Mostafa Haghir Chehreghani ; Albert Bifet ; Talel Abdessalem - Exact and Approximate Algorithms for Computing Betweenness Centrality in Directed Graphs

fi:8451 - Fundamenta Informaticae, November 18, 2021, Volume 182, Issue 3
Exact and Approximate Algorithms for Computing Betweenness Centrality in Directed GraphsArticle

Authors: Mostafa Haghir Chehreghani ; Albert Bifet ; Talel Abdessalem

    Graphs (networks) are an important tool to model data in different domains. Real-world graphs are usually directed, where the edges have a direction and they are not symmetric. Betweenness centrality is an important index widely used to analyze networks. In this paper, first given a directed network $G$ and a vertex $r \in V(G)$, we propose an exact algorithm to compute betweenness score of $r$. Our algorithm pre-computes a set $\mathcal{RV}(r)$, which is used to prune a huge amount of computations that do not contribute to the betweenness score of $r$. Time complexity of our algorithm depends on $|\mathcal{RV}(r)|$ and it is respectively $\Theta(|\mathcal{RV}(r)|\cdot|E(G)|)$ and $\Theta(|\mathcal{RV}(r)|\cdot|E(G)|+|\mathcal{RV}(r)|\cdot|V(G)|\log |V(G)|)$ for unweighted graphs and weighted graphs with positive weights. $|\mathcal{RV}(r)|$ is bounded from above by $|V(G)|-1$ and in most cases, it is a small constant. Then, for the cases where $\mathcal{RV}(r)$ is large, we present a simple randomized algorithm that samples from $\mathcal{RV}(r)$ and performs computations for only the sampled elements. We show that this algorithm provides an $(\epsilon,\delta)$-approximation to the betweenness score of $r$. Finally, we perform extensive experiments over several real-world datasets from different domains for several randomly chosen vertices as well as for the vertices with the highest betweenness scores. Our experiments reveal that for estimating betweenness score of a single vertex, our algorithm significantly outperforms the most efficient existing randomized algorithms, in terms of both running time and accuracy. Our experiments also reveal that our algorithm improves the existing algorithms when someone is interested in computing betweenness values of the vertices in a set whose cardinality is very small.


    Volume: Volume 182, Issue 3
    Published on: November 18, 2021
    Accepted on: September 22, 2021
    Submitted on: September 6, 2021
    Keywords: Computer Science - Data Structures and Algorithms,Computer Science - Social and Information Networks

    Consultation statistics

    This page has been seen 321 times.
    This article's PDF has been downloaded 245 times.