
ar
X

iv
:2

00
4.

02
22

0v
6

 [
cs

.C
G

]
 2

8
O

ct
 2

02
1

Appeared in Fundamenta Informaticae 182(3) : 301–319 (2021). 301

Available at IOS Press through:

https://doi.org/10.3233/FI-2021-2075

Query-Points Visibility Constraint Minimum Link Paths

in Simple Polygons

Mohammad Reza Zarrabi*

Department of Electrical and Computer Engineering

Tarbiat Modares University

Tehran, Iran

m.zarabi@modares.ac.ir

Nasrollah Moghaddam Charkari

Department of Electrical and Computer Engineering

Tarbiat Modares University

Tehran, Iran

Abstract. We study the query version of constrained minimum link paths between two points

inside a simple polygon P with n vertices such that there is at least one point on the path, visi-

ble from a query point. The method is based on partitioning P into a number of faces of equal

link distance from a point, called a link-based shortest path map (SPM). Initially, we solve this

problem for two given points s, t and a query point q. Then, the proposed solution is extended

to a general case for three arbitrary query points s, t and q. In the former, we propose an algo-

rithm with O(n) preprocessing time. Extending this approach for the latter case, we develop an

algorithm with O(n3) preprocessing time. The link distance of a q-visible path between s, t as

well as the path are provided in time O(logn) and O(m+ logn), respectively, for the above two

cases, where m is the number of links.

Keywords: Computational Geometry; Minimum Link Path; Shortest Path Map; Map Overlay

*Address for correspondence: Faculty of Electrical Engineering and Computer Science, Tarbiat Modares University, Tehran,

Iran.

Received September 2020; revised August 2021.

http://arxiv.org/abs/2004.02220v6
https://doi.org/10.3233/FI-2021-2075

302 M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons

1. Introduction

One of the problems in the field of Robotics and Computational Geometry is finding a minimum link

path between two points in a simple polygon. A minimum link path between two points s and t

is a chain of line segments (links) connecting them inside a simple polygon P with n vertices that

has the minimum number of links. The link distance between s and t is defined as the number of

links in a minimum link path. Finding a minimum link path between two fixed points inside a simple

polygon was first studied by Suri [15]. He introduced an O(n) time algorithm for this problem.

Afterwards, Ghosh [8] presented an alternative algorithm, which also runs in O(n) time. To solve this

problem in a polygonal domain, Mitchell et al. [14] proposed an incremental algorithm that runs in

time O(n2 log2 n), where n is the total number of edges of the obstacles. On the other hand, a more

general framework was established for minimum link paths by Suri [16] based on Shortest Path Map

(SPM). By the construction of SPM from a fixed point, the simple polygon P is divided into faces of

equal link distance from that point in linear time. With this property, Arkin et al. [2] developed an

algorithm for computing the link distance between two arbitrary query points inside P . The algorithm

computes window partitioning (SPM) of P from every vertex of P and from every extension point of

the visibility graph of P . It can be seen that endpoints of these windows divide edges of P into O(n2)
atomic segments. These segments satisfy the property that the combinatorial type of SPM(x) is the

same for all points x in the interior of each segment. Thus, the algorithm requires O(n3) preprocessing

time and answers a link distance query in O(log n) time.

In many applications, it is required for a robot to have direct visibility from a viewpoint during

its motion [5]. Some examples are moving guards, resource collectors, wireless communications, etc.

Minimum link paths have important applications in Robotics since turns are costly while straight line

movements are inexpensive in robot motion planning. In the minimum link paths problem with point

visibility constraint, the aim is to find a minimum link path between two points s and t such that there

is at least one point on the path from which a given viewpoint q is visible (a q-visible path [18]).

The constrained version of minimum link paths problem was studied in [18] for three fixed points

s, t and q inside a simple polygon. In this paper, we study the query version of the problem inside a

simple polygon P with n vertices for two cases. First, suppose that two fixed points s and t are given,

the goal is to find a q-visible path between s and t for an arbitrary query point q. Second, we consider

the same problem for three arbitrary query points s, t and q. We propose two algorithms with O(n)
and O(n3) preprocessing time for the above cases, respectively. The link distance of a q-visible path

between s, t as well as the path are provided in time O(log n) and O(m + log n), respectively, for

both cases, where m is the number of links.

Similarly, a q-visible path is defined for the Euclidean metric. In this case, the query version

of the shortest Euclidean path problem for two fixed points s, t and a query point q inside a simple

polygon with n vertices was studied in [13]. The given algorithm preprocesses the input in O(n3)
time and provides O(log n) query time. A simpler form of the problem was studied in [12] in which

the goal is to find the shortest Euclidean path from s to view q (without going to a destination point).

The algorithm requires O(n2) preprocessing time and answers a query in O(log n) time. Arkin et al.

[3] improved the preprocessing time to O(n) for simple polygons. Also, they built a data structure of

size O(n22α(n) log n) that can answer each query in O(n log2 n) time for a polygonal domain with h

M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons 303

holes and n vertices, where α(n) is the inverse Ackermann function. Recently, a new data structure of

size O(n log h + h2) was presented for this problem that can answer each query in O(h log h log n)
time [17].

The main differences between approaches in the Euclidean metric and the link distance metric are

as follows. Optimal paths that are unique under the Euclidean metric need not be unique under the

link distance metric. Also, Euclidean shortest paths only turn at reflex vertices while minimum link

paths can turn anywhere. Thus, minimum link paths problems are usually more difficult to solve than

equivalent Euclidean shortest path problems.

The main idea of the proposed algorithms given in this paper is to consider an edge of the visibility

polygon (called eq) for a query point q as a separator chord inside P , i.e., if s and t lie in different

sides of such a chord, an optimal link path between them will be the answer. Otherwise, a q-visible

path should have a non-empty intersection with the side of the chord containing q. Therefore, the

problem can be reduced to find an appropriate edge and optimal contact points between a q-visible

path and the other side of the edge. To answer the queries efficiently, we preprocess the input using

map overlay [7], point location [6], ray shooting [9] and shortest path map [16] techniques.

In Section 2, we introduce the problem definition and notation. Section 3 gives the basic lemmas

and definitions. Section 4 shows the main idea and flow of the algorithm. Section 5 describes our al-

gorithm for single query point, and Section 6 generalizes this algorithm to triple query points. Section

7 concludes with some open problems.

2. Problem definition and notation

Let P be a simple polygon in the plane with n vertices. For three points s, t and q inside P , the goal

is to preprocess the input to answer two types of queries:

1) Given a query point q, find all q-visible paths between fixed points s and t in P (single query).

2) Given three query points s, t and q, find a q-visible path between s and t in P (triple query).

We use the following notation throughout the paper:

• V (x) : the visibility polygon of a point x ∈ P

• πL(x, y) : a minimum link path from a point x to a point y inside P

• πE(x, y) : the shortest Euclidean path from a point x to a point y inside P

• MLP (x, y, q) : a q-visible (minimum link) path from a point x to a point y inside P

• |X| : the link distance of a minimum link path X

• n(X) : the number of members of a set X

• Pocket(x) : invisible regions of P from a point x, which are separated from V (x)

• SPM(x) : the shortest path map (window partition) of P with respect to a point or line segment

x [16]

304 M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons

More precisely, we are looking for a minimum link path between s and t that should have a

non-empty intersection with V (q) for both cases. Each region of Pocket(q) has exactly one edge in

common with V (q), called an edge of V (q). However, there is no need to compute all edges of V (q).
Indeed, a single edge eq of V (q) would be sufficient to find a q-visible path (not any such edge, see

Section 4.1).

Without preprocessing the query can be answered in linear time [18], but here our goal is to achieve

a logarithmic query time using a preprocessing (this would be optimal as indicated in [2]). We define

two types of output for either case mentioned above: one to find out |MLP (s, t, q)| in O(log n) time,

and another to report MLP (s, t, q) in O(m+ log n) time, where m = |MLP (s, t, q)|.

3. Basic lemmas and definitions

A planar subdivision is a partition of the 2-dimensional plane into finitely many vertices, edges and

faces (V,E, F). One type of planar subdivision is simply connected planar subdivision (SCPS) with an

additional restriction: any closed paths lying completely in one region of a SCPS can be topologically

contracted to a point. Therefore, a region in a SCPS cannot contain any other regions [7]. According

to Euler’s formula for SCPS, we have the following equation: n(V)− n(E) + n(F) = 2.

As stated above, the notion of SPM introduced in [16] is central to our discussion. Indeed,

SPM(x) denotes the SCPS of P into faces with the same link distance to a point or line segment

x. SPM(x) has an associated set of windows, which are chords of P that serve as boundaries be-

tween adjacent faces. Starting and end points of a window w will be denoted by α(w) and β(w),
respectively. We have the following two lemmas as the basic fundamental properties of SPM:

Lemma 3.1. For any point or line segment x ∈ P , SPM(x) can be constructed in O(n) time.

Proof:

This follows from Theorem 1 in [16] and Chazelle’s linear time triangulation algorithm [4]. ⊓⊔

Lemma 3.2. Given a point or line segment x ∈ P , any line segment L intersects at most three faces

of SPM(x) (see the proof of Lemma 3 in [2]).

The value of each face of SPM(x) is defined as the link distance from x to any points of that

face. These values are added to each face during the construction of SPM(x) in Lemma 3.1. Let

||SPM(x)|| denote the number of faces of SPM(x). Also, let Fx(i) be a face of SPM(x) and let

||Fx(i)|| denote the value of Fx(i), where 1 ≤ i ≤ ||SPM(x)|| (see Figure 1).

The window tree WT (x) denotes the planar dual of SPM(x). It has a node for each face and

an arc between two nodes if their faces share an edge. WT (x) is rooted at x and each node of it is

labeled with a window. The computation of WT (x) takes O(n) time [16]. According to [16], Fx(i) is

generated by its corresponding window wi ∈ WT (x) and vice versa, i.e., we define Gx(wi) = Fx(i)
and wi = G−1

x (Fx(i)) (1 ≤ i ≤ ||SPM(x)||). If i is not specified, we define Gx(w(x)) = Fx and

w(x) = G−1
x (Fx), where w(x) is a window of WT (x) and Fx is the corresponding face of SPM(x).

Consider the shortest path maps of P with respect to the points s and t. To find the intersection of

the two maps SPM(s) and SPM(t), the map overlay technique is employed. One of the well-known

M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons 305

s

Figure 1. The value of each face Fs(i) of SPM(s), where 1 ≤ i ≤ ||SPM(s)|| = 15

algorithms for this purpose was introduced by Finke and Hinrichs [7]. The algorithm computes the

overlay of two SCPSs in optimal time O(n+r), where n is the total number of edges of the two SCPSs

and r is the number of intersections between the edges in the worst case. Both the input and output

SCPSs are represented by the quad view data structure (a trapezoidal decomposition of a SCPS) [7].

The intersection of SPM(s) and SPM(t) creates a new SCPS inside P . We call each face of

this SCPS a Cell. Also, Ce is defined as a set such that each member of it points to a Cell. By

the construction of Cells, each Cell (Ce(i)) is the intersection of two faces, one face from SPM(s)
and another face from SPM(t), i.e., Ce(i)= Fs(j) ∩ Ft(k). The value of each Cell (the value of

Ce(i)) is defined as ||Ce(i)|| = ||Fs(j)|| + ||Ft(k)|| (1 ≤ i ≤ n(Ce), 1 ≤ j ≤ ||SPM(s)|| and

1 ≤ k ≤ ||SPM(t)||). These values are added to each Cell during the overlaying, and will later be

used for computing |MLP (s, t, q)| (see Figure 2).

Let Ws and Wt be the set of windows of SPM(s) and SPM(t), respectively, and W = (Ws ∪
Wt). The following lemma shows the number of Cells (n(Ce)):

Lemma 3.3. Overlaying SPM(s) and SPM(t) inside P creates n(W)+ r+1 Cells, where r is the

number of intersections inside P (excluding the boundary of P) between the windows of Ws and Wt.

Proof:

Let (V,E, F) be the triple sets of the new SCPS inside P after overlaying. If we omit the outer face of

P from n(V)−n(E)+n(F) = 2, we conclude: n(Ce) = n(E)−n(V)+1. All the vertices and edges

of the new SCPS, (V,E) can be divided into two groups, (V1, E1) on the boundary of P and (V2, E2)
inside P , where n(V) = n(V1)+n(V2) and n(E) = n(E1)+n(E2). Let w ∈ W . For the first group,

n(V1) and n(E1) are the n vertices and n edges of P , respectively, plus the number of those β(w) not

already counted among the vertices of P . Thus, n(E1) − n(V1) = 0. Note that α(w) is always on a

reflex vertex of P and does not change n(V1) or n(E1). For the second group, consider the windows

of W . Based on the definition of windows, there is no intersection between the windows of SPM.

Therefore, each of the r intersections corresponds to only two windows, one from Ws and another from

306 M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons

s

t

Intersection point

A Cell with value:
||Fs||+ ||Ft|| = 4 + 3

Figure 2. Overlaying SPM(s) and SPM(t) to create Cells, and their values

Wt. Suppose that there is no common window between Ws and Wt, i.e., n(W) = n(Ws) + n(Wt).
In this case, each intersection creates four segments for two distinct windows. It is easy to deduce

that by induction, the total number of edges on the windows of W is n(Ws) + n(Wt) + 2r. But,

n(V2) = r and n(E2)− n(V2) = n(Ws) + n(Wt) + r = n(W) + r. For the case n(Ws ∩Wt) > 0,

we have to consider only one of the two coincident windows due to the fact that they do not create a

new segment. Therefore, n(E2)− n(V2) = n(Ws) + n(Wt)− n(Ws ∩Wt) + r = n(Ws ∪Wt) + r.

Finally, n(Ce) = n(E1)− n(V1) + n(E2)− n(V2) + 1 = n(W) + r + 1. ⊓⊔

As depicted in the example in Figure 2, n(Ce) = 32, n(Ws) = n(Wt) = 14, n(Ws ∪Wt) = 28
and r = 3. The number of the windows of SPM inside P depends on the number of the reflex

vertices of P . Since the total internal angles of P is (n − 2) ∗ 180 degrees, n(Ws) and n(Wt) ≤
n − 3. According to Lemma 3.2, each window of Ws intersects at most two windows of Wt and

vice versa. Thus, each window in Ws or Wt contains at most two intersection points inside P , i.e.,

r ≤ 2 ∗min(n(Ws), n(Wt)) ≤ 2(n− 3). Based on Lemma 3.3 and the above argument, we have:

n(Ce) = n(W) + r + 1 ≤ n(Ws) + n(Wt) + r + 1 ≤ (n − 3) + (n − 3) + 2(n − 3) + 1 =
4n− 11 = O(n).

Lemma 3.4. Construction of Cells and computation of their values for two points s and t inside P

can be done in O(n) time.

Proof:

The construction of the two maps SPM(s) and SPM(t) can be done in O(n) time (Lemma 3.1). The

total complexity of the two created maps inside P (total number of edges and windows) is O(n). Thus,

by the map overlay technique one can construct Cells in O(n + r) time [7], but since r ≤ 2(n − 3),
this is O(n) time. On the other hand, n(Ce) = O(n). Thus, assigning ||Fs(j)||+ ||Ft(k)|| to ||Ce(i)||
takes O(n) time (1 ≤ i ≤ n(Ce), 1 ≤ j ≤ ||SPM(s)|| and 1 ≤ k ≤ ||SPM(t)||). ⊓⊔

M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons 307

The visibility graph of P , denoted by VG(P) is an undirected graph of the visibility relation on the

vertices of P . VG(P) has a node for every vertex of P and an edge for every pair of visible vertices

inside P . Consider a visibility graph edge e. The extension points of e refer to the intersections of the

boundary of P with the line containing e. VG(P) and its extension points can be computed in time

proportional to the size of VG(P), i.e., O(E), where E is the number of edges in VG(P) [11]. Indeed,

the main algorithm in [11] outputs the edges of VG(P) in sorted order around each vertex.

Lemma 3.5. We can preprocess P in O(E) time so that the following ray shooting query can be

answered in O(log n) time: given a vertex v of P and a direction θ, find the intersection points of the

ray from v in direction θ with the boundary of P , where the ray exits the interior of P .

Proof:

After computing VG(P) and its extension points in O(E) time, we store the sorted edges of VG(P)
according to the angle between them in some fixed directions (e.g., clockwise) about each vertex. For

a given vertex v, the binary search can be used to find two adjacent edges of VG(P) so that the cone

defined by the two edges contains only the ray emanating from v in direction θ. By finding these

edges, one can specify the two extension points on an edge b of P . So, b is used to find the intersection

point of the ray in constant time. If the ray coincides with the edges of VG(P), all intersection points

are returned. ⊓⊔

A more complicated algorithm is presented in [9] for the ray shooting problem in a simple polygon.

This algorithm has O(n) (instead of O(E)) preprocessing time and the same query time (O(log n)).
Note that E = Ω(n) = O(n2). We must use this algorithm for single query (Section 5), but

Lemma 3.5 suffices for triple query (Section 6).

4. Main idea

The following cases (Q(x)) may occur for a query point q:

Q(a) At least one of s or t is visible from q, i.e., s or t in V (q). In this case, MLP (s, t, q) = πL(s, t).

Q(b) The points s and t are in two different regions of Pocket(q). Again in this case, MLP (s, t, q) =
πL(s, t). Since πL(s, t) crosses V (q), it is a q-visible path.

Q(c) Both s and t are in the same region in Pocket(q). In this case, eq is the common edge be-

tween this region of Pocket(q) and V (q). Therefore, MLP (s, t, q) should have a non-empty

intersection with the side of eq , where q lies.

4.1. Computation of eq

Now, we are ready to compute eq with respect to the points s and t (single query and triple query).

Let α(eq) and β(eq) be the starting and end points of eq , respectively. For any three points s, t and

q inside P , the last bending vertices of πE(s, q) and πE(t, q) called v1 and v2 (reflex vertices of P),

respectively, can be found in O(log n) time, after O(n) time preprocessing of P [2, 10]. If either v1 or

308 M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons

v2 does not exist, Q(a) occurs. Otherwise, if v1 = v2, Q(c) occurs, otherwise, Q(b) occurs. For the

two cases Q(a) and Q(b), there is no need to compute eq. But for the case Q(c), the first intersection

point of the ray emanating from α(eq) = v1 = v2 in direction
»

qα(eq) with the boundary of P is

specified (Lemma 3.5 or [9]). Indeed, this intersection point is β(eq). Thus, starting and end points of

eq are specified and the following corollary is concluded:

Corollary 4.1. Computation of eq (α(eq) and β(eq)) with respect to any two points s and t inside P

can be done in O(log n) time, after O(E) or O(n) time preprocessing of P , if necessary (case Q(c)).

4.2. Case Q(c)

The line segment eq divides P into two subpolygons, only one of which contains q. We define p as the

subpolygon containing q (eq ∈ p). Let Cep = {Ce(i) ∩ p | Ce(i) ∩ p 6= ∅, 1 ≤ i ≤ n(Ce)}. Also,

||Cep(j)|| is defined to be ||Ce(i)||, where Cep(j) and Ce(i) are the corresponding members in Cep

and Ce, respectively (1 ≤ j ≤ n(Cep) and 1 ≤ i ≤ n(Ce)). Let cellminp = min
n(Cep)
i=1 (||Cep(i)||)

and Cellminp = {Cep(i) | ||Cep(i)|| = cellminp, 1 ≤ i ≤ n(Cep)}.

Cep(1)

eqs
s

tt

q

B B

B′

a) b)

eqq

Cep(2)Cep(1)

Figure 3. Case Q(c) and MLP (s, t, q) (light blue path) for the above subcases

As mentioned above, MLP (s, t, q)∩ p 6= ∅. According to [18], there is always a bending point B

(see Figure 3a) and there are at most two bending points B and B′ (see Figure 3b) on MLP (s, t, q)
inside p (this follows from the triangle inequality for link distances and the fact that s and t lie on the

same side of eq, see Lemma 3.1 in [18]). In the former case, B must belong to a member of Cellminp

and |MLP (s, t, q)| = |πL(s,B)| + |πL(B, t)|. As for the latter case, B and B′ must belong to two

distinct members of Cellminp and |MLP (s, t, q)| = |πL(s,B)| + 1 + |πL(B
′, t)| = |πL(s,B)| +

|πL(B, t)| = |πL(s,B
′)| + |πL(B

′, t)|. Thus, for both cases, cellminp = min
n(Cep)
i=1 {|πL(s, x)| +

|πL(x, t)| for any x ∈ Cep(i)} has been computed correctly (remember the definition of ||Ce(i)||) and

min
n(Cep)
i=1 {|πL(s, x)|+ |πL(x, t)| − 1 for any x ∈ Cep(i)} would not be possible for |MLP (s, t, q)|

(Lemma 3.1 in [18]).

M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons 309

4.2.1. Computation of Cellminp and cellminp

To compute Cellminp and cellminp, we do not need to consider all members of Cep. Indeed, we

concentrate on windows of W that intersect eq . As stated in Lemma 3.2, eq intersects at most two

windows of Ws and at most two windows of Wt. The status of these intersections is verified by

the position of α(eq) and β(eq) with respect to the faces of SPM(s) and SPM(t). To specify the

position of α(eq) and β(eq) with respect to the faces of SPM(x) (x ∈ P is a point or line segment),

we use the point location1 algorithm in [6]. This can be accomplished by O(n) time preprocessing

of SPM(x) (remember that ||SPM(x)|| = O(n) and based on Lemma 3.1, SPM(x) is constructed

in O(n) time) to determine which face contains α(eq) and which face contains β(eq) in O(log n)
time.

For w ∈ W , if (α(w) = α(eq) or α(w) = β(eq)) or (β(w) = β(eq)), we say that there is no

intersection between eq and w except for the degenerate case, where (β(w) = β(eq)) and (α(eq) and

β(eq) lie in different faces, and there is no window w′ 6= w from the same SPM crossing the interior

of eq). Note that β(w) = α(eq) never occurs.

Suppose that α(eq) ∈ Fx(j) and β(eq) ∈ Fx(k). If j = k, eq does not intersect any windows

of SPM(x). Otherwise, if ||Fx(j)|| > ||Fx(k)|| or ||Fx(j)|| < ||Fx(k)||, eq only intersects the

window wj or wk, respectively, and if ||Fx(j)|| = ||Fx(k)||, eq intersects both windows wj and wk

(wj = G−1
x (Fx(j)) and wk = G−1

x (Fx(k))). After locating wj or wk, if necessary, the intersection of

eq with each of them is computed in constant time. Applying the above procedure for SPM(s) and

SPM(t) yields at most two intersection points s1, s2 of eq with w′(s), w′′(s) ∈ Ws, and at most two

intersection points t1, t2 of eq with w′(t), w′′(t) ∈ Wt, respectively. Since n(Ce) = O(n) and the

construction of Cells is done in O(n) time (Lemma 3.4), once again, we can use the point location

algorithm for Cells [6]. Also, the intersection points (if any) of w′(s), w′′(s) with w′(t), w′′(t), which

are computed during the construction of Cells can be easily determined to be inside or outside p. This

is done in constant time as follows: suppose that w′(s) intersects w′(t) at point I1. Since the position

of s1 and β(w′(s)) are known, the position of I1 on w′(s) can be determined. If I1 lies between s1 and

β(w′(s)), it will be inside p. The same computation can be applied for the other intersection points

of w′(s), w′′(s) with w′(t), w′′(t). Let I be the set of these points (0 ≤ n(I) ≤ 4). The status of

points in the set I with respect to eq (inside or outside p) as well as the status of the two segments s1s2
and t1t2 on eq (they might intersect or not) determine Cellminp using the point location algorithm

for Cells (in the degenerate cases for instance, if s1 does not exist, we replace it by α(eq) or β(eq)
depending on which one is in the same face as s2). Let Fs and Ft be faces of SPM(s) and SPM(t),
respectively (determined implicitly by the single query and triple query algorithms, but arbitrary for

the moment). For w ∈ W and point z on w, we define γ(w, z) to be the point on w, strictly between

β(w) and z, closest to z among all intersections of w with other windows of W . If w does not intersect

other windows of W , define γ(w, z) to be β(w). There are the following cases C(x) (see Figure 4) for

α(eq) and β(eq) to compute Cellminp and cellminp (we use this fact: the intersection of two faces

inside P creates a simply connected region since P does not contain any holes):

1For a point lying in two faces or more than one Cell, the face or Cell with less value is considered as the output of the point

location algorithm, respectively.

310 M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons

eq eq

eq

eq

eqeq

s1 = t1

s2 = t2

t1

s1

s2

t2

s1
s2

t1

t2

t1
t2

s1
s2

s1
s2

t1
t2

t1

t2

s1

C(a) C(b)

C(c1) C(c2)

s2

C(c32)C(c31)

Figure 4. Cases C(x) for two faces Fs (green lines) and Ft (blue lines), where each line may be a chain of line

segments (windows or boundary of P). The status of s1s2 ∩ t1t2 as well as the status of the points in I indicate

each of the cases

M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons 311

C(a) α(eq) and β(eq) are both in Fs ∩ Ft. In this case, eq entirely lies in one Cell and does not

intersect any window(s) of W . The portion of this Cell, which lies in p (like Cep(1)) is the

only member of Cellminp due to the fact that walking from Cep(1) to other Cep(i) for i > 1
increases cellminp = ||Cep(1)|| by at least one. To find Cep(1), we locate α(eq) and β(eq) in

Cell C . Consider w ∈ W , where α(eq) = α(w) and γ(w,α(w)) ∈ C (there is always such a

window since on qα(eq) only α(eq) is visible from G−1
s (Fs) and G−1

t (Ft)). Cut C by eq and

let Cep(1) be the portion of C , where γ(w,α(w)) is located.

C(b) α(eq) and β(eq) are both either in face Fs or Ft, but not both. Therefore, eq entirely lies in one

face and intersects window(s) of Ws or Wt, but not both. Without loss of generality, suppose

that eq is in Fs and intersects window(s), (w′(t) or w′′(t)) ∈ Wt. Let w(s) = G−1
s (Fs) and

w(t) ∈ Wt be the parent of (w′(t) or w′′(t)) in WT (t). Also, Ft = Gt(w(t)). Obviously, eq is

completely visible from w(s) and a portion of eq is visible from w(t). Thus, Fs ∩ Ft ∩ p 6= ∅.

Like the argument in C(a), Cep(1) = Fs ∩ Ft ∩ p is the only member of Cellminp with

cellminp = ||Cep(1)||. To find Cep(1), we locate (t1 and t2) in Cell C (degenerate cases

included). Cut C by t1t2 and let Cep(1) be the portion of C , where γ(w′(t), t1) or γ(w′′(t), t2)
are located.

C(c) α(eq) and β(eq) are both in different faces of SPM(s) as well as different faces of SPM(t).
In this case, eq intersects at least one and at most two windows of Ws and Wt. Suppose that eq
intersects windows (w′(s) or w′′(s)) ∈ Ws and (w′(t) or w′′(t)) ∈ Wt. Indeed, s1s2 and t1t2
exist even for degenerate cases. Let w(s) ∈ Ws be the parent of (w′(s) or w′′(s)) in WT (s)
and w(t) ∈ Wt be the parent of (w′(t) or w′′(t)) in WT (t). Furthermore, Fs = Gs(w(s)) and

Ft = Gt(w(t)). Accordingly, the following cases may occur:

C(c1) Let Fs ∩ Ft = ∅ (unlike C(a) and C(b)). Suppose that w′(t) is closer to Fs than w′′(t),
and F ′

t = Gt(w
′(t)). Since eq intersects Fs and w′(t), Fs∩F

′

t ∩p 6= ∅. The same holds for

Ft, F
′

s = Gs(w
′(s)) and p. Let Cep(1) = Fs ∩F ′

t ∩ p and Cep(2) = Ft ∩F ′

s ∩ p. For any

points Xs ∈ Fs, Xt ∈ Ft and x ∈ {p − Fs − Ft}, we have |πL(s,Xs)| < |πL(s, x)| and

|πL(t,Xt)| < |πL(t, x)|. Thus, |πL(s,Xs)| + |πL(t,Xt)| < |πL(s, x)| + |πL(t, x)| − 1.

Suppose that xs ∈ Cep(1) ⊆ Fs ∩ p and xt ∈ Cep(2) ⊆ Ft ∩ p. By the construction

of Cep(1) for any xs, there is a point Xt ∈ Ft such that xs and Xt are visible to each

other. Since Fs ∩ Ft = ∅, |πL(s, xs)| + |πL(t, xs)| = |πL(s, xs)| + |πL(t,Xt)| + 1 <

|πL(s, x)| + |πL(t, x)|. The same holds, if xt ∈ Cep(2), i.e., |πL(s, xt)| + |πL(t, xt)| <
|πL(s, x)| + |πL(t, x)|. Let x ∈ {(Fs ∩ p) − Cep(1)}. Since Fs ∩ p and Ft are disjoint

sets, for any point Xt ∈ Ft, |πL(x,Xt)| ≥ 2. Similarly, |πL(x,Xs)| ≥ 2 for x ∈
{(Ft ∩ p)− Cep(2)} and any point Xs ∈ Fs. This indicates that Cep(1) and Cep(2) are

the only members of Cellminp with cellminp = ||Cep(1)|| = ||Cep(2)||. In this case,

s1s2∩t1t2 = ∅ and n(I) = 0. Conversely, since p and P −p do not contain any holes, and

eq crosses both Fs and Ft, it is easy to show that Fs∩Ft∩p = ∅ and Fs∩Ft∩(P−p) = ∅.

Thus, Fs ∩ Ft = ∅. To find Cep(1) and Cep(2), we locate (s1 and s2) in Cell C1 and (t1
and t2) in Cell C2, respectively. Cut C1 by s1s2 and cut C2 by t1t2. Let Cep(1) be the

portion of C1, where γ(w′(s), s1) or γ(w′′(s), s2) are located. Also, let Cep(2) be the

portion of C2, where γ(w′(t), t1) or γ(w′′(t), t2) are located.

312 M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons

C(c2) Let Fs ∩ Ft 6= ∅, but Fs ∩ Ft ∩ p = ∅. In this case, Fs ∩ Ft must be in P − p between the

intersections of the windows w′(s), w′′(s) with w′(t), w′′(t). Otherwise, since eq crosses

these windows, P − p contains a hole. Thus, Fs is divided by at least one window of Ft

(like w′(t)), where a portion of w′(t) is visible from w(s). This shows that Fs ∩ p would

be completely visible from w′(t). The same holds for Ft∩p and w′(s). Therefore, like the

case C(c1), Cep(1) = Fs ∩ p and Cep(2) = Ft ∩ p are the only members of Cellminp

with cellminp = ||Cep(1)|| = ||Cep(2)||. In this case, s1s2 ∩ t1t2 = ∅, n(I) > 0 and

I ⊂ P − p. Also, the reverse situation holds. The computation of Cep(1) and Cep(2) is

similar to the case C(c1).

C(c3) Now, let Fs ∩ Ft ∩ p 6= ∅. Similar to the case C(b), Cep(1) = Fs ∩ Ft ∩ p would be

the only member of Cellminp with cellminp = ||Cep(1)||. The following cases can be

considered:

C(c31) s1s2 ∩ t1t2 = ∅, n(I) > 0 and I ⊂ p (the reverse situation holds similar to the case

C(c2)). If I1 ∈ I , we locate I1 in Cell C and let Cep(1) = C .

C(c32) Let ST = s1s2∩ t1t2 6= ∅. Locate (S and T) in Cell C . Cut C by ST and let Cep(1)
be the portion of C , where γ(w,S) or γ(w′, T) are located. Note that (w = w′(s) or

w′′(s)) and (w′ = w′(t) or w′′(t)), where w,w′ ∈ C (if S = T 2 and (γ(w,S) and

γ(w′, T) belong to different Cells), Cep(1) = S = T).

The above cases3 for C(x) indicate that 1 ≤ n(Cellminp) ≤ 2 with the value cellminp for all

Cellminp members. It is easy to see that the most expensive part of these computations takes O(log n)
time (others require constant time). The following corollary summarizes the above argument:

Corollary 4.2. Cellminp and cellminp for the given eq are computed in O(log n) time, after O(n)
time preprocessing of SPM(s), SPM(t) and Cells.

4.3. Algorithm overview

For any points s, t and q inside P , the main algorithm flow is described as follows:

1) Determine which cases of Q(a), Q(b) or Q(c) occur.

1.1) In case Q(a) or Q(b) just compute πL(s, t) and return.

1.2) In case Q(c) compute eq and continue.

2) For single query compute Cellminp and select an arbitrary point x from a member of Cellminp.

3) For triple query select an arbitrary point x from a portion of eq (determined in Section 6) or let

x ∈ I (remember the definition of I from Section 4.2.1).

4) Report πL(s, x) appended by πL(x, t).

The following sections illustrate how to compute MLP (s, t, q) in detail.

2If the two windows that cross at this point coincide, Cep(1) will be the portion of this window that lies in p.
3For the cases, where the computation of I is required, windows w with (α(w) = α(eq) or β(eq)) or (β(w) = β(eq)) are

not needed. This is compatible with the definition of points intersecting eq (Section 4.2.1).

M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons 313

5. Single query

We first describe the preprocessing phase of the algorithm for two given points s, t and a query point

q inside P :

P1) Build a data structure for answering shortest Euclidean path queries between two arbitrary points

inside P .

P2) Construct SPM(s), SPM(t) and compute the value of each face of these maps. Also, construct

the window trees WT (s) and WT (t) (Gs, G−1
s and Gt, G

−1
t).

P3) Construct Cells and compute their values.

P4) Prepare SPM(s), SPM(t) and Cells for point location queries.

P5) Build a data structure for ray shooting queries inside P .

The query processing algorithm for computing |MLP (s, t, q)| proceeds as follows (note that

Flags and Flagt indicate the number of windows of each face intersecting eq):

Q1) Compute implicit representations of πE(s, q) and πE(t, q), and extract from them the last ver-

tices v1 and v2, respectively. This can be done by the data structure of Step P1.

Q2) If either v1 or v2 does not exist, report |πL(s, t)| (case Q(a)), as in [16] using Steps P1, P2 and

P4.

Q3) If v1 6= v2, again report |πL(s, t)| (case Q(b)), otherwise, compute eq using the data structure

of Step P5 (case Q(c)) and continue the following steps:

Q4) Locate α(eq) and β(eq) in the faces of SPM(s) to compute two faces Fs(j) and Fs(k) con-

taining them, respectively. This can be done by Steps P2 and P4 (1 ≤ j, k ≤ ||SPM(s)||).

Q5) Let wj = wk = Null.

If j = k, {Flags = 0}, otherwise,

{ if ||Fs(j)|| > ||Fs(k)||, {Flags = 1; wj = G−1
s (Fs(j)); s1 = wj ∩eq; s2 = (α(eq) or β(eq))

depending on which one belongs to Fs(k)}, otherwise, if ||Fs(j)|| < ||Fs(k)||, {Flags = 1;

wk = G−1
s (Fs(k)); s1 = (α(eq) or β(eq)) depending on which one belongs to Fs(j); s2 =

wk ∩ eq}, otherwise, {Flags = 2; wj = G−1
s (Fs(j)); wk = G−1

s (Fs(k)); s1 = wj ∩ eq;

s2 = wk ∩ eq} }.

Let w′(s) = wj , w
′′(s) = wk.

Q6) Repeat Steps Q4 and Q5 for SPM(t) to compute {Flagt, w
′(t), w′′(t), t1, t2}.

Q7) If (Flags > 0 and Flagt > 0), compute the set I and s1s2 ∩ t1t2.

314 M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons

Q8) If Flags = Flagt = 0, do as C(a), otherwise, if Flags ∗ Flagt = 0, do as C(b), otherwise,

if s1s2 ∩ t1t2 6= ∅, do as C(c32), otherwise, if n(I) = 0, do as C(c1), otherwise, if I ⊂ p

(checkable in constant time), do as C(c31), otherwise, do as C(c2). This can be done by Steps

P2, P3 and P4. For all these conditions report cellminp.

To analyse the time complexity of this algorithm, observe that all of the above preprocessing

requires altogether O(n) time. This follows from [10], [16], Lemma 3.4, [6] and [9] for Steps P1, P2,

P3, P4 and P5, respectively. On the other hand, based on Corollary 4.1 (with O(n) preprocessing),

Corollary 4.2 and [16], the query processing phase can be done in O(log n) time.

For computing MLP (s, t, q), we must report πL(s, t) instead of |πL(s, t)| in Steps Q2 and Q3.

Also, Step Q8 must be modified to report πL(s, x) appended by πL(x, t), where x is a point in a

member of Cellminp (in cases C(c1) and C(c2), n(Cellminp) = 2). Thus, the following theorem is

proved:

Theorem 5.1. Given a simple polygon P with n vertices and two points s, t inside it, we can prepro-

cess P in time O(n) so that for a query point q, one can find |MLP (s, t, q)| in O(log n) time. Further,

MLP (s, t, q) can be reported in an additional time O(|MLP (s, t, q)|).

6. Triple query

In this section, we propose an algorithm for three query points. Our method is closely related to the

work of Arkin et al. [2] (note that the construction of VG(P) is essential in [2]). So, we borrow the

related terminology from [1, 2] and review some terms adapted to the notation used in this paper.

Consider a window w of SPM(x), where x ∈ P is a point or line segment. The combinatorial

type of w is the vertex-edge pair (v, e), where v = α(w) is a reflex vertex of P and β(w) lies on

an edge e of P . The combinatorial type of SPM(x) is a listing of the combinatorial types of all of

its windows. Constructing SPM(x) for all vertices of P and all extension points of VG(P) edges

creates a list of windows. The endpoints of these windows on the boundary of P together with the

vertices of P partition the boundary of P into O(n2) intervals, called atomic segments. We can sort

the endpoints of all windows along the boundary edges of P in O(n2 log n) time and get access to

an ordered list of atomic segments on each edge of P . The following lemma from [2] describes the

special characteristic of atomic segments:

Lemma 6.1. If L is an atomic segment on the boundary of P , the combinatorial type of SPM(x) is

the same for all points x in the interior of L.

Given a polygonal path Π inside P , an interior edge e ∈ Π is called a pinned edge if it passes

through two vertices of P on opposite sides of e such that e is tangent to P at these vertices. The

greedy minimum link path (as defined in [2]) from a point x to a point y inside P (called πLG(x, y)
here) uses only the extensions of the windows of SPM(x) and the last link is chosen to pass through

the last vertex of πE(x, y). It is easy to verify whether πLG(x, y) has a pinned edge or not. This can

be done in O(n) time by traversing the path πLG(x, y) for two arbitrary points x and y inside P .

M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons 315

On the other hand, we can check if there is a pinned edge between the atomic segment L (any

point x ∈ L) and α(wi) for all windows wi of SPM(L) during the construction of SPM(L) in O(n)
time. Let w be a window of SPM(L) such that πLG(x, α(w)) has no pinned edge. Also, let β(w)
lie on an edge e of P . According to Lemma 6.1, the combinatorial type of w is the pair (α(w), e) for

all x ∈ L. Indeed, as x varies along L, β(w) varies along e according to a projection function f(x),

which can be written as a fractional linear form [1]: β(w) = f(x) =
Ax+B
Cx+D

The four constants A,B,C and D depend on the atomic segment L, the fixed point α(w) (reflex

vertex of P) and the edge e. In the case that πLG(x, α(w)) has a pinned edge, it is not required to

compute the projection function for L and w as the position of β(w) on the edge e would not change

when x varies along L. Thus, for each window wi of SPM(L), where there is no pinned edge on

πLG(x, α(wi)) for any x ∈ L, we compute and store the projection function fi. This preprocessing

can be done in O(n) time for each atomic segment L during the construction of SPM(L) [1, 2]. So,

for a window wi, we can evaluate the exact position of β(wi) as x varies along L in constant time.

Let SPMA(L) be the data structure SPM(L) plus the following: for each window wi of SPM(L),
if there is a pinned edge between L and α(wi), set flag(wi) = 1, otherwise, set flag(wi) = 0, then

compute and store the projection function fi for wi. The following corollary is concluded from the

above argument and Lemma 3.1:

Corollary 6.2. For an atomic segment L, SPMA(L) can be constructed in O(n) time.

Now, we describe the proposed algorithm for three query points s, t and q inside P . Unlike the

algorithm developed for single query, we only attempt to find s1s2∩ t1t2 or I . Indeed, for triple query,

we may need to update all the windows of a Cell. In the worst case, the number of these windows is

O(n), and hence the queries cannot be answered in O(log n) time. On the other hand, for any w ∈ W

as β(w) varies along an edge of P , we may need to update the value of Cells in O(n) time. For these

reasons, Cellminp and cellminp cannot be used for triple query and only part of the locus (lying on

eq or a point in I) is found in O(log n) time. We perform the following preprocessing step on P :

P0) Build a data structure for answering minimum link path queries between two arbitrary points

inside P (this includes Steps P1, P2 and P4 of the single query algorithm, and the construction

of VG(P) mentioned in Lemma 3.5). Also, with this data structure an ordered list of atomic

segments on each edge of P is computed. We can modify this step for each atomic segment L

as follows: construct SPMA(L) as well as the value of each face and WT (L). Also, prepare

SPMA(L) for point location queries (note that windows of SPMA(L) are in fixed positions,

but the position of windows of SPMA(x) may change for an arbitrary point x ∈ L).

According to [2, 6] and Corollary 6.2, since we have O(n2) atomic segments, the total time com-

plexity of this step is O(n3).
For an atomic segment L, let δ(eq , L) be the set of windows wi of SPMA(L), where β(eq)

belongs to an edge e of P such that the combinatorial type of wi is (α(wi), e), flag(wi) 6= 1 and

eq ∩ wi = ∅. Based on Lemma 3.2, each edge of P intersects at most two windows of SPMA(L).
Thus, n(δ(eq , L)) ≤ 2, and by Step P0, it can be computed in constant time. Indeed, the purpose of

introducing δ(eq, L) is to store all the possible windows in SPMA(L) which may intersect eq as a

316 M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons

point x varies along L except those windows that are currently intersecting eq. Since the data structure

for point location queries in the following algorithm is only preprocessed for SPMA(L), the new

intersecting windows with eq can be updated from δ(eq , L) after we know x and locate the proximity

of the intersecting windows. In the case that β(wi) coincides with β(eq) after it varied along e, the

intersection point can be ignored (based on the definition of points intersecting eq in Section 4.2.1).

Note that β(wi) never coincides with α(eq). Thus, the contribution of α(eq) is omitted from δ(eq , L).

The query processing algorithm for computing |MLP (s, t, q)| can be outlined as follows:

Q1) Compute implicit representations of πE(s, q) and πE(t, q), and extract from them the first ver-

tices u1, u2 and last vertices v1, v2, respectively. This can be done by the data structure used for

shortest Euclidean path queries of Step P0.

Q2) If either v1 or v2 does not exist, report |πLG(s, t)| (case Q(a)) using the data structure of Step

P0 for link distance queries.

Q3) If v1 6= v2, again report |πLG(s, t)| (case Q(b)), otherwise, compute eq using VG(P) (see

Corollary 4.1 with O(E) preprocessing) of Step P0 for ray shooting queries (case Q(c)) and

continue the following steps:

Q4) Compute the intersection (called xs) of the extension of # »u1s with an edge e of P . This can be

done by VG(P) similar to Step Q3. Find the atomic segment Ls by using binary search on e,

where xs ∈ Ls. Similarly, Lt and xt ∈ Lt can be computed for the extension of
»

u2t.

Q5) Locate α(eq) and β(eq) in the faces of SPMA(Ls) to compute two faces Fs(j) and Fs(k)
containing them, respectively. This can be done by the data structure used for point location

queries of Step P0 (1 ≤ j, k ≤ ||SPM(s)||).

Q6) If j = k, {wj = wk = Null}, otherwise, { if ||Fs(j)|| > ||Fs(k)||, {wj = G−1
s (Fs(j));

wk = Null}, otherwise, if ||Fs(j)|| < ||Fs(k)||, {wj = Null; wk = G−1
s (Fs(k))}, otherwise,

{wj = G−1
s (Fs(j)); wk = G−1

s (Fs(k))} }.

Q7) If (wj 6= Null and flag(wj) 6= 1), {update wj according to fj; if (wj ∩ eq = ∅), wj = Null}.

If (wk 6= Null and flag(wk) 6= 1), {update wk according to fk; if (wk∩eq = ∅), wk = Null}.

(fj and fk are the projection functions corresponding to wj and wk as xs varies along Ls).

Q8) Compute δ(eq, Ls) and let ∆s = δ(eq, Ls).

If n(∆s) > 0, {update the windows of ∆s, according to their corresponding projection functions

and position of xs on Ls; let ∆s be the set of these updated windows intersecting eq}.

Q9) If wj 6= Null, ∆s = ∆s ∪ wj .

If wk 6= Null, ∆s = ∆s ∪ wk.

Q10) Repeat Steps Q5, Q6, Q7, Q8 and Q9 for SPMA(Lt) to compute ∆t.

Q11) If (n(∆s) > 0 and n(∆t) > 0), compute the set I for intersections of windows in ∆s and ∆t.

M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons 317

Q12) If n(∆s) = 1, {let w ∈ ∆s; s1 = eq ∩ w; if |πLG(xs, α(eq))| < |πLG(xs, β(eq))|, s2 = α(eq),
otherwise s2 = β(eq)}. This can be done by link distance queries of Step P0.

If n(∆s) = 2, {let w,w′ ∈ ∆s; s1 = eq ∩ w; s2 = eq ∩ w′}.

Similarly, t1 and t2 are computed.

Q13) If n(∆s) = n(∆t) = 0, X = eq (like C(a)), otherwise, if n(∆s) = 0, X = t1t2 (like C(b)),
otherwise, if n(∆t) = 0, X = s1s2 (like C(b)), otherwise, if s1s2 ∩ t1t2 6= ∅, X = s1s2 ∩ t1t2
(like C(c32)), otherwise, if (n(I) = 0 or I ⊂ P −p), X = (s1s2 or t1t2) (like C(c1) or C(c2)),
otherwise, X will be a point in I (like C(c31)). For all these cases |πLG(s,X)| + |πLG(X, t)|
is reported. This can be done by the data structure of Step P0.

The main difference between triple query and single query is the computation of ∆s and ∆t.

Indeed, in Step Q7, the windows wj and wk are specified for the point xs ∈ Ls. If they intersect eq ,

we update them. On the other hand, in Step Q8, the windows of SPMA(Ls), which are candidates

for intersection with eq are specified (including the windows that cross the endpoints of eq). These

windows are added to the set ∆s if they intersect eq after updating. Further, in Step Q9, the final ∆s

is computed (n(∆s) ≤ 2). The other steps are similar to single query.

To analyse the time complexity of this phase of the algorithm, it is easy to see that Steps Q6,

Q7, Q8, Q9 and Q11 can be done in constant time while others require O(log n) time (like the time

complexity of single query).

For computing MLP (s, t, q), we must report πLG(s, t) instead of |πLG(s, t)| in Steps Q2 and Q3.

Also, Step Q13 must be modified to report πLG(s, x) appended by πLG(x, t), where x ∈ X or x = X.

Thus, the following theorem is proved:

Theorem 6.3. Given a simple polygon P with n vertices, we can preprocess it in time O(n3) so

that for query points s, t and q inside P , one can find |MLP (s, t, q)| in O(log n) time. Further,

MLP (s, t, q) can be reported in an additional time O(|MLP (s, t, q)|).

7. Conclusion

We presented two algorithms to find a q-visible path between two points inside a simple polygon

with n vertices for single query and triple query. The proposed algorithms run with O(n) and O(n3)
preprocessing time for each of the cases, respectively, and answer a link distance query in O(log n)
time for both cases. Further, a constrained minimum link path can be reported in an additional time

proportional to the number of links for either case.

One possible direction for further research on this problem is to consider the same topic in other

domains such as polygonal domains or polyhedral surfaces. Another direction is to require the path

in the query form to visit a more complex object like a simple polygon (convex or non-convex), as

opposed to a point. In this case, if the shape of the query object is fixed, one can find a Q-visible path

for the object Q while it translates or rotates inside a simple polygon, i.e., the desired path should have

a non-empty intersection with Q.

318 M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons

Acknowledgements

The author wish to thank Dr Ali Gholami Rudi from Babol Noshirvani University and Dr Ali Ra-

jaei from Tarbiat Modares University, Computer Sciences group, for many pleasant discussions and

valuable remarks. Also, i would like to thank the anonymous referees for their valuable comments.

References

[1] Aggarwal A, Booth H, O’Rourke J, Suri S, Yap CK. Finding minimal convex nested polygons, Information

and Computation, 1989. 83(1):98–110. doi:10.1016/0890-5401(89)90049-7.

[2] Arkin EM, Mitchell JSB, Suri S. Logarithmic-time link path queries in a simple poly-

gon, International Journal of Computational Geometry and Applications, 1995. 5(4):369–395.

doi:10.1142/S0218195995000234.

[3] Arkin EM, Efrat A, Knauer C, Mitchell JSB, Polishchuk V, Rote G, Schlipf L, Talvitie T. Shortest path

to a segment and quickest visibility queries, Journal of Computational Geometry, 2016. 7(2):77–100.

doi:10.4230/LIPIcs.SOCG.2015.658.

[4] Chazelle B. Triangulating a simple polygon in linear time, Discrete and Computational Geometry, 1991.

6(3):485–524.

[5] Chen DZ. Developing algorithms and software for geometric path planning problems, ACM Computing

Surveys (CSUR), 1996. 28(4es):18-es. doi:10.1145/242224.242246.

[6] Edelsbrunner H, Guibas LJ, Stolfi J. Optimal point location in a monotone subdivision, SIAM Journal on

Computing, 1986. 15(2):317–340.

[7] Finke U, Hinrichs KH. Overlaying simply connected planar subdivisions in linear time, In Pro-

ceedings of the eleventh annual symposium on Computational Geometry, ACM 1995:119–126.

doi:10.1145/220279.220292.

[8] Ghosh SK. Computing the visibility polygon from a convex set and related problems, Journal of Algo-

rithms, 1991. 12(1):75–95. doi:10.1016/0196-6774(91)90024-S.

[9] Guibas LJ, Hershberger J, Leven D, Sharir M, Tarjan RE. Linear-time algorithms for visibility

and shortest path problems inside triangulated simple polygons, Algorithmica, 1987. 2(1-4):209–233.

doi:10.1007/BF01840360.

[10] Guibas LJ, Hershberger J. Optimal shortest path queries in a simple polygon, Journal of Computer and

System Sciences, 1989. 39(2):126–152. doi:10.1016/0022-0000(89)90041-X.

[11] Hershberger J. An optimal visibility graph algorithm for triangulated simple polygons, Algorithmica, 1989.

4(1-4):141–155. doi:10.1007/BF01553883.

[12] Khosravi R, Ghodsi M. The fastest way to view a query point in simple polygons, In Proceedings of the

21st European Workshop on Computational Geometry, 2005, pp. 187–190. ID: 2345696.

[13] Khosravi R, Ghodsi M. Query-point visibility constrained shortest paths in simple polygons, Theoretical

Computer Science, 2007. 389(1-2):1–11. doi:10.1016/j.tcs.2007.07.003.

[14] Mitchell JSB, Rote G, Woeginger G. Minimum-link paths among obstacles in the plane, Algorithmica,

1992. 8(1-6):431–459. doi:10.1007/BF01758855.

M.R. Zarrabi and N.M. Charkari / Query-Points Visibility Constraint Minimum Link Paths in Simple Polygons 319

[15] Suri S. A linear time algorithm for minimum link path inside a simple polygon, Computer Vision, Graphics

and Image Processing, 1986. 35(1):99–110.

[16] Suri S. On some link distance problems in a simple polygon, IEEE transactions on Robotics and Automa-

tion, 1990. 6(1):108–113. doi:10.1109/70.88124.

[17] Wang H. Quickest visibility queries in polygonal domains, Discrete and Computational Geometry, 2019.

62(2):374–432. doi:10.1007/s00454-019-00108-8.

[18] Zarrabi MR, Charkari NM. Single-Point Visibility Constraint Minimum Link Paths in Simple Polygons,

Submitted to Iranian Journal of Mathematical Sciences and Informatics, (Accepted 2019), arXiv preprint

arXiv:2003.12778.

http://arxiv.org/abs/2003.12778

	1 Introduction
	2 Problem definition and notation
	3 Basic lemmas and definitions
	4 Main idea
	4.1 Computation of eq
	4.2 Case Q(c)
	4.2.1 Computation of Cellminp and cellminp

	4.3 Algorithm overview

	5 Single query
	6 Triple query
	7 Conclusion

