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Abstract. Membrane computing is a branch of natural computing aiming to abstract computing

models from the structure and functioning of living cells. The computation models obtained in

the field of membrane computing are usually called P systems. P systems have been used to solve

computationally hard problems efficiently on the assumption that the execution of each rule is

completed in exactly one time-unit (a global clock is assumed for timing and synchronizing the

execution of rules). However, in biological reality, different biological processes take different

times to be completed, which can also be influenced by many environmental factors. In this

work, with this biological reality, we give a time-free solution to independent set problem using

P systems with active membranes, which solve the problem independent of the execution time of

the involved rules.
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1. Introduction

Membrane computing is a computing paradigm motivated by the structure and functioning of the

living cells. It was initiated by Gh. Păun in [1, 2] and has developed rapidly (already in 2003, the

Institute for Scientific Information, ISI, declared membrane computing as “fast emerging research

area in computer science”, see http://esi-topics.com). The computation devices considered in the

framework of membrane computing are usually called P systems. There are three main classes of P

systems investigated: cell-like P systems [1, 3], tissue-like P systems [4, 5, 6, 7], neural-like P systems

[8, 9, 10, 11]. In recent years, many variants of spiking neural P systems have been considered [12,

13, 14, 15, 16]. For general information in membrane computing, one may consult [17, 18, 19, 20, 21]

and to the membrane computing website http://ppage.psystems.eu/ for details.

P systems with active membranes are a class of cell-like P systems, which were introduced in

[22]. Generally speaking, P systems with active membranes consist of a hierarchical structure com-

posed by q membranes, where the outermost membrane is called the skin membrane. Membranes

delimit regions, that contain some objects (represented by symbols of an alphabet), the region out-

side the membrane system is called the environment. A feature of these systems is the fact that the

membranes are polarized, they have one of the three possible “electrical charges”: positive (+), neg-

ative (−) or neutral (0). The whole membrane structure, the charge of membranes and the objects

contained in membranes evolve by using the following types of rules: (a) object evolution; (b) object

communication; (c) membrane dissolution; (d) membrane division. Usually, the rules are applied in a

nondeterministic and maximally parallel way (any object and membrane which can evolve by a rule

of any form, should evolve).

P systems with active membranes have been successfully used to solve computationally hard prob-

lems efficiently [23, 24, 25, 26, 27, 28]. All these above mentioned P systems with active membranes

work in a parallel and synchronized way (a global clock is assumed to mark the time for the system),

in each tick of the global clock, all the applicable rules are applied simultaneously, and the execution

of rules takes exactly one time unit. However, in biological reality, different biological processes take

different times to be completed, which can also be influenced by many environmental factors[29].

Thus, a timed P system was proposed in [30], to each rule a natural number representing the execution

time of the rule is associated. A particular class of timed P systems is called time-free P systems, such

P systems produce always the same result, independent from the execution times of the rules.

The notion of time-free solution to hard computational problems was introduced in [31]. In [32],

time-free solution to SAT problem using P systems with active membranes was present, where the

computation result is independent of the execution time of the involved rules. Although independent

set problem can be reduced to SAT problem in polynomial time, it remains open how to compute the

reduction by P systems. In this work, we give a direct solution to independent set problem using P

systems with active membranes, instead of computing the reduction by P systems. The solution to

independent set problem using P systems with active membranes is time-free in the sense that the

computation result is independent of the execution time of the involved rules.

The organization of this paper is described as follows. Section 2 presents some fundamental con-

ceptions of language and automata theory and the notion of timed P systems with active membranes.

http://ppage.psystems.eu/
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A time-free solution to independent set problem by P systems with active membranes is investigated

in Section 3. Finally, conclusions and some future works are given in Section 4.

2. P systems with active membranes

2.1. Preliminaries

It is useful for the reader to have some familiarity with notion and notation from formal language

theory [33], as well as the definition of P systems with active membranes [17].

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V , while the empty

string is denoted by λ, and the set of all non-empty strings over V is denoted by V +. The length of a

string x is denoted by |x| and by card(A) the cardinality of the set A.

By N we denote the set of non-negative integers. A multiset over an alphabet V = {a1, a2, . . . , an}
is a mapping m: V → N. We can represent a multiset m over V as any string w ∈ V ∗ such that

|w|ai = m(ai), 1 ≤ i ≤ n. That is, m(w) = (m(a1),m(a2), . . . ,m(an)). We usually represent m

by the string a
m(a1)
1 . . . a

m(ak)
k or by any permutation of this string.

2.2. P systems with active membranes

Definition 2.1. A P system with active membranes of degree m is a construct

Π = (O,H, µ,w1, . . . , wm, R),

where:

(i) m ≥ 1 is the degree of the system;

(ii) O is the alphabet of objects;

(iii) H is a finite set of labels for membranes;

(iv) µ is the initial membrane structure, consisting of m membranes; membranes are labelled in an

injective way with elements of H and are electrically polarized, being possible charge positive

(+), negative (−) or neutral (0);

(v) w1, . . . , wm are strings over O, describing the initial multisets of objects placed in the m regions

of µ;

(vi) R is a finite set of development rules, of the following types:

(a) [ a → v ]α
h

, h ∈ H,α ∈ {+,−, 0}, a ∈ O, v ∈ O∗.

(object evolution rules, associated with membranes and depending on the label and the

charge of the membranes);

(b) a[ ]α1

h
→ [ b ]α2

h
, h ∈ H,α1, α2 ∈ {+,−, 0}, a, b ∈ O.

(send-in rules; an object is sent into the membrane, possibly modified during this process;

also the polarization of the membrane can be modified, but not its label);
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(c) [ a ]α1

h
→ [ ]α2

h
b, h ∈ H,α1, α2 ∈ {+,−, 0}, a, b ∈ O.

(send-out rules; an object is sent out of the membrane, possibly modified during this pro-

cess; also the polarization of the membrane can be modified, but not its label);

(d) [ a ]α
h
→ b, h ∈ H,α ∈ {+,−, 0}, a, b ∈ O.

(dissolving rules; in reaction with an object, a membrane can be dissolved, while the object

specified in the rule can be modified);

(e) [ a ]α1

h
→ [ b ]α2

h
[ c ]α3

h
, h ∈ H,α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ O.

(division rules for elementary membranes; in reaction with an object, the membrane is

divided into two membranes with the same label, possibly of different polarizations; the

object specified in the rule is replaced in the two new membranes by possibly new objects;

(f) [[ ]α1

h1
. . . [ ]α1

hk
[ ]α2

hk+1
. . . [ ]α2

hn
]α0

h0
→ [[ ]α3

h1
. . . [ ]α3

hk
]α5

h0
[[ ]α4

hk+1
. . . [ ]α4

hn
]α6

h0
, k ≥ 1, n >

k, hi ∈ H, 0 ≤ i ≤ n, and α0, . . . , α6 ∈ {+,−, 0} with {α1, α2} = {+,−}.

(if the membrane with label h0 contains other membranes than those with the labels

h1, . . . , hn specified above, then they must have neutral charges; these membranes are

duplicated and then are part of the contents of both new copies of the membrane h0).

The above rules can be considered as “standard” rules of P systems with active membranes; the

following two rules can be considered as the extension of rules (a) and (e), respectively.

(a′) [ u → v ]α
h

, h ∈ H,α ∈ {+,−, 0}, u, v ∈ O∗.

(cooperative evolution rules, associated with membranes and depending on the label and the

charge of the membranes);

(e′) [ a ]α
h
→ [ a1 ]

α1

h1
[ a2 ]

α2

h2
. . . [ ad ]

αd

hd
, h, h1, . . . , hd ∈ H , α,α1, . . . , αd ∈ {+,−, 0}, a, a1, . . . ,

ad ∈ O, d ≥ 2.

(h is an elementary membrane; in reaction with an object, the membrane is divided into d
membranes not necessarily with the same label; also the polarizations of the new membranes

can be different from the polarization of the initial one; the object specified in the rule is replaced

in the d new membranes by possibly new objects).

For a detailed description of using these rules we can refer to [22, 17]. Here, we mention that the

rules are used in the non-deterministic maximally parallel manner, and we assume that the rules are

applied in the bottom-up manner: in any given step, one uses first the evolution rules of type (a), (a′),

then the other rules which also involve a membrane; moreover, one uses first the rules of types (b),

(c), (d), (e), (e′) and then those of type (f). We also remark that at one step a membrane h can be

subject of only one rule of types (b)-(f) and (e′). A configuration in a P system with active membranes

is described by the membrane structure, together with charge on each membrane and the multisets of

objects in each region. A P system with active membranes evolves from one configuration to the next

one by applying rules as mentioned above. A sequence of transitions between configurations defines

a computation. A computation halts if it reaches a configuration where no rule can be applied in any

membrane. The result of a computation is the multiset of objects contained into an output membrane,

or emitted from the skin of the system.
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2.3. Timed P systems with active membranes

The notion of timed P system was proposed from [30]. In this work, we consider timed P systems

with active membranes.

A timed P system with active membranes Π(e) = (O,H, µ,w1, . . . , wm, R, e) is obtained by

adding a time-mapping e : R → N to a P system with active membranes Π = (O,H, µ,w1, . . . , wm, R),
where N is the set of natural numbers and the time-mapping e specifies the execution times for the

rules.

A timed P system with active membranes Π(e) works in the following way. An external clock is

assumed, which marks time-units of equal length, starting from instant 0. According to this clock, the

step t of computation is defined by the period of time that goes from instant t − 1 to instant t. If a

membrane i contains a rule r from types (a) – (f), (a′) and (e′) selected to be executed, then execution

of such rule takes e(r) time units to complete. Therefore, if the execution is started at instant j, the

rule is completed at instant j + e(r) and the resulting objects and membranes become available only

at the beginning of step j + e(r) + 1. When a rule r from types (b) – (f) and (e′) is applied, then the

occurrences of symbol-objects and the membrane subject to this rule cannot be subject to other rules

from types (b) – (f) and (e′) until the implementation of the rule completes. At one step, a membrane

can be subject to several rules of types (a) and (a′).

2.4. Recognizer timed P systems with active membranes

In this subsection, we first present the definition of recognizer P systems with active membranes, then

the notion of recognizer timed P systems with active membranes is given.

Definition 2.2. A recognizer P system with active membranes of degree m ≥ 1 with input is a tuple

Π = (O,H,Σ, µ, w1, . . . , wm, R, iout, iin), where:

• The tuple (O,H, µ,w1, . . . , wm, R, iout) is a P system with active membranes.

• Σ is an (input) alphabet strictly contained in O.

• The initial multisets w1, . . . , wm are over O \Σ.

• iin ∈ {1, . . . ,m} is the label of a distinguished (input) membrane.

• The working alphabet contains two distinguished elements yes and no.

• All the computations halt.

• If C is a computation of the system, then either object yes or object no (but not both) must

appear in the environment when the system halts. Note that object yes or object no can be

present in a non-halting configuration.

For recognizer P systems with active membranes, we say that a computation is an accepting com-

putation (resp., rejecting computation) if the object yes (resp., no) appears in the environment asso-

ciated with the corresponding halting configuration.
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Here, differently from the usual interpretation, we allow yes and no objects to exit into the envi-

ronment before reaching the halting configuration. In that case they are not providing the answer to

the decision problem.

For each multiset w over the input alphabet Σ, the computation of P systems with active membranes

Π with input w starts from the configuration of the form (w1, . . . , wiin + w, . . . , wm, µ), that is, the

input multiset w has been added to the contents of the input membrane iin. Therefore, we have an

initial configuration associated with each input multiset w (over the input alphabet Σ) in this kind of

systems.

Definition 2.3. A recognizer timed P system with active membranes of degree m ≥ 1 is a tuple (Π, e),
where Π is a recognizer P system with active membranes and e is a time-mapping of Π.

2.5. Time-free solutions to decision problems by P systems with active membranes

In this subsection, we introduce the definition of time-free solutions to decision problems by P systems

with active membranes [32].

In a timed P systems with active membranes, a computation step is called a rule starting step

(RS-step, for short) if at this step at least one rule starts its execution. In the following, we will only

count RS-steps as the definition of time-free solutions to decision problems by P systems with active

membranes (i.e., steps in which some object “starts” to evolve or some membrane “starts” to change).

In timed P systems with active membranes, the execution time of rules is determined by the time

mapping e, and it is possible the existence of rules whose execution time is inherently exponential,

therefore, the number of RS-steps in a computation characters how “fast” the constructed P system

with active membranes solves a decision problem in the context of time-freeness.

Definition 2.4. Let X = (IX ,ΘX) be a decision problem. We say that X is solvable in a time-free

polynomial time by a family of recognizer P systems with active membranes Π = Πu, u ∈ IX (we

also say that the family Π is a time-free solution to the decision problem X) if the following items are

true:

• the family Π is polynomially uniform by a Turing machine; that is, there exists a deterministic

Turing machine working in polynomial time which constructs the system Πu from the instance

u ∈ IX .

• the family Π is time-free sound (with respect to X); that is, for any time-mapping e, the fol-

lowing property holds: if for each instance of the problem u ∈ IX such that there exists an

accepting computation of Πu(e), we have ΘX(u) = 1.

• the family Π is time-free complete (with respect to X); that is, for any time-mapping e, the

following property holds: if for each instance of the problem u ∈ IX such that ΘX(u) = 1,

every computation of Πu(e) is an accepting computation.

• the family Π is time-free polynomially bounded; that is, there exists a polynomial function p(n)
such that for any time-mapping e and for each u ∈ IX , all computations in Πu(e) halt in, at

most, p(|u|) RS-steps.
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3. A time-free solution to independent set problem by P systems with

active membranes

In this section, we first introduce the definition of independent set problem, then construct a family of

P systems with active membranes that solve independent set problem in a time-free polynomial time.

Independent Set Problem

INSTANCE: A undirected graph γ = (V,E), where V = {v1, v2, . . . , vn} is the set of vertices,

E is the set of edges with elements of the form (vi, vj), vi, vj ∈ V , i 6= j, and a positive integer

k < card(V ).

QUESTION: Is there a subset V ′ ⊆ V with card(V ′) ≥ k such that no two vertices in V ′ are

jointed by an edge in E?

Theorem 3.1. Independent set problem can be solved by a family of P systems with active membranes

in a time-free polynomial time with respect to the size of the problem.

Proof:

Let us consider a undirected graph γ = (V,E), where V = {v1, v2, . . . , vn} is the set of vertices,

E is the set of edges with elements of the form (vi, vj), vi, vj ∈ V , i 6= j, and a positive integer

k < card(V ).
For the given undirected graph γ, suppose that the undirected graph γ has s (s ≤ (n2 − n)/2)

edges which are ordered, we construct the P systems with active membranes

Πγ = (O,H, µ,w0, w1, wn+3+s, R),

where

• O = {vi, v
′

i, v
′′

i , gi, g
′

i | 1 ≤ i ≤ n} ∪ {ai, ei | 1 ≤ i ≤ s} ∪ {yes, no, a, as+1, b0, b, c, d, d
′ ,

d′′, d′′′} ∪ {bi | 1 ≤ i ≤ s+ 1} is the alphabet,

• H = {−1, 0, 1, 2, . . . , n + 3 + s} is the set of labels of the membranes,

• µ = [ [ [ ]01 ]
0
0 ]

0
n+3+s

is initial membrane structure,

• w0 = λ (that is, membrane 0 contains no object in the initial configuration),

• w1 = {b, v1, v2, . . . , vn} is the initial multiset contained in membrane 1,

• wn+3+s = {no} is the initial multiset contained in membrane n+ 3 + s,

and the set R contains the following rules (we also give explanations about the role of these rules in

the computation of solving independent set problem):

r1,i : [ vi ]
0
i
→ [ v′i ]

0
i+1[ v

′′

i ]0
i+1, 1 ≤ i ≤ n.

r2,i : [v
′

i → ehi,1
. . . ehi,ji

gi ]
0
i+1, 1 ≤ i≤ n, and each edge ehi,1

, . . . , ehi,ji
is linked with vertex vi.

r3,i : [ v
′′

i → cg′i ]
0
i+1, 1 ≤ i ≤ n.
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r4,i : [ gi ]
0
i+1 → gi[ ]+

i+1, 1 ≤ i ≤ n.

r5,i : [ g
′

i ]
0
i+1 → g′i[ ]−

i+1, 1 ≤ i ≤ n.

r6,i : [ [ ]+
i+1[ ]−

i+1 ]
0
0 → [ [ ]0

i+1 ]
0
0[ [ ]0

i+1 ]
0
0, 1 ≤ i ≤ n.

At step 1, the rule r1,1 : [ v1 ]
0
1 → [ v′1 ]

+
2 [ v

′′

1 ]−2 is applied, producing the objects v′1 and v′′1 ,

which are placed in two separate copies of membrane 2. Note that when the membrane with label 1

is divided by the rule r1,1, the obtained two membranes have label 2 instead of label 1. For any given

time-mapping e, the execution of rule r1,1 completes in e(r1,1) steps. As we will see below, at step 1,

except for the application of rule r1,1, rule r14 : [ no ]0
n+3+s

→ [ ]+
n+3+s

no also starts; and from step

2 to step e(r1,1), there is no rule starting. Thus, during the execution of rule r1,1 (i.e., from step 1 to

step e(r1,1)), there is one RS-step (here the rule r14 does not count). Note that the number of RS-step

during the execution of rule r1,1 is independent from the time-mapping e.

After the execution of rule r1,1 completes, the application of rule r2,1 : [ v
′

1 → eh1,1
. . . eh1,j1

g1 ]
0
2

and rule r3,1 : [ v′′1 → cg′1 ]
0
2 starts. Note that the application starts at the same step, but they may

complete at different steps. For any given time-mapping e, the execution of rule r2,1 and rule r3,1
takes one RS-step.

When the execution of rule r2,1 (resp., r3,1) completes, rule r4,1 (resp., r5,1) starts to use, a dummy

object is sent out of the membrane, the charge is change to positive (resp., negative). Note that the

executive of rules r2,1 and r3,1 may start at different steps.

Rule r6,1 : [ [ ]+2 [ ]−2 ]00 → [ [ ]02 ]
0
0[ [ ]02 ]

0
0 can be applied only when the execution of rule r4,1

and rule r5,1 completes. For any given time-mapping e, the execution of rule r6,1 takes e(r6,1) steps,

where the number of RS-step is one.

By the application of rule r6,1, the polarization of the membranes with label 2 changes to neutral.

In this way, the rule r1,2 : [ v2 ]
0
2 → [ v′2 ]

+
3 [ v

′′

2 ]−3 is enabled and applied. Similar to the case of

vertex v1, the process of execution of vertex v2 takes five RS-steps, and four membranes with label

0 are generated, each membrane with label 0 contains a membrane with label 3. In general, after 5n
RS-steps, 2n separate copies of membrane with label 0 are generated, all of which are placed in the

membrane with label n+ 3 + s; each membrane with label 0 contains a membranes with label n + 1
(see Fig. 1).

...

n+ 3 + s

00

n+ 1n+ 1

Figure 1. The membrane structure of the system Πγ after 3n RS-steps
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r7 : [ b ]
0
n+1 → [ b0 ]

+
n+2[ b1 ]

0
n+2 . . . [ bs ]

0
n+1+s

[ bs+1 ]
0
n+2+s

.

r8 : [ b0 → aa1 . . . asas+1e
2
1 . . . e

2
sc

n−k+1 ]+
n+2.

r9 : [ a ]+
n+2 → [ ]0

n+2a.

r10,i : [ e
2
i → d ]0

n+1+i
, 1 ≤ i ≤ s.

r11,i : [ d ]0
n+1+i

→ [ ]−
n+1+i

d, 1 ≤ i ≤ s+ 1.

r12,i : [ ai ]
−

n+1+i
→ [ d′′ ]0

n+2+i
[ d′′′ ]0

−1, 1 ≤ i ≤ s.

r13 : [ c
n−k+1 → d ]0

n+2+s
.

r14 : [ d
s+2 → d′ ]00.

r15 : [ d
′ ]00 → d′.

Each neutral membrane with label n + 1 containing object b is produced at the same time. By

applying the rule r7, one positive membrane with label n + 2 and s + 1 neutral membranes with

labels n+ 2 + i (0 ≤ i ≤ s) are produced, respectively. After the execution of rule r7 completes, the

application of rules r8, r10,i (if at least two copies of object ei exist in membranes n+1+i (1 ≤ i ≤ s)

which are generated by rule r7) and r13 (if there are at least n− k+1 copies of object c in membrane

n+2+s which is generated by rule r5) starts at the same step, but they may complete at different steps.

When the execution of rule r8 completes, the execution of rule r9 : [ a ]+
n+2 → [ ]0

n+2a starts, where

object a exits the membrane, changing its polarization from positive to neutral. After the execution

of rule r9, the application of rules r10,i, r11,i and r12,i will be applied one by one (at this time, the

evolution objects which are generated by rule r8, for the rule r12,i, the membrane containing object

ai is divided into two membranes with label n + 2 + i and −1, respectively, where the membrane

with label −1 is a “dummy” membrane that will not evolve anymore). In this way, the rules of types

r10,i, r11,i, r12,i are applied as many times as possible. At some moment, when the membrane with

label n+2+ s is generated by the rule r12,s, the application of rule r13 : [ c
n−k+1 → d ]0

n+2+s
starts,

n− k + 1 copies of object c evolve to object d. After the execution of rule r13, the application of rule

r11,s+1 : [ d ]0
n+2+s

→ [ ]−
n+2+s

d starts, object d exits the membrane, changing its polarization from

neutral to negative.

It is important to note that when the execution of all rules r9, r10,i, r11,i, r12,i, r13 (the evolution

objects which are generated by rule r8) completes, the execution of rules r10,i, r11,i, r13 (these rules

are enabled due to the previous application of rule r7, i.e., the membranes used for rules r10,i, r11,i, r13
are generated by rule r7) must already complete.

If s + 2 copies of object d are present in membrane 0, the application of rule r14 : [ ds+2 → d′ ]00
starts, object d′ is produced (it means there are s + 1 copies of object d which are evolved from

e21, e
2
2, . . . , e

2
s, c

n−k+1 (generating by rule r8), and one copy of d comes from one of the membranes

with label n + 2 + i (0 ≤ i ≤ s) which are produced by rule r7). After the execution of rule r14, the

application of rule r15 : [ d
′ ]00 → d′ starts, where the membrane with label 0 is dissolved.

Note that we need to check that we have at least k selected vertices, hence we dissolve the mem-

branes with label 0 only when less than k vertices are marked with a prime.

For any given time-mapping e, the execution of rule r7 completes in e(r7) steps, where there is

one RS-step; the execution of rules r8 and r10,i (these rules are applied in the membranes with labels

n + 2 + i (0 ≤ i ≤ s) which are produced by rule r7) takes one RS-step; the execution of rules r11,i
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(object d is generated by the membrane n + 2 + i (0 ≤ i ≤ s), which is produced by rule r7) takes

at most s + 1 RS-steps; the execution of rules r9, r10,i, r11,i, r12,i (1 ≤ i ≤ s)(the evolution objects

which are generated by rule r8) takes 3s+1 RS-steps; the execution of rules r13, r14, r15, r11,s+1 takes

four RS-steps; thus, the total number of RS-steps is 4s+ 8.

r16 : [ no ]0
n+3+s

→ [ ]+
n+3+s

no.

r17 : no[ ]−
n+3+s

→ [ no ]−
n+3+s

.

r18 : d
′[ ]00 → [ yes ]00.

r19 : [ yes ]00 → [ ]00yes.

r20 : [ yes ]+
n+3+s

→ [ ]−
n+3+s

yes.

At step 1, the rule r16 : [ no ]0
n+3+s

→ [ ]+
n+3+s

no is applied, object no exits the skin membrane

n+ 3 + s, changing its polarization from neutral to positive.

When the execution of rule r15 completes, if no membrane with label 0 is present in the skin

membrane with label n+ 3 + s, then the rules r18 : d′[ ]00 → [ yes ]00, r19 : [ yes ]00 → [ ]00yes and

r20 : [ yes ]+
n+3+s

→ [ ]−
n+3+s

yes cannot be applied, thus, rule r17 : no[ ]−
n+3+s

→ [ no ]−
n+3+s

cannot be applied. In this case, when the computation halts, object no remains in the environment,

telling us that there is not a subset V ′ ⊆ V with card(V ′) ≥ k such that no two vertices in V ′ are

jointed by an edge in E. Note that the system will take computation steps to complete the execution

of rule r16, but there is no RS-step from this moment to the end of the execution of rule r16.

When the execution of rule r15 completes, if some membranes with label 0 still exist, then the rule

r18 will be applied, where object d′ evolves to yes, and object yes enters the membrane. When the

execution of rule r18 completes, the application of rule r19 starts, object yes exits the membrane with

label 0. At this moment, if the execution of rule r16 is not yet completed, then no rule can be started in

the system before the execution of rule r16 completes. Only when the execution of rule r16 completes,

the polarization of membrane n + 3 + s changes to positive, and the rule r20 is enabled and applied.

By applying the rule r20, object yes exits the membrane with label n+3+s, changing its polarization

from positive to negative. Therefore, the other objects yes remaining in membrane n+ 3 + s are not

able to continue exiting into the environment. After the execution of rule r20 completes, the rule r17
is enabled and applied, object no enters membrane n + 3 + s. In this case, when the computation

halts, one copy of yes appears in the environment, telling us that there is a subset V ′ ⊆ V with

card(V ′) ≥ k such that no two vertices in V ′ are jointed by an edge in E.

It is clear that for any time-mapping e : R → N, the object yes appears in the environment

when the computation halts if and only if the independent set exists; and the object no stays in the

environment when the computation halts if and only if the independent set does not exist. So, the

system Πγ is time-free sound and time-free complete.

For any time-mapping e : R → N, if the independent set exists, the computation takes at most

5n + 4s + 12 RS-steps, the system halts. If the independent set does not exist, the computation takes

at most 5n + 4s + 8 RS-steps, and the system halts. Thus, the family Π is time-free polynomially

bounded.
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The family Π = {Πγ | γ is an instance of independent set problem} is polynomially uniform be-

cause the construction of P systems described in the proof can be done in maximum time (polynomial)

by a Turing machine:

• the total number of objects is 5n+ 3s + 12;

• the number of initial membranes is 3;

• the cardinality of the initial multisets is 3;

• the total number of evolution rules is 6n + 3s+ 12;

• the maximal length of a rule (the number of symbols necessary to write a rule, both its left

and right sides, the membranes, and the polarizations of membranes involved in the rule) is

n+ 3s− k + 6.

Thus, independent set problem can be solved in a time-free polynomial RS-steps with respect to

the size of the problem by recognizer P systems with active membranes and this concludes the proof.

⊓⊔

4. Conclusions and remarks

In this work, with the biological reality: different biological processes take different times to be com-

pleted, which can also be influenced by many environmental factors, we give a time-free solution to

independent set problem using P systems with active membranes, which solve the problem indepen-

dent from the execution time of the involved rules.

The notion of “time-free solutions to decision problems by P systems with active membranes”

was given in section 2, it is possible that the execution time of a rule is inherently exponential with

respect to the size of an instance, thus, a more reasonable definition was given, we use the RS-steps

to character how “fast” the constructed P system with active membranes solves a decision problem in

the context of time-freeness.

The solution to independent set problem in this work is semi-uniform in the sense that P systems

are constructed from the instances of the problem. It remains open how can we construct a uniform

time-free solution to independent set problem (that is, a P system can solve a family of instances of

the same size). In section 3, P systems constructed in the proof of Theorem 3.1 have the rules of types

(a′), (b), (c), (d), (e′) and (f), it remains open whether the rule types used in this construction can be

weakened, for instance whether changing the labels of the membranes created via rules of type (e′)

is actually necessary or if the construction can be carried on without changing any of the membrane

labels.
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[32] Song T, Macı́as-Ramos LF, Pan L, Pérez-Jiménez MJ. Time-free solution to SAT problem using P systems

with active membranes, Theoretical Computer Science, 2014. 529:61–68. doi:10.1016/j.tcs.2013.11.014.

[33] Rozenberg G, Salomaa A. (Eds.). Handbook of Formal Languages, Vol. 1–3, Springer-Verlag, Berlin,

1997. ISBN:978-3-642-63863-3.


	1 Introduction
	2 P systems with active membranes
	2.1 Preliminaries
	2.2 P systems with active membranes
	2.3 Timed P systems with active membranes
	2.4 Recognizer timed P systems with active membranes
	2.5 Time-free solutions to decision problems by P systems with active membranes

	3 A time-free solution to independent set problem by P systems with active membranes
	4 Conclusions and remarks

