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Abstract. Miyaji, Nakabayashi, and Takano proposed an algorithm for the construction of prime
order pairing-friendly elliptic curves with embedding degrees k = 3,4,6. We present a method
for generating generalized MNT curves. The order of such pairing-friendly curves is the product
of two distinct prime numbers.
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1. Introduction

Let E be an elliptic curve defined over a finite field IF,,, where p is a prime. Let # E(IF,,) be the order
of the group of IF},-rational points of E. Let n # p be a prime divisor of #E(IF,). The embedding
degree of E with respect to n is the smallest positive integer k such that n | p* — 1, but n does not
divide p? — 1 for d | k, d < k, [7]. This condition is equivalent to n > k divides ®(p), where @y (z)
is the kth cyclotomic polynomial. Elliptic curves over IF,, that have a large subgroup of prime order n
and a small embedding degree k are commonly referred to as pairing-friendly with respect to n and
embedding degree k [7].

Many pairing-based cryptographic protocols require generating pairing-friendly elliptic curves.
For instance: one-round three-way key exchange [9], identity-based encryption [2], identity-based
signature [4], and short signature schemes [3]. From the security point of view, it is essential to find
a pairing-friendly curve E over F,, such that the discrete logarithm problems in the group E(F),), in
the order ¢ subgroups of E(F),), and in the multiplicative group IF;k are computationally infeasible.
The creators of the initial pairing-based protocols suggested utilizing supersingular elliptic curves.
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However, these curves are restricted to an embedding degree £ = 2 for prime fields and k£ < 6 in
general [7]. Therefore, ordinary curves are necessary for higher embedding degrees.

A typical pairing-friendly ordinary elliptic curve construction method consists of two main steps.
First, we find prime numbers n, p, integers ¢t # 0, 1,2 and k > 3 such that

It <2p'? nip+1—t, n|®k(p). (1)

We refer to ¢ as the trace of Frobenius. By the Hasse-Weil bound ¢ = p + 1 — #E/(IF,,) satisfies [t| <
2,/p. For every |t| < 2p'/2, there exists an elliptic curve E over IF,, whose Frobenius trace is exactly ¢
(see [14]). In the second step, we find the equation of the curve E over I, with #E(F,) =p+1 —t.
By (1), it is obvious that we can write the integer

2 —dp=Ay*, AyeZ, 2)

in the unique form, where A < 0 is a square-free integer. The above equation is called the CM
equation and the integer A is called the CM discriminant. For given p, t, the Complex Multiplication
(CM) method can be used to construct the curve equation over IF),. Unfortunately, the CM algorithm is
effective if A is small, that is |A| < 1010 [7]. In practical applications, the number & should be small,
for example, £ < 100, while the quotient log n/ log p should be close to one.

In [12], Miyaji, Nakabayashi, and Takano proposed an algorithm (the MNT method) for the con-
struction of prime order pairing-friendly elliptic curves with embedding degrees k = 3,4,6. They
found families of polynomials (ng(x), pr(x), tx(z)) in Z[z] satisfying

ng(x) = pr(z) +1—tp(2), n(@) | Prlpe(z)),  [te(z)] < 2vpi(2), 3)
(see Table 1). In this case, the corresponding CM equation can be written as
tr(z)® —dpp(z) = AY?, Y €Z,

where A < 0 is a square-free integer. Multiplying the quadratic equation above by a constant factor
and completing the squares, we obtain Pell’s equation

X2 -3AY?’=m, m=-8k=4,6 or m=24k=3, 4)

where X = X(z),Y € Z.

k ng(x) pr(z) tr(z) Pell’s equation

6 42 £272 +1 4% + 1 142z (6 £1)% +3AY2 = -8

4 | ®422+2,224+1 | 22 +2x+1 | —z,z+1 | Bzr+t)2-3AY2=-8,t=1,2
3 1222 + 62 + 1 1222 — 1 +62 — 1 (6z £3)% —3AY? =24

Table 1. MNT families

We will call equation (4) generalized Pell’s equation. This observation above leads to the MNT
algorithm [12]. To find a desired curve, perform the following steps. Fix & € {3,4,6} and select
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square-free integer |A| < 10'°. Find the solution (Xo,Yy) of (4), where Xo = X (g), such that
the corresponding numbers n = ny(z¢) and p = pi(xo) are simultaneously primes. Finally, use the
CM method to construct the curve equation over [F,. For a deeper discussion of the theory of Pell
equations, we refer the reader to [13].

Luca and Shparlinski [11] gave some heuristic estimates on the number of elliptic curves which
can be produced by the MNT algorithm. Let E(z) denote the expected total number of all isogeny
classes of MNT curves over all finite fields with embedding degree k£ and CM discriminant |A| < z.
Then we have

z
(log 2)%

From the above estimate, the elliptic curves generated by the MNT algorithm are rare. We refer the
reader to [11] for a deeper discussion of the lower bound of the generalized version of the function
E(z).

On the other hand, in most applications, an elliptic curve with #E(IF,,) = ¢n is acceptable, where
q is small. Barreto and Scott used this idea in [1]. In particular, they extended the MNT algorithm
to construct more Pell equations for ¢ > 1. Galbraith, McKee, and Valenca [8] generalize the MNT
method by giving families of ordinary curves corresponding to non-prime group orders #E(F,) = qn
with a prime n, ¢ = 2,3,4,5 and k = 3,4, 6. Fotiadis and Konstantinou [6] extend the search to the
MNT ordinary families with larger no prime cofactors 5 < ¢ < 48, and k¥ = 3,4,6. In [5], the
authors propose a general algorithm for constructing pairing-friendly elliptic curves with an arbitrary
embedding degree. For a treatment of a more general case construction of pairing-friendly curves, we
refer the reader to [7]. Let us fix a positive integers h and k € {3, 4, 6}. Let 7, (h) denote the set of all
possible families of MNT curves (ng(z), pr(x), tx(x)) corresponding to group orders #E(F),) = gn
with embedding degrees k, where 1 < ¢ < h. In [10], an algorithm was presented that outputs F(h).
The algorithm idea is based on the following observations. From (3) we have,

O (pr(z)) = Pr(tp(z) — 1) mod ng(x).

E(z) <

Choose a,b € Z. If t;(z) = ax + b, then (3) shows that the degree of the polynomial ny(z) is equal
to 2. Therefore, we can write,

Py (tr(z) — 1) =d-ny(x), deZ,

where d is the smallest common multiple of the coefficients of @ (¢x(z)—1). Now, assume that ny(x)
is irreducible over Z and there exists ¢ € Z such that

pr(x) = q - ng(x) + tp(x) — 1, 5)
where py () is irreducible over Z. If moreover,

ti(z)| < 2v/pr(x), (6)

then we can use the polynomials (ny(x), px(x), tx(z)) above to construct the corresponding an elliptic
MNT curve with ¢ dividing # E(IF,,). From the above observations, it is easy to construct an algorithm
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that finds all possible pairs of integer numbers a and b such that the corresponding conditions (5) and
(6) are satisfied (see [10]). Given embedding degree k and a positive integer h, the algorithm tests
all possible pairs of integers |a| < 4h and |b| < 4h to determine whether they satisfy the following
condition. For fixed a, b, is there a positive integer 1 < ¢ < h satisfying (5), (6) such that the
corresponding polynomials 1 (x) and pg(z) are irreducible over Z? If the condition is satisfied, for
such @ and b a family of polynomials (ny(x), px(x),tx(z)) is computed. We refer the reader to [10]
for more details. It is easy to see that the algorithm takes no more than O(h3) steps to check all
possible integers |a| < 4h, |b| < 4h with 1 < ¢ < h. Therefore, given h, calculating F(h) using the
algorithm shown in [10] may require an exponential number of steps. In [10], the authors computed
the corresponding families of polynomials for h = 6 and k = 3, 4, 6. Now, we introduce the following
definition.

Definition 1.1. Fix & € {3,4,6} and a prime ¢ = 1 (mod k). The triple (ng(x), pr(z), tp(z))
polynomials in Z[z]| parameterizes a family of generalized MNT elliptic curves with embedding degree
kif

qi(x) = pe(@) + 1 — ti(x),  qui(z) | Prlpr(a)),  te(z)* — 4py(z) <0, (N

and polynomials ng(x), pr(z) are irreducible over Z.

Remark 1.2. We see at once that if there is g € Z such that n = ng(zo), and p = pi(zo) are
simultaneously prime, then there exists elliptic curve F defined over finite field IF;, such that

#EFp) =qn=p+1—t, t=1ty(xo)

Remark 1.3. Let #E(F,) = gn. If E(F,) has an embedding degree k& with respect to n, then an
embedding degree with respect to ¢ can be generally different from k. Definition 1.1 covers the case
where the embedding degree of E(F),) equals & for any prime divisor of # E(F),) (see Proposition 2.4,
[7]). Tt is clear that the families of polynomials satisfying Definition 1.1 belong to Fy(h).

The present paper extends the idea of effective polynomial families, first introduced in [12]. Our
method generates families of polynomials that satisfy the properties of Definition 1.1. In particular,
we propose methods for generating families of ordinary curves corresponding to non-prime group
orders when ¢ is any given prime number. By including an infinite family of prime cofactors in the
analysis, we obtain a class of polynomial families belonging to Fj(h). For a given k € {3,4,6}
and prime number ¢ < h, our method finds a single family of polynomials of Fj(h) in a polynomial
time with respect to the number of bits h. It is enough to calculate the root x (mod ¢) of a given
explicit quadratic polynomial to do so (see Theorems below). This property significantly speeds up
the algorithm presented in the paper [10], which systematically calculates all possible solutions to the
problem and checks each for a valid solution. For given a list of large prime numbers ¢; < h, with
i = O(log®h), c > 0 and k, the approach presented in this paper allows us to efficiently determine the
corresponding class of families of polynomials in F(h) while using the algorithm from [10] to this
task would require exponential time with respect to h. We provide the corresponding generalized Pell
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equation for the constructed families to construct desired elliptic curves effectively. All this together
allows us to build an algorithmic method analogous to the algorithm in [12].

The remaining part of the paper is organized as follows. In Section 2, our families of polynomials
are presented. Section 3 contains a detailed analysis of our constructions.

2. Main theorems

Throughout this paper, A < 0 is a square-free rational integer. We denote by Z the ring of integers
numbers. Let k be a positive integer, and let &5 (x) € Z[z| be the kth cyclotomic polynomial; this is
a unique monic polynomial of degree (k) whose roots are the complex primitive kth roots of unity,
where ¢ is Euler’s totient function. In this article, we will consider only the case k =, 3, 4, 6. For the
convenience of the reader, we recall that

P3(x)=2? +x+1, B4(z)=2+1, Og(x)=2>—z+1.
In the following subsections, we will present parametric families of polynomials that are useful in
constructing generalized MNT elliptic curves over a finite field with an embedding degree k.
2.1. Thecasek =6
Theorem 2.1. Fix j € {3,6}, a prime ¢ = 1 (mod 6) or ¢ = 3. Let s < ¢ be a root of ®;(x)
(mod q). If pg(x) = Ps(gz + s),

ne(z) = { qr® 4+ (2s + 1)z + ®3(s)/q, if  q| ®3(s),
qx® + (25 — 1)z + ®g(s) /q, it q| ®g(s).

and
1—qx—s, if q | ®3(s),
to(x) = 2] %se)
1+q$+3, if q ‘ (1)6(8)7

then polynomials (ng(x), ps(z),te(x)) parameterizes a family of generalized MNT elliptic curves
with embedding degree 6. Moreover, the family has the corresponding generalized Pell equations

B(gr+s)+1 if g P3(s),

X?+3AY? =8, X = ,
3(gr+s)—1 if g Dg(s).

Proof:
See Section 3.1. O

Remark 2.2. Taking j € {3,6}, ¢ = 1, s = 0, and = +2y in Theorem 2.1, we obtain the MNT
family with embedding degree 6.

Remark 2.3. Taking ¢ = 3, s = 1 in Theorem 2.1, we get family belonging to the set F¢(6) (see
Table 4, [10]).
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2.2. Thecasek =4
Theorem 2.4. Fix a prime ¢ = 1 (mod 4) or ¢ = 2. Let s < gor s — 1 < ¢ be a root of ®4(x)
(mod q). If py(x) = Ps(gz + s),

na(z) = qr? + 251 + ®y4(s)/q, if g Pa(s),
! g2 + (2s — 2z + da(s — 1)/q,  if  q| Da(s —1).

and

1—gqgx—s, if Dy(s),
ha(z) = q it g ] Pafs)
qr + s, if g ®Pa(s—1),

then polynomials (n4(z),pa(x),ts(x)) parameterizes a family of generalized MNT elliptic curves
with embedding degree 4. Moreover, the family has the corresponding generalized Pell equations

gz +s)+1  if g Puls),

X?+3AY? =8, X = .
3lgr+s)+2 if  q|Da(s—1).

Proof:
See Section 3.2. O

Remark 2.5. Taking ¢ = 1, s = 0, and x = £y in Theorem 2.4, we obtain the MNT family with
embedding degree 4.

ng () Pr() tr(7)
222 +2x + 1 422 + 22 + 1 —2x
S5r2 4+4x+1, | 2522 +152+3 | —5x—1
522 + 6z + 2 2522 + 252 + 7 —bxr —1

N D N RQ
W N = ®»

Table 2. MNT families

Remark 2.6. Taking ¢ and s as in Table 2 and applying them to Theorem 2.4, we immediately get
families belonging to the set F4(6) (see Table 3, [10]).
2.3. Thecasek =3

Theorem 2.7. Let go(z) = 322 —1, g1 () = 322 — 3241, go(x) = 322+ 3z +1 € Z[x]. Fix a prime
g=1 (mod 3), and let s < g be aroot of g;(x) (mod q) or g2(z) (mod q). If p3(x) = go(qz + s),

na(e) = { fo=” + (6 -3t aule)/a, i alale)
3qx? + (65 + 3)z + g2(s)/q, it q|ga(s),
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and
3qgr+s)—1, if  q|gi(s),
t5($): .
1-3(qgz+s), if  q|gas),

then polynomials (ng(x), ps(x),t3(x)) parameterizes a family of generalized MNT elliptic curves
with embedding degree 3. Moreover, the family has the corresponding generalized Pell equations

X2+ 3AY%2 =24, X =3(qz+5)+3.

Remark 2.8. Taking ¢ = 1, s = 0, and z = 42y in Theorem 2.7, we obtain the MNT family with
embedding degree 3.

3. Proof of Theorems

3.1. Thecasek =6

Lemma 3.1. Fix a prime ¢ = 1 (mod 6) or ¢ = 3. Let ®4(s) = 0 (mod ¢) or P3(s) =0 (mod q).
Then we have,

(®)

{ Q6 (Qu(qr + 8)) = qfi(x) fa(w), if g P3(s),
Q6(Palqr + 8)) = qfs(x) fa(z), if g Pe(s),

for z € Z and polynomials f;(z) are irreducible over Z, i = 1,2, 3,4, where

filz) =q2® + (25 + D)o + 3(s)/q,  falz) = ¢*® + (25 — 1)qz + P(s),
f3(2) = ¢*2® + (25 + )gz + 3(s),  falz) = gz® + (25 — )z + Pe(s) /q-
Proof:
If ¢ = 1 (mod 6), then —3 is a quadratic residue (mod ¢), and a root of ®;(z) (mod ¢) can be

)
computed, j = 3,6. It is easily seen that ®3(1) = ®4(2) = 0 (mod 3). A trivial verification shows
that,

P (P4(x)) = P3(x)P6(2), @ €Z. )
Let s be a root of ®(x) (mod g), k = 3 or k = 6. From (9) it follows that,

Qfl(x)fZ(m)’ if q | (I)3(S)v

©6(Pa(qr +5)) = P3(qu + 5)Po(qu + 5) = { qfs(x)fa(z), if g Pg(s),

where

+ (25 + D)7+ @3(5)/a,  folw) = ¢°2" + (25 — 1)gz + Po(s),

fi(z) = gz
2 + (25 + 1)qz + P3(s),  fa(z) = qz® + (25 — 1)z + Pe(s)/q.

f3(x)
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The polynomials f; are irreducible over Z, i = 1,2,3,4. Indeed, A(f;) the discriminants of f; are
negative,

A(fr) = (25 +1)" = 405(s) = =3, A(f2) = ¢*((25 — 1)* — 4®4(s)) = —3¢”,
A(fs) = ¢*((2s +1)* = 493(s)) = =3¢%,  A(fa) = (25 — 1)* — 4Dg(s) = —3.
This finishes the proof. a
We are now in a position to prove Theorem 2.1.

Proof:
Let g =1 (mod 6) be a prime or ¢ = 3, and let $3(s) = 0 (mod ¢). We will show that polynomials
ne(z), ps(x) and tg(x) satisfy the conditions (7). We have,

qne(z) = ¢?2% + (25 + 1)gz + ®3(s) = Py(qz + 5) + qz + s
=ps(z) +1—te(x),
so gng(z) | pe(x) + 1 — tg(x). An easy computation shows that,
te(2)? — 4pg(x) = —3(qx + 5)*> — 2(qz +5) — 3 < 0. (10)
Since ng(z) = f1(x), (8) shows that
qne() | Pe(ps(z)).

The polynomials ng(x) and pg(x) are irreducible over Z, which is clear from Lemma 3.1 and is easy
to check. So the polynomials ng(x), ps(z) and tg(z) satisfy Definition 1.1. Fix z for the moment. We
can write (10) in the form

to(2)? — 4dps(x) = =3(qz + 5)> = 2(qr +5) —3=AY? Y € Z,
where A < 0 is a square-free integer. Multiplying the above equation by -3, we obtain
X2 43AY? =8, X =3(qz+s)+1.

The same proof works if ®¢(s) = 0 (mod ¢). The details are left to the reader. This finishes the
proof. a

3.2. Thecasek =4
Lemma 3.2. Fix a prime ¢ = 1 (mod 4) or ¢ = 2. If ®4(s) = 0 (mod ¢) or 4(s — 1) = 0
(mod g). Then we have
Dy(Po(qr +5)) = qfs(x) fo(z), if g Pa(s),
Dy(P6(qr + 5)) = qfr(x)fs(x), if g Pa(s —1),
for x € Z, and polynomials f;(z) € Z[z] are irreducible over Z, i = 5,6, 7, 8, where
fo(@) = qu® + 253+ Da(s)/q,  folw) = ¢ + (25 = 2)qu + Pa(s — 1),
fr(@) = ¢*2® + 2sqz + @a(s),  fs(w) = q2” + (25 — 2)a + @a(s — 1) /.
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Proof:
If g = 1 (mod 4), then —1 is a quadratic residue (mod ¢), and a root of ®4(z) (mod ¢q) can be
computed. It is easily seen that o(1) = 0 (mod 3). A trivial verification shows that,

Dy (Dg(x)) = Py(x)Ps(x —1), =€ (11)
Let s be a root of ®4(z) (mod ¢q) orlet ®4(s — 1) =0 (mod ¢q). From (11) it follows that,

qfs(w)fe(z),  if q | Pa(s),

. (12)
qfr(x)fs(z), if  q|®a(s—1),

©4(Ps(qr + 5)) = {

where
f5(z) = qz? + 252 + By(s)/q, folx) = ¢*2® + (25 — 2)qz + Py(s — 1),
fr(x) = ¢?x? + 2sqx + Dy(s), fa(x) = qz? + (25 — 2)z + Py(s — 1)/q.

The polynomials f; are irreducible over Z, i = 5,6,7,8. Indeed, A(f;) the discriminants of f; are
negative,

A(fs) =4s" = 404(s) = =4, A(fs) = ¢*((25 = 2)* = 4@4(s — 1)) = —4¢,

A(fr) = ¢*(4s* — 4D4(s)) = —4¢®, A(fs) = (25 — 2)® —4Dy(s — 1) = —4.
This finishes the proof. a
We are now in a position to prove Theorem 2.4.

Proof:
Fix a prime ¢ = 1 (mod 4) or ¢ = 2, and let ®4(s) = 0 (mod ¢). We will show that polynomials
n4(x), pa(x) and t4(x) satisfy the conditions (7). We have,

qna(z) = ¢°2° + 2sqx + P4(s) = (qz +5)° + 1
= ®o(qr + 5) + (qr + 5) = pa(e) + 1 — la()
so qna(z) | pa(x) + 1 — t4(z). A trivial verification shows that
ta(x)* — dpy(x) = —3(qz + 5)* — 2(qx +5) — 3 < 0. (13)
Since nyq(x) = f5(x), (12) shows that
qna(w) | P4(pa(z)).

The polynomials n4(z) and py(z) are irreducible over Z, which is clear from Lemma 3.2 and is easy
to check. So the polynomials n4(x), p4(z) and t4(z) satisfy Definition 1.1. Fix z for the moment. We
can write (13) in the form

ta(z)® —4ps(x) = =3(qxr + 5)*> = 2(qx +5) —3=AY?3, Y €7,
where A < 0 is a square-free integer. Multiplying the above equation by -3, we obtain
X2+ 3AY%2=-8, X =3(qz+s)+1

The same proof works if ®4(s — 1) = 0 (mod ¢). The details are left to the reader. This finishes the
proof. a
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3.3. Thecasek =3

Lemma 3.3. Let go(7) = 322 — 1, g1(x) = 322 — 3z + 1 and go(z) = 32% + 32 + 1 € Z[z]. Fix a
prime ¢ = 1 (mod 6), and let g1(s) = 0 (mod g) or g2(s) = 0 (mod ¢q). Then we have,

{ P3(go(qz + 8)) = qfo(x) fro(z), if  q]gi(s),
®3(g0(qr + 5)) = qf1i(z) frz(z), if g g2(s)

x € Z and polynomials f;(x) € Z[z] are irreducible over Z, i = 9,10, 11, 12, where

(14)

fo(z) = 3¢z” + (65 — 3)z + g1(s)/q,  fro(z) = 3¢*2* + (65 + 3)qz + g2(s),
fi1(x) = 3¢%2 + (65 — 3)gr + g1(s),  fi2(x) = 3gz® + (65 + 3)x + ga(s)/q.

Proof:
If ¢ = 1 (mod 6), then —3 is a quadratic residue (mod ¢), and a root of g;(z) (mod ¢) can be
computed, j = 1, 2. A trivial verification shows that,

®3(g0(2)) = g1(z)g2(x), = €Z. (15)
Let s be a root of gx(z) (mod ¢), j = 1 or j = 2. From (15) it follows that,
®3(g0(qz + 5)) = qfo(7) fr0(2), if  q|agi(s),
®3(g0(qr + 5)) = qfii(z) frz(z), if g g2(s),
where
fo(x) =3¢z” + (65 — 3)x + g1(s)/q,  fro(z) = 3¢%2* + (65 + 3)qz + g2(s),
fii(x) = 3¢%x* + (6s — 3)qz + g1(s), fi2(z) = 3g2® + (65 + 3)x + g2(s) /q.

The polynomials f;(x) are irreducible over Z, i = 9,10, 11, 12. Indeed, A(f;) the discriminants of f;
are negative,

A(fo) = (65 —3)* = 1201(s) = =3,  A(fi0) = ¢*((65 +3)* — 1292(s)) = —3¢%,
A(fu1) = ¢*((6s = 3)> = 12q1(s)) = =3¢*,  A(f12) = (65 +3)* — 12g2(s) = 3.
This finishes the proof. |

We are now in a position to prove Theorem 2.7.

Proof:
Let ¢ = 1 (mod 6) be a prime, and let g;(s) = 0 (mod ¢). We will show that polynomials
n3(x), ps(x) and t3(x) satisfy the conditions (7). We have,

qns(z) = 3¢°z* + (65 — 3)qz + g1(s) = ps(qz + s) — 3(qz + s)—
= p3(z) + 1 —t3(z)
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so qng(x) | ps(x) + 1 — t3(z). An easy computation shows that,
t3(2)? — 4ps(x) = —3(qx + 5)*> — 6(qx +5) +5 < 0. (16)
Since nz(x) = fo(x), (14) shows that

qna(z) | ®3(p3(z)).

The polynomials nz(x) and ps(x) are irreducible over Z, which is clear from Lemma 3.3 and is easy
to check. So the polynomials n3(x), p3(z) and t3(z) satisfy Definition 1.1. Fix z for the moment. We
can write (16) in the form

t3(x)* — 4p3(z) = —3(qz + 5)> —6(qz +s) +5=AY? Y €7,
where A < 0 is a square-free integer. Multiplying the above equation by -3, we obtain
X2+ 3AY%2 =24, X =3(qz+5)+3.

The same proof works for ga(s) = 0 (mod ¢). The details are left to the reader. This finishes the
proof. a
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