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Abstract. Miyaji, Nakabayashi, and Takano proposed an algorithm for the construction of prime
order pairing-friendly elliptic curves with embedding degrees k = 3, 4, 6. We present a method
for generating generalized MNT curves. The order of such pairing-friendly curves is the product
of two distinct prime numbers.
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1. Introduction

Let E be an elliptic curve defined over a finite field Fp, where p is a prime. Let #E(Fp) be the order
of the group of Fp-rational points of E. Let n ̸= p be a prime divisor of #E(Fp). The embedding
degree of E with respect to n is the smallest positive integer k such that n | pk − 1, but n does not
divide pd − 1 for d | k, d < k, [7]. This condition is equivalent to n > k divides Φk(p), where Φk(x)
is the kth cyclotomic polynomial. Elliptic curves over Fp that have a large subgroup of prime order n
and a small embedding degree k are commonly referred to as pairing-friendly with respect to n and
embedding degree k [7].

Many pairing-based cryptographic protocols require generating pairing-friendly elliptic curves.
For instance: one-round three-way key exchange [9], identity-based encryption [2], identity-based
signature [4], and short signature schemes [3]. From the security point of view, it is essential to find
a pairing-friendly curve E over Fp such that the discrete logarithm problems in the group E(Fp), in
the order q subgroups of E(Fp), and in the multiplicative group F∗

pk
are computationally infeasible.

The creators of the initial pairing-based protocols suggested utilizing supersingular elliptic curves.
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However, these curves are restricted to an embedding degree k = 2 for prime fields and k ≤ 6 in
general [7]. Therefore, ordinary curves are necessary for higher embedding degrees.

A typical pairing-friendly ordinary elliptic curve construction method consists of two main steps.
First, we find prime numbers n, p, integers t ̸= 0, 1, 2 and k ≥ 3 such that

|t| ≤ 2p1/2, n | p+ 1− t, n | Φk(p). (1)

We refer to t as the trace of Frobenius. By the Hasse-Weil bound t = p+ 1−#E(Fp) satisfies |t| ≤
2
√
p. For every |t| ≤ 2p1/2, there exists an elliptic curve E over Fp whose Frobenius trace is exactly t

(see [14]). In the second step, we find the equation of the curve E over Fp with #E(Fp) = p+ 1− t.
By (1), it is obvious that we can write the integer

t2 − 4p = ∆y2, ∆, y ∈ Z, (2)

in the unique form, where ∆ < 0 is a square-free integer. The above equation is called the CM
equation and the integer ∆ is called the CM discriminant. For given p, t, the Complex Multiplication
(CM) method can be used to construct the curve equation over Fp. Unfortunately, the CM algorithm is
effective if ∆ is small, that is |∆| < 1010 [7]. In practical applications, the number k should be small,
for example, k ≤ 100, while the quotient logn/ log p should be close to one.

In [12], Miyaji, Nakabayashi, and Takano proposed an algorithm (the MNT method) for the con-
struction of prime order pairing-friendly elliptic curves with embedding degrees k = 3, 4, 6. They
found families of polynomials (nk(x), pk(x), tk(x)) in Z[x] satisfying

nk(x) = pk(x) + 1− tk(x), nk(x) | Φk(pk(x)), |tk(x)| ≤ 2
√

pk(x), (3)

(see Table 1). In this case, the corresponding CM equation can be written as

tk(x)
2 − 4pk(x) = ∆Y 2, Y ∈ Z,

where ∆ < 0 is a square-free integer. Multiplying the quadratic equation above by a constant factor
and completing the squares, we obtain Pell’s equation

X2 − 3∆Y 2 = m, m = −8, k = 4, 6 or m = 24, k = 3, (4)

where X = X(x), Y ∈ Z.

k nk(x) pk(x) tk(x) Pell’s equation

6 4x2 ± 2x+ 1 4x2 + 1 1± 2x (6x± 1)2 + 3∆Y 2 = −8

4 x2 + 2x+ 2, x2 + 1 x2 + x+ 1 −x, x+ 1 (3x+ t)2 − 3∆Y 2 = −8, t = 1, 2

3 12x2 ± 6x+ 1 12x2 − 1 ±6x− 1 (6x± 3)2 − 3∆Y 2 = 24

Table 1. MNT families

We will call equation (4) generalized Pell’s equation. This observation above leads to the MNT
algorithm [12]. To find a desired curve, perform the following steps. Fix k ∈ {3, 4, 6} and select
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square-free integer |∆| < 1010. Find the solution (X0, Y0) of (4), where X0 = X(x0), such that
the corresponding numbers n = nk(x0) and p = pk(x0) are simultaneously primes. Finally, use the
CM method to construct the curve equation over Fp. For a deeper discussion of the theory of Pell
equations, we refer the reader to [13].

Luca and Shparlinski [11] gave some heuristic estimates on the number of elliptic curves which
can be produced by the MNT algorithm. Let E(z) denote the expected total number of all isogeny
classes of MNT curves over all finite fields with embedding degree k and CM discriminant |∆| ≤ z.
Then we have

E(z) ≪ z

(log z)2
.

From the above estimate, the elliptic curves generated by the MNT algorithm are rare. We refer the
reader to [11] for a deeper discussion of the lower bound of the generalized version of the function
E(z).

On the other hand, in most applications, an elliptic curve with #E(Fp) = qn is acceptable, where
q is small. Barreto and Scott used this idea in [1]. In particular, they extended the MNT algorithm
to construct more Pell equations for q > 1. Galbraith, McKee, and Valença [8] generalize the MNT
method by giving families of ordinary curves corresponding to non-prime group orders #E(Fp) = qn
with a prime n, q = 2, 3, 4, 5 and k = 3, 4, 6. Fotiadis and Konstantinou [6] extend the search to the
MNT ordinary families with larger no prime cofactors 5 < q < 48, and k = 3, 4, 6. In [5], the
authors propose a general algorithm for constructing pairing-friendly elliptic curves with an arbitrary
embedding degree. For a treatment of a more general case construction of pairing-friendly curves, we
refer the reader to [7]. Let us fix a positive integers h and k ∈ {3, 4, 6}. Let Fk(h) denote the set of all
possible families of MNT curves (nk(x), pk(x), tk(x)) corresponding to group orders #E(Fp) = qn
with embedding degrees k, where 1 ≤ q ≤ h. In [10], an algorithm was presented that outputs Fk(h).
The algorithm idea is based on the following observations. From (3) we have,

Φk(pk(x)) ≡ Φk(tk(x)− 1) mod nk(x).

Choose a, b ∈ Z. If tk(x) = ax + b, then (3) shows that the degree of the polynomial nk(x) is equal
to 2. Therefore, we can write,

Φk(tk(x)− 1) = d · nk(x), d ∈ Z,

where d is the smallest common multiple of the coefficients of Φk(tk(x)−1). Now, assume that nk(x)
is irreducible over Z and there exists q ∈ Z such that

pk(x) = q · nk(x) + tk(x)− 1, (5)

where pk(x) is irreducible over Z. If moreover,

|tk(x)| ≤ 2
√

pk(x), (6)

then we can use the polynomials (nk(x), pk(x), tk(x)) above to construct the corresponding an elliptic
MNT curve with q dividing #E(Fp). From the above observations, it is easy to construct an algorithm
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that finds all possible pairs of integer numbers a and b such that the corresponding conditions (5) and
(6) are satisfied (see [10]). Given embedding degree k and a positive integer h, the algorithm tests
all possible pairs of integers |a| ≤ 4h and |b| < 4h to determine whether they satisfy the following
condition. For fixed a, b, is there a positive integer 1 ≤ q < h satisfying (5), (6) such that the
corresponding polynomials nk(x) and pk(x) are irreducible over Z? If the condition is satisfied, for
such a and b a family of polynomials (nk(x), pk(x), tk(x)) is computed. We refer the reader to [10]
for more details. It is easy to see that the algorithm takes no more than O(h3) steps to check all
possible integers |a| ≤ 4h, |b| < 4h with 1 ≤ q < h. Therefore, given h, calculating Fk(h) using the
algorithm shown in [10] may require an exponential number of steps. In [10], the authors computed
the corresponding families of polynomials for h = 6 and k = 3, 4, 6. Now, we introduce the following
definition.

Definition 1.1. Fix k ∈ {3, 4, 6} and a prime q ≡ 1 (mod k). The triple (nk(x), pk(x), tk(x))
polynomials in Z[x] parameterizes a family of generalized MNT elliptic curves with embedding degree
k if

qnk(x) = pk(x) + 1− tk(x), qnk(x) | Φk(pk(x)), tk(x)
2 − 4pk(x) ≤ 0, (7)

and polynomials nk(x), pk(x) are irreducible over Z.

Remark 1.2. We see at once that if there is x0 ∈ Z such that n = nk(x0), and p = pk(x0) are
simultaneously prime, then there exists elliptic curve E defined over finite field Fp such that

#E(Fp) = qn = p+ 1− t, t = tk(x0).

Remark 1.3. Let #E(Fp) = qn. If E(Fp) has an embedding degree k with respect to n, then an
embedding degree with respect to q can be generally different from k. Definition 1.1 covers the case
where the embedding degree of E(Fp) equals k for any prime divisor of #E(Fp) (see Proposition 2.4,
[7]). It is clear that the families of polynomials satisfying Definition 1.1 belong to Fk(h).

The present paper extends the idea of effective polynomial families, first introduced in [12]. Our
method generates families of polynomials that satisfy the properties of Definition 1.1. In particular,
we propose methods for generating families of ordinary curves corresponding to non-prime group
orders when q is any given prime number. By including an infinite family of prime cofactors in the
analysis, we obtain a class of polynomial families belonging to Fk(h). For a given k ∈ {3, 4, 6}
and prime number q < h, our method finds a single family of polynomials of Fk(h) in a polynomial
time with respect to the number of bits h. It is enough to calculate the root x (mod q) of a given
explicit quadratic polynomial to do so (see Theorems below). This property significantly speeds up
the algorithm presented in the paper [10], which systematically calculates all possible solutions to the
problem and checks each for a valid solution. For given a list of large prime numbers qi < h, with
i = O(logc h), c > 0 and k, the approach presented in this paper allows us to efficiently determine the
corresponding class of families of polynomials in Fk(h) while using the algorithm from [10] to this
task would require exponential time with respect to h. We provide the corresponding generalized Pell
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equation for the constructed families to construct desired elliptic curves effectively. All this together
allows us to build an algorithmic method analogous to the algorithm in [12].

The remaining part of the paper is organized as follows. In Section 2, our families of polynomials
are presented. Section 3 contains a detailed analysis of our constructions.

2. Main theorems

Throughout this paper, ∆ < 0 is a square-free rational integer. We denote by Z the ring of integers
numbers. Let k be a positive integer, and let Φk(x) ∈ Z[x] be the kth cyclotomic polynomial; this is
a unique monic polynomial of degree φ(k) whose roots are the complex primitive kth roots of unity,
where φ is Euler’s totient function. In this article, we will consider only the case k =, 3, 4, 6. For the
convenience of the reader, we recall that

Φ3(x) = x2 + x+ 1, Φ4(x) = x2 + 1, Φ6(x) = x2 − x+ 1.

In the following subsections, we will present parametric families of polynomials that are useful in
constructing generalized MNT elliptic curves over a finite field with an embedding degree k.

2.1. The case k = 6

Theorem 2.1. Fix j ∈ {3, 6}, a prime q ≡ 1 (mod 6) or q = 3. Let s < q be a root of Φj(x)
(mod q). If p6(x) = Φ4(qx+ s),

n6(x) =

{
qx2 + (2s+ 1)x+Φ3(s)/q, if q | Φ3(s),

qx2 + (2s− 1)x+Φ6(s)/q, if q | Φ6(s).

and

t6(x) =

{
1− qx− s, if q | Φ3(s),

1 + qx+ s, if q | Φ6(s),

then polynomials (n6(x), p6(x), t6(x)) parameterizes a family of generalized MNT elliptic curves
with embedding degree 6. Moreover, the family has the corresponding generalized Pell equations

X2 + 3∆Y 2 = −8, X =

{
3(qx+ s) + 1 if q | Φ3(s),

3(qx+ s)− 1 if q | Φ6(s).

Proof:
See Section 3.1. ⊓⊔

Remark 2.2. Taking j ∈ {3, 6}, q = 1, s = 0, and x = ±2y in Theorem 2.1, we obtain the MNT
family with embedding degree 6.

Remark 2.3. Taking q = 3, s = 1 in Theorem 2.1, we get family belonging to the set F6(6) (see
Table 4, [10]).
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2.2. The case k = 4

Theorem 2.4. Fix a prime q ≡ 1 (mod 4) or q = 2. Let s < q or s − 1 < q be a root of Φ4(x)
(mod q). If p4(x) = Φ6(qx+ s),

n4(x) =

{
qx2 + 2sx+Φ4(s)/q, if q | Φ4(s),

qx2 + (2s− 2)x+Φ4(s− 1)/q, if q | Φ4(s− 1).

and

t4(x) =

{
1− qx− s, if q | Φ4(s),

qx+ s, if q | Φ4(s− 1),

then polynomials (n4(x), p4(x), t4(x)) parameterizes a family of generalized MNT elliptic curves
with embedding degree 4. Moreover, the family has the corresponding generalized Pell equations

X2 + 3∆Y 2 = −8, X =

{
3(qx+ s) + 1 if q | Φ4(s),

3(qx+ s) + 2 if q | Φ4(s− 1).

Proof:
See Section 3.2. ⊓⊔

Remark 2.5. Taking q = 1, s = 0, and x = ±y in Theorem 2.4, we obtain the MNT family with
embedding degree 4.

q s nk(x) pk(x) tk(x)

2 1 2x2 + 2x+ 1 4x2 + 2x+ 1 −2x

5 2 5x2 + 4x+ 1, 25x2 + 15x+ 3 −5x− 1

5 3 5x2 + 6x+ 2 25x2 + 25x+ 7 −5x− 1

Table 2. MNT families

Remark 2.6. Taking q and s as in Table 2 and applying them to Theorem 2.4, we immediately get
families belonging to the set F4(6) (see Table 3, [10]).

2.3. The case k = 3

Theorem 2.7. Let g0(x) = 3x2−1, g1(x) = 3x2−3x+1, g2(x) = 3x2+3x+1 ∈ Z[x]. Fix a prime
q ≡ 1 (mod 3), and let s < q be a root of g1(x) (mod q) or g2(x) (mod q). If p3(x) = g0(qx+ s),

n3(x) =

{
3qx2 + (6s− 3)x+ g1(s)/q, if q | g1(s),
3qx2 + (6s+ 3)x+ g2(s)/q, if q | g2(s),
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and

t3(x) =

{
3(qx+ s)− 1, if q | g1(s),
1− 3(qx+ s), if q | g2(s),

then polynomials (n3(x), p3(x), t3(x)) parameterizes a family of generalized MNT elliptic curves
with embedding degree 3. Moreover, the family has the corresponding generalized Pell equations

X2 + 3∆Y 2 = 24, X = 3(qx+ s) + 3.

Remark 2.8. Taking q = 1, s = 0, and x = ±2y in Theorem 2.7, we obtain the MNT family with
embedding degree 3.

3. Proof of Theorems

3.1. The case k = 6

Lemma 3.1. Fix a prime q ≡ 1 (mod 6) or q = 3. Let Φ6(s) ≡ 0 (mod q) or Φ3(s) ≡ 0 (mod q).
Then we have, {

Φ6(Φ4(qx+ s)) = qf1(x)f2(x), if q | Φ3(s),

Φ6(Φ4(qx+ s)) = qf3(x)f4(x), if q | Φ6(s),
(8)

for x ∈ Z and polynomials fi(x) are irreducible over Z, i = 1, 2, 3, 4, where

f1(x) = qx2 + (2s+ 1)x+Φ3(s)/q, f2(x) = q2x2 + (2s− 1)qx+Φ6(s),

f3(x) = q2x2 + (2s+ 1)qx+Φ3(s), f4(x) = qx2 + (2s− 1)x+Φ6(s)/q.

Proof:
If q ≡ 1 (mod 6), then −3 is a quadratic residue (mod q), and a root of Φj(x) (mod q) can be
computed, j = 3, 6. It is easily seen that Φ3(1) ≡ Φ6(2) ≡ 0 (mod 3). A trivial verification shows
that,

Φ6(Φ4(x)) = Φ3(x)Φ6(x), x ∈ Z. (9)

Let s be a root of Φk(x) (mod q), k = 3 or k = 6. From (9) it follows that,

Φ6(Φ4(qx+ s)) = Φ3(qx+ s)Φ6(qx+ s) =

{
qf1(x)f2(x), if q | Φ3(s),

qf3(x)f4(x), if q | Φ6(s),

where

f1(x) = qx2 + (2s+ 1)x+Φ3(s)/q, f2(x) = q2x2 + (2s− 1)qx+Φ6(s),

f3(x) = q2x2 + (2s+ 1)qx+Φ3(s), f4(x) = qx2 + (2s− 1)x+Φ6(s)/q.
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The polynomials fi are irreducible over Z, i = 1, 2, 3, 4. Indeed, ∆(fi) the discriminants of fi are
negative,

∆(f1) = (2s+ 1)2 − 4Φ3(s) = −3, ∆(f2) = q2((2s− 1)2 − 4Φ6(s)) = −3q2,

∆(f3) = q2((2s+ 1)2 − 4Φ3(s)) = −3q2, ∆(f4) = (2s− 1)2 − 4Φ6(s) = −3.

This finishes the proof. ⊓⊔

We are now in a position to prove Theorem 2.1.

Proof:
Let q ≡ 1 (mod 6) be a prime or q = 3, and let Φ3(s) ≡ 0 (mod q). We will show that polynomials
n6(x), p6(x) and t6(x) satisfy the conditions (7). We have,

qn6(x) = q2x2 + (2s+ 1)qx+Φ3(s) = Φ4(qx+ s) + qx+ s

= p6(x) + 1− t6(x),

so qn6(x) | p6(x) + 1− t6(x). An easy computation shows that,

t6(x)
2 − 4p6(x) = −3(qx+ s)2 − 2(qx+ s)− 3 < 0. (10)

Since n6(x) = f1(x), (8) shows that

qn6(x) | Φ6(p6(x)).

The polynomials n6(x) and p6(x) are irreducible over Z, which is clear from Lemma 3.1 and is easy
to check. So the polynomials n6(x), p6(x) and t6(x) satisfy Definition 1.1. Fix x for the moment. We
can write (10) in the form

t6(x)
2 − 4p6(x) = −3(qx+ s)2 − 2(qx+ s)− 3 = ∆Y 2, Y ∈ Z,

where ∆ < 0 is a square-free integer. Multiplying the above equation by -3, we obtain

X2 + 3∆Y 2 = −8, X = 3(qx+ s) + 1.

The same proof works if Φ6(s) ≡ 0 (mod q). The details are left to the reader. This finishes the
proof. ⊓⊔

3.2. The case k = 4

Lemma 3.2. Fix a prime q ≡ 1 (mod 4) or q = 2. If Φ4(s) ≡ 0 (mod q) or Φ4(s − 1) ≡ 0
(mod q). Then we have{

Φ4(Φ6(qx+ s)) = qf5(x)f6(x), if q | Φ4(s),

Φ4(Φ6(qx+ s)) = qf7(x)f8(x), if q | Φ4(s− 1),

for x ∈ Z, and polynomials fi(x) ∈ Z[x] are irreducible over Z, i = 5, 6, 7, 8, where

f5(x) = qx2 + 2sx+Φ4(s)/q, f6(x) = q2x2 + (2s− 2)qx+Φ4(s− 1),

f7(x) = q2x2 + 2sqx+Φ4(s), f8(x) = qx2 + (2s− 2)x+Φ4(s− 1)/q.
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Proof:
If q ≡ 1 (mod 4), then −1 is a quadratic residue (mod q), and a root of Φ4(x) (mod q) can be
computed. It is easily seen that Φ2(1) ≡ 0 (mod 3). A trivial verification shows that,

Φ4(Φ6(x)) = Φ4(x)Φ4(x− 1), x ∈ Z. (11)

Let s be a root of Φ4(x) (mod q) or let Φ4(s− 1) ≡ 0 (mod q). From (11) it follows that,

Φ4(Φ6(qx+ s)) =

{
qf5(x)f6(x), if q | Φ4(s),

qf7(x)f8(x), if q | Φ4(s− 1),
(12)

where

f5(x) = qx2 + 2sx+Φ4(s)/q, f6(x) = q2x2 + (2s− 2)qx+Φ4(s− 1),

f7(x) = q2x2 + 2sqx+Φ4(s), f8(x) = qx2 + (2s− 2)x+Φ4(s− 1)/q.

The polynomials fi are irreducible over Z, i = 5, 6, 7, 8. Indeed, ∆(fi) the discriminants of fi are
negative,

∆(f5) = 4s2 − 4Φ4(s) = −4, ∆(f6) = q2((2s− 2)2 − 4Φ4(s− 1)) = −4q2,

∆(f7) = q2(4s2 − 4Φ4(s)) = −4q2, ∆(f8) = (2s− 2)2 − 4Φ4(s− 1) = −4.

This finishes the proof. ⊓⊔

We are now in a position to prove Theorem 2.4.

Proof:
Fix a prime q ≡ 1 (mod 4) or q = 2, and let Φ4(s) ≡ 0 (mod q). We will show that polynomials
n4(x), p4(x) and t4(x) satisfy the conditions (7). We have,

qn4(x) = q2x2 + 2sqx+Φ4(s) = (qx+ s)2 + 1

= Φ6(qx+ s) + (qx+ s) = p4(x) + 1− t4(x)

so qn4(x) | p4(x) + 1− t4(x). A trivial verification shows that

t4(x)
2 − 4p4(x) = −3(qx+ s)2 − 2(qx+ s)− 3 < 0. (13)

Since n4(x) = f5(x), (12) shows that

qn4(x) | Φ4(p4(x)).

The polynomials n4(x) and p4(x) are irreducible over Z, which is clear from Lemma 3.2 and is easy
to check. So the polynomials n4(x), p4(x) and t4(x) satisfy Definition 1.1. Fix x for the moment. We
can write (13) in the form

t4(x)
2 − 4p4(x) = −3(qx+ s)2 − 2(qx+ s)− 3 = ∆Y 3, Y ∈ Z,

where ∆ < 0 is a square-free integer. Multiplying the above equation by -3, we obtain

X2 + 3∆Y 2 = −8, X = 3(qx+ s) + 1

The same proof works if Φ4(s− 1) ≡ 0 (mod q). The details are left to the reader. This finishes the
proof. ⊓⊔
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3.3. The case k = 3

Lemma 3.3. Let g0(x) = 3x2 − 1, g1(x) = 3x2 − 3x+ 1 and g2(x) = 3x2 + 3x+ 1 ∈ Z[x]. Fix a
prime q ≡ 1 (mod 6), and let g1(s) ≡ 0 (mod q) or g2(s) ≡ 0 (mod q). Then we have,{

Φ3(g0(qx+ s)) = qf9(x)f10(x), if q | g1(s),
Φ3(g0(qx+ s)) = qf11(x)f12(x), if q | g2(s)

(14)

x ∈ Z and polynomials fi(x) ∈ Z[x] are irreducible over Z, i = 9, 10, 11, 12, where

f9(x) = 3qx2 + (6s− 3)x+ g1(s)/q, f10(x) = 3q2x2 + (6s+ 3)qx+ g2(s),

f11(x) = 3q2x2 + (6s− 3)qx+ g1(s), f12(x) = 3qx2 + (6s+ 3)x+ g2(s)/q.

Proof:
If q ≡ 1 (mod 6), then −3 is a quadratic residue (mod q), and a root of gj(x) (mod q) can be
computed, j = 1, 2. A trivial verification shows that,

Φ3(g0(x)) = g1(x)g2(x), x ∈ Z. (15)

Let s be a root of gk(x) (mod q), j = 1 or j = 2. From (15) it follows that,{
Φ3(g0(qx+ s)) = qf9(x)f10(x), if q | g1(s),
Φ3(g0(qx+ s)) = qf11(x)f12(x), if q | g2(s),

where

f9(x) = 3qx2 + (6s− 3)x+ g1(s)/q, f10(x) = 3q2x2 + (6s+ 3)qx+ g2(s),

f11(x) = 3q2x2 + (6s− 3)qx+ g1(s), f12(x) = 3qx2 + (6s+ 3)x+ g2(s)/q.

The polynomials fi(x) are irreducible over Z, i = 9, 10, 11, 12. Indeed, ∆(fi) the discriminants of fi
are negative,

∆(f9) = (6s− 3)2 − 12g1(s) = −3, ∆(f10) = q2((6s+ 3)2 − 12g2(s)) = −3q2,

∆(f11) = q2((6s− 3)2 − 12q1(s)) = −3q2, ∆(f12) = (6s+ 3)2 − 12g2(s) = −3.

This finishes the proof. ⊓⊔

We are now in a position to prove Theorem 2.7.

Proof:
Let q ≡ 1 (mod 6) be a prime, and let g1(s) ≡ 0 (mod q). We will show that polynomials
n3(x), p3(x) and t3(x) satisfy the conditions (7). We have,

qn3(x) = 3q2x2 + (6s− 3)qx+ g1(s) = p3(qx+ s)− 3(qx+ s)−
= p3(x) + 1− t3(x)
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so qn3(x) | p3(x) + 1− t3(x). An easy computation shows that,

t3(x)
2 − 4p3(x) = −3(qx+ s)2 − 6(qx+ s) + 5 < 0. (16)

Since n3(x) = f9(x), (14) shows that

qn3(x) | Φ3(p3(x)).

The polynomials n3(x) and p3(x) are irreducible over Z, which is clear from Lemma 3.3 and is easy
to check. So the polynomials n3(x), p3(x) and t3(x) satisfy Definition 1.1. Fix x for the moment. We
can write (16) in the form

t3(x)
2 − 4p3(x) = −3(qx+ s)2 − 6(qx+ s) + 5 = ∆Y 2, Y ∈ Z,

where ∆ < 0 is a square-free integer. Multiplying the above equation by -3, we obtain

X2 + 3∆Y 2 = 24, X = 3(qx+ s) + 3.

The same proof works for g2(s) ≡ 0 (mod q). The details are left to the reader. This finishes the
proof. ⊓⊔
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