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Abstract. Within the tensor product K ®% C% of any *-continuous Kleene algebra K with the
polycyclic *-continuous Kleene algebra C) over two bracket pairs there is a copy of the fixed-
point closure of K: the centralizer of C% in K ®% C%. Using an automata-theoretic representation
of elements of K ®x CY a la Kleene and with the aid of normal form theorems that restrict the
occurrences of brackets on paths through the automata, we develop a foundation for a calculus
of context-free expressions without variable binders. We also give some results on the bra-ket *-
continuous Kleene algebra C5, motivate the “completeness equation” that distinguishes C from
CY, and show that C/, validates a relativized form of this equation.

1. Introduction
A Kleene algebra K = (K, +,-,*,0,1) is *-continuous if
a-c*'b:Z{wcn-b | ne N}

for all a, b, c € K, where ) is the least upper bound with respect to the natural partial order < on K
given by a < biff a + b = b. Well-known examples of *-continuous Kleene algebras are the algebras
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RM = (RM,+,-,*,0,1) of regular or “rational” subsets of a monoid M = (M,-M 1M), where
0:=0,1:= {1M } and + is union, - is elementwise product, and * is iteration or “monoid closure”,
i.e. for A € RM, A* is the least B D A that contains 1M and is closed under -

We will make use of two other kinds of *-continuous Kleene algebras: quotients K/p of *-
continuous Kleene algebras K under R-congruences p on K, i.e. semiring congruences which make
suprema of regular subsets congruent if their elements are congruent in a suitable sense, and tensor
products K @ K’ of *-continuous Kleene algebras K and K.

Let A,, be a set of m pairs of “brackets”, p;,q;, ¢ < m, and RA}, the *-continuous Kleene
algebra of regular subsets of A¥,. Hopkins [3] considers the R-congruence p,, on RA’, generated by
the equation set

{pigj =0ij | 1,7 <m}U{qpo+ ...+ ¢m-1Pm-1 =1} (D)

and the finer R-congruence p),, generated by the equations

{pigj =0i; | i,7 <m}, 2)

where ¢; ; is the Kronecker 0. The latter equations allow us to algebraically distinguish matching
brackets, where p;q; = 1, from non-matching ones, where p;q; = 0.! These R-congruences give rise
to the bra-ket and the polycyclic *-continuous Kleene algebra C,, = RAY, /pm, and C), = RAY, /pl.,
respectively. For m > 2, Cy, can be coded in Cs and C/,, in C%, so we focus on the case m = 2.

Two *-continuous Kleene algebras K and C' can be combined to a tensor product K ®g C which,
intuitively, is the smallest common *-continuous Kleene algebra extension of K and C in which ele-
ments of K commute with those of C'.

In unpublished work, the first author showed that for any *-continuous Kleene algebra K, the
tensor product K ®p Co contains an isomorphic copy of the fixed-point closure of K. In particular,
for finite alphabets X, each context-free set L C X™ is represented in RX* @z Cs as the value
of a regular expression over the disjoint union X U Ay of X and As. In fact, the centralizer of
Cs in K @ Cy, i.e. the set of those elements of K ®% Co that commute with every element of Co,
consists of exactly the representations of context-free subsets of the multiplicative monoid of K. These
results constitute a generalization of the Chomsky and Schiitzenberger representation theorem ([1],
Proposition 2) in formal language theory, which says that any context-free set L C X* is the image
h(R N D) of aregular set R C (X U A)* under a homomorphism A : (X U A)* — X* that keeps
elements of X fixed and “erases” symbols of A to 1. The generalization is shown in [11] with the
simpler algebra K @z CY instead of K ®x Ca.

It is therefore of some interest to understand the structure of K ®% Cy and K ®% C4. In this
article, an extension of [6], we focus on K ®% CY, using ideas from and improvements of unpublished
results on K @ Co by the first author. Our main results are normal forms for elements of K @z C,
that relate arbitrary elements to those of the centralizer of C%. We also present some results specific to
Cs and its matrix algebra. The rest of this article is structured as follows.

Section 2 recalls the definitions of *-continuous Kleene algebras (aka R-dioids), bra-ket and poly-
cyclic *-continuous Kleene algebras, and quotients and tensor products of *-continuous Kleene alge-
bras. We then show a Kleene representation theorem, i.e. that each element ¢ of K ®% CY is the value

"In RA?,, elements of A, are interpreted by their singleton sets, O by the empty set.
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L(A) = SA*F of an automaton A = (S, A, F), where S € {0,1}'*" resp. F € {0,1}"*! code
the set of initial resp. accepting states of the n states of A and A € Mat,, ,(K @ C}) is a transition
matrix.

Section 3 refines the representation ¢ = L(.A) to a normal form where brackets on paths through
the automaton .A occur mostly in a balanced way. Section 3.1 identifies, in any Kleene algebra with
elements u, z, v, the value (u + x + v)* with the value (Nv)*N(ulNV)*, provided the algebra has a
least solution N of the inequation y > (x + uyv)* defining Dyck’s language D(z) C {u,z,v}*
with “bracket” pair u,v. We then show that for any *-continuous Kleene algebra K and n > 1,
Mat,, (K @z C%) has such a solution N of y > (UyV + X)* for matrices U of 0’s and opening
brackets from C%, X of elements of K, and V' of 0’s and closing brackets from Cé, and that entries of
N belong to the centralizer of C in K @ C5.

Section 3.2 refines the representation ¢ = L(A) to the sketched normal form: the transition
matrix A can be split as A = U + X + V into a matrix X € K"*™ of transitions by elements
of K, a matrix U € {0,pg,p1}"*"™ of transitions by 0 or opening brackets of C%, and a matrix
V € {0,qo,q1}"*" of transitions by O or closing brackets of C,. Then A* can be normalized to
(NV)*N(UN)*, where N is balanced in U and V and all other occurrences of closing brackets V'
are in front of all other occurrences of opening brackets U. We call SA*F = S(NV)*N(UN)*F the
first normal form of ¢. This result is a generalization of a normal form for elements of the polycyclic
monoid P;[X], the quotient of (Ag U X U {0})* by the monoid congruence generated by the bracket
match- and mismatch equations, the equations for commuting brackets of A, with symbols of X, and
the annihilator equations for 0. Namely, if Ao = U U V' is split into opening brackets U and closing
brackets V, any w € (A9 U X U {0})* is congruent to a normal form nf(w) € V*X*U* U {0}. (The
centralizer of Ay in Py[X]is X* U {0}, so the analogues of N are contracted in the factor X*.)

Section 3.3 proves a conjecture of [6]: if ¢ = L(.A) belongs to the centralizer of CY in K ®x C4,
then the normal form SA*F = S(NV)*N(UN)*F can be simplified to SA*F = SNF. We call
this the reduced normal form. For this, we have to assume that K is non-trivial and has no zero
divisors, which is satisfied e.g. when K = RM for a monoid M. A second normal form is given for
a slightly more general transition matrix A than U + X + V/, which is useful for the representation
of products of context-free subsets. For the elements of the centralizer of C) in K ®x C% only, a
different characterization had been given in [11]. The normal form theorems presented here improve
on this by showing how the elements of the centralizer of C%, i.e. the representations of context-free
subsets of K in K @ CY, relate to the remaining elements of K @ C%.

For a finite set X, the elements of RX* @z C) are named by regular expressions over Ay U X,
as mentioned above. A subset of those, called the context-free expressions over X, name the elements
of the centralizer of C% in RX* @5 C4, i.e. the representations of the context-free languages L C X *.
Section 4 provides a foundation of a calculus of context-free expressions by showing how to combine
normal forms for elements of any K ®% CY, by regular operations.

Section 5 deals with the bra-ket *-continuous Kleene algebras C,,. Section 5.1 gives an interpre-
tation of Cy, in the algebra of binary relations on a countably infinite set, Mat,, .,(B). We also show
that C,,, is isomorphic to Maty, ,m,(Cp,) and Cy, @ Mat,, », (B), thereby excluding an interpretation
by finite-dimensional matrices. Section 5.2 considers a natural interpretation of brackets as stack op-
erations, where p; pushes symbol i € {1,...,m — 1} to the stack and ¢; pops ¢ from the stack. Then
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q:p; tests if symbol 7 is on the stack top, while gopg tests if the stack boundary 0 is on top, so that the
equation gopo+- - -+ G¢m—1Pm—1 = 1 distinguishing C,,, from C/,, asserts a completeness condition for
a stack with stack alphabet {1, ..., m — 1}. For regular programs r € RegExp({qopo,P1;- - Gm-11})s
the scope pg - - - qo of porqo asserts that we start and end with an empty stack. Section 5.2 shows that
the completeness equation of C), in a sense already holds in C/, in the scope of py . . . .

Finally, the conclusion summarizes our results and indicates possible future extensions.

2. *-continuous Kleene algebras and R-dioids

A Kleene algebra, as defined in [8], is an idempotent semiring or dioid (K, +,-,0,1) with a unary
operation * : K — K such that forall a,b € K

a-a*+1<a* AN Ve(a-z+b<zxz—a"-b<x),
a*-a+1<a* AN Ve(z-a+b<z—0b-a" <ux),

where < is the natural partial order on K givenby a < biff a +b = b.
A Kleene algebra is non-trivial it 0 # 1, and it has zero-divisors if there are non-zero elements
a, b such that a - b = 0. The boolean Kleene algebra B = ({0,1}, +, -, *, 0, 1) with boolean addition
and multiplication and * given by 0* = 1* = 1 is a subalgebra of any non-trivial Kleene algebra K.
A Kleene algebra K = (K, +,-,*,0,1) is *-continuous if

a-c*'b:Z{a'c”ﬁ | ne N}

for all a,b,c € K, where > is the least upper bound with respect to the natural partial order. Well-
known *-continuous Kleene algebras are the algebras RM = (RM, +,-,*,0,1) of regular subsets of
monoids M = (M, - 1M), where 0 := (), 1 := {1M} and for A, B € RM,

A*=J{A" | neN}  with A" =1,A""1 = 4. A"

If K is a dioid (K, + KK oK 1K ) or a Kleene algebra, by RK we mean the Kleene algebra R M
of its multiplicative monoid M = (K, -X 1K),

An R-dioid is a dioid K = (K, +K K ok, 1K) where each A € RK has a least upper bound
Y. A€ K, ie. ) is R-complete, and where Y ,(AB) = (D_A)(>_B) forall A,B € RK,ie. ) is
R-distributive. An R-morphism is a dioid morphism that preserves least upper bounds of regular sets.

Any R-dioid K can be expanded to a *-continuous Kleene algebra by putting ¢* := > {c}* for
c € K. Conversely, the dioid reduct of a *-continuous Kleene algebra K is an R-dioid, since, by
induction, every regular set C' has a least upper bound ) | C' € K satisfyinga - (> C)-b= > (aCb),
which implies the R-distributivity property > (AB) = (> A)(>_ B) for A, B € RK (see [3]).

The *-continuous Kleene algebras, with Kleene algebra homomorphisms (semiring homomor-
phisms that preserve *), form a category. It is isomorphic to the category DR of R-dioids and R-
morphisms, cf. [7, 3, 5], and a subcategory of the category ID of dioids and dioid morphisms. There
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is an adjunction (R, 7%, 7, €) between the category M of monoids and the category DR, where R is
the forgetful functor, the unit 7 is given by nas : M — RM with nps(m) = {m} and the counit € by
ex : RK — K with e (A) = > A, for monoids M and R-dioids K, cf. Theorem 16 of [4].

The R-dioids of the form RM with monoid M form the Kleisli subcategory of DR. The cases
of most immediate interest are the algebras RX™ associated with regular expressions and regular
languages over an alphabet X, and R (X* x Y™*) of rational relations and rational transductions with
alphabets X and Y, respectively, of inputs and outputs.

2.1. The polycyclic R-dioids

We will make use of two kinds of R-dioids which do not belong to the Kleisli subcategory, but are
quotients of the regular sets RA* by suitable R-congruence relations p on RA*, where A is an
alphabet of “bracket” pairs. In this section, we introduce the polycyclic R-dioids C/,, over an alphabet
A, of m bracket pairs; the bra-ket R-dioids C',, over A,,, are deferred to Section 5.2.

Let p be a dioid congruence on an R-dioid D. The set D/p of congruence classes is a dioid under
the operations defined by (d/p)(d'/p) := (dd')/p, 1 :==1/p,d/p+d'/p = (d+d")/p, 0 := 0/p.
Let < be the partial order on D/p derived from +. For U C D, putU/p :={d/p | d € U } and

(U/p)r={e/p | e/p<d/pforsomed e U,ec D}.

An R-congruence on D is a dioid-congruence p on D such that for all U, U’ € RD, if (U/p)* =
(U'/p)*, then (3_U)/p = (3. U")/p. Tt is easy to see that the kernel of an R-morphism is an R-
congruence.

Proposition 2.1. (Proposition 1 of [5])
If D is an R-dioid and p an R-congruence on D, then D/p is an R-dioid. For every R C D x D
there is a least /R-congruence p 2 Ron D.

Let A, = Py, U @y, be a set of m “opening brackets” P, = {p; | 0 <i < m } and m “closing
brackets” Q.,, = { ¢ | 0 <1i < m}, with Py, N Q, = 0. The polycyclic R-dioid C}, is the quotient
Cl, = RAZ /pof RAY by the R-congruence p generated by the relations

{pigj =6ij | 1,5 <m}. (3)

These equations allow us to algebraically distinguish matching brackets, where p;q; = 1, from non-
matching ones, where p;q; = 0. The polycyclic monoid P}, of m generators is the quotient of (A,,, U
{0})* by the monoid congruence o,,, generated by

{pigj=0dij | ,j<m}U{z0=0]2ze A, U{0}}U{0z=0|2zecA,}

Each element w € (A,, U {0})* has a normal form nf(w) € Q¥ P’ U {0}, obtained by using the
equations to shorten w, that represents w/o,, € P}, . Hence,

P o~ (Qr Py U{0},-,1) withv-w=nf(vw).

The polycyclic R-dioid C?, can be understood as the regular sets of strings in normal form:
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Proposition 2.2. (Proposition 9 of [11])

Let v be the least R-congruence on R P, that identifies {0} with the empty set. Then C}, ~ RP), /v
via the mapping defined by A/p — {nf(w) | w € A}/v for A € RA},. Each element A/p of C,
is uniquely represented by a subset of Q7 P, namely { nf(w) | w € A} \ {0}.

m= m?

The normal form can be extended from P/, to monoid extensions P, [X] of P/ in which elements
of X are required to commute with elements of P,,. Formally, let Y = A,,, U {0} U X and P/, [X]
the quotient of Y* under the congruence generated by (i) the matching rules { p;g; = d; ; | i,j <m},
(ii) the annihilation rules y0 = 0 and Oy = 0 for y € Y, and (iii) the commutation rules { zd = dz |
x € X,d e Ay, }. The set Y* can be decomposed into strings containing a 0, strings containing an
opening bracket followed by a symbol of X or by a closing bracket, strings containing a symbol of X
followed by a closing bracket, and strings consisting only of closing brackets followed by symbols of
X followed by opening brackets, i.e.

Y* = YH{0}Y* UY* (P X U PpQum UXQm)Y* UQEX*Pr.

A normal form nf(w) € Q}, X*Py U {0} for strings w € Y™ can hence be obtained: use the anni-
hilation rules to replace u0v by 0, use the commutation rules to move opening brackets p; € Py, to
the right and closing brackets ¢; € @, to the left of elements of X*, then use the matching rules to
shorten up;q;v to uv or u0v, and repeat this process. L.e. for¢,7 < m,i # jandz € X, u,v € Y*
we put

nf (up;xv) = nf(uxpv), nf(ubv) := 0, nf(up;qv) = nf(uv),
nf(urqv) = nf(ugzv), nf(1) = 1, nf(up;qgjv) = 0.

We leave it to the readers to convince themselves that this amounts to a confluent rewriting system, so
thatnf : Y* — QF X* P} U {0} is well-defined, and that

P X]~(Q:X*P: U{0},-,1), whereu-v:=nf(uv). 4)

The normal form nf on P),[X] is the motivating idea behind the normal form theorem (Theorem
3.5) for elements of the tensor product RX* ®% C!, to be introduced in the next section. On the
tensor product, regular sets A € RX* and (congruence classes of) regular sets B € RA,,, commute
with each other, and the tensor product is an R-dioid structure, not just a monoid structure.

We notice that a suitable coding of m > 2 bracket pairs by two pairs extends to an embedding of

*

C/, in C). In the context py . . . go, the code of any normal form w € Q, P} except 1 is annihilated.
Lemma 2.3. For m > 2 there is an embedding R-morphism g : C}, — CY such that for i, j < m,

g(pi) - 9(g;) =65 and po-g(g) =0=g(pi) - qo,

where we wrote p;, g; for the congruence class of {p;}, {¢;} in C}, and C%, respectively.
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Proof:

Write Ay, = P, U Qm with Py, = {p07 s 7pm—1}a Qm = {CIO7 LR Qm—l}’ but for Ay = P U Q2,
use b, p for pg,p1 and d, q for go,q1. Let = : A¥ — A3 be the homomorphism generated by the
coding of A, in A3 by

— i+1 — ’L'+1d
)

pi=bp™, ¢G=q for i < m.

The functor R lifts = by A := {w | w € A} to a monotone homomorphism = : RAY — RA3;
since the supremum ) | on RRA}, and RRA;j is the union of sets, = is an R-morphism. Let p,,, be
the R-congruence on RA, generated by the (semiring) equations

pi¢i =1, pig; =0, fori#j<m.

Then clearly
pigj/p2 = bp" ¢ d/ pa = b1y = pigi/pm
and
(b-q5)/p2 = b d/p2 = 0 = bp'*d/ py = (pi - d) / po-
Extend the R-morphism = : RAY, — RAStoamap g : C,, — C) by

9(A/pm) == A/py for A € RAL,.

This map is well-defined and injective: by Proposition 2.2, A/pm is represented by a set of strings in
normal form, { nf(w) | w € A} \ {0} C Q}, Py, and ~ maps Q}, P, injectively to a set of normal
form strings of Q5 P5'.

Clearly, g : C!,, — C% is a monotone semiring morphism. Since -/ p,, : RAY, — C/  is surjective,
g : Cl, — CYis an R-morphism: for each U € RC], there is V' € RAY, such that U =
A €V}, hence

gQ_U) = a(UW)/em) =9 JV)/p2
= U{g | A€V })/p2
= > {9(A)/p2 | AV}
= > {9(A/pn) | A€V}

= > {9(B) | BeU}.

Based on Lemma 2.3, in the following we state most results only for m = 2.

2.2. The tensor product K @5 C of R-dioids K and C'

Two maps f : M} — M < M : g to a monoid M are relatively commuting if f(m1)g(msa) =
g(ma) f(mq) for all my € M; and my € M,. In a category whose objects have a monoid structure,
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a tensor product of two objects M7 and Ms is an object M; ® My with two relatively commuting
morphisms Tq : My — My ® My < Ms : To such that for any pair f : M; — M < Ms : g of
relatively commuting morphisms there is a unique morphism h ¢, : M1 ®@Mo — M with f = hy 0Ty
and g = hy 4 o To. Thatis, the diagram

T1 Ta

M

My @ Mo

Mo

can be uniquely completed as shown. Intuitively, the tensor product M; ® My is the free extension of
M7 and M5 in which elements of M, commute with those of M.

In the category of monoids, M7 ® Mo is the cartesian product M; x Mo with componentwise unit
and product, and hy 4(m1, m2) = f(m1) - g(ma). The category DR of *-continuous Kleene algebras
also has tensor products:

Theorem 2.4. (Theorem 4 of [5])
Let K1, K9 be R-dioids and M7, My their multiplicative monoids. The tensor product of K7, K5 is

Ky ®@r Ko :=R(M; x M>)/=,

the quotient of the regular sets R(M; x Ms) of the monoid product M; x M, by the R-congruence
= generated by the “tensor product equations”

{AxB={O_A> B)} | Ac RM;,B € RM,}.

Since the natural embeddings of M7, My in My x Ms lift A € RM; and B € RM> to sets in
R(Ml X Mg),
Ax B=(Ax{1}){1} x B) € R(M; x M>).

The R-morphisms T : K1 — K1 ®r Ko < Ky : Toare T1(a) := {(a,1)}/= for a € K; and
Ta(b) = {(1,b)}/= for b € K. For a pair of commuting R-morphisms f : K1 — K < Ky : g to
an R-dioid K, the induced map is

hrg(R/=) = {f(a)g(®) | (a,b) € R}, ReR(M x My).

Fora € Kj and b € Ko, the tensor T1(a)T2(b) = {(a,b)}/= is written a ® b, but when K and
K> are disjoint, we simply use ab. (If they are not disjoint, ab could also mean (ab® 1) or (1 ® ab).)
Notice that if a = 0 in K1 or b = 0 in K5, then a ® b = 0 in K1 ®r Ko, for if, say, a = 0, then

{0, ={Q_0,> (b))} =0x {0} =0.

It follows that K1 ®p Ko is trivial if K7 or K> is trivial.
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Proposition 2.5. (Proposition 7 of [5])
If My and Mj are monoids, then RM; @ RMs ~ R(M; x Ms).

Proof: Let T1(A) = A x {1} for A € RM; and T(B) = {1} x B for B € RM; in

RM1*>RM1XM2 <7RM2

N2

and put hyg(S) = > { f({a})g({b}) | (a,b) € S} for § € R(M; x My) and commuting R-
morphisms f, g to an R-dioid K. These satisfy the properties of a tensor product of R M and R Ms,
so the claim holds by the uniqueness of tensor products. O

In the following, for R-dioids K, K9, we also write K1 x Ky for the product of their underlying
multiplicative monoids, and for R € R(K; x K3), we write [R] instead of R/=. For R, S € R(K; X
K>), one has [R] + [S] = [RU S|, [R][S] = [RS], and

=) {[B" [ neN}=) {[R"] [ neN}=[ J{R" | neN}]=[R"].

Notice also that [R] = [J{{(a,b)} | (a,0) e R} =>{a®b | (a,b) € R}.
The R-morphisms in Ty : K1 — K| @ Ko < Ko : To are embeddings, unless one of /K and
K> is trivial and the other is not:

Lemma 2.6. Let K; and K5 be non-trivial R-dioids. Then the tensor product
T1: K3 —>K1®RK2(—K2:T2
is non-trivial, and T and T2 are embeddings.

Proof:

An element (z,y) € K1 x Ky is an upper bound of R C Ky x Ky, written R < (z,y), if a < x and
b<yforall (a,b) € R.Let Z = {(a,b) € K1 x Ky | a=00rb=0}. For R, S € R(K; x K3),
define P(R, S) by

Y(z,y), (a,b), (a',b)[(a,))R(d, b))\ Z = (z,y) <= (a,b)S(d',V)\ Z < (z,y)]. 5)

With (a,b) = (a’,b’) = (1,1), (5) says that R\ Z and S'\ Z have the same upper bounds in K7 x Ko.
In particular, for R C Z and S € Z, P(R,S) is false, since (0,0) is an upper bound of R \ Z, but
not of S\ Z. We defer the proof of =C P to the appendix, Section 7. Then for any (a,b) ¢ Z,
{(0,0)} £ {(a,b)},hence 000 # a®b. As (1,1) ¢ Z,0 =020 # 1®1 =1, so K1 ®r K> is non-
trivial. Furthermore, if (a,b) and (a/, ") are different elements of (K x K2)\ Z,thena®b # a’ @V,
because {(a,b)} = {(a/,t')} implies, via (5), that (a, b) is an upper bound of {(a’,¥')} and (a’, V) is
an upper bound of {(a,b)}, so (a,b) = (a’,b'). In particular, T and T are injective. O
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Corollary 2.7. If K; ®g K> is the tensor product of non-trivial R-dioids K7 and K5, then for all
a,a’ € Kyand b,V € K>,

(1). ifa®b=0,thena =0in K7 orb = 01in Ko,
(ii). if0#£a®b<d @V in K ®r Ko,then0 # a < d'in Ky and 0 # b < b in Ks.

Proof:

For (i), if @ # 0 and b # 0, then {(0,0)} # {(a,b)} by the previous proof, which just means that
a®b+#0in K1 ®z K. For (ii), suppose 0 Z a @ b < o’ @ V'. Then 0 # o’ ® b’ too, and a # 0 # o’
inKyandb#0#b in Ks. Sincea®b+ad @0 =a @V, we have

{(a,0), (a,0)} = {(a', 1)},

and since = C P for the predicate P in the proof of Lemma 2.6, for any (z, y) we have, by (5),

{(a,),(d",V))} = (z,y) & {(a",V)} = (2,p).
The right-hand side is true for (z,y) = (a’, V'), so (a,b) < (a/,’) holds by the left-hand side. ]

Corollary 2.8. Let f and g be injective R-morphisms between non-trivial R-dioids in

T

.
K; K1 ®r Ky <2 Ko

f h(sxg) 9

! Al /

.
K| —— K| ®r Ky ~—— Kj.

Then hpyg) : K1 ®r K2 — K| ®g Kj, the induced R-morphism for T7 o f and T o g, is injective.

Proof:

By Lemma 2.6, the R-morphisms T1, Tg, T}, T, are embeddings. The homomorphism f x g :
K, x K9 — K{ x K} lifts to a monotone homomorphism (f xg) : R(K;1 x Ka) — R(K] x K}).
Since T o f and T5og are commuting, they induce an R-morphism i = hs.,). For R € R(K1x K3),
it maps [R] € K1 @ Ka to

W((R) =[(fxg)(R) => '{fac gb | (a,b) € R} € K| @ Kb,

where fa ® gb = Ti(fa)T4(gb) and > ' is the least upper bound of the R-dioid K| ®% K. In
particular, for (a,b) € K7 x Ko,
h(a®b) = fa @ gb.

By Lemma 2.6, h is monotone and injective on the image of K; X K5 under ®. To see that h is
injective, suppose R, S € R(K; x K») and

[Rl=)> {a®b]| (a,b) eR}#> {a®b]| (a,b) €S} =]5].
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Then {a®b | (a,b) € R}¥ # {a®b | (a,b) € S} by the definition of > of K7 ®% K». Since h
is monotone and injective on the image of K7 x K5 under ®,
{fa@ gb | (a.b) € R} # {fa® gb | (a,b) € S}
Then we must have
W(R) =) '{fa& gb | (a,b) € R} # ) '{fa® gb | (a,) € S} = n([S]),
as otherwise (f xg)(R) = (f xg)(S) for the R-congruence =’ on R(K] x K}) defining K| @ K},
and =’ were not the least R-congruence on R(K x K) containing the tensor product equations. [

We will mainly consider tensor products K ®% C where K = RX™ and C is a polycyclic R-dioid
C/, or bra-ket R-dioid C),. For L € RX*, we have { {w} | w € L} € R(RX*), and since T is
an R-morphism,

Lel=Ti(| J{{v} lwel}) =) {{w}®l|wel}ecRX"arCs

The interest in Kleene algebras RX* @5 C%) comes from the fact that CX*, the set of context-free
languages over X, embeds in RX* @z CY, via

LeCX* > L:=) {{w}®l|weLl}ecRX arCs,

cf. Theorem 17 of [11]. Notice that L ® 1 need not exist for non-regular L. Since all elements of
RX* ®@r C) can be denoted by regular expressions over X U Ao, every context-free set L C X* is
represented by the value of a regular expression.

Example 2.9. Suppose a,b € X. Then L = {a™b" | n € N} € CX* is represented in RX* @ (),
by the value of the regular expression rz, := po(ap1)*(q1b)*qo over X U As. Writing elements of X
and Ay for their values in RX* @% C), we have

r = > {polap1)"(q1b)™qo | n,m € N} (*-continuity)
= > {a"poptq]"qod™ | n,m € N} (relative commutativity)
= > {ad"" | neN} (bracket match p;q; = d; ;). q

In the cases K ®x C/, of our main interest, where K = RX* and the polycyclic R-dioid C/,, ~
RP). /v is a suitable quotient of R P, , the tensor product construction can be replaced by a quotient
construction. This is a consequence of the following extension of Proposition 2.5.

Theorem 2.10. Let M be a monoid and N a monoid with annihilating element 0. Then
RM @r(RN/v) ~R(M x N)/v,
where v is the least R-congruence on RN containing ({0}, () and 7 is the least R-congruence on
R(M x N) containing ({(1,0)},0).
Putting R, := { (4,B/v) | (A,B) € R} for R € R(RM x RN), the isomorphism is given by
[R,) + (Sr)/#, where Sp:=|J{Ax B | (4,B) € R}for R e R(RM x RN),
S/ — [(Rs),], where Rg:={({m},{n}) | (m,n) e S}forS e R(M x N).
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Proof: This is an instance of Theorem 12 of [11]. O

For A € RM and B € RN, the isomorphism maps A ® B/v to (A x B)/v, where B/v is
uniquely represented by B \ {0} and (A x B)/v by (A x B) \ (A x {0}). AsC!, ~ P! /v by
Proposition 2.2, an application of the theorem is

RX*@rC), ~R(X* x P.)/v.
Moreover, since elements of X and P, commute in the monoid P, [X] of (4),
R(X* x PL) /v ~R(P,[X])/v.

It follows that an element of R X* ®% C/, has a unique representation by a subset of Q, X* P\..
However, to state our results for arbitrary R-dioids K, we do need the tensor product K @5 C/,.

2.3. The centralizer Z¢, (K ®@r C;) of Cj in K @7 ()

In a monoid M, the centralizer Z (M) of aset C' C M in M consists of those elements that commute
with every element of C, i.e. the submonoid

Zo(M):={me M | mc=cmforalceC}.

For example, the centralizer of A, in P/ [X]is X* U {0}.

In Section 3, we will, for non-trivial R-dioids K, consider the representation of elements of
K ®gr C], by automata. As T1,Toin T1 : K — K®gCy < Ch : Ty are relatively commut-
ing, for all k € K and ¢ € C we have

ke=Ti(k) - Talc) =k®c= Ta(c) T1(k) = ck,

in K @ €3, s0 K C Zgy (K ®r C3) (modulo T1). Moreover, Z¢, (K ®r C3) clearly is a semiring
and, by *-continuity of K @ CY, it is closed under *: if a commutes with ¢ € C%, then

c-a*:Z{c'a” ] nEN}:Z{a”-c | neN}=a"-c

In fact, Zcé (K ®@g C%) is an R-dioid, by Proposition 24 of [11]. It has even stronger closure proper-
ties, see Theorem 2.11, (ii) below.

A Chomsky algebra (Grathwohl e.a. [9]) is an idempotent semiring DD which is algebraically
closed, i.e. every finite inequation system

I Zpl(xl,...,xk),...,xk Zpk(xl,...,xk)

with polynomials p1,...,pr € D|x1,..., k] has a least solution in D, where < is the partial order
on D defined by a < b <= a+ b = b. Semiring terms over an infinite set X of variables can be
extended by a least-fixed-point operator p, such that if ¢ is a term and x € X, px.t is a term. In a
Chomsky algebra D with an assignment i : X — D, the value of px.¢ is the least solution of z > ¢
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with respect to h, i.e. the least a € D such that x > ¢t is true with respect to h[z/a]. A Chomsky
algebra D is p-continuous, if for all a,b € D and pu-terms ¢,

a~,u:v.t'b:Z{a-t"-b | ne N}

is true for all assignments i : X — D, where t° = 0, t"*! = ¢[z/¢"]. The *-continuity condition
of R-dioids is a special instance of the u-continuity condition, where ¢* = pz.(cxz + 1). The semir-
ing CX™* of context-free languages over X is a p-continuous Chomsky algebra. The p-continuous
Chomsky algebras, with fixed-point preserving semiring homomorphisms, form a category of dioids.

This category had been introduced as the category DC of C-dioids and C-morphisms in [3] as
follows; for the equivalence, see [12]. For monoids M, let CM be the semiring (CM, U, -, 0, {1}) of
context-free subsets of M. A C-dioid (M,-,1,<,>") is a partially ordered monoid (1, -,1, <) with
an operation » - : CM — M that is C-complete and C-distributive, i.e.

(i) foreach A € CM, Y A is the least upper bound of A in M with respect to <,
(i) forall A, B € CM, }3(AB) = (3_A) - (32 B).

A C-morphism is a monotone homomorphism between C-dioids that preserves least upper bounds
of context-free subsets. The above mentioned strong closure property of the centralizer of C) in
K ®@r C} is that it is algebraically closed, which follows from (ii) of the following facts:

Theorem 2.11. (Theorem 27, Lemma 30, Lemma 31 of [11])
Let M be a monoid and K an R-dioid.

(). Zoy(K@rCh) = {[R] | R€ R(K x C3),RC K x {0,1} }.

(ii). Zoy (K @ C}) is a C-dioid.
(iii). The least-upper-bound operator } - : CK — Z¢; (K ®r CY) is a surjective homomorphism.
(iv). The least-upper-bound operator > : CM — Zoy, (RM @ C%) is a C-isomorphism.

While (i) gives a characterization of the elements in the centralizer of C?, in K ®z CY, in Section 3
we provide descriptions of all elements of K ®% C% via normal forms. As the proof of Theorem 2.11
is lengthy, we try to avoid using (i) - (iv) as far as possible. However, we need (i) in the following
corollary, which in turn is used to give a simplified normal form for elements of the centralizer in
Corollary 3.8, and we use (ii) in Example 3.12 and for the product case of Theorem 4.1.

A subset X of a partial order (P, <) is downward closed, if for all a,b € P, ifb € X and a < b,
thena € X.

Corollary 2.12. If K is a non-trivial R-dioid and has no zero divisors, then Zg; (K ®r Ch) is a
downward-closed subset of K ®x CY.



14 M. Hopkins, H. Leif3 | Normal forms for elements of K @ C%

Proof:
Suppose [R] < [S] € Zgy (K ®r C3) for R, S € R(K x C3). By Theorem 2.11 (i), we can assume
S C K x {0, 1} and must show that there is R’ € R(K x C%) with [R] = [R'] and R’ C K x {0, 1}.
The projection from K x CY to K lifts to a homomorphism 7 : R(K x C4) — RK,s0 A :=7(S) €
RK. Then

SCAx{0,1} € R(K x (),

and for each (k,¢) € R,

koe<[Rl<[S]<[Ax{0,1}] =>4 = 4oL

If 0 # k®c, then ¢ < 1 in CY, by Corollary 2.7; by Proposition 2.2, ¢ € {0, 1}, so (k,c) € K x {0, 1}.
If 0 = k ® ¢, then by Corollary 2.7 again, either ¢ = 0 and (k,c) € K x {0,1}, orelse k = 0. Let
R =R\{(0,c) e R | ce C,}. Then " C K x {0,1} and [R] = Y {k®c | (k,c) € R}
is the least upper bound of {k ® ¢ | (k,c¢) € R'}. We show by induction on the construction of
R € R(K x C%) that R € R(K x C%). This also gives [R] = [R].

If R is finite, so is R, therefore R’ € R(K x C%). Suppose for R; € R(K xCY),i = 1,2, we have
R, =R\{(0,¢) | ce C4} € R(KxCY).If R = RiURy, then R’ = R|UR, € R(KxC}).If R =
Ry Ry, then R C R R}, and since K has no zero divisors, R{ Ry, C R/, so R’ = R| R}, € R(K x C%).
IfR=Rj,thenR = (U{R} | neN}) =U{(R)" | ne N} =(R))* € R(K x C3). ]

2.4. Automata over a Kleene algebra

A finite automaton A = (S, A, F') with n states over a Kleene algebra K consists of a transition
matrix A € K™*™ and two vectors S € B'*" and F' € B"*!, coding the initial and final states. The
1-step transitions from state ¢ < n to state j < n are represented by A; ;, and paths from 7 to j of
finite length by Az ;j» Where A* is the iteration of A. The sum of paths leading from initial to final
states defines an element of K,

L(A)=S-A*-F € K.
The iteration M* of M € K™ " is defined by induction on n: forn = 1 and M = (k), M* = (k*),

and forn > 1,
N A B F* F*BD*
M = = ; (6)
C D D*CF* D*CF*BD* + D*

A B
where ' = A+ BD*C and M = (C’ D) is any splitting of M in which A and D are square

matrices of dimensions n1,n9 < n withn = ny + ns.
By Kleene’s representation theorem, the set RX™* of regular subsets of X* consists of the lan-
guages
LA =S -A"F CX"

of finite automata A = (S, A, F'), where forsome n € N, A € (FX*)"*", S € B'*", F € B"*! and
F X* is the set of finite subsets of X*.
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For various notions of Kleene algebra, Conway showed that the set K"*™ of n x m-matrices
over K with matrix addition, multiplication and iteration as defined above and zero and unit matrices
Op, 1, € K™*™ form a Kleene algebra

Matn,n(K> = (Knxn’ +7 B) *7 On> 1n)

and used this to prove Kleene’s representation theorem, see [2]. For the notion of Kleene algebra used
here, the same has been done by Kozen in [8]. We are mostly working with R-dioids, i.e. *-continuous
Kleene algebras, and will often make use of *-continuity on the matrix level in Section 3. In fact, the
n X n-matrices over a *-continuous Kleene algebra form a *-continuous Kleene algebra:

Theorem 2.13. (Kozen [7], Chapter 7.1.)
If K is a *-continuous Kleene algebra, so is Mat,, ,(K), forn > 1.

We remark that Mat,, ,(K') can be reduced to the tensor product of K with Mat,, ,(B), but we
will use this only in connection with bra-ket R-dioids in Section 5.2.

Proposition 2.14. For any R-dioid K and n > 1, Mat,, ,,(K) ~ K ®r Mat, ,(B).

Proof (sketch):

One shows that I : K — Maty, ,(K) < Mat,, ,(B) : Id has the properties of a tensor product, where
Ik (a) :== al, fora € K and Id(B) = B for B € B"*". For relatively commuting R-morphisms
[+ K — D < Mat,,(B) : gtoan R-dioid D, the unique R-morphism with f = hs, o Ix and
g = hy 4 o 1Idis defined by

hpg(A) ==Y {f(Aij)g(Eay) | i,j <n}, forAeK™",

where E(; ;) € B"*" is the matrix with 1 only in line 4, row j. The claim then follows by the
uniqueness of tensor products. a

For any R-dioid K, we next prove Kleene’s representation theorem for K’ @% C%: any element of
K ®@r C} is the “language” L(A) = SA*F of a finite automaton A = (S, A, F') over K ®x C%. This
follows the proofs by Conway and Kozen; the point here is how transitions by elements of C% in the
transition matrix A can be reduced to transitions by generators ¢ € Ay of CY.

Fora € K and ¢ € Cé, we write a and c also for their images in K @ Cé, likewise ac for their
product in K @z C%. From now on, for Ay = P, U Q2 we use P, = {b, p} instead of {pg, p1} and
Q2 = {d, ¢} instead of {qo, ¢1}, unless stated otherwise.

Theorem 2.15. Let K be an R-dioid, i.e. a *-continuous Kleene-algebra, and C the polycyclic
Kleene algebra over As. For each ¢ € K ®g C) there are n € N, § € B*" F ¢ B"*!,
U e {0,b,p}"*", V € {0,d,q}"*™ and X € K™*" such that

¢=SU+X +V)*F.
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Proof:
Since ¢ = [R] for some R € R(K x C}), by induction on the construction of R we build an automaton
Ar = (S, A, F) over K @ CY, such that L(Ar) = [R] and A splits as U + X + V as in the claim.

* R=1{:Let Ag = (S, A, F') be the automaton of dimension 1 with S = (0), A = (0), F' = (0).
Then L(Ag) = 0 = [0]. Wehave A = U + X + V with 1 x 1 zero matrices U, X, V.

* R={(k,c)} with k € K,c € C}: Since {(k,c)} = {(k,1)} - {(1,¢)}, by the product case
below we may assume k = 1 or ¢ = 1. In the case R = {(k, 1)}, let Ar = (S, A, F') consist of

S:(l 0), A:((l) ]f) F:(?).

Then A* = A, since A° < A = A2, hence L(Ag) = A1 2 = k1 = [{(k,1)}]. The splitting is

Azlk:oo—i-lk—i-oozU—i-X—i-V.
0 1 00 01 0 0

For the case R = {(1, ¢)}, the element ¢ € C% is the congruence class of a set C' € RA} under
the R-congruence p/, generated by the match relations, so we can view c as a regular expression
in the letters of Ag. By the tensor product equations of K @z CY,

{(Ler+e)} = {1} x {er, 2} = {(1,e))} U{(L, e2)},

and since {(1,c1c2)} = {(1,¢1)}{(1,¢2)} and {(1,¢})} = {(1,c1)}*, we can construct Ap by
induction on the cases R = Ry U Ry, R = R1 R, and R = R} below. In the remaining cases,
cis 0, 1 or a letter from Ay. Let A = (S, A, F') consist of

s=(1 o), A—(é ;) F—<(1)>

Then A* = Aand L(AR) = A11 = c=[{(1,0)}]. If c € Q2 = {d, ¢}, the splitting of A is
1 0 0 10 0
A= %)= + +( Y =v+x+w
01 00 01 00
If c € Py = {b, p}, we switch the roles of U and V. If cis 0 or 1, let
1 0 0 1 0 0
A= ¢ = w9+ =U+X+V.
01 0 0 01 0 0

* R=RyURy: Fori=1,2let Ag, = (S;, A;, F;) be an automaton of dimension n; such that

L(Ag,) = SiAJ F; = [R;].
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Construct Ar = (S, A, F') of dimension n; + ng by

s=<51 52), A=<“él 22>, F:(E)

By the recursion formula for iteration matrices,

L(AR) = SA*F = (51 sz) : <ff j) : (2)
2

SlATFl + SQA;FQ
= [Rﬂ + [RQ] = [Rl U RQ] = [R]

The given splittings A; = Uy + X7+ V; and Ay = Us 4+ X9 + V5 combine to a suitable splitting

of A by
Uy 0 Xy 0 Vi 0
A= (0 )+ ) =uex v
0 Uy 0 Xy 0 W

R = RiRy: Fori=1,2,let Ar, = (S;, A;, F;) be an automaton of dimension n; such that

L(Ag,) = S;Aj F; = [R;].

Construct Ar = (S, A, F') of dimension n; + ng by

A F1Sy 0

By the recursion formula for iteration matrices,
L(Ar) = SA'F

A7 ATF1S)A% 0
= (51 0) : o 1*2 2.

S\ A1 Sy ASFy
= [Ri][R2] = [R1Ro] = [R].

The given splittings A1 = Uy + X7 + V4 and As = Uy + Xo + Vo combine to the splitting

A— Uy 0 n X1 F15 n Vi 0 UL XLV
0 U2 0 X2 0 V2

* R = R7: Suppose Agr, = (51, A1, F1), is an automaton such that

L(Ag,) = S1ATF1 = [Ry].
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Let Ap+ = (S, A, F') be (S1, A1 + F1.51, F1). By equalities in Kleene algebras,

L(Ag+) = Si(A1+FS1)"F
Sy AL (F1S1AT) Fy
S1ATF1(S1ATFy)”
[R1][Ra]”

= [Ri[R7] = [R{],

The splitting A = U 4+ X + V is obtained from the splitting Ay = U; + X1 + Vi by U = Uy,
X = X; + F1S3and V = Vj. Finally, put Ag+ = Ay(y1)yur+ and split its transition matrix as
shown for the case ARr,UR,- a

3. Normal form theorems for X @ C!, with R-dioid K

In the representation of elements ¢ of K @z C) as ¢ = L(A) = SA*F by automata A = (S, A, F)
with A = U + X + V in Theorem 2.15, A* = (U + X + V)* admits arbitrary sequences of opening
brackets U with closing brackets V. We aim at a normal form for (U 4+ X + V)* where brackets are
mainly occurring in a balanced way. To this end, we now look at ways to express a Dyck-language
with a single bracket pair u, v in a Kleene algebra.

3.1. Least solutions of some polynomial inequations in Kleene algebras

We first show that in any Kleene algebra K|, if they exist, least solutions of two fixed-point inequations
that might be used to define Dyck’s language D1 (X)) with X = {z1,...,z,} C K, namely

y>(r1+...+zy+uyv)” and y>1+x1+... 4z, + uyv + yy,

are related, where u,v € K \ X represent a pair of brackets. It is then shown that (u + X + v)* =
(Nv)*N(uN)*, where N € K is the least solution of y > (X + uyv)* corresponding to D;(X).
Except for the balanced bracket occurrences in N, in (Nv)*N(uN)* all occurrences of the closing
bracket v are to the left of all occurrences of the opening bracket u. This is similar to the normal form
nf(w) € Q1P U {0} in the polycyclic monoid Pj of Section 2.1 with P; = {u} and @1 = {v},
i.e. the normal forms on {u,v}* modulo the congruence generated by uv = 1, and its extension to
nf(w) € Q1 X*V* U {0} for w € P{[X] where elements of X commute with those of P U Q1.

Proposition 3.1. Let K be a Kleene algebra and u, x,v € K. If y > (z + uyv)* has a least solution
N,then N = (x+uNw)* and N is the least solution of y > 1+x+uyv+yy. ify > 1+x+uyv+yy
has a least solution D, then D = 1+ x + uDv + DD and D is the least solution of y > (x + uyv)*.

Proof:
Let f and h be defined by f(y) = = + uyv and h(y) = 1 + = + uyv + yy. () If y > h(y), then
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y > f(y)and y > 1 + yy, hence y > y* by axioms of Kleene algebra, and so y > y* > f(y)* b
monotonicity of *. (ii) Conversely, if y > f(y)*, then f(y)* > h(f(y)*), because
h(f(y)*) < T+z+uyv+ fy) fly)" < fly) + fy)* < fy)"

It follows that if NV is the least solution of y > f(y)*, then by (i), any solution of y > h(y) satisfies
y > N, and by (ii), f(IN)* is a solution of y > h(y), so f(N)* = N is the least solution of y > h(y )

If D is the least solution of y > h(y), then by (ii), any solution of y > f(y)* satisfiesy > f(y)* >
D, and by (i), D > f(D)*. Hence D is the least solution of y > f(y)*. Then D = f(D)* and hence
D=DD =1+ f(D)+ DD = h(D). O
Theorem 3.2. Let K be a Kleene algebra and z, u,v € K. If y > (z + uyv)* has a least solution N
in K, then (u + z +v)* = (Nv)*N(uN)*.

Proof:
Let N = py.(x + uyv)* and n = (u 4+ x + v)*. We first show N < n, by showing that n solves
(z + uyv)* < y. By monotonicity of +, -, and *,
r4+unv <z+un'v<n+nnn=(1+nn")n=n"n<n" =n,
hence (z + unv)* < n* =n. So N < n, from which
(Nv)*N(uN)* < (u+z+v)"
follows using u, v, N < n and (nn)* = n* =n = nnn.

Now consider the reverse inequality, (u + x + v)* < (Nv)*N(uN)*: As (x + uNv)* = N
by Proposition 3.1, we have (z + uNv)N + 1 < N. Using this and Kleene algebra identities like
(ab)*a = a(ba)*, we show that (Nv)*N(uN)* solves (u + x + v)z + 1 < zin z:

(u+x+v)(Nv)"N(uN)*+1

= (u+z+v)NON)* (uN)"+1

= uN@WN)*(uN)* 4+ xN(N)*(uN)*+vNWN)*(uN)* + 1
ulN(1+oNN)*)(uN)* +zN(uN)*(uN)* + oN(oN)* (uN)* +1
ulN(uN)* + uNvN(vN)*(uN)* + zN(vN)*(uN)* + vN(vN)*(uN)* + 1
(x + uNv)N(vN)*(uN)* +uN(uN) +oN(N)* (uN)* +1
(x + uNv)N(vN)*(uN)* + (1 + vN(vN)*)(uN)*
( (ulN)*
(

z + uNv)N(vN)*(uN)* + (vN)*(uN)*
= ((x+uNv)N+1)(vN)*(uN)*
< N(@WN)*(uN)*
= (Nv)*N(uN)*.
Since (u+x+v)* is the least solution of (u+x+v)z+1 < z, the claim (u+x+v)* < (Nv)*N(uN)*
is shown. ad

It is worth noticing that these results are generic to Kleene algebras and do not require the *-
continuity property. They are all conditioned on the existence of the relevant least-fixed-points, and it
is for existence that *-continuity will come into play.
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3.2. Normal form theorems

Let A = (S, A, F') be an automaton with A = U+ X +V as in Theorem 2.15, representing an element
o = L(A) = SA*F of K @ C%. We first show that there is a least solution of y > (UyV + X)*
in Mat,, (K ®g C%), which is related to Dyck’s context-free language D C {U, X, V' }* of balanced
strings of matrices, with U as “opening bracket” and V" as “closing bracket”. Namely, if concatenation
is interpreted by matrix multiplication and the empty sequence as unit matrix, D becomes a context-
free subset of (K @z C4)"”" and the least solution of y > (UyV + X)* its least upper bound.

Lemma 3.3. Let K be an R-dioid, n € N, X € (Z¢; (K ®r CIN™", U € {0,b,p}"™™ and V €
{0,d, ¢}"™". In Mat,, ,(K ®@r C5),
y > (UyV + X)* (7)

has a least solution, namely N := b(Up + X + ¢V)*d, and N € (Z¢y (K @r C5))""".

When multiplying b, d, p, ¢ with n x n-matrices, we identify them with corresponding diagonal ma-
trices.?

Proof:

Let D and D' be the Dyck languages over {U, X,V} and {Up, X, ¢V} with brackets U,V and
Up, qV, respectively. By interpreting concatenation as matrix multiplication and the empty sequence
as unit matrix, elements of D and D’ belong to Mat,, ,(K ®% C%). To simplify the notation, we write
T for Up + X + ¢V and Z for Z¢y (K ®r C3).

Claim 3.3. Every A € D evaluates in Mat,, ,(K ®@g C5) to an element of Z"*™.

Proof:

This is clear for A = 1and A = X, and if A, B € D evaluate to A, B € Z"*", then AB € Z"*",
because Z is a semiring. Finally, consider A = UBYV with B € Z"*™. Since elements of Z and C,
commute with each other in K ®x C%, we have

(UBV)j = Z Ui(BuVij) = Z Bri(Ui Vi),
=1 =1

and since Uy, € {0,b,p} and V}; € {0,d, ¢}, we obtain U;;,V; € {0, 1}, hence (UBV');; € Z, and so
Ae Znxn, q

It follows that bAd = A = pAqforeach A € D and ) ({U, X,V}™ N D) € Z"*" for each m € N.

% The proof will show that IV is the least upper bound of a context-free set D of n X n-matrices over Z = Zcé (K ®@r C3)
(with DD C D) and the least solution of the matrix inequation y > 1 + X + UyV + yy. Alternatively, by Theorem
2.11, (ii), Z is a C-dioid, and by [10], its n X n matrix semiring also is. Hence D has a least upper bound > D and
- D)(>.D) = S(DD) < > D. Since U,V are not matrices over Z, one needs additional arguments to show that
>" D is the least solution of the matrix inequation in Mat,,(Z) and least in Mat, (K @ C3). Our proof here is more
elementary and uses properties of R-dioids only.
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Claim 3.3. b7"d =) ({U, X, V}™ N D) and bT™d < T™, for each m € N.

Proof:

Let A’ € D’ be obtained from A € D by replacing factors U by Up and factors V by ¢V. Then as
matrices, A’ = A: clearly 1’ = 1 and X' = X, and by induction, for A, B € D, (AB) = A'B' = AB
and (UAV) = UpA'qV = UpAqV = UAV, as A belongs to Z™*™ by claim 3.3. Moreover, if
A € DN{U, X,V}™, then the matrix value of A’ € {Up, X, ¢V} N D’ is a summand of 7™ and
thus A = A’ < T™. By monotonicity, A = bAd < bT™d. It follows that

Y (U, X, V}"nD)<T™ and Y ({U,X,V}"ND)<bT™d.
To show the reverse of the second inequation, let A’ € {Up, X,¢qV}"™ be a summand of 7™ =
(Up + X + ¢V)™ that is not obtained from any A € {U, X,V }™ N D by this substitution. Then
bA’'d = 0, because A" € (D'qV)*D'(UpD’)* \ D' and b,d commute with factors from D’ (with
values in Z™*™), so in bA’d, b can be moved over factors to the right, until it meets ¢ and gives
bg = 0, or d can be moved over factors to the left until it meets p and gives pd = 0. It follows that

bT™d < Y ({U, X, VI™ N D) < T™ q

By *-continuity, claim 3.3 implies that the set D of matrices obtained from the context-free lan-
guage D C {U, X, V'}* has a least upper bound in Mat,, ,,(K @ C5):

N=bT*d = Y {bT™d|meN}
= Y ADN{U,X,V}" | meN} =) _D.
Claim 3.3. N € (Z¢y (K ®@r Ch))""".

Proof:
We have seen b1d € Z"*" for each m € N. So for each ¢ € C%, ¢(bT™d) = (bT"™d)c and

eN =cbT*d = {bT™d | meN}) =) {bT"dc | m € N}) = bT*dc = Ne,
since Mat,, (K ®g C%) is *-continuous. It follows that each entry of N commutes with c. q
Claim 3.3. N is the least solution of y > (UyV + X)* in Mat,, ,(K @ C%).
Proof:
We show that N is the least solution of y > 1 + X + UyV + yy and apply Proposition 3.1. By
claim 3.3, we get 1 + X < N and since b7™d is a finite sum of balanced sequences of length m over

{U, X, V'}, by distributivity UbT™dV is a sum of balanced sequences of length m + 2, hence

UbT™dV <Y ({U, X, V}™2 N D) =bI™2d < N.
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Thus by *-continuity, UNV = UVT*dV = Y {UbT™dV | m € N} < N. It remains to show
NN < N. By *-continuity,

NN = ZkadN: Z b dbTd.
keN k,leN

By claim 3.3 and claim 3.3, bT%d € Z"*", so (bT*d)bT'd = b(bT*d)T'd, and bT*d < T*, whence
NN =) b(T*d)T'd < > bT*T'd = N.
kleN kleN

Therefore, N is a solution of y > 14+ X +UyV +yy. To show that it is the least solution, suppose
y € Mat, ,(K @ C}) satisfiesy > 1+ X +UyV +yy. As N = > D, itis sufficient to show A < y
foreach A € D. Thisis clear for 1 and X, and if A, B € D satisfy A, B < y,then UAV < UyV <y
and AB < yy < y by monotonicity. So y is an upper bound of D. N

By the last two claims, the Lemma is proven. ad

Example 3.4. In the most simple case n = 1, with Mat,, ,(K @z C}) ~ K @z C%, suppose U =
b,V =dand X =z € K. Then N = b(bp+x + qd)*d = ) D for Dyck’s language D C {b, z,d}*.
The proof shows N =37 D € Zgy (K @ C3). 4

*

Theorem 3.5. (First Normal Form)
Let K be an R-dioid. For each ¢ € K ®zr C) there are n € N, S € B*", FF ¢ B, U ¢
{0,b,p}™*", V € {0,d, q}"*™ and X € K™*" such that

¢ = S(NV)*N(UN)*F,
where N € (Z¢y (K @ C3))"*" is the least solution of y > (UyV + X)* in Mat,, n(K ®@r C3).

For n = 1, N commutes with U and V, so (NV)*N(UN)! = V¥NU!, and by *-continuity,
(NV)*N(UN)* = V*NU*. This is related to the normal form for the extension P, [X] of the
polycyclic monoid P/, in Section 2.1.

Proof:
By definition of K ®% C%, there is R € R(K x CY) such that ¢ = [R]. As in Theorem 2.15, by
induction on R one constructs an automaton (S, A, F') with

¢ =[R]=L((S,A,F)) = SA*F

and a transition matrix A € (K ®g C5)"*" of the form A = U + X + V where U € {0,b,d}"*",
X e K"™™andV € {0,d, q}"*", for some n. By Lemma 3.3, y > (UyV + X)* has a least solution
N in Mat,, ,(K ®% C%), and

N € (Zgy(K @R Cy))™ ™.

By Theorem 3.2, this NV allows us to write A* as
A" =(U+X+V) = (NV)*NUN)*
and obtain the normal form ¢ = [R] = SA*F = S(NV)*N(UN)*F. O
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While Theorem 3.5 gives a generic normal form for an element ¢ of K ®x C4, it is not straightfor-
ward to compute the matrix N occurring in the normal form of (. The following example demonstrates
how N is obtained from an automaton for ¢ through the construction of Lemma 3.3. In Section 4 we
will show how to compute a normal form inductively from a regular expression .

Example 3.6. Let P, = {po,p1}, Q2 = {q,q1}, and K = R{a,b}* @x C4. The element p =
(ap1)*(q1b)* € K isrepresented as p = L(A) = SA*F by the automaton A = (S, A, F') of Figure 1
with initial state 1 and accepting state 3.

0 a1 O 0 l —3
(1 000), pr 000 ) 0 al |p1 a| b
0 0 0 g¢1 1
0 0b 0 0 2 4
Figure 1. A= (S, A, F) Figure 2. Graph of A

The iteration A* of A calculated using the formula (6) can be read off from the graph: the entry
(A*); ; describes the labellings on paths from node ¢ to node j. Hence, with @ = ap; and b = ¢1b, we
have

a* a‘a a*b* a*b*q1
g |ma 1+mata plc‘f*l_)* plc‘f*l_?*ql

0 0 b b

0 0 b 14 bbrq

To obtain the normal form (NV)*N(UN)* of A*, split Aas U + X + V with

0 0 00 0 a 10 0 00 O
U pr 0 0 0 X -— 0 0 0O T 000 O
0 0 0O 0 00O 0 00 @
0 0 00 00 b O 000 O

To determine N = po(Up1 + X + q1V)*qo, let A= (Up1 + X + ¢1V) and read off A* from the
graph of A, obtaining a copy of A* with @ = ap2,b = ¢2b, p?, ¢? instead of a, b, p1, g1, respectively.
The entries of N are then N

Nij = po(A*)ijq0-

The resulting matrix is as follows, writing L for 3> L with L = { a™b" | n € N},

a* i*a a*b*  abq? 1l a L al
2 ~ % 2 ~ % D~ % L% 2~xlx 2 T T
P 1+ pia*a pya*b* pia*b*q 01 Lb L
N =po 1 1 1~* 1~* ) 1 Qo =
0 0 b b g2 00 1 0
0 0 bb* 1+ bbq} 00 b 1



24 M. Hopkins, H. Leif3 | Normal forms for elements of K @ C%

For example, Ny 3 = pod*b*qo = po(ap?)*(¢3b)*qo = L is calculated as in Example 2.9. Tt follows
that

000 Lq 0 0 0 0
00 0 Lb L L
NV = q1 ’ UN — p1 pia p1 p1a ’
000 q 0 0 0 0
000 by 0 0 0 0

which imply (NV)* =1+ NV (bg1)* and (UN)* = 1 + (p1a)*UN. By matrix multiplication, one
obtains the normal form (NV)*N(UN)* = A*.

To determine IV, one can also use that IV is the least solution of y > (UyV + X)* in Mat4 4(K),
hence N = (UNV + X)*. Let ¢; be the unit column vector with 1 in the i-th row, 0 else, €] its
transpose row vector. Then e;e’; is the 4 x 4-matrix with 1 at (i, j), O else, and eje; the 1 x 1-matrix
with entry 9; ;. Since

/ / /
UNV = (eapr€})( § e;N; ] )(e3qi€y) = eap1N13qi€y = eaN1 ey,
1<4,5<4

the graph of X + UNYV is that of X with additional edge 2 MZL, from which one can read off
(X +UNV)*as

1 a 14 aNl’gb (INl’g
0 1 Ni3b N
(X +UNV)* = b3 b= N
0 0 1 0
0 0 b 1

Since N is the least solution of y > (UyV + X)*, Ny 3 is the least solution of y1 3 > 1 + ay 3b,
ie. px(l+axb) => Lfor L ={a™" | n € N} € CK, leading to the matrix NV shown above. <

3.3. Reduced normal form

We conjectured in [6] that the normal form S(NV)*N(UN)*F for ¢ € K @ C) given in Theo-
rem 3.5 can be simplified to SN F' for elements ¢ € Zey (K ®r C%). We can now prove this under
the additional assumption that K is non-trivial and has no zero divisors.

Lemma 3.7. Letm > 2, g : C/, — CY the R-embedding of Lemma 2.3, and K an R-dioid. There is
an R-embedding = : K ® C], — K ®g C4, given by

7:Z{a.g(b) | (a,b) € R} for R e R(K x Cp),

which maps Z¢, (K @r Cy,) to Zgy (K ®r C3); for m = 2, itis the identity on Z¢, (K @g C3).
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Proof:
et - be the induced injective R-morphism h s,y for the embeddings f = Idx and g : C},, — Cy in

T/ T/
K > K1 ®r C;n 2 C;n
f h(ixg) g
T Y
K ! K or C} Ch,.

according to Corollary 2.8. For R € R(K x C/,), the element [R]' € K ®g C}, is mapped to
[R] =[(fxg)(B)] =D _{f(a) @ g(b) | (a;b) € R}.

By Theorem 2.11 (i), each element of Z¢: (K ®% Cy,) is the congruence class [R]’ of some relation
R e R(K x C!,) with R C K x {0,1}. Since g(0) = 0 and g(1) = 1, we have [(f xg)(R)] = [R].
Hence ™ restricts to an R-morphism = : Z¢y (K @R Cy,) — Zgy (K ®r C3). For m = 2, this is the
identity on Z¢y (K ®r C3), since T1 = T9, To = T5 and Idk x g leaves R fixed. O

Corollary 3.8. (Reduced Normal Form)
Let K be a non-trivial R-dioid without zero divisors. Let ¢ = SA*F € K @ C) with A = U +
X+ Vandn,S F,U, X,V and N as in Theorem 3.5. If ¢ € Zcé(K ®r C4), then p = SNF.

Proof:

Suppose p = SA*F € Zey (K ®r C%). Since ¢ is a finite sum of entries of A*, by Corollary 2.12,

all summands belong to Z¢; (K ®r C3). Therefore, ¢ = SA*F = SN F'is shown if for all i, j < n
A*i,j € ZCé (K ®r Cé) - A*i,j =N, ;. (8)

et~ : K®r Cy — K ®pr Cj be the R-morphism of Lemma 3.7 On Z¢, (K ®@g C3), it is the
identity. Applying ~ entrywise to matrices we get

A+ = (NVPNUN)
(NV)'"N(UN)*
= (NV)*N(UN)*.
Notice U € {0,b,p}"*" = {0, bp, bp*}"*™ and V € {0, d, g}"*" = {0, qd, ¢*d}"*". By Lemma 2.3
and b, d as diagonal matrices, bV = 0 = Ud, so b(NV) = NbV = 0 = UdN = (UN)d, hence
b(NV)* =band (UN)*d = d. For (A*); € Zcy (K ®r C3) this gives
(A%)ij (
= (bA*d);; = (b(NV) N(UN)*d);
(

We thus have shown (8). O
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Notice that in the useful cases where X = R M for a monoid M, indeed K is non-trivial and has
no zero divisors.

In the special case of Z¢: (RX* ®r C},), the elements of the centralizer of C;,, have previously
been chararcterized as follows:

Theorem 3.9. (Corollary 28 of [11])
Form > 2and ¢ € RX*®r C},, we have ¢ € Zcr (RX* ®r C},) iff there is a regular expression
rover X U (A, \ {po, qo0}) such that ¢ = pgrqo.

To prove this, one codes the m > 2 bracket pairs by the two pairs p1, g1 and pa, g2 to get a regular
expression 7 in p; = plp?l and g; = q%“ql, and then has pg, qo as a fresh bracket pair to eliminate
the unbalanced strings using pgrqg. One can do the same for m = 2:

We have ¢ € Z¢y (RX* ®@r CY) iff there is a regular expression r over X U Ay with py
only as part of pgp; and qg only as part of g1 qg, such that ¢ = porqp.

For any m > 2, the first normal form theorem 3.5 holds as well with C/_ instead of Cé. If the
automaton (S, A, F') for ¢ has no transitions under py and g, then ¢ — popqo is a projection on the
centralizer:

Corollary 3.10. Suppose ¢ = SA*F € K ®x C/, is represented by an automaton (S, A, F') not
using po, go, i.e. U € {0,p1,...,pm—1}" " and V € {0,q1,...,¢gm1}" "inA=U+ X+ V. If
S(NV)*N(UN)*F is the normal form of ¢, then

popqo = SNF € Zer (K @r C,).

Proof:
By the assumption on U and V/, for the diagonal matrix versions of pg, gg we have poV = 0 = Uqo,
and since N commutes with py and ¢o, we get po(NV)* = pg and (UN)*qp = qo. Hence

poA*qo = po(NV)*N(UN)*qo = poNgo = N,

and thus popqo = poSA*Fqy = SpogA*qoF = SNF € Zc;n (K QR C;n) (]

3.4. Second normal form

Corollary 3.10 can be extended by admitting that ¢ = SA*F € K ®% C, is given by an automaton
(S, A, F') whose transition matrix A contains transitions by gopo in addition to those by elements of K
and A,, \ {po, qo}. This is useful to combine representations por;qo = »_, L; of L; € CX*,i = 1,2,
in RX* ®r C) to a representation poriqoporaqo = (Y. L1)(>. La) = > (L1Ls) of Ly Lo, as will be
exemplified below.
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Theorem 3.11. (Second Normal Form)
Let K be an R-dioid, m > 2 and ¢ € K @ C/, be given in matrix form ¢ = S(U+X+V+Wn)*F,
where m = qgpo and for some n > 0,

S € {0,1}1xn, X € K, U € {0,p1,...,pm_1}"*",
F e {0,1}”*1, W e {0,1}™*m, Ve {0,q1,.-,qm-1}"""

Then there is a least solution N of y > (UyV + X)* in Mat,, ,(K ®% CJ,), and
popao = SN(WN)'F € Zc,;, (K @ Cy,).

Proof:
Let A= U+ X +V. By Theorem 3.5, there is N = puy.(UyV + X)* € (Zcr, (K @% C},))™ " with

A= U+ X+ V)" =(NV)*N(UN)*.
As in the proof of Corollary 3.10, we obtain
poA*qo = po(NV)*N(UN)*q0 = poNgo = N,

and therefore in the Kleene algebra Mat,, (K ®x C},), using identities (a + b)* = a*(ba*)* and
(ab)*a = a(ba)* of Kleene algebra,

po(A+Wm)*q = poA*(WrA*) q

PoA™ (oW poA™) qo
PoA™qo(WpoA™qo)*

= N(WN)* e (Zo (K @r Cy,))"".

Because S, N, W and F' commute with py and ¢, it follows that
powgo = Spo(A+ Wn)*qoF = SN(WN)'F € Zc; (K @r Cy,).
Notice also that mpm = qopoYgopo = TPoYqo- o

Example 3.12. Consider ¢ = (ap1)*(q1b)* € K := R{a, b}* @ C) of Example 3.6 and its automa-
ton (S, A, F') with A = U + X + V and graph as shown in Figure 2. We have seen that popqo = > L
represents L = {a"0" | n € N} € C{a,b}* in K. By Corollary 3.10, pppqo is the projection of ¢
to the centralizer Z¢y K. Using m = gopo, we claim that the projection of ¢ = @7 to the centralizer
represents LL in K, i.e. poypqo = Y (LL) € Z¢, K. To obtain an automaton (S, A, F) for 1), connect

the graph of A with a copy of itself by an edge labelled by 7, to get the graph of A shown in Figure 3.
The automaton of 1) is (S, A, F) and has 8 states, with initial state 1 coded by 11 = 1, accepting
state 7 coded by F7; = 1, and transition matrix A = U + (X + 7W) + V shown in Figure 4.
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Figure 3. Graph of A

0000 O0O0O00O0 0a100O00O00O0 000 0 O0O0O0O
pr 000 0 00O 0000O0O0OO0ODO 000 0 O0OO0O0O
0 000 O0O0O0O 0000« O0O00QO0 000 @ 00O0O0
0 000 O0O0O0O 00b0O0O0O0O 000 O0OO0OO0O
00000000+00000a10+00000000
0 000pP$P 00O 0000O0O0OO0DO 000 0 O0OO0O0O
0 000 O0O0OO0O 000O0O0OO0O0O 000 O0O0O0O0Gaq
0 000 O0O0OO0O 0000O0O0OUDbDO 000 O0OO0OO0O

Figure 4. Transition matrix A = U 4+ (X +7W) +V

For N = puy.(UyV +X)* = po(Up1 + X +q1V)*qo € (Zey (RX* @r C5))®*®, the proof shows
that

(U+X+V)" = (NV)*NUN)*,
po(U + X +V)*qo N,
po(A)*qp = N(WN)*.

Since the graph of (f] n+X+aq f/) consists of two disconnected components isomorphic to that
of A of Figure 2 above, the matrix N obtained from its transitive reflexive hull is, using L =
po(ap?)*(¢3b)*qo as in Example 3.6,

1 a L aL 00 0 0

01 Lb L 00 0 0

00 1 0 00 0 0

- - . 00 b 1 00 0 0

N = pUpi+X+aV)q = 00 0 0 1a i dof
00 0 0 01 Lb L

00 0 0 0O0 1 0

00 0 0 0O0 b 1
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The matrix W is the boolean 8 x 8-matrix with 1 only at W3 5, so

po(A%)q = N(WN)*
0000000 0) 1000000 O
0000O0O0TO 0 O 0100000 O
00001 a L al 00101 a L al
_ yl0000000 0of _fooo0o1000 0
0000O0O0O 0 O 0000100 O
0000O0O0O 0 O 0000010 O
0000O0O0O 0 O 0000O0O0T1 0
0000O0O0O 0 O 0000O0GO0TO 0 1
laEaZEaEZZZaZ
0 1 Lb L Lb Lba LbL LbaL
00 1 0 1 a L al
oo b 1 b ba bL bal
oo 0o 0 1 a L aL
00 0 0 0 1 ILb L
00 0 0 0 0 1 0
00 0 0 0 0 b 1

Hence potqo = poSA*Fqy = po(fl*)uqo =(N(WN)* )17 = LL. As shown in Example 2.9,

L = po(ap})*(g7b)*q0 = po(ap1)*(@10)*q0 = powqo = »_ L € Zey K,
and since Z¢; K is a C-dioid by Theorem 2.11 (ii), LL = (L)X L) = S(LL). So, potbqo =
Poqopopqo represents LL in K. This can also be seen using *-continuity as in Example 2.9. N
4. Combining normal forms by Kleene algebra operations

We here show that normal forms for elements of K ®x C% can be defined directly by induction on the
regular operations, using the representation by automata only implicitly.

Theorem 4.1. Let K be an R-dioid. For every ¢ € K @ C) therearen > 1, S € Bixn F e B"*1,
U € {0,po,p1}™", V € {0,q0, 1 }"*", and N € (Z¢y (K ®@r C3))"*™ such that

¢ =S(NV)*N(UN)*F

Moreover, NV is the least solution of y > (UyV + N)* in Maty, »,(Zcy (K ®@r C3)).
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Proof:
For the second claim, we only show N > (UNV + N)*, since any y > (UyV + N)* is above N. The
first claim is shown by induction on ¢, choosing S, U, N, V, F' from an implicit automaton (S, A, F')
for ¢ = SA*F (cf. Theorem 2.15) with A =U + X + V and N = py.(UyV + X)*.
p€{0,1}: Putn=1,U=V =(0)and FF = N = (1). Then (UNV + N)* < N and
(NV)*N(UN)* = (0)*N(0)* =N = (1).
We have S(NV)*N(UN)*F = ¢ if we take S = (0) for ¢ = 0 and S = (1) for ¢ = 1.

In the remaining cases, this instance of the recursion formula (6) for matrix iteration is used often:

A B\ [A* A*BD*
= . ©)
0 D 0 D*
For the remaining generators, i.e. the images in K @ C) of k € K or po, p1,q0,q1 € C4, let
n=2and S,U, N,V, F as shown below.

o =k € K: Here,

S(NV)*N(UN)*F

006 D)) CE )6 ) O
00 ) ()

By (9), (UNV + N)* = N* = N.

v € {pi,q;}: If p is an opening bracket p;, or, respectively, a closing bracket ¢;, let U, N,V be

0 pi\ (1 0) (0 0 . 0 0\ (1 0\ (0 g
, , , respectively , , .
0 0 0 1 0 0 0 0 01 0 0

Then, using S and F as for ¢ = k above, S(NV)*N(UN)*F = SU*F = SUF = p; and,
respectively, S(NV)*N(UN)*F = SV*F = SVF = g,.

For ¢ among @1 + @2, (1 - 2, and Lpf, suppose that for ¢+ = 1, 2, by induction we have n; > 1
and S;, U;, V;, F; and N; such that ©w; = Sl(NlV;)*NZ(UlNz)*Fl and N; = ,uy(UZyVZ + Nl)*
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Y =1+ pa: Letn =n3 +ngoand S,U, N, V, I as shown in

)")N(UN)"F
@MKHQGQHf@(?$@&D@)
o (M0 ) O ) (70 i) ()
( (!
)

o o) (W) N1 (U1 N1)* 0 P
P (N2V2)*N2(U2N2)* Fy

For the second claim, from (U; N;V; + N;)* < N; we obtain

U.N,Vi + N 0 YN 0
(UNV 4+ N)* = [t < =N.
0 UsNoVy + Ny 0 Ny

© = 1 - p2: Notice that entries of N1 F155 N> belong to the centralizer, and if z is an n; X no matrix
of elements x of the centralizer, so is U;z V5, because its entries are O or sums of elements
pixq; = x - 0; ;, which belong to the centralizer. Hence, f(z) = N1U12VaNa + N1F1.52No
defines a monotone map
fi(Zoy (K @r Cy)"™ ™ = (Zoy (K @r Cy))" 7™,

By Theorem 2.11 (ii), Zcé(K ®r C}%) is a C-dioid, hence a Chomsky algebra, so f has a least
pre-fixpoint a, i.e. the system of n;ng polynomial inequations

z > N1U12VoNy + N1F1.S2No (10)
has « as least solution®. Let n = ny + no and S, U, N, V, F as in

S(NV)*N(UN)*F

(020 w) G0 2) () ()

3 The entries of a can be given as regular p-terms from the polynomials of (10), as shown in [10], or as regular expressions
in the parameters of (10) and the brackets of C3, by a method presented in Theorem 15 and Example 6 of [11]. Alternatively,
by Lemma 3.3, using A = Uip + X1 + ¢V1 and D = Uzp + X2 + ¢V with automaton (S;, U; + X; + Vi, Fy) for ¢,

i A RS\ A* A*F1S,D* N1 bA*F1S>D*d
=b(Up+X +qV)d=b d=b d= 7
e (A I (el T Ol

so we also have o« = bA™ F1.S> D*d, but it is not obvious that this is a matrix of elements from the centralizer.
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- (s o) MV aW ) (N a) (UiN Uia\ [0
! 0 NoW) \0 N/ \ 0 N) \R

~ (s 0) <<N1V1>* <N1V1>*av2<N2va>*> <N1 a)

0 (NoVa)* 0 Ny
(UlNl)* (UlNl)*Ula(UQNQ)* 0
0 (UyNo)* Fy
_ X N A (Mo« U N1)*Uya(UaNo)* Fy
o (SI(NIVI) S1 (V1) aVa(Na Vo) ) <O No ( (UaNy)*Foy )

= Sl(val)*[Nl(UlNl)*Ula + o+ a‘/Q(NQVQ)*NQ](UQNQ)*FQ.

By [10], the p-continuity of Z¢, (K ®r C3) lifts to the matrix level, so

a = Z{ N1U1 NlFlSQNQ)(‘/QNQ)k | kEN}
= Z{Nl(UlNl)kFISQ(NQ‘/Q) Ny | k EN}

and

S(NV)*N(UN)*F
= Si(iV)* [N (Ui N1)* Ui+ a4+ aVa (N2 Va) " No(Ua N ) * Fo
= > {S1(NVQ)* Ny (U1 N1)*Us Ny (Ur Ny )F Fy So (No Vo) P No (U N2 )* Fy | k€ N}

+Z{ Sl(NlVl)*Nl(UlNl)kF1S2(N2V2)kN2(U2N2)*F2 | ke N}
+ Y {1 (N1 V)" N1 (U1 N1)F L Sa (N2 Vo) No Vo (N Vo) * No(Ua No)*Fy | k € N'}

= > {S1(NV2)* Ny (U1 N1)* Fi Sy (N2 Vo) No(Ua No)* Fy | k1 € N}
= S1(NiV1)*Ni(U1N1)*Fy - So(NoVa)* No(UaNo)* Fy
= ©1-P2.

For the second claim,

ULNVi+ N, UyaVs " (N, Ny(UjaVs+a)N.
(UNV + N)* = 1NV + Ny 1aVo +« _ 1 N1(UiaVa + a) No .
0 UsNoVy + Ny 0 No

Since N;N; < N} < N;, we have NjaN2 < o = N1UjaVaNo, hence (UNV + N)* < N.

= gol Letn,S,U,V, F be n1,S1,U;, Vi, Fy. Since Ny is the least solution of y > (UyV + Np)*,
by Theorem 3.2 (N1V)*N1(UNy)* = Aj for Ay = U + N1 + V, s0 o1 = SAJF. Then

S(A1 + FS)*F = SAY(FSAY)'F = SATF(SATF)* = 14t = o7
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By Lemma 3.3,y > (UyV + N1+ FS)* has aleast solution N, and N € (Z¢y (K ®r [0:9) lakih
Using Theorem 3.2 again,

S(NV*N(UN)*F =S(U + N1 +FS+V)*F =S(A; + FS)*F = ¢™.
For the second claim, by definition of N we have N = (UNV + N; + F'S)*, so

(UNV 4+ N)* < (UNV + (UNV + Ny + FS)*)*
= (UNV+UNV + N, + FS)* < N.

The case 5 is treated via % = 1+ ¢ . O

5. Bra-ket R-dioids C,, and the completeness property

The bra-ket R-dioid Cy, is the quotient RAY /py, of RAY, by the R-congruence p,, generated by
the relations

{pigj =0ij | i, <m}U{qpo+...+ gm-1Pm-1 =1}
While the match equations can be interpreted in monoids with an annihilating element 0, such as the
polycyclic monoid P}, the completeness equation 1 = >, ¢;p; is a semiring equation.

The name bra-ket R-dioid comes by analogy to a notation in quantum mechanics, where a quan-
tum state is represented by a vector ¢ of a Hilbert space #, written [¢)) and called a ket. Elements f
of the dual space H* of (continuous) linear functions on H can uniquely be represented by elements
© € H, via f(¢) = (p, ) for all Y € H, where (-,-) : H x H — F'is the inner product on H to the
underlying field F'. The element of 7{* represented by ¢ is written (¢| and called a bra.

Suppose H has finite dimenson m and let |0), ..., [m — 1) be a basis of # of unit column vectors
and (0|, ..., (m — 1] a basis of H* of unit row vectors. If the application of (i| = (ig, ..., im—1) € H*
to the vector |j) with row values jo = g j ..., jm—1 = Om—1,; is Written as juxtaposition, we get the

bracket match- and mismatch equation for the inner product,
(@lli) = (i,5) =Y Linde | k<m} =3y
The outer product |5) (7| of ¢; and p; is a linear operator on H and represented by the m x m matrix
)il = (Jria)-
In particular, |7)(i| is a projection to the subspace spanned by |i) and represented by the m X m-matrix

with 1 on the ¢-th position on the diagonal and 0 otherwise. The combination of the projections gives
the identity operator

0)(0] + ... + m — 1) (m — 1] = 1,

represented by the unit matrix of dimension m, corresponding to the completeness equation. This
interpretation of (i||j) and |j)(i| has to be combined with an interpretation of |i)|j) as a tensor in the
2-particle space H ® H. Here, opening and closing brackets are interpreted by different kinds of
objects and strings of brackets are interpreted in several ways. A uniform interpretation of brackets
and bracket concatenation is given below.
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5.1. The bra-ket R-dioid C,, and matrix algebras

For applications to context-free languages L C X*, the R-dioids Cy, and C), as factors C' of
RX*®g C arise by an interpretation of brackets p; as pushing and g; as popping symbol i from a
stack. Then p;q; leaves the stack unchanged, p;q; for j # i aborts the computation, and ¢;p; succeeds
iff 7 is on top of the stack. The completeness equation ) ., ¢;p; = 1 of Cy, says that one of the
symbols ¢ < m is always on top of the stack (including O as end marker). This originally seemed
necessary to have Z¢(RX* ®@x C) be isomorphic to the C-dioid of context-free languages over X*,
but as shown in [11], C' = C/, is sufficient.

More precisely, a uniform interpretation of brackets as binary relations on a countably infinite set
and bracket concatenation as relation product, i.e. an interpretation of Cy, in Mat,, ,,(B), is as follows:

Example 5.1. Leteg, €1, . . . be the unit vectors of size w x 1 and ef}, €}, . . . their transposed vectors of
size 1 x w. Each eye] is a boolean square matrix of dimension w, representing the relation {(k, 1)} C
w X w, and so, for ¢, j < m, we can interpret brackets p; and g; in B**“ by

t t
Di = Z ekemk+ia QJ = Z emk+jek7
k<w k<w

representing the relations { (k,mk +¢) | K € N} and {(mk + j,k) | k € N}, respectively.
Concatenation of brackets is boolean matrix multiplication, corresponding to relation composition, so

Diqj = 0i

holds, with 0 and 1 for the zero and unit square matrices of dimension w. The matrix g;p; represents
the subrelation { (mk + i, mk + i) | k € N} of the identity, so the completeness equation

Z qipi =1

<m
also holds. In a similar spirit, one can think of I' = {0, ..., m — 1} as a stack alphabet, I'* as the set
of possible stack contents w (with top of the stack on the left), and let p; be the graph of the operation
“push symbol ¢”, ¢; the graph of “pop symbol 7", - the relation product, 4 the union of relations, O the
empty relation and 1 the identity relation on I'*. Then clearly p;q; = d; ; holds, but, since one cannot
pop from the empty stack €, e := >, . q;p; is the identity relation on the non-empty stack I'* only,
soe < 1=e+{(ee€)}. Toobtain e = 1, one can treat 0 as a special symbol, pad all stack contents
w € I'* by an w-sequence of 0’s to w0, and interpret the operations as binary relations on the new
stack ['*0%. N

A remarkable consequence of the completeness equation is the following:
Theorem 5.2. C,, is isomorphic to its own matrix Kleene algebra Mat,,, ,,,(Cy,).

Proof:
Define - : C,,, = Maty, 1, (Cy,) and * : Maty, o (Cy,) = Cpy, by

&ij 1= piag; fora € Cm, and A = Z QiAszj for A € Matm,m(Cm).
1,j<m
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These maps are inverse to each other, because for a € Cy, and A € Maty, p(Cpy),

0= 2 adi; = Zqulaqu] Z%pz a(y_qjpj) =a

(A = Z(h Aiipi Tk = pi( Z% i) = PeQeArpiq = Apl.
’J 7-]

Let 0,,, be the zero and 1,,, the unit matrix of dimension m x m. Clearly, * is a semiring morphism, by
0 = (pi0g;) = O,
1= (pilg) = (5:j) = Lm.
a+b= (piag;) + (piba;) = (pila+0b)a;) = a+b,

a- i) = (ZPiGQkpkbq]‘) = (pia(z qkpk)bqj) = (piabqj) = EE
k k

We leave it to the reader to check that the inverse - also is a semiring morphism. Since they preserve
+, these maps are monotone and order isomorphisms. To see that they are Kleene algebra morphisms,
let a € Cy, and A € Maty, ,,(Cy,). Then a* = px.gq.(x) and A* = px.ha(zx) are the least pre-
fixpoints of the monotone maps g, : Cy, = Cy, and h g : Maty, p(Cp,) — Maty, m(C)y,) defined by
ga(xz) = ax+1and ha(x) = Az + 1. For f =": Cp, = Maty, ;m(Cy) we have

It follows that

Likewise, for the inverse f~! =7 : Maty;, ;m(Cp,) — Ciy, we have
(f " oha)(@) = (Az + 1) = A+ 1= (gz0f ) (),
which implies (A*) = A*. O

Corollary 5.3. The Kleene subalgebra of C,, generated by { ¢;p; | ,j < m} is isomorphic to
Maty, 1 (B). Moreover, Cy, >~ Cp, @ Mat,y, m(B).

Proof:

Let E; ;) be the m x m boolean matrix with 1 only at position (4, j). The first claim holds since the
isomorphism * : Maty, ;m(Cm) — Cp, maps a generator E(; ;) of Mat,, m(B) to ¢;p;. The second
claim follows from Cy, ~ Mat,, ,,(C,) and Proposition 2.14. a

Similar to Lemma 2.3, we can code C,,, in C5 for m > 2:
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Proposition 5.4. For m > 2 there is an embedding R-morphism g : C),, — C5 such that for ¢, j < m,

9(pi) - 9(q;) = 6i; and (> api) =1,

<m
writing p; and g; for the congruence classes {p;}/pm and {g;}/pm in C,.

Proof:

Let p,,, be the R-congruence on RA}, generated by the match- and completeness equations for RA,,
and ps the corresponding R-congruence on RA3. Writing again Ay = {b,p,d, ¢}, we modify the
coding - of A,, in A3 of Lemma 2.3 by putting

_ bpt, i<m-—1 _ gd, i<m-—1
Pi=4 . and @ =19 .
pz’ t=m—1 ql, 1=m — 1.

This extends to a homomorphism from A}, to A} and lifts to an R-morphism ~ : RA;, — RAS3.
Clearly, the match equations p; g; = d;; for i,j < m hold in C; = RAj/ps. In Cy, we have
1=db+ qp=qopo + ¢'p', and since for 1 <i <m — 1

%

¢'p’ = q'(db+ qp)p' = q'dbp’ + ¢'qpp’ = Gpi + ¢' P,

it follows that
l=qpo+q'p' = > @p+d" P =) ap
i<m—1 <m

So the completeness equation of C, also holds under the coding in Co. Hence amap g : RAY, /pm —
RA3/py is well-defined by g(A/py,) = A/ps for A € RAY,. Asin Lemma 2.3, it is an R-morphism
and satisfies g(p;) - g(q;) = d;j and 1 = g(3>_,_,, ¢ip:). (But the additional property po - g(¢;) = 0 =
g(pi) - qo of Lemma 2.3 only holds for i > 0, since pogy = bq’d = 1 = bp°’d = Pyqo in Cs.)

To see that g is injective, first notice that =~ : RA;, — RAJ is injective: any w € AJ in the
image of = can uniquely be parsed into a word of {pg, . .., Dm—1,G0,---Gm-1}"» S0 there is a unique
v € A}, with w = . It is therefore sufficient to show

forall A, B € RA},(Apan B = A/pm = B/pm), (1)

where ps j, is the n-th stage of the inductive definition of ps. This is done by induction on n. If
A pap B, either A = B, in which case A = B, or A py B is a match equation or the completeness
equation of po, in which case (A, B) is the corresponding match or completeness equation of py,,
s0 A/pm = B/pm. If Aps,i1 B is obtained by symmetry from B ps,, A or by transitivity from
A pay, Cand C py, B, the claim follows from symmetry resp. transitivity of py,.

If A P2,n+1 B is obtained from A; P2.n Bj and Ay P2.n By by A=A, Ay and B = B; Bs, then

Alpm = (A1A2)/pm = A1/ pmA2/pm = B1/pmBa/pm = (B1B2)/pm = B/pm

by induction. The argument is similar if A=A, UAyand B = B, U Bs.
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Suppose |JU’ p2nt+1J V', where U', V' € R(RA%) contain only regular sets of words in the
image of = : A%, — A3 and (U'/p2)* = (V'/p2)* in stage n. As these regular sets of words are
also regular sets of words over A,,, there are U,V € R(RAY) such that U’ = {A | A € U},
V''={B | B€V},andforeach A € U there is B € V with AU B py,, B and for each B € V
there is A € U with BU A ps,, A. By induction, AU B = A U B pa,, B implies A/p,, < B/pm,
and B U A py , A implies B/pm < A/pm, so that (U/py)* = (V/pm)* and therefore | JU/py, =
UU/pm. Since YU’ = JU and |V’ = JV, the claim is proven. O

5.2. Relativizing the completeness property

Letm > 2ande := ), <m @ipi- For the tensor product K @z Cp, of an R-dioid K and Cy,, the
completeness equation e = 1 can be used to show that every element of the centralizer of C, is the
least upper bound of some context-free subset of K, i.e. that

Y CK - Zg,, (K ®r Cr)

is surjective. Also, Lemma 3.3 is a bit easier to prove for C than for C?, as we can use db < 1 to
prove NN < N in Claim 3.3. We do not go into this here, but observe that in suitable contexts, e = 1
in a sense holds in the polycyclic algebras C/, as well. For example, as p;e = p; for p; € P, and
eqj = gj for g € Qm,, in C},, we have

Poeqo = pogo = 1 = polqo.

This can be generalized to a relativized form of the completeness property. Basically, for any regular
expression o(z) in an unknown x, elements of K and brackets of C], other than py, qo, the two
elements p(e), (1) € K ®r C/, are suprema of regular sets that differ only by elements from the
centralizer Z¢: (K ®r C;,) weighted by factors from {q1,...,¢m-1}"{p1,...,pPm-1}" \ {1}, and
these reduce to O in the context py . . . go of a fresh pair of brackets.

Theorem 5.5. (Relative Completeness)
Let K be an R-dioid. For any ¢(x) = @(m,p1,- .+, Pm—1,q1s---,qm-1,2) € (K®@r C),)[z] in
which pg and ¢g occur only in m = ggpy,

pop(e)qo = pow(l)go and pop(l)qo € Zer, (K @R Cyy).

Proof:
Let p(x) = S(A+Wm)*F be given by an automaton (S, A + W, F'), where A= U+ X +V +Yux,
S,U, X,V,W, F and n are as in Theorem 3.11, and Y € {0,1}"*". Then

pop(x)qo = poS(A+Wm)*Fqo = Spo(A+ Wm)*qoF.

Recall that on the right and in the following, p; and ¢; are identified with corresponding diagonal
matrices of dimension n. As in the proof of Theorem 3.11,

po(A+Wm)'q = poA*q(WpoA*qo)*.
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It is sufficient to show that pg A*qg does not depend on the choice of z € {1,e}. Usinga = U+ X4V,
poA*q = pola+Yz)q = poa” (Yza™) q.
Let N € (Z¢,,(K @r Cypy,))™ ™ be as in Theorem 3.11, so that with *-continuity on the matrix level,

a = (U4+X+V) =(NV)*NUN)*
= > {(NV)!N(NU)' | k,1eN}.

There are U;,V; € B™*" such that U = > _,_, Uip; and V = Zo<j<m q;Vj. As the ¢; and p;
commute with N and boolean matrices,

(NV*NUN) = (Y ¢NV)*N( Y UiNp)

0<j<m 0<i<m

= Z Gy @GPy - Py NVj, -+~ NV, NUy N --- U, N.

(R PR PR SR TR
Let P = Py, \ {po} and Q = Qm, \ {qo}. Forv =g¢;, ---¢;, € Q" and u = p;, - - - p;; € P*, put
Nyw = NV, - NV;, NU, N -+ Uy, N,

so that
o =) {(NV)*)NUN) | k,leN} =) {vuNy | ue P 0eQ}.

By *-continuity, it follows that
poc™ (Yea™)*qo
= ) {poa*(Yea*)fqo | k €N}
= PoVouoNvgug -« - ¥ EVEUE LNy, u, 40 y UQy - -+ Uk > V0y -+ -5 Uk
{ N, Y N, | keN € pP* €Q"}
— * *
= ouo - - - , LU,y - - - V0, -« - ,
Z{povouo evpurqoNvug - - - Y Noguy, | k€ Nyug ur € P*, v v € Q% }

where the final step holds since the ev;1u;4+1 commute with Ny oY - - - Ny, Y.
To show ppa™(Yea*)*qo = poa* (Y a*)*qo, it therefore is sufficient that e can be replaced by 1 in
the summands povoug - . . €VEULGONvgug - - - ¥ Noguy» 1.€. that

PoVQUQEVIU] - - . EULUL = POUOUQUIUT - - - Vg Uk- (12)
For k = 0, equation (12) is obvious. For 0 < k, put w; = voug . .. vju; and, by induction, assume
PoloUp€EVIUY - . . EVjU; = POW;

for some j < k. Since w; € Q*P* U {0}, we distinguish three cases. If w; = 1, then powje =
Po€ = Py = Powj, SO PoW;jeVj+1Ujt1 = PoW;Vj+1Uj+1 = powj+1. If wj € Q, then pow; = 0, so
POW;EVj1Uj+1 = POWj+1- If w; € Q*P+ U {O}, then wje = Wj, SO PoW;EVj4+1Uj+1 = PoWj+1-
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It follows that povougeviuy ... evji1uj41 = powjy1, and by induction, (12). Thus we have shown
poc*(Yea™)*qo = poa™ (Y a*)*qp and thereby poe(e)qo = poe(1)qo.

Moreover, since powyqo € {0, 1} for all k&, poa™ (Y a*)*qo is the least upper bound of a regular set
of n x n-matrices over Z¢; (K ®@g Cy,). It follows that, for z = 1,

PoA*q0 = poc (Ya*)*qo € (Zoy, (K @ C,)" ™",
and therefore po@(1)qo = SpoA*qo(WpoA*q)*F € Zoy (K ®@r CY,). O

It therefore seems that at least for applications to formal languages, where we can use a special pair
Po, go of brackets to annihilate words of {q1, ..., ¢gm—1}*{p1,. .., Pm—1}", the completeness equation
is of little help.

6. Conclusion

The tensor product RX™* @z C/, of the algebra R X ™ of regular sets of X* with the polycyclic Kleene
algebra C/, based on m > 2 bracket pairs is a *-continuous Kleene algebra subsuming an isomorphic
copy of the algebra CX™* of context-free sets of X*, the centralizer Z¢y (RX* ®% C7,) of Cy,.

We have investigated K @z C/,, for arbitrary *-continuous Kleene algebras K. Every element
v € K®g C!, is the value SA* F of an automaton (S, A, F') whose transition matrix A = U+ X +V
splits into transitions by opening brackets (and 0’s) in U, transitions by elements of K in X, and tran-
sitions by closing brackets (and 0’s) in V. Our main result is a normal form theorem saying that
A* = (NV)*N(UN)*, where N is the least solution of y > (UyV + X)* in Mat,, (K @ C;,),
corresponding to Dyck’s language D C {U, X,V }* with bracket pair U,V, and N has entries in
Zor (K ®rC},). If ¢ = SA*F belongs to the centralizer of Cj in K ® C5, and K has no zero
divisors, then SA*F = SN F. It remains open whether the non-existence of zero divisors is a neces-
sary assumption. These normal forms generalize a simpler normal form for elements of the polycyclic
monoid P, [X].

Our main result had been obtained earlier (unpublished) by the first author with the bra-ket Kleene
algebra C,,, instead of C,. For the brackets po, . . ., gm—1, We no longer need the completeness equa-
tion 1 = qopo + - . . + gm—1Pm—1 of Cyy,, but only the match- and mismatch equations p;q; = 9; ; of
C/,. Tt is also shown that in the context py . . . go, in K @z C},, this equation can be assumed to hold.

The two sets of cases of greatest interest are specializations of RM ®x C' to the monoids M = X*
and M = X* x Y*and to C = C) and C' = Cy. Applications, for M = X*, include recognition of
languages over an alphabet of inputs X, while for M = X* x Y™, they include parsing or translation of
languages over X, where Y may denote an alphabet of actions (such as parse tree building operations),
or an alphabet of outputs. With the results established here, we have laid a foundation for an algebraic
study of recognition, parsing and translation algorithms for context-free languages over X, that we
hope to analyze in greater depth in later publications.

In addition, given the close relation between C and C5 and stack machines, it is natural to enquire
as to whether RM ®x C may provide a representation for 2-stack machine languages and relations,
where C' = C, @ C) or C = Cy ®p C2, and, thus, a basis for a calculus for recursively enumerable
languages and relations. We also hope to elaborate this in a future publication.
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7. Appendix
We here complete the proof of Lemma 2.6 by showing that = C P. We repeat that P(R, S) is
Y(z,y), (a,b), (a',V)[(a,b)R(d, b))\ Z = (z,y) = (a,b)S(d',V)\ Z < (z,y)], (13)

where Z = { (a,b) € K1 x Ko | a=0o0rb=0}and R < (z,y) says that (x, y) is an upper bound
of R C Kl X KQ.

Proof:
Let =,, be the n-th stage in the inductive definition of =, where = consists of those (R, S) where
R = S or where they are a tensor product equation, i.e. R = Ax Band S = {(>_ A, > B)} for some
A € RK1, B € RKo, and =11 adds pairs to =,, by the closure conditions for symmetry, transitivity,
sum, product and supremum. To prove = C P, it is sufficient to show =,, C P by induction on n.
Suppose R =¢ S. If R = S, then P(R, ) is clear, since P is reflexive. Otherwise, R = S
is a tensor product equation, i.e. there are A € RK; and B € RK, such that R = A x B and
S={0_A,> B)}. Let (z,y), (a,b),(a',b) € K1 x Kj. To show

(a,D)(Ax B)(d' )\ Z % (z,y) <= (a,){(Q_AY B} W)\ Z =X (z,y),  (14)
we first observe that, since for a rectangle A’ x B’ C Ky x Ko,
A'xB CZ <+ A C{0}vB C{o0},
either both sets (a, b)(A x B)(a’,b') and (a,b){(>_ A, > B)}(d’, V') are subsets of Z or both are not:

(a,b)(A x B)(d',V)C Z aAd’ C {0} v bBY C {0}

> add =0v> bBY =0
@(d_ Ay, b(>_BW) ez
(@,0){D_A> B} V) C 2

If both of these sets are subsets of Z, then clearly (14) holds. Otherwise, both (a,b)(A x B)(a’,b')\ Z
and (a,b){(>° A, B)}(d,t') \ Z are non-empty. Since for rectangles A’ x B’  Z,

(A

A'xB'\Z =< (z,y) = A xB =< (a,y),
the claim (14) is implied by the following:

(a,b)(A x B)(d',V) < (z,y) (aAd' x bBY') =< (x,y)

aAd <z ANbBY <y

ZaAa' < :(:/\ZbBb' <y
(a,D{(D_A Y BN, V) = (z,y).

[
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Suppose R =,,+1 S is obtained from S =,, R by the condition to close = under symmetry. By
induction, P(S, R) holds, and since P is an equivalence relation, P(R, S) also holds.

Suppose R =,,4+1 S is obtained from R =, T and T' =, S by the condition to close = under
transitivity. By induction, P(R,T') and P(T, S), and since P is an equivalence relation, P(R, S).

Suppose Ry U Ry =541 S1 U Sy is obtained from Ry =, S and Ry =,, S2 by the condition to
close = under union. By induction, P(R1,S1) and P(Rg, S2), and hence, for all (a,b), (a’,b") and
(@,9)s

(a,0)(R1 U Rp)(a', V) \ Z 2 (2,y)
<~ (a,b)R1(d,0)\ Z < (z,y) A (a,b)Ra(a',b')\ Z =< (x,9)
= (a,0)81(d", ")\ Z =2 (z,y) A (a,0)S2(a’,0) \ Z = (2,y)
<~ (a,b)(S1US8)(d,b)\ Z < (z,9),

which shows P(R; U Ry, S1 U S2).

Suppose Ry Ry =,,4+1 5152 is obtained from R; =,, S1 and Ry =,, S2 by the condition to close
= under products. Let (a,b), (a’,V'), (z,y) € K1 x Ko and assume (a,b) R Ra(a’,b') \ Z =< (x,y).
By induction, P(R;, S1), and hence, exploiting the universal quantification in (13),

(a, b)Sle(a’, b/) \ Z = (x, y).

Since, by induction, we also have P(Rj, S2), this similarly gives (a, b)S152(a’, ') \ Z < (x,y). In
the same way, from (a,b)S152(a’,b') \ Z < (x,y) one gets (a,b)R1Ra2(a’,b') \ Z < (x,y). Taken
together, this shows P(R; Rz, S152).
Suppose JU =11 JV comes from U,V € R(R(K1 x K»)) with (U/=)* = (V/=)* in stage
n, i.e.
VReU3S e V(RUS =, S)AVS € VIR € U(SUR =, R),

by the condition to close = under suprema. By induction,
VReUIS € VPRUS,S)AVS e VIReUP(SUR,R). (15)
Let (a,b), (d’,b), (z,y) € K1 X Ks, and assume (a,b)(JU)(a', V') \ Z = (x,y), i.e.
VR e U((a,b)R(d', V') \ Z = (x,y)).
To show (a,b)(JV) (', b')\ Z < (z,y),let S € V. By (15), there is R € U with P(SU R, R), hence
(a,D)(SUR)(d, M)\ Z = (2,y) <= (a,b)R(d",V)\ Z X (2,).

Since the right-hand side is true, we get (a, b)S(a’,b')\ Z =< (z,y) from the left-hand side. This shows
VS e V((a,b)S(d, ')\ Z < (z,9)), ie. (a, b)(U V)(a',b')\ Z < (z,y). The reverse implication

(a, )(JU)(@ W)\ Z =2 (2,9) = (a.5)( V)@, 0)\ Z = (2,y)

is shown by a symmetric argument. Therefore, we have P(|JU,|JV). O
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