟨11, 11⟩},

• QA(2)

1 = {⟨00, 00⟩, ⟨00, 10⟩, ⟨01, 01⟩, ⟨01, 11⟩, ⟨10, 00⟩, ⟨10, 10⟩, ⟨11, 01⟩, ⟨11, 11⟩},

• QA(2)

2 = {⟨00, 00⟩, ⟨00, 01⟩, ⟨01, 00⟩, ⟨01, 01⟩, ⟨10, 10⟩, ⟨10, 11⟩, ⟨11, 10⟩, ⟨11, 11⟩},

• EA(2)

[1,1] = QA(2)

2 , EA(2)

[2,2] = QA(2)

1 , and EA(2)

[1,2] = JIKA(2)
.

This construction preserves finiteness, so the following holds.

Proposition 3.2. For all structures A and k ≥ 1, A is finite if and only if A(k) is finite.

Additionally note that in k-tuple structures, U,Qi, E[i,i′] can be defined by using πi as follows:

U =
⋂

1≤j≤k

πj E[i,i′] =
⋂

i≤j≤i′

πj · π⌣j Qi =
⋂

1≤j≤k;j ̸=i

πj · π⌣j

Thus, U,Qi, E[i,i′] does not change the expressive power; they are introduced to reduce the output size
to be linear. By using E[1,i−1] and E[i+1,k], we can succinctly express Qi as Qi = E[1,i−1] ∩ E[i+1,k].

We show that the class of (the isomorphism closure of) k-tuple structures can be characterized by
using equations in CoR. Let Γ(k) be the following finite set of equations where i ranges over 1 ≤ i ≤ k
and E[1,0] and E[k+1,k] are the notations for denoting the term ⊤:

U =
⋂

1≤j≤k

πj (1)

E[1,i] = E[1,i−1] ∩ (πi · π⌣i ) (2)

E[i,k] = E[i+1,k] ∩ (πi · π⌣i ) (3)

Qi = E[1,i−1] ∩ E[i+1,k] (4)

U ≤ I (5)

π⌣i · πi ≤ I (6)

I ≤ πi · U · π⌣i (7)

⊤ · U ≤ Qi · πi (8)

I = E[1,k] (9)

⊤ · U · ⊤ = ⊤ (10)

a ≤ U · ⊤ · U (11)

Equations (1) to (4) define U , E[i,i′], and Qi, respectively. Equation (5) expresses that U is a subset of
the identity relation. Equations (6) and (7) express that πi is a left-total function into U , namely πi is
a function relation (Equation (6) implies that πi is functional and Equation (7) implies that πi is left-
total) and its range is a subset ofU . Equation (8) means that the vertex ⟨u1, . . . , ui−1, u

′
i, ui+1, . . . , uk⟩

exists for every vertex ⟨u1, . . . , uk⟩ and every u′i in U . Equation (9) implies that if each πj-images of
two vertices are the same, then the vertices themselves are the same. Equation (10) expresses that the
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relation U is not empty. Equation (11) expresses that the domain and the range of the relation a are
subsets of U .

For a class C of structures, we write I(C) for the isomorphism closure of C: the minimal class C′

subsuming C such that, if A ∈ C and B is isomorphic to A, then B ∈ C′. The set Γ(k) can characterize
the class of the isomorphism closure of k-tuple structures as follows:

Lemma 3.3. Let A be a structure over Σ(k). Then we have:

A |=
∧

Γ(k) ⇐⇒ A ∈ I(k-TUPLE).

Proof:
(⇐=): This direction can be shown by checking that each equation holds on k-tuple structures.

(=⇒): Let U0 = {v | ⟨v, v⟩ ∈ UA}. Combining π⌣i · πi ≤ I (6), I ≤ πi · U · π⌣i (7), and
U ≤ I (5) yields that πAi is a function from |A| to U0. Let f : |A| → Uk

0 be the function defined by
f(v) = ⟨πA1 (v), . . . , πAk (v)⟩. Then f is bijective as follows. Let v0 ∈ |A| be an arbitrary vertex. Let
w1, . . . , wk be s.t. f(v0) = ⟨w1, . . . , wk⟩. For anyw′

1 ∈ U0, by π1 ·⊤·U ≤ Q1 ·π1 (8), ⟨v0, w1⟩ ∈ πA1 ,
⟨w1, w

′
1⟩ ∈ J⊤KA, and w′

1 ∈ U0, there is some v1 such that ⟨v0, v1⟩ ∈ QA
1 and ⟨v1, w′

1⟩ ∈ πA1 . Then by
Q1 = E[2,k] (4), we have f(v1) = ⟨w′

1, w2, . . . , wk⟩. Similarly, for anyw′
2 ∈ U0, by π2·⊤·U ≤ Q2·π2

(8), ⟨v1, w2⟩ ∈ πA2 , ⟨w2, w
′
2⟩ ∈ J⊤KA, and w′

2 ∈ U0, there is some v2 such that ⟨v1, v2⟩ ∈ QA
2 and

⟨v2, w′
2⟩ ∈ πA2 . Then by Q2 = E[1,1] ∩ E[3,k] (4), we have f(v2) = ⟨w′

1, w
′
2, w3, . . . , wk⟩. By

applying this method iteratively, we have that for any w′
1, . . . , w

′
k ∈ U0, there is some v such that

f(v) = ⟨w′
1, . . . , w

′
k⟩. Hence, f is surjective. Also, if f(v) = ⟨w1, . . . , wk⟩ = f(v′), then by

I = E[1,k] (9), we have v = v′. Hence, f is injective. Therefore, f is bijective.
Note that for each v ∈ |A|, v ∈ U0 iff πA1 (v) = · · · = πAk (v) (by U =

⋂
1≤j≤k πj (1)) iff

f(v) = ⟨w, . . . , w⟩ for some w (by the definition of f ) iff f(v) = ⟨v, . . . , v⟩ (by
⋂

1≤j≤k πj ≤ I
(1)(5)). Thus, v ∈ U0 iff f(v) = ⟨w, . . . , w⟩ for some w iff f(v) = ⟨v, . . . , v⟩. We now define B as
the structure over Σ, where

|B| = U0 aB = aA for a ∈ Σ.

Here, B is indeed an structure, because U0 is not empty by ⊤ · U · ⊤ = ⊤ (10) and aB ⊆ U2
0 by

a ≤ U · ⊤ · U (11). Then the bijection f is an isomorphism from A to B(k), as follows.

• For a ∈ Σ: Let v, v′ ∈ |A| be arbitrary vertices. We distinguish the following cases.

– Case v ̸∈ U0 or v′ ̸∈ U0: By U ≤ I (5) and a ≤ U ·⊤ ·U (11), we have ⟨v, v′⟩ ̸∈ aA. Also,
in this case, f(v) or f(v′) is not of the form ⟨w, . . . , w⟩ for any w (by v ̸∈ U0 or v′ ̸∈ U0);
thus by the construction of B(k), we have ⟨f(v), f(v′)⟩ ̸∈ aB

(k)
.

– Case v, v′ ∈ U0: Then we have f(v) = ⟨v, . . . , v⟩ and f(v′) = ⟨v′, . . . , v′⟩. Thus, we
have: ⟨v, v′⟩ ∈ aA iff ⟨v, v′⟩ ∈ aB iff ⟨f(v), f(v′)⟩ ∈ aB

(k)
(by the construction of B(k)).

Hence, ⟨v, v′⟩ ∈ aA iff ⟨f(v), f(v′)⟩ ∈ aB
(k)

.

• For πi: Let v, v′ ∈ |A| be arbitrary vertices. We distinguish the following cases.
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– Case v′ ̸∈ U0: By U ≤ I (5) and I ≤ πi · U · π⌣i (7), we have ⟨v, v′⟩ ̸∈ πAi . Also, in this
case, f(v′) is not of the form ⟨w, . . . , w⟩ for any w (by v′ ̸∈ U0); thus by the construction
of B(k), f(v′) is not in the range of πB

(k)

i . Hence, ⟨f(v), f(v′)⟩ ̸∈ πB
(k)

i .

– Case v′ ∈ U0: Then we have f(v′) = ⟨v′, . . . , v′⟩. Thus, we have: ⟨v, v′⟩ ∈ πAi iff the
i-th element of f(v) is v′ (by the definition of f ) iff ⟨f(v), ⟨v′, . . . , v′⟩⟩ ∈ πB

(k)

i (by the
construction of B(k)) iff ⟨f(v), f(v′)⟩ ∈ πB

(k)

i (by ⟨v′, . . . , v′⟩ = f(v′)).

Hence, ⟨v, v′⟩ ∈ πAi iff ⟨f(v), f(v′)⟩ ∈ πB
(k)

i .

• For U,E[i,i′], Qi: By Equations (1) to (4) with the fact that f is an isomorphism w.r.t. πi as
above.

Hence, this completes the proof. ⊓⊔

Using k-tuple structures, we can give the following translation.

Definition 3.4. Let k ≥ 1 and X = {x1, . . . , xk} where x1, . . . , xk are pairwise distinct variables.
For each formula φ of V(φ) ⊆ X , the term T(k)(φ) is inductively defined as follows:

T(k)(a(xi, xj)) =∆ (πi · a · π⌣j ) ∩ I

T(k)(¬ψ) =∆ (T(k)(ψ))−

T(k)(ψ ∧ ρ) =∆ T(k)(ψ) ∩ T(k)(ρ)

T(k)(∃xi, ψ) =∆ (Qi · T(k)(ψ) ·Q⌣
i ) ∩ I.

Lemma 3.5. Let k ≥ 1 and X = {x1, . . . , xk} where x1, . . . , xk are pairwise distinct variables. Let
A be a structure. For all formulas φ of V(φ) ⊆ X and all v1, . . . , vk ∈ |A|, we have:

JT(k)(φ)KA
(k)

= {⟨⟨v1, . . . , vk⟩, ⟨v1, . . . , vk⟩⟩ | {x1 7→ v1, . . . , xk 7→ vk} ∈ JφKA ↾ X}.

Here, JφKA ↾ X denotes the set {f ↾ X | f ∈ JφKA} where f ↾ X is the restriction of f to X .

Proof:
By induction on the structure of φ.

Case φ = a(xi, xj): Since T(k)(φ) = (πi · a · π⌣j ) ∩ I, we have:

J(πi · a · π⌣j ) ∩ IKA
(k)

= {⟨⟨v1, . . . , vk⟩, ⟨v1, . . . , vk⟩⟩ | ⟨⟨vi, . . . , vi⟩, ⟨vj , . . . , vj⟩⟩ ∈ aA
(k)}

= {⟨⟨v1, . . . , vk⟩, ⟨v1, . . . , vk⟩⟩ | ⟨vi, vj⟩ ∈ aA} (Def. of aA
(k)

)

= {⟨⟨v1, . . . , vk⟩, ⟨v1, . . . , vk⟩⟩ | {x1 7→ v1, . . . , xk 7→ vk} ∈ Ja(xi, xj)KA ↾ X}
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Case φ = ¬ψ: Since T(k)(φ) = T(k)(ψ)−, we have:

JT(k)(ψ)−K

= |A(k)|2 \ JT(k)(ψ)K

= |A(k)|2 \ {⟨⟨v1, . . . , vk⟩, ⟨v1, . . . , vk⟩⟩ | {x1 7→ v1, . . . , xk 7→ vk} ∈ JψKA ↾ X} (IH)

= {⟨⟨v1, . . . , vk⟩, ⟨v1, . . . , vk⟩⟩ | {x1 7→ v1, . . . , xk 7→ vk} ̸∈ JψKA ↾ X}
= {⟨⟨v1, . . . , vk⟩, ⟨v1, . . . , vk⟩⟩ | {x1 7→ v1, . . . , xk 7→ vk} ∈ J¬ψKA ↾ X}

Case φ = ψ ∧ ρ: Since T(k)(φ) = T(k)(ψ) ∩ T(k)(ρ), we have:

JT(k)(ψ) ∩ T(k)(ρ)K

= JT(k)(ψ)KA
(k) ∩ JT(k)(ρ)KA

(k)

= {⟨⟨v1, . . . , vk⟩, ⟨v1, . . . , vk⟩⟩ | {x1 7→ v1, . . . , xk 7→ vk} ∈ (JψKA ↾ X) ∩ (JψKA ↾ X)} (IH)

= {⟨⟨v1, . . . , vk⟩, ⟨v1, . . . , vk⟩⟩ | {x1 7→ v1, . . . , xk 7→ vk} ∈ Jψ ∧ ρKA ↾ X}

Case φ = ∃xi, ψ: Since T(k)(φ) = (Qi · T(k)(ψ) ·Q⌣
i ) ∩ I, we have:

J(Qi · T(k)(ψ) ·Q⌣
i ) ∩ IKA

(k)

= {⟨v1, . . . , vk⟩, ⟨v1, . . . , vk⟩ | ⟨⟨v′1, . . . , v′k⟩, ⟨v′1, . . . , v′k⟩⟩ ∈ JT(k)(ψ)KA
(k)

for some v′1, . . . , v
′
k ∈ |A| s.t. v′j = vj for 1 ≤ j ≤ k s.t. j ̸= i}

(note that JT(k)(ψ)KA(k) ⊆ JIKA(k)
by IH)

= {⟨v1, . . . , vk⟩, ⟨v1, . . . , vk⟩ | {x1 7→ v′1, . . . , xk 7→ v′k} ∈ JψKA
(k)

↾ X

for some v′1, . . . , v
′
k ∈ |A| s.t. v′j = vj for 1 ≤ j ≤ k s.t. j ̸= i} (IH)

= {⟨v1, . . . , vk⟩, ⟨v1, . . . , vk⟩ | {x1 7→ v1, . . . , xk 7→ vk} ∈ J∃xi, ψKA
(k)

↾ X}

Hence, this completes the proof. ⊓⊔

Combining the two above yields the following main lemma.

Lemma 3.6. Let k ≥ 1 and X = {x1, . . . , xk} where x1, . . . , xk are pairwise distinct variables. Let
φ be an FO= formula of V(φ) ⊆ X . Then

(
∧
Γ(k)) → T(k)(φ) ≥ I is [finitely] valid ⇐⇒ φ is [finitely] valid.

Proof: We have:

(
∧
Γ(k)) → T(k)(φ) ≥ I is valid

⇐⇒ ⟨v, v⟩ ∈ JT(k)(φ)KA for all A s.t. A |=
∧
Γ(k) and all v ∈ |A|

⇐⇒ ⟨⟨v1, . . . , vk⟩, ⟨v1, . . . , vk⟩⟩ ∈ JT(k)(φ)KB(k)
for all B and v1, . . . , vk ∈ |B| (Lem. 3.3)

⇐⇒ {x1 7→ v1, . . . , xk 7→ vk} ∈ JφKB ↾ X for all B and v1, . . . , vk ∈ |B| (Lem. 3.5)

⇐⇒ φ is valid.

For finite validity, it is shown in the same way because B is finite iff B(k) is finite (Prop. 3.2). ⊓⊔
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Theorem 3.7. There is a linear-size translation from FO= formulas into CoR equations preserving
validity and finite validity.

Proof: By Lem. 3.6 with the Schröder-Tarski translation (Prop. 2.3). ⊓⊔

Remark 3.8. We do not know whether our translation works for the equational theory of (possibly
non-representable) relation algebras. This is because our construction is not compatible with quasi-
projective relation algebras—relation algebras having elements p and q s.t. p⌣ · p ≤ I, q⌣ · q ≤ I, and
p⌣ · q = ⊤. (As quasi-projective relation algebras are representable [16], this class is useful to show
that a given translation works also for the equational theory of relation algebras, see, e.g., [1].)

3.1. Reducing to a more restricted syntax of CoR

We recall that we can eliminate converse ⌣ and identity I by using translations given in [8].

Proposition 3.9. ([8, Lem. 7, 9])
There is a linear-size translation from CoR equations into CoR equations without ⌣ nor I preserving
validity and finite validity.

Proposition 3.10. ([8, Lem. 7, 9, 11, 16])
There is a polynomial-size translation from CoR equations into CoR equations with one variable and
without ⌣ nor I preserving validity and finite validity.

Remark 3.11. The translation in [8, Lem. 11] (for reducing the number of variables to one) is not a
linear-size translation, as the output size is not bounded in linear (bounded in quadratic) to the input
size.

By Thm. 3.7 with the two propositions above, we also have the following:

Corollary 3.12. There is a linear-size translation from FO= formulas into CoR equations without ⌣

nor I preserving validity and finite validity.

Corollary 3.13. There is a polynomial-size translation from FO= formulas into CoR equations with
one variable and without ⌣ nor I preserving validity and finite validity.

Additionally, by the standard translation (Prop. 2.2), we also have obtained the following.

Corollary 3.14. There is a polynomial-size translation from FO= formulas into FO3 formulas (with-
out equality) with one binary predicate symbol preserving validity and finite validity.



12 Y. Nakamura / Note on a translation from FO into CoR preserving vailidity and finite vailidity

4. Tseitin translation for CoR

By a similar argument as the Tseitin translation [17], which is a translation from propositional for-
mulas into conjunctive normal form preserving validity in proposition logic (see also the Plaisted-
Greenbaum translation [13] for FO= and the translation from FO2= into the Scott class [14, 5]), we
can translate into CoR terms with bounded alternation of operations.

For each term t, we introduce a fresh variable at. Then for a term t, we define the set of equations
Γt as follows:

Γb =
∆ {ab = b} Γs− = Γs ∪ {as− = a−s } Γs∩u = Γs ∪ Γu ∪ {as∩u = as ∩ au}

ΓI =
∆ {aI = I} Γs⌣ = Γs ∪ {as⌣ = a⌣s } Γs·u = Γs ∪ Γu ∪ {as·u = as · au}

Then we have the following:

Lemma 4.1. For all CoR terms t, we have:

t = ⊤ is [finitely] valid ⇐⇒ (
∧
Γt) → at = ⊤ is [finitely] valid.

Proof: For all structures A s.t. A |=
∧
Γt, we have A |= s = as for all subterms s of t, by

straightforward induction on s. Thus it suffices to prove that t = ⊤ is [finitely] valid ⇐⇒
∧
Γt →

t = ⊤ is [finitely] valid. Both directions are shown as follows.
(=⇒): Trivial.
(⇐=): Since as is not occurring in t, we can easily transform a structure A s.t. A ̸|= t = ⊤ into

a structure A′ s.t. A′ |=
∧
Γt and A′ ̸|= t = ⊤ by only modifying aAs appropriately. Hence this

completes the proof. ⊓⊔

Example 4.2. The equation ((b · c)− ·d)− = ⊤ is translated into the following quantifier-free formula
preserving validity and finite validity (we omit equations for each variables b, c, d, as they are verbose):∧{

ab·c = ab · ac, a(b·c)− = a−b·c,

a(b·c)−·d = a(b·c)− · ad, a((b·c)−·d)− = a−
(b·c)−·d

}
→ a((b·c)−·d)− = ⊤

This is semantically equivalent to the following equation:

(⊤ ·
⋃



(ab·c ∩ (a−b † a−c )), (a−b·c ∩ (ab · ac)),
(a(b·c)− ∩ ab·c), (a−(b·c)− ∩ a−b·c),

(a(b·c)−·d ∩ (a−
(b·c)− † a−d )), (a

−
(b·c)−·d ∩ (a(b·c)− · ad)),

(a((b·c)−·d)− ∩ a(b·c)−·d), (a
−
((b·c)−·d)− ∩ a−

(b·c)−·d)


· ⊤) ∪ a((b·c)−·d)− = ⊤

By using the translation above (and replacing complemented variables b− with fresh variables c and
introducing the axiom b− = c), we can translate each CoR equation without ⌣ nor I into an equation
of the form (⊤ · (

⋃
Γ) · ⊤) ∪ a = ⊤, where Γ is a finite set of terms of one of the following forms:

b ∩ c b− ∩ c− b ∩ (c † d) b ∩ (c · d) b ∩ (c ∩ d)

In this form, the number of alternations of operations, particularly the operations · and † (and similarly,
· and −), is reduced. Hence, we have obtained the following:
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Theorem 4.3. There is a linear-size translation from CoR equations into equations of the form t = ⊤
preserving validity and finite validity, where t is in the level ΣCoR

2 of the dot-dagger alternation
hierarchy [10] and t does not contain ⌣ nor I.

Proof:
By Prop. 3.9, there is a linear-size translation from CoR equations into CoR equations without ⌣

nor I. Then, by applying the translation of Lem. 4.1 (with the Schröder-Tarski translation (Prop. 2.3))
as above, this completes the proof. ⊓⊔

Hence, the equational theory of the form t = ⊤, where t is in the level ΣCoR
2 of the dot-dagger

alternation hierarchy, is also undecidable, cf. [11, Prop. 24][12, Appendix A].

4.1. Linear-size conservative reduction to Gödel’s class [∀3∃∗, (0, ω), (0)]

Additionally, we note that by using the argument above, we can give a linear-size translation from FO=

formulas into [∀3∃∗, (0, ω), (0)] sentences (i.e., sentences of the form ∀x, ∀y,∀z, ∃w1, . . . ,∃wn, φ
where n ≥ 0 and φ is quantifier-free, has only binary predicate symbols and does not have con-
stant symbols, function symbols or non-binary predicate symbols, see e.g., [3] for the notation of the
prefix-vocabulary class. FO= in this paper corresponds to the class [all, (0, ω), (0)]=) [6][3, p. 440]
preserving satisfiability and finite satisfiability.

For example, let us recall the translated equation in Example 4.2. By the standard translation
(Prop. 2.2), this equation is semantically equivalent w.r.t. binary relations to the following FO3 sen-
tence (without equality):

∃x, ∃y,
∨



(ab·c(x, y) ∧ (∀w1,¬ab(x,w1) ∨ ¬ac(w1, y))),

(¬ab·c(x, y) ∧ (∃z, ab(x, z) ∧ ac(z, y))),
a(b·c)−(x, y) ∧ ab·c(x, y), ¬a(b·c)−(x, y) ∧ ¬ab·c(x, y),
((a(b·c)−·d(x, y) ∧ (∀w2,¬a(b·c)−(x,w2) ∨ ¬ad(w2, y))),

(¬a(b·c)−·d(x, y) ∧ (∃z, a(b·c)−(x, z) ∧ ad(z, y)))),
a((b·c)−·d)−(x, y) ∧ a(b·c)−·d(x, y), ¬a((b·c)−·d)−(x, y) ∧ ¬a(b·c)−·d(x, y)


∨ (∀w3, ∀w4, a((b·c)−·d)−(w3, w4))

By taking the prenex normal form of the sentence above in the ordering of x, y, z, w1, w2, w3, w4,
we can obtain an [∃3∀∗, (0, ω), (0)] sentence (note that (∃z, ψ ∨ ρ) ↔ ((∃z, ψ) ∨ (∃z, ρ))). Thus, as
a corollary of Thm. 4.3, we can translate CoR equations without I into [∃3∀∗, (0, ω), (0)] sentences
preserving validity and finite validity. Hence, we also have the following:

Corollary 4.4. There is a linear-size conservative reduction from FO= formulas into [∀3∃∗, (0, ω), (0)]
sentences.

Proof:
By Thm. 4.3 with the translation above, there is a linear-size translation from FO= formulas into
[∃3∀∗, (0, ω), (0)] sentences preserving validity and finite validity. Hence, this completes the proof
(by considering negated formulas). ⊓⊔
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A. A construction from FO to FO3 not via CoR

In the following, we give a direct translation from FO= formulas into FO3= formulas not via CoR
(this is almost immediately obtained from Sect. 3 with the standard translation from CoR terms into
FO3= formulas (Prop. 2.2)).

Let Γ
(k)
FO3=

be the following finite set of FO3= formulas where i ranges over 1 ≤ i ≤ k,
E[1,0](x, y) and E[k+1,k](x, y) are the notations for denoting the “true” formula t (Section 2.1), and
x, y, z are pairwise distinct variables:

∀x, ∀y, (U(x, y) ↔
∧

1≤j≤k

πj(x, y)) (1’)

∀x, ∀y, (E[1,i](x, y) ↔ (E[1,i−1](x, y) ∧ (∃z, (πi(x, z) ∧ πi(y, z))))) (2’)

∀x, ∀y, (E[i,k](x, y) ↔ (E[i+1,k](x, y) ∧ (∃z, (πi(x, z) ∧ πi(y, z))))) (3’)

∀x, ∀y, (Qi(x, y) ↔ (E[1,i−1](x, y) ∧ E[i+1,k](x, y))) (4’)

∀x, ∀y, (U(x, y) → x = y) (5’)

∀x, ∀y, ∀z, ((πi(x, y) ∧ πi(x, z)) → y = z) (6’)

∀x, ∃y, (πi(x, y) ∧ U(y, y)) (7’)

∀x, ∀y, (U(y, y) → (∃z,Qi(x, z) ∧ πi(z, y))) (8’)

∀x, ∀y, (x = y) ↔ E[1,k](x, y) (9’)

∃x, U(x, x) (10’)

∀x, ∀y, a(x, y) → (U(x, x) ∧ U(y, y)) (11’)

Lemma A.1. Let A be a structure over Σ(k). Then

A |=
∧

Γ
(k)
FO3=

⇐⇒ A ∈ I(k-TUPLE).

Proof:
We can check that (

∧
Γ
(k)
FO3=

) and (
∧

Γ(k)) are semantically equivalent. Thus, by Lem. 3.3, this
completes the proof. ⊓⊔

Definition A.2. Let k ≥ 3 and X = {x1, . . . , xk} where x1, . . . , xk are pairwise distinct variables.
For each formula φ of V(φ) ⊆ X and z ∈ {x1, x2, x3}, the FO3 formula T(k)

z (φ) of V ⊆ {x1, x2, x3}
is inductively defined as follows, where z′ = min({x1, x2, x3} \ {z}) and z′′ = min({x1, x2, x3} \
{z, z′}) under the ordering x1 < x2 < x3:

T(k)
z (a(xi, xj)) =∆ ∃z′, ∃z′′, πi(z, z′) ∧ a(z′, z′′) ∧ πj(z, z′′)

T(k)
z (¬ψ) =∆ ¬T(k)

z (ψ)

T(k)
z (ψ ∧ ρ) =∆ T(k)

z (ψ) ∧ T(k)
z (ρ)

T(k)
z (∃xi, ψ) =∆ ∃z′, Qi(z, z

′) ∧ T
(k)
z′ (ψ).
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Lemma A.3. Let k ≥ 3 and X = {x1, . . . , xk} where x1, . . . , xk are pairwise distinct variables. Let
A be a structure. For all formulas φ of V(φ) ⊆ X , all z ∈ {x1, x2, x3}, and all u1, . . . , uk ∈ |A|, we
have:

{z 7→ ⟨u1, . . . , uk⟩} ∈ JT(k)
z (φ)KA

(k)
↾ {z} ⇐⇒ {x1 7→ u1, . . . , xk 7→ uk} ∈ JφKA ↾ X.

Proof: By induction on the structure of φ (similarly for Lem. 3.5). ⊓⊔

Combining the two above, we have obtained the following main lemma.

Lemma A.4. Let k ≥ 3 and X = {x1, . . . , xk} where x1, . . . , xk are pairwise distinct variables. Let
φ be a formula of V(φ) ⊆ X and z ∈ {x1, x2, x3}. Then

(
∧

Γ
(k)
FO3=

) → T
(k)
z (φ) is [finitely] valid ⇐⇒ φ is [finitely] valid.

Proof: We have:

(
∧
Γ
(k)
FO3=

) → T
(k)
z (φ) is valid

⇐⇒ {z 7→ v} ∈ JT(k)
z (φ)KA ↾ {z} for all A s.t. A |=

∧
Γ
(k)
FO3=

and all v ∈ |A|

⇐⇒ {z 7→ ⟨u1, . . . , uk⟩} ∈ JT(k)
z (φ)KB(k)

↾ {z} for all B and u1, . . . , uk ∈ |B| (Lem. A.1)

⇐⇒ {x1 7→ u1, . . . , xk 7→ uk} ∈ JφKB ↾ X for all B and u1, . . . , uk ∈ |B| (Lem. A.3)

⇐⇒ φ is valid.

For finite validity, it is shown in the same way, because B is finite iff B(k) is finite. ⊓⊔

Additionally, note that equality can be eliminated in FO3=.

Proposition A.5. There is a linear-size conservative reduction from FO3= formulas into FO3 formu-
las without equality.

Proof (sketch):
See, e.g., [2, Prop. 19.13] from FO= to FO. This can be proved by replacing each occurrence of
equality = with a fresh binary predicate symbol E and then adding axioms of that E is an equivalence
relation and of that each binary predicate a satisfies the congruence law w.r.t. E:

∀x, ∀x′, ∀y, ∀y′, (E(x, x′) ∧ E(y, y′)) → (a(x, y) ↔ a(x′, y′))

While the formula above is not in FO3, the construction in [2, Prop. 19.13] still works for FO3 by
replacing the formula with the conjunction of the following two formulas:

∀x, ∀x′, ∀y,E(x, x′) → (a(x, y) ↔ a(x′, y))

∀x, ∀y, ∀y′, E(y, y′) → (a(x, y) ↔ a(x, y′))

⊓⊔

Theorem A.6. There is a linear-size conservative reduction from FO= formulas into FO3 formulas
(without equality).

Proof: By Lem. A.4 with Prop. A.5. ⊓⊔
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