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Abstract. In this paper we continue the investigation of a real number object, i.e., an object
representing the real numbers, in categories of relations. Our axiomatization is based on a relation
algebraic version of Tarski’s axioms of the real numbers. It was already shown that the addition
of such an object forms a dense, linear ordered abelian group. In the current paper we will focus
on the least-upper-bound property of such an object.

1. Introduction

In [12] the notion of a real number object in Heyting categories with relational powers was introduced
as an abstract version of the real numbers in a suitable category of relations. The axioms of such an
object are based on Tarski’s axioms of the real numbers. Due to the existence of relational powers
it was possible to formulate relation-algebraic versions of Tarski’s second order axioms in a purely
equational style. In addition, since Heyting algebras do not provide Boolean complements, the theory
of a real number object is complement-free. All results so far were shown without the usage of
Boolean complements. Our main motivation for avoiding Boolean complements is that the results
transfer immediately to so-called L-fuzzy relations, i.e., to relations that use a Heyting algebra L as
truth values instead of the Boolean truth values true and false. This makes it possible to transfer
real number objects and their properties also to the fuzzy case.

The investigation of a real number object is an important study since categories of relations are
used to specify, implement, and verify programs. Usually objects of the category represent types,
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and relations represent programs of the given programming language and/or properties thereof. The
current stream of investigation continued in the current paper allows to utilize the real numbers in such
an environment.

In this paper we will focus on the least-upper-bound property of a real number object. In the
context of Tarski’s axioms this property is essential for showing the Archimedean property of the
additive group. In addition, the least-upper-bound property is also used to provide direct proofs of the
Intermediate Value Theorem and/or the Heine-Borel Theorem. All these topics are planned for future
work.

2. Heyting Categories

In this chapter we want to introduce the mathematical notions used in this paper. We start by recalling
some basic notions from categories and allegories [1, 9, 10]. Then we are going to introduce Heyting
categories as an extension of division allegories defined in [1], i.e., a Heyting category is a division
allegory where the lattice of relations between two objects is a Heyting algebra instead of just a dis-
tributive lattice. Heyting categories are also a version of Dedekind categories introduced in [2, 3]
without the requirement of completeness of lattice of relations between two objects.

We will write R : A — B to indicate that a morphism R of a category C has source A and target
B, and the collection of all morphisms with source A and target B is denoted by C[A, B]. Composition
and the identity morphism are denoted by ; and I4, respectively. Please note that composition has to
be read from left to right, i.e., Q; R means first Q and then R.

Definition 2.1. A Heyting category R is a category satisfying the following:

1. For all objects A and B the collection R[A, B] is a Heyting algebra. Binary meet, binary join,
relative pseudo-complement, the induced ordering, the least and the greatest element are denoted
by M, U, —, E, llap, Tap, respectively.

2. Q; lgc = liyc for all relations Q : A — B.

3. There is a monotone operation ~ (called converse) mapping arelation Q : A — BtoQ™ : B —> A
such that for all relations Q : A — B and R : B — C the following holds: (Q;R)” = R™; 0~
and (0°)" = 0.

4. For all relations Q : A — B,R: B— Cand S : A — C the modular inclusion (Q;R) m S &
0; (Rm (Q7;S)) holds.

5. For all relations R : B — C and S : A — C there is a relation S/R : A — B (called the right
residual of S and R) such that for all X : A — B the following holds: X;R= S < X = S/R.

Throughout the paper we will use the axioms and some basics facts such as monotonicity of the
operations, Q; lgc = lsc = Uap;R, Q;(RUS) = O;RU O;S, (QuT);R = Q;Ru TR,
Iy, =1lps,and (QUR)” = Q uR forall 0, T : A — BandR,S : B— C without mentioning.

If we define the left residual Q\R : B — C of two relations Q : A - Band R : A — C by
O\R = (R7/Q7)” we immediately obtain X = Q\R iff 0; X = R. Using both residuals we define
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the symmetric quotient as syQ(Q,R) = (Q\R) m (Q~/R™). This construction is characterized by
X EsyQ(Q,R)iff O; X =T RandR; X~ = Q.

As usual we define the pseudo-complement Q* of a relation Q : A — Bby QO = Q — liup.
Notice that the operation * is antitone and that we have Q*** = Q*, ﬂ:‘B = Tup, W:‘B = llup,
(QUR)*=Q*mR"and (Q M R)™ = Q™ mMR*™.

Following usual conventions we call a relation Q : A — B complemented iff there is a relations
R:A — BwithQm R = lLggand Q 1 R = Tup and regular iff 0** = Q. The following lemma
relates these notions.

Lemma 2.2. Suppose Q : A — B has a complement R : A — B. Then we have
1. Q* =Rand R* = (Q,

2. Q and R are regular.

Proof:

1. From Q m R = 145 we immediately conclude R = Q*. For the converse inclusion consider

R=Ru(Qr Q)
—(RUQ) 1 (RU Q)
=Ru O, R complement of Q

which shows that O* E R. By switching the role of Q and R we obtain the second equation.

2. The first property follows from Q** = R* = Q using 1. The second property is shown analo-
gously.
O

Now, we provide a version of the so-called Schroder equivalences [4, 5] known to be valid if each
lattice of relations is in fact a Boolean algebra in the more general context of Heyting categories.

Lemma 2.3. (Schroder equivalences)
LetQ:A—> B,R:B— CandS : A — C be relations. The we have

O;RES* — QO ;SCER" — S;R = Q.

Proof:

We only show => of the first equivalence. All other implications follow analogously. Suppose Q; R =
S*. Then we have Q; RmS = lyc. Weobtain Q7; SR & Q7; (S mQ; R) = Lpc, which immediately
implies Q7; § = R*. O

The Schroder equivalences allow to replace certain residuals by a combination of negations and
compositions as the next lemma shows.
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Lemma 2.4. Suppose Q: A — B,R: A — C,and S : B — C are relations. Then we have
Lo =0,
2. R*/S = (R*™;S7)%,
3. O\R" = (Q7:R™)™.

Proof:

1. From Q*” m Q™ = (Q* m Q) = g4 we obtain the inclusion 3. For the converse inclusion
compute Q7* "M Q = (Q7* M Q7)” = lp. Thisimplies Q*~ = Q*, and, hence, Q™* = Q*~.

2. We have

(R*/S)mMR™;S" = ((R*/S);S mR™);S~
C(R"mR™):;S~
= liga,
which immediately implies R*/S = (R**; S ~)*. For the converse inclusion we apply Lemma

2.3 to the inclusion R**; S~ = (R**; S ~)** and obtain (R**; S 7)*; S = R*** = R*. This implies
(R**;S~)* = R*/S.

3. We immediately compute

O\R" = (R"7/Q7)"
= (R*/Q") by 1.
= (R 0)* by 2.
— (R0 by 1.
= (@R
= (Q7;R™)” by 1.

O

The following lemma summarizes some basic properties that will be used throughout the paper. A
proof can be found in [4, 5, §, 9].

Lemma25. letQ: A —> B,R:A— CandS : C — D be relations, and i, j : A — A be partial
identities, i.e., i, j = I4. Then we have

1. i7" =1,
2. j=injandi;i =i,

3. (O;TgeMR);S =Q;Tgp M R;S.
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The domain of a relation R : A — B, i.e., the set of elements that are related to at least one other
element, can be be defined as dom(R) = I4 m R; R™. Please note that we have dom(R); R = R which
we will use throughout the paper without mentioning.

A relation Q : A — B is called univalent (or partial function) iff Q7; Q E I, total iff [y = Q; O™,
injective iff O~ is univalent, surjective iff O~ is total, a map iff Q is total and univalent. Finally, a map
is called a bijection (or bijective mapping) iff it is injective and surjective. The following lemma states
some basic properties of univalent relations and maps. Again, a proof can be found in [4, 5, 8, 9].

Lemma 2.6. Let f : A — Bbe amapping, g: B — A univalent, Q: C - A, R:C —>B,S:A—>C
and 7,U : A — D. Then we have

1. 0;fSRiIfQCR; f,
2. (@s8"MR)g=0nRg,
3. ¢.(TnU)=gTn f;U.

The following lemma lists some important properties of the residuals and the symmetric quotient
that are needed throughout the paper. A proof can be found in [1, 4, 5, 9].

Lemma 2.7. Suppose Q:A — B,R: A — C,and S : B — C arerelations, and f : D — B is a map.
Then we have

1. O;(Q\R)E Rand (R/S);S =R,

2. f;(O\R) =0Q;f \Rand (R/S);f~ =R/f;S,
3. syQ(Q.R)” = syQ(R, Q)

4. fisyQ(Q.R) = syQ(Q: f™.R).

For a singleton set {x} and concrete relations we obviously have I(,y = Ty,}4}. Furthermore,
for any set A the relation T4, is actually a map. The first property together with the totality in the
second property also characterize singleton sets up to isomorphism. Therefore, we define a unit as an
abstract version of a singleton set as follows. A unit 1 is an object so that I} = Ty and T4 is total for
every object A.

Considering concrete relation a map p : 1 — A, i.e., a relation that maps = to one element a in A,
can be identified with the element a. Therefore we call amap p : 1 — A a point (of A).

Another important concept is the notion of a relational product, i.e., an abstract version of the
Cartesian product of sets. The object A x B is characterized by the projection relations 7 : Ax B — A
and p : A x B — B satisfying

nnEla, pipElR, ma mpip” =laxp 70 = Tap.

Please note that the axioms of a relational product immediately imply that 7 and p are maps. In
addition, the relational product is a product in the categorical sense in the subcategory of maps. Given
relational products we will use the following abbreviations:
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QOQR=0Q;n nR;p7,
QoS =mQrpS,
0T =min np;T;p” = Qi ST p” =mQopT,

and obtain the following properties [6].
Lemma 2.8. If all relational products exist, then we have
. (Q9R)" =0 GR and (QGS) =0 985",
2. If Ris total, then (Q © R);m = Q and if Q is total, then (Q © R);p = R,
3. If S is surjective, then 77; (Q © §) = Q and if Q is surjective, thenp™; (Q S S) = S,
4. If f is univalent, then f; (Q9R) = f; Q9 f; R and if g is injective, then (0SS ); ¢ = 0; 8585 g,
5. (Q9R);(ToU)=0;TR; U,
6. (QOR);(T®V)=0;TORVand (Q®X);(TcU)=0;,TeX;U,
7. "6 (ReS)=(QSR)©p;S.

We also use the following two bijective mappings assoc : A x (B x C) — (A x B) x C and swap :
A X B — B x A defined by

assoc = ma s mpsmp s npypsp = Ma®@n)@psp =11 6 (p” ®lo),
swap=m,p mMpo;n =pQa=p On .

The following properties have been shown in [11].

Lemma2.9. 1. swap~ = swap.
2. (Q@R);swap = R© Qand swap; (06 S) =S & Q.
3. swap; (Q®T) = (T ® Q); swap.
4. (U© (Q©R));assoc = (U Q)@ Randassoc; (QeS)eV)=006(SoV).
5. assoc; (Q®T)®X) = (Q® (T ® X)); assoc.

With the maps above we are now ready to define an abelian group within a Heyting category.

Definition 2.10. A quadruple (A, e, f,n) in a Heyting category R is called an abelian group iff A is an
object,e: 1 — Aisapoint,and f : A x A — Aandn: A — A are maps satisfying:

1. fis associative, i.e., (I4 ® f); f = assoc; (f ®14); f,
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2. eis the neutral element of f, i.e., (I4 © Tayse); f = Iy,
3. nis the complement map, i.e., (I4 © n); f = Tay;e,
4. fis commutative. i.e., swap; f = f.
The next lemma lists some basic properties of abelian groups.
Lemma 2.11. Let (A, e, f,n) be an abelian group. The we have
1. assoc; (Ia ® f); f = (f ®Ia); f,
2. (Tar;e©la); f =Taand (n©1a); f = Tarse,
3. If g,h: A — A are maps with (g © h); f = Tay;e, then g;n = h,
4. (n®n); fin=f.
Proof:
1. This follows immediately from the fact that assoc is a bijective map.
2. Both equations follow immediately form the commutativity of f.

3. We immediately compute

gin=gn(Ia©Tare) f e is neutral
= (&n© Taise); f Lemma 2.5(3)
=(gno(goh);f)f assumption
= (gne(goh);(La®f)f Lemma 2.8(6)
= (g:n© (g©h));assoc; (fQLy); f f associative
= ((gsnog)©h) (f®la) f Lemma 2.9(4)
=(gmel)eh)(fOL)f Lemma 2.6(3)
= (g(nel);feh);f Lemma 2.8(6)
= (& Tar;e©h); f by 2.
= (Ta;e@h); f g total
=h; (Ta1;e ©14); f Lemma 2.5(3)
= h. by 2.

4. First of all, the relation b = (swap®1I4x4); assoc; (assoc™; swap®14); assoc™ : (A x A) x (A x
A) — (A x A) x (A x A) is a bijective map because swap and assoc are. Furthermore, we have

(n®n) ©Tsxa); (swap ® I4x4); assoc
= ((mnop;n) ©laxa); (swap @ I4xa); assoc
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= ((m;n© p;n);swap © I4x4); assoc Lemma 2.8(6)
= ((o;n©mn) ©lsxa);assoc Lemma 2.9(2)
= ((;;nemn)© (1 p));assoc
=((;nemn)on)op Lemma 2.9(4)
(((psnemn)@nr) @p); (assoc™; swap ® Ly ); assoc™
= (((psn © myn) © m); assoc™; swap © p); assoc™ Lemma 2.8(6)
= ((sne (mnemn));swap © p); assoc™ Lemma 2.9(4)
= (((mnenr)©p;n)©p);assoc” Lemma 2.9(2)
=(mnen) e (pnep) Lemma 2.9(4)
=mnely) ep;(naly) Lemma 2.6(3)

=nolh)®naly),
e, (n®n)©laxa);b=(nols) ®nels).

assoc™; (swap ® Inxa); (f ® f); f

= assoc”; (swap; f ® f); f Lemma 2.8(6)
=assoc’; (f® f); f f commutative
= assoc”; (f®@Luxa): (U ® f); f Lemma 2.8(6)
=assoc”; (f @ (La®1a)); Ta ® f)s f [4®I4 = Laxa
= ((f®I4) ®1I4);ass0c”; (Iy ® f): f Lemma 2.9(5)
= ((fOL) ®Ia); (f®Ia); f by 1.
= ((f®Ia); f®Ia); f Lemma 2.8(6)
assoc; (swap; assoc ® I4); (f ®La); f R La); f
= assoc; (swap; assoc; (f®14); F®Ly); f Lemma 2.8(6)
= assoc; (swap; (I4 ® f); f ®IL4); f f associative
= assoc; ((f ®Ia);swap; f ®I4); f Lemma 2.9(3)
= assoc; ((f®Ia); FRI4); f f commutative
= (f® (Ia ®1L4));assoc; (f ®Ta); f Lemma 2.9(5)
= (f®Iuxa);assoc; (f @Ia); f Ia ®@Is = Taxa
=(f®Iuxa); Ma®f); f f associative
=(f®f):f Lemma 2.8(6)

ie, b7 (f®f): f = (f®f); f. Together we conclude

(n@n);fof)f=((n®n) ©laxa);(fRf):f Lemma 2.8(6)
(n®n) ©laxa);b:;b7; (f® f)s f b bijective
=(neoly)®@nelh));(fRf):,f see above
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=((meola)f@mealn)f)f Lemma 2.8(6)
= (Ta;e@Tarse); f by 2.
= Tapse; (Ia @ Tarse); f Lemma 2.5(3)
= Tare. e neutral
From 3. we obtain (n ® n); f;n = f. O

A relation C : X — X is called transitive ifft C;C = C, dense iff C & C;C, asymmetric iff
C m C™ = lxy, a strict-order iff C is transitive and asymmetric, a linear strict-order iff C is a strict-
orderand Iy b C u C~ = Tryy.

Given a strict-order C : X — X we define its associate ordering E = Ix 11 C. It is easy to verify
that E is an ordering, i.e., E is reflexive [y = FE, E is transitive, and E is antisymmetric E m E~ = [.

The next lemma verifies that a linear strict-order does always have a complement.

Lemma 2.12. If C : A — A is a linear strict-order and E its associated ordering, then we have
1. Cily = llgg,
2. C is complemented with complement E~,
3.C*=E and E* =C",
4. C and E are regular.
Proof:
1. We have

Crnly=(Cnly) n(Crly)

=(Cnly) m(Crly)” Lemma 2.5(1)
=CnlymnC”
= llgqa. C linear

2. Wehave C U E~ = C u C™ uly = Tay because C is linear. On the other hand, the asymmetry
and (1) implies CmME- =Cn (C uly) =(CrnC7) u(Crly) = Laa.

Property 3. and 4. follow immediately from 2. and Lemma 2.2. O

If E is an order we define

ubdg(R) = R™\E,

Ibdg(R) = R™\E",

lubg(R) = ubdg(R) m lbdg(ubdg(R)),
glb(R) = Ibdg(R) r ubdg(Ibdg(R)).
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For concrete relations the construction ubdg (R) relates b with the upper bounds of the set of elements
related to b in R, i.e., the image {a | (b,a) € R} of b in R. Similarly, Ibdg(R) computes the lower
bounds. Finally, lubg(R) (resp. glbz(R)) maps b to the least upper (greatest lower) bound of the image
of binR.

Lemma 2.13. Let E : A — A be an ordering, and X : B — A arelation. Then we have ubdg(X); E =
ubdg(X) and Ibdg(X); E~ = Ibdg(X).

Proof:

We only show the first property since the second can be shown analogously. We have X ~; ubdg(X); E =
X7;(X"\E);E £ E;E = E since E is transitive. This implies ubdg(X); E = X \E = ubdg(X). The
converse inclusion follows from the reflexivity of E. O

If we consider a concrete linear strict-order and an element a strictly below the least upper bound
of a set M, then there is an element b in M that is already strictly greater than a. We want to show
this property in arbitrary Heyting categories. It turns out that we can only show this property if we use
double-negation in the conclusion.

Lemma 2.14. If C : A — A is a linear strict-order and X : B — A a relation, then lubg(X);C~ &
(X;C ).

Proof:
First of all, we have

lubg(X) 75 (X;C7)* = lubg(X) 5 (X; C7)* Lemma 2.12(4)
= lubg(X) 75 (X\C™) Lemma 2.4(3)
= lubg(X) 75 (X7\E) Lemma 2.12(3)
= lubg(X) " ; ubdg(X)
C (ubdg(X)"\E™) ;ubdg(X)
= (E/ubdg(X)); ubdg(X)
EE Lemma 2.7(1)
=C". Lemma 2.12(3)

This implies lubg (X); C~ £ (X; C™)** by using the Schroder equivalences (Lemma 2.3). ]

The following example demonstrates that we cannot remove the double-negation on the right-
hand side of the inclusion of the previous lemma. It is well-known that for every Heyting algebra L
the collection of L-fuzzy relations between sets, i.e., the collection of functions A x B — L, forms a
Heyting category. If both sets A and B are finite, we can fix a linear order on each set and represent an
L-fuzzy relation R between A and B by a matrix M with coefficients from L, i.e., if R(a,b) = x and
a is the i-th element of A and b the j-th element of B, then M has an entry x in row i and column j.
Composition of two relations in matrix form is based on the formula

(Q:R)(a.c) = | | Q(a.b) M R(b.c)

beB
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and corresponds to matrix multiplication known from linear algebra of the matrix for Q and the matrix
of R using r and ui instead of the multiplication and addition, respectively. Similarly, the left residual
can be computed by the formula

(Q\R)(b,c) =[ | Q(a,b) - R(a,c)

and corresponds to matrix multiplication of the transposed matrix for Q and the matrix of R using m
and — instead of multiplication and addition, respectively. Now consider the 3-element chain 0, «, 1
with 0 and 1 as smallest resp. greatest element and a set A with one element and a set B with two
elements. Now we define two relations C : B — B and X : A — B in matrix form by:

C:<8 é) x=(0 u).

C is a linear strict-order and we have

ude(X)
lubg(X); C~

0 1), Ibds(ubds(X)) 1), wwbex) = (0 1),
1 0), X;C~ = u 0 ), (X;C)r = 1 0

The relation algebraic version of a power set is given by a so-called relational (or direct) power.

Definition 2.15. An object P(A) together with a relation € : A — P(A) is called a relational (or
direct) power of A iff

syQ(e, &) = Ipxy and syQ(Q,e) is total for every 0 : A — B.

Please note that syQ(R™, ) is a map for every relation R : B — A. In fact, this construction is the
existential image of R, i.e., x is mapped by syQ(R™, &) to the set {y | (x,y) € R} for concrete relations.
Furthermore, we have the following [4, 5, 8, 9].

Lemma 2.16. Suppose R : A — B is a relation. Then we have syQ(R™,¢);&™ = R.

The fourth axiom of Tarski’s axiomatization of the real numbers requires for all non-empty subsets
X, Y of the real numbers with x < y for every x € X and y € Y the existence of an element z with
x < zandz < yforall x e X and y € Y. Our original definition [12] of a real number object used
the relational power from above which includes the empty set in the case of concrete relations. This
is not correct but, fortunately, the results presented in [12] did not rely on Axiom 4, i.e., Axiom 4 was
never used. In the current paper we fix this mistake and switch to the non-empty relational power that
corresponds to the set of non-empty subsets in the case of concrete relations.

Definition 2.17. An object $,.(A) together with a relation € : A — $,.(A) is called a non-empty
relational power of A iff

syQ(e,€) =Ip, 4) and dom(syQ(Q,€)) = dom(Q~) forevery Q: A — B.
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We want to show that non-empty relational powers exists if relational powers and splittings exists.
Given a partial equivalence relation X : A — A, i.e., X is symmetric (X~ = X) and transitive, an object
B together with arelation R : B — A is called a splitting of X iff R; R~ = Ig and R™; R = X. Intuitively,
the object B consists of all (existing) equivalence classes of X and R relates such an equivalence class
with its elements. Please note that requiring the existence of splittings is not really an additional
assumption since every Heyting category can be fully embedded into a Heyting category with all
splittings [1, 8].

Theorem 2.18. If i : C — P(A) splits dom(e™), then C together with &;i~ is a non-empty relational
power.

Proof: First of all, we have

syQ(e;i7,&i7) = i;syQ(g, )50~ Lemma 2.7(4)
=11 definition &
= Ic. definition i

Now, suppose Q : A — B. Then we have

dom(Q"7)

=Ilpmn Q070

=Ip msyQ(Q,¢);e7;&;8yQ(g, Q) Lemma 2.16
=Ip msyQ(Q,¢);e7;6;8yQ(0, &)~ Lemma 2.7(3)
=Ip M syQ(Q,¢);syQ(0,e)” msyQ(Q,e);&;&syQ(0,¢€)” syQ(Q, ¢) total
=IpmsyQ(Q,e); Ime;e);8yQ(0,€)” Lemma 2.6(3)
=Ip msyQ(Q,e);i ;i;syQ(0, )" definition i
=IpmsyQ(Q,&i );syQ(Q,&;i7)” Lemma 2.7(3)
= dom(syQ(Q, &;i7))

Last but not least, we want to show Lemma 2.16 also for non-empty powers.

Lemma 2.19. Suppose R : A — B is arelation. Then we have syQ(R™,€);e” = R.

Proof:
First of all, we have syQ(R™,€);e” = (R/e”);e” E R.

syQ(R™,¢€));R definition €

&R );R Lemma 2.7(3)



M. Winter | Relation Algebraic Approach to the Real Numbers 13

3. Real Number Object

In this section we want to recall the results of [12]. We start with Tarski’s axioms as they were stated
in [7]. His axioms are based on the language R, <, +, 1:

Axiom 1: If x # y,thenx <yory < x.
Axiom 2: If x <y, theny £ x.
Axiom 3: If x < z, then thereisay such that x < yand y < z.

Axiom4: If & # X € Rand J # Y < R so that for every x € X and every y € ¥ we have x < y,
then there is a z so that for all x € X and y € Y we have x < zand z < y (x < y shorthand for
xX<yorx=y).

Axiom 5: x+ (y+2) = (x+z) +y.

Axiom 6: For every x and y there is a z such that x = y + z.
Axiom7: If x+z<y+t, thenx <yorz <t

Axiom 8: 1 e R.

Axiom9: 1 <1+ 1.

The axioms above can be translated into the language of relations leading to the definition below.
Please note that we added Axiom O that states that add is a map explicitly since we are dealing with
relations rather than functions.

Definition 3.1. An object R together with three relations1: 1 - R,C: R - Randadd : R xR —- R
is called a real number object if the following holds:

0. add is a map.

1. [ruCuC™ = Tgg.

2. CnC™ = lgg.

3. C= G C.

4. e\(C/e)E (e\(Culgr));(e\(Culr)T)™.

5. (Izg ® add); add = (Ir ® swap); assoc; (add ® Iy ); add.
6. n7;add = Tgp.

7. add;C;add" = m; Cyn™ L p; Cip™.

8. 1is a map, i.e., a point.

9. 1c1;(Ig ©Ig);add; C~.
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First we define abstract versions of the number 0 and of the negation operation on the real numbers
by 0 = Tg;(add” m77);p and neg = n7; (add; Z~ m p).
The first main result of [12] is the following theorem.

Theorem 3.2. The quadruple (R, 0, add, neg) is an abelian group.

The second main result is concerned with the strict-order C.

Theorem 3.3. The relation C : R — R is a dense strict linear order.

Last but not least, the final result of [12] addresses the monotonicity of add.

Theorem 3.4. We have the following

1. add is strictly monotone in each parameter, i.e., (I ® C);add = add; C and (C ® Ig);add =
add; C,

2. add is strictly monotone. i.e., (C ® C);add £ add; C,

3. add is monotone, i.e., (E ® E);add = add; E.

4. Least-Upper-Bound Property

In this final section we want to show the least-upper-bound property of a real number object. But
first we will show that adding a constant to a number and subtracting the same constant are inverse
operations.

Lemma 4.1. Suppose p : 1 — R is a point. Then (Izx © Tgy; p);add is strictly monotone and a
bijective map with ((Ir © Tr1; p);add)” = (Ir © Try; p; neg); add.

Proof:
First of all, (Ir © Tgy; p); add is a map because p and add are. Now we show (Ig © Tgy; p); add; (I ©
Tri; p;neg); add = Ig by computing

(I © TRy p); add; (Ir © Tgry; p;neg); add

= ((Izg © Tgy; p);add © Tgy; p;neg); add Lemma 2.5(3)
((Ix © TRry; p) © TRy; p;neg); (add ® Ir); add Lemma 2.8(6)
((Ix © TRr1; p) © TRy; p;neg);assoc”; (Ir ® add); add Lemma 2.11(1)
((Ir © (Try; p © Tr1; p;neg)); (Ir ® add); add Lemma 2.9(3)
((Ir © Try; p; (Ir © neg)); (Ir ® add); add Lemma 2.6(3)
((
((
((

I

Iz © Tr1; p; (Ir © neg); add); add Lemma 2.8(6)
I © Tgi; p; Tr150); add Theorem 3.2
I © Tg1; M11;0);add p total
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= ((I[R@WRI;O);add T =1
= IR. Theorem 3.2

The property (Ig©Tr1; p; neg); add; (Ix©Tg1; p); add = Ig can be shown analogously. Using Lemma
2.5(1) the two properties above imply (Ig © Tgi;p);add = ((Ir © Tri; p;neg);add)” and (Ir ©
Try; p;neg);add = ((Ir © Try; p);add) ™, and, hence, ((Ir © Tgy; p);add)” = (Ir©Tg;; p; neg); add
and that ((Ir © Tgy; p); add is bijective. It remains to show that (Ir © Tgy; p); add is strictly monotone.
The computation

C;(Ig © Tgy; p);add = (C © Tgy; p); add Lemma 2.5(3)
= (I[R [SHIN:3N p); (C &® I[R>; add Lemma 2.8(6)
C (Ig © Tgy; p); add; C. Theorem 3.4(1)
shows that property. |

We now use 1 for p and define succ = (Igr © Trj;1); add and prec = (Ig © Tg;;1;neg); add. From
the previous lemma we obtain that succ as well as prec are monotone, strictly monotone, bijective, and
succ™ = prec.

Lemma 4.2. We have
1. succ;neg = neg; prec,
2.0=1C,
3. succ & C and prec = C~,
4. C is total and surjective.
Proof:
1. From the computation

neg; prec; neg = neg; (Ig © Tgy;1; neg); add; neg

= (neg © Tgy;1;neg); add; neg Lemma 2.5(3)
= (Ig © Tgi;1); (neg ® neg); add; neg Lemma 2.8(6)
= (Ir © Tgy;1); add Lemma 2.11(4)
= succ

we immediately obtain the assertion since neg is a bijective map.

2. First of all, from the fact that 1 is total we obtain 1; Tg; = T = I;. Now we compute

0=1;Tg;;0 see above
= 1; (Ir © neg);add Theorem 3.2
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= (1©1;neg); add Lemma 2.6(3)
= (1© Ty;1;neg); add T =1
= 1; (Ir © Tgy;1;neg); add Lemma 2.5(3)
= 1; prec
C 1; (Ir © Ir);add; C™; prec Axiom 9
= (1©1);add; C™; prec Lemma 2.6(3)
= (1© Ty1);add; C™; prec T =1
=1;(Igr © Tgr11);add; C™; prec Lemma 2.5(3)
= 1;succ; C™; prec
= 1; succ; prec; C~ prec strictly monotone
=1C". succ and prec inverse
3. We obtain
Ig = (I © Tgy;0);add Theorem 3.2
C (Ig © Tgry;1;C7);add by 2.
= (Ig © Tgr151); (I ® C7); add Lemma 2.8(6)
C (Ir © Tgy31);add; C~ add strictly monotone
= succ; C~

from which we conclude succ = C;succ™;succ = C since succ is univalent.
inclusion follows from the first by prec = succ™ = C~.

4. Both properties follow immediately form 3. because succand prec are total.

The following lemma will be needed in the proof of the least-upper-bound property.

Lemma 4.3. Suppose X : A — R. Then we have
1. dom(X) = dom(X;C"~),
2. ubdg(X) = ubdg(X;C™).

Proof:

1. The inclusion = follows from
dom(X;C7) =g m X;C7;C; X~

=Igr mdom(X); X;C~;C; X~
C dom(X); (dom(X)” m X;C7;C; X7)

The second
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C dom(X); dom(X)~
= dom(X), Lemma 2.5(1&2)

and the opposite inclusion from

dom(X) =g mX; X~
=RnNn(XnX;C;C); X~ Lemma 4.2(4)
Chrmn(gmnX;C5C X7 ), X, X~
=Igr mdom(X;C7); X; X~
C dom(X;C7); (dom(X;C7)" mX;X")
C dom(X;C7);dom(X;C™)~
= dom(X;C™). Lemma 2.5(1&2)

2. First of all, we have

X7 ;ubdp(X;C7)mC” E X ;ubde(X;C7)mC™5;C™ C transitive
EC;(C; X 5ubdp(X;C7)mCT)
=C(C; X5 (C;X\E)ymC™)

CCH(EnC) Lemma 2.7(1)
= C7; lrr Lemma 2.12(2)
= URR.
This implies

X 7;ubde(X;C7)

=X;ubdg(X;C7)m (CT LE) C linear

= (X75ubdp(X;C7) mC7) u (X ;ubde(X;C7) M E)

= X";ubdg(X;C7) N E, see above

i.e., X";ubdp(X;C™) = E. We conclude ubdg(X;C™) £ X \E = ubdg(X). For the opposite
inclusion consider

C; X ;ubdg(X) = C; X7 (X\E)

= CE Lemma 2.7(1)
=C;CuC

=C C transitive

gy )

from which we conclude ubdg(X) = C; X™\E = ubdg(X;C).
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Now, we are ready to show the least-upper-bound property. A relation X : A — R can be seen a a
collection of subsets of R indexed by A, i.e., every a € A is related to its image under X. The element
a is in the domain of X iff its image is non-empty. Therefore, the relation dom(X) m dom(ubdg(X))
relates an element a to itself iff its image and the upper bound of its image are not empty. The least-
upper-bound property now states that least upper bound for such a set exists, i.e., that dom(X)
dom(ubdg(X)) = lubg(X). This is our main theorem of the paper.

Theorem 4.4. (Least-Upper-Bound Property)
For every relation X : A — R we have dom(X) m dom(ubdg(X)) = dom(lubg(X)).

Proof:
First of all, we have

£;8yQ(C; X7, €) 75 syQ(ubdg(X) ", €)); €™
= (5yQ(C; X7, €);€7) "syQ(ubdg(X) ", €)); €

= C; X ;ubdg(X) Lemma 2.19
=C; X7, (X\E)

ECGE Lemma 2.7(1)
=C;(Culg)

=C;CucC

=C C transitive

which immediately implies syQ(C; X, €) "; syQ(ubdg(X) ™, €) = &\(C/e™). We obtain

dom(X) m dom(ubdg(X))

= dom(X); dom(ubdg (X)) Lemma 2.5(2)
= dom(X; C™);dom(ubdg (X)) Lemma 4.3(1)
= dom(syQ(C; X7, €)); dom(syQ(ubdg(X) ™, €)) Definition €
C syQ(C; X7, €);8yQ(C; X7, €) 5 syQ(ubdg(X) ™, €); syQ(ubdg (X) ", €)™

C syQ(C; X7, €); (€\(C/e7)); syQ(ubde(X) ', €)” see above

C syQ(C; X7, €); (€\E); (€\E™) 5 syQ(ubdg(X) ", €)” Axiom 4

C (&syQ(C; X7, €) \E); (€;syQ(ubdg(X) ", e) " \E™)~ Lemma 2.7(2)
= ((X;C7)"\E); (ubdg(X)"\E™)~ Lemma 2.19
= ubdg(X;C7);1bdg(ubdg (X))~ Definition

= ubdg(X); 1bdg (ubdg (X)) ™. Lemma 4.3(2)

This immediately implies

dom(X) m dom(ubdg (X))
= dom(X) m dom(ubdg (X)) m (dom(X) m dom(ubdg(X)))~ Lemma 2.5(1)
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C ubdg(X);1bdg(ubdg (X)) mlbdg (ubdg(X)); ubdg(X)™ see above

= (ubdg(X)  Ibdg(ubdg(X)); ubdz(X)™; Ibdg(ubdg(X))): Ibdg(ubdg (X))~

= (ubdg(X) M Ibdg(ubdg(X)); ubdg(X)™; (ubdg (X)"\E™)); Ibdg (ubde (X))~

C (ubdg(X) m1bdg(ubdg(X)); E7); Ibdg (ubdg (X))~ Lemma 2.7(1)
= (ubdg(X) m 1bdg (ubdg(X))); Ibdg (ubdg (X))~ Lemma 2.13
= lubg(X);1bdg (ubdg (X))~

and

dom(X) m dom(ubdg (X))

= dom(X) m dom(ubdg (X)) m (dom(X) m dom(ubdg(X)))~ Lemma 2.5(1)
= ubdg(X);1bdg(ubdg (X)) ™ M lIbdg(ubdg(X)); ubdg(X) ™ see above
C (ubdg(X);1bdg(ubdg (X)) ;s ubdg(X) m 1bdg(ubdg(X))); ubde(X)™
= (ubdg(X); (ubdg(X)™; (ubdg(X)"\E™))™ mlbdg(ubdg(X))); ubde(X)™
C (ubdg(X); E m1bdg(ubdg(X))); ubdg(X)™ Lemma 2.7(1)
= (ubdg(X) M 1bdg(ubdg(X))); ubdg(X)™ Lemma 2.13

= lubE( ), ude(X)“
Together we obtain

dom(X) m dom(ubdg (X))

C lubg(X);ubdg(X)™ mlubg(X); Ibdg(ubdg (X))~ see above

= lubg(X); (ubdg(X)™ m lbdg(ubdg (X)) ™) Lemma 2.6(3)
= lubg(X); lubg(X)~

which immediately implies
dom(X) m dom(ubdg (X)) = dom(lubg (X))
since dom(X) m dom(ubdg (X)) & I4. ]

One would expect that the inclusion of the previous theorem is in fact an equation. However,
we are only able to show this for arbitrary Heyting categories if we require an additional regularity
condition.

Lemma 4.5. If X : A — R with X; C~ regular, then we have dom(X)ndom(ubdg (X)) = dom(lubg(X)).

Proof:
By Theorem 4.4 it is sufficient to show dom(lubg (X)) £ dom(X) m dom(ubdg(X)). First of all, we
have obviously have dom(lubg (X)) = dom(ubdg(X)). Furthermore we have

dom(lubg(X)) = dom(lubg(X); C™) Lemma 4.3(1)
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= dom((X;C™)™) Lemma 2.14
= dom(X;C7) assumption
= dom(X). Lemma 4.3(1)

5. Conclusion and Future Work

The current paper has shown the least-upper-bound property for a real number object in a Heyting
category. This is the first step for showing that this additive group is Archimedean. For a next step one
first has to define the the operation of summing up 7 copies of an element a, i.e.,amap N x R — R.
This requires either an external object of the natural numbers or to identify the natural numbers within
the real number object.

Another paper will concentrate on the multiplicative group of a real number object. The definition
of the multiplication operation requires the Archimedean property and shows that the multiplication
of natural number has a unique extension in the real numbers.

Last but not least, we would like to study the topology induced by the order structure on a real
number object using the relation algebraic approach to topological spaces [6].
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